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LaCOLLA: Middleware
for Self-Sufficient
Online Collaboration

The LaCOLLA middleware makes it possible for collaborators to interact using

their own resources without depending on centralized regimes. By contributing

their own resources, group members can organize and communicate using a

federated peer-to-peer model. This lets the group function regardless of whether

a member removes resources and despite network or node failures or

disconnection. In turn, this capacity for self-organization, together with location

transparency, lets application developers create self-sufficient applications for

collaborative activity.

W hen a group of people wants to
work together over the Internet,
it must agree on a tool set,

including general communication tools
(such as email or instant messaging), and
whether the group will require user reg-
istration or application installation. In
any case, the tools will use resources or
servers that the collaborating participants
don’t administer. Although it’s appropri-
ate for formal groups (possibly within
companies) to use external resources,
more spontaneous groups — which might
include informal school associations, peo-
ple with similar professional or personal
interests, and campaigns for social and
political activists — are unlikely to have

support entities that automatically and
transparently guarantee the necessary
resources at all times. These group mem-
bers must thus collaborate by using appli-
cations that only partially meet their
needs (such as email), by having a few
members manage resources for the whole
group, or by paying for third-party
resources or accepting advertising.

To promote such online collabora-
tions, we designed the LaCOLLA middle-
ware to let participants in collaborative
activities self-organize using only the
resources they themselves provide. (Colla
is a Catalan word that means a group of
people joined together freely with the aim
to work or act on a certain task.) LaCOLLA
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is based on the components’ decentralized and
autonomous behavior and uses algorithms based
on epidemic propagation of information, which lets
any two sites that happen to communicate
exchange their local information as well as infor-
mation they received from a third site, optimistic
object replication, or randomization.

LaCOLLA is a peer-to-peer grid optimized for
collaborative interaction and resource sharing.
Once the participants provide the computational
resources (storage and processing) and applications
that users need to carry out the group’s activities,
LaCOLLA manages them in such a way that any
resource owner can disconnect them at any time
without warning and without affecting the over-
all group’s functionality. The proposed middleware
then guarantees, despite intermittent node and net-
work availability, that the system can self-organize
without requiring the participants to manually
intervene. In the end, collectivism exists if the par-
ticipants ensure the group’s self-sufficiency by
providing sufficient resources. The middleware and
some demo applications (with instant messaging
and a basic desktop) are available at http://lacolla.
uoc.edu/lacolla.

Collectivism and
Online Collaboration
We can use different types of distributed architec-
tures to implement the LaCOLLA middleware’s
functionality. A client-server architecture, as in a
Web 2.0 or Asynchronous JavaScript and XML
(Ajax) application, is the simplest to manage. How-
ever, this paradigm’s centralization introduces
asymmetry in the group (by giving a position of
strength in the group to the resource owner who
contributed the key resources), dependency on
resources from third parties (given that the group
uses external servers instead of sharing its own),
and technical limitations (such as points of fail-
ure). LaCOLLA overcomes these limitations by
supporting self-sufficiency, availability, and self-
organization.

In the P2P model,1 communication is carried
out directly among participants who form a net-
work in which they all act as servers and clients.
This model has been successful in communities
based on individual interests, centered on sharing
based on competition, rather than collaboration.
In collaboration, and in small groups in particular,
it’s important that shared information be available
at all times.

Grid-based systems2 present a third approach
that focuses on virtualizing resources and provid-
ing them to the community. These solutions
increase individual capabilities but don’t optimize
interaction patterns in group collaborations or help
manage resources by applying group policies.

Instead, we propose a distributed systems par-
adigm based on the idea of collectivism, which
emphasizes the participants’ explicitly providing
resources for the group’s benefit. 

We designed LaCOLLA’s middleware to maintain
group members’ freedom; they can decide to dis-
connect resources from the group at any moment.
While a resource is within the group, however, the
group is in charge of its administration and the
group policies apply. Resources provided to a group
are used transparently — that is, users don’t know
which resources they’re using to carry out an action.
Thus, members carry out their actions with group
resources in line with group policies. 

Contributing resources “for the benefit of the
group” makes sense in environments in which par-
ticipants share more than just resources, values, or
a common goal (for example, groups within a
company, student projects, groups with researchers
from different organizations, and nongovernmen-
tal organizations [NGOs]). A level of trust among
this type of group’s participants is required. Our
collective model isn’t designed to support groups
of people who don’t know one another or who
don’t share a spirit of mutual collaboration. Such
cases would require additional mechanisms to con-
trol access and resource use.

Middleware Requirements
We designed LaCOLLA to support collaboration in
collective environments because currently avail-
able systems can’t sufficiently handle the require-
ments for self-sufficient communities. (See the
“Related Work in Collaborative and Distributed
Systems Architectures” sidebar for specifics.) The
LaCOLLA middleware, on the other hand, can sup-
port asynchronous and synchronous-like collabo-
rative scenarios and applications. The middleware
specifically deals with

• different aspects of interaction, such as dis-
persed participants, many-to-many collabora-
tion, participation at different times, and
individuals participating from different loca-
tions at different times;

• group idiosyncrasies, such as flexibility,
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dynamism, decentralization, and participants’
autonomy; and

• technical and administrative issues, such as
information availability, interoperability among
applications, security issues, and participants
from different organizations with different
administrative authorities.

In addition, we designed our middleware to offer
collective self-organization. Thus, we identified the
following requirements:3

• Decentralization. No component is responsible
for coordinating other components, and no
information is associated with any single com-
ponent. Centralization leads to simple solu-
tions, but critical components restrict
participants’ autonomy.

• Self-organization. The system should be able to
function automatically without external inter-
vention. This requires the ability to reorganize
its components spontaneously when faced with
failures or dynamism (connection, disconnec-
tion, or mobility).

• Group-oriented. The group is the unit of organ-
ization.

• Group availability. The group should continue
to operate if some components malfunction or
become unavailable. Replicating objects,
resources, or services can help improve avail-
ability and quality of service.

• Individual autonomy. The group’s members
should be free to decide which actions to carry
out, what resources and services to provide,
and when to connect or disconnect.

• Self-sufficiency. A group must be able to oper-
ate with only the resources its members provide.

• Sharing. Information generated in the group
(such as events, objects, and presence informa-

tion) can be available to multiple applications.
• Security. A group must guarantee the identity

of its members and guarantee selective and
limited access to shared information by pro-
tecting information and authentication.

• Internet scale. A group is formed by several
components (distributed). Members and com-
ponents can be at any location (dispersed).

• Scalability. The number of groups is unlimited
because each group uses its own resources. 

• Universal and transparent access. Participants
should be able to connect from any com-
puter or digital device, with a connection-
independent view.

• Transparency of object and member location.
Applications should use location-independent
identifiers so the location of the group’s objects
or members isn’t significant.

• Disconnected operational mode. A component
should be able to operate without being con-
nected to the group.

Middleware Design
Based on the literature and our experiences with
collaborative environments, we decided that
LaCOLLA’s functionalities should focus on aware-
ness,4 group communication and coordination,
storage, and computational resources. As such, we
provided the following:3

• Communication and coordination by dissemi-
nating events. An event is spread to connect-
ed components when an action occurs or
when provided by applications to LaCOLLA.
Disconnected members receive events during
the reconnection process. This dissemination
of events helps applications provide aware-
ness to members.
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Related Work in Collaborative and Distributed Systems Architectures

W e can compare certain systems to
LaCOLLA. Groove (www.groove.

net) is a peer-to-peer system that lets users
create and share workspaces on their local
PCs, collaborating freely across corporate
boundaries and firewalls, without the per-
mission, assistance, or knowledge of any
central authority or support group.1 Groove
is based on synchronizing these workspaces,
but it doesn’t manage the group’s resources

collectively as does LaCOLLA.
JXTA (www.jxta.org) is a generic plat-

form for supporting the development of
peer-to-peer applications.2 More precisely,
it is a lower-level middleware that offers
generic mechanisms to discover and con-
nect to peers. In contrast, LaCOLLA is a
middleware designed to facilitate the con-
struction of applications for collaborative
activities based on optimistic propagation

of events and weak-consistency, which is
adequate in a dynamic and partially discon-
nected environment.

Referenes
1. M. Hurwicz, “Groove Networks: Think Globally,

Store Locally,” Network Magazine, May 2001. 
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• Object storage. Objects represent any entity that
can be stored in the resources that the members
provide to the group. LaCOLLA guarantees that
objects are replicated in a manner that ensures
their availability, even if some members decide
to disconnect the repositories they’ve provided
the group.

• Task execution. Any application can submit
tasks to be executed by computational resources
provided to LaCOLLA.

• Presence. Presence information indicates
which components and members are connect-
ed to the group.

• Location transparency. LaCOLLA resolves the
location of objects and members internally so
that applications don’t have to know this
information.

• Instant messaging. LaCOLLA lets applications
send messages to subgroups of members.

• Managing groups and members. Users can add,

delete, or modify information about members
or groups.

• Disconnected mode. LaCOLLA lets applications
operate offline. During reconnection, the mid-
dleware automatically propagates and synchro-
nizes changes.

We implemented this functionality in a man-
ner that satisfies the previous list of requirements.
Security is the only requirement we weren’t able
to fully implement. We’re exploring how to pro-
vide decentralized registration and authentication
without depending on external entities.

Architecture
As Figure 1 illustrates, people collaborating using
LaCOLLA must install a peer application on their
computers. The participants decide which compo-
nents to install based on their degree of involve-
ment in the group as well as their computers’
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Figure 1. Snapshot of a collaborative group using applications connected to LaCOLLA. Every user decides
autonomously which resources to contribute to the group. Collaboration will occur using only those
components.
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capacity and availability. The LaCOLLA architec-
ture3,5 consists of five kinds of component:

• user agents (UAs) interact with applications and
represent the participants connected;

• repository agents (RAs) persistently store
objects and events that participants generate;

• group administration and presence agents
(GAPAs) are in charge of administration, man-
aging information about the group and its
members and authenticating members;

• executor agents (EAs) execute tasks; and 
• task dispatcher agents (TDAs) distribute tasks

to executors.

(If all executors are busy, the TDAs queue tasks.
They also ensure that tasks are executed even if the
UA and member disconnect.)

Components interact with each other
autonomously. Internal mechanisms coordinate the
components connected to a group. We’ve grouped
these internal mechanisms5 together as events,
objects, tasks, presence information, location
information, groups, members, and instant mes-
saging. We implemented them by combining
multicast, weak-consistency optimistic protocols,
and random-decision techniques.

Internal Mechanisms
LaCOLLA’s three key mechanisms are presence,
which lets components and applications know
which components and members are connected to
the group; events, which let the UAs receive events
generated in the group (and pass them on to the
connected applications); and objects, which store
objects in the group.

We can assume that collaboration is taking
place in small groups, and Internet users are
increasingly connecting over higher-capacity con-
nections such as DSL or cable. Therefore, it’s also
reasonable to assume that we can use a decentral-
ized mechanism to manage component presence
in this collective environment. Our implementa-
tion of this mechanism is based on epidemic dis-
semination6 of information, a common technique
in optimistic replication.7 Any message a compo-
nent sends includes the list of components the
sender knows are connected to the group. Those
receiving the message learn of the components
connected to the group. This mechanism provides
each component connected to the group with a
fairly precise view — with statistical guarantees —

of all the connected components (see the “Valida-
tion” section for specifics).

One risk with optimistic designs is that some
components might have imprecise views, and some
might take a long time to learn about changes. For
this reason, we accelerated the epidemic dissemi-
nation with an application-layer multicast mecha-
nism through which a component multicasts a
message to inform the group it has (re)connected.
Given that our work involves small groups, we
should be able to use multicasts without overload-
ing the network or components.

This optimistic view is perfectly acceptable
from the end user’s perspective because the appli-
cations involved allow for asynchronous and syn-
chronous-like collaborative activities, for which
the participant doesn’t need an exact view of the
presence information.

The components use a soft-state or leasing tech-
nique to find out which are no longer connected.
Each time a component sends a message, the
receivers update a timer to indicate that the com-
ponent is connected. When the timer expires, the
component assumes that the other component has
failed and removes it from its list. Decision making
based on the information available to the compo-
nent itself simplifies the management of the pres-
ence mechanism. Once again, the design is
optimistic. If component C1 deletes its information
about component C2, which is connected, the epi-
demic propagation allows, after a short period of
time, that C1 will find out that C2 is still connected.

Multicast and epidemic dissemination are also
the basis for the events mechanism. An event can
inform the application that a member has created
or read a document, that a member has been
added, or any other event that’s worthy of being
sent to the group. Applications can also use events
to coordinate the different application instances.
The components multicast new events to the UAs
and RAs connected to the group. The UAs pass
them on to the connected applications, whereas the
RAs store them persistently. The UAs and RAs that
haven’t received a given event during the multi-
cast will eventually receive it in some consistency
session carried out with an RA. Consistency ses-
sions take place at two times:

• when the component connects to the group,
which lets it learn of the events that have taken
place while it was disconnected, or

• every so often once the component is connect-
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ed, so it receives events that
it hadn’t received when the
originator multicast them.

In both cases, the component
carries out the consistency ses-
sion with an RA chosen ran-
domly from among those that it
knows are connected. The con-
sistency sessions implement a
variant of the Time Stamped
Anti-Entropy protocol designed by Richard A.
Golding.8 This is an optimistic mechanism for dis-
seminating information in which each site peri-
odically contacts another and the two sites
exchange information until both have the same
information or events. 

LaCOLLA currently provides a causal ordering
on the generated events. If an application requires
stronger ordering guarantees, it should implement
them itself based on the event-dissemination API
calls that LaCOLLA provides. In that sense, a gen-
eral-purpose application-level module should
implement those stronger ordering guarantees and
provide them to applications.

The event’s approach occurs in two ways. On
the one hand, components multicast new events to
all components the sender knows are connected.
On the other, an epidemic mechanism acts in the
background and ensures that all the components
receive all the information. The multicast rapidly
disseminates the group’s coordination information.
This helps avoid conflicts and gives applications a
view that closely resembles the actual situation.
The epidemic mechanism is slower, but it ensures
convergence of all the components in terms of
their group views.

That all the UAs and RAs in LaCOLLA receive all
the events simplifies the object-management mech-
anism. A UA can directly obtain an object from any
of its locations. Previously received events provided
that information. The objects mechanism must sim-
ply ensure that the group has at least a replication-
factor number of replicas of any object — that is, a
minimum number of replicas of every object that
LaCOLLA should have to ensure its availability.
Thus, we reduce the objects mechanism to a series
of repositories that ensure all the objects are repli-
cated a minimum number of times.

Replication ensures availability of objects
despite node departure and network failures. When
an RA (RA1) detects that one of the objects it has

stored locally is replicated less than replication-
factor times, RA1 replicates it in any other RA.

Validation
We implemented LaCOLLA middleware together
with some collaborative demo applications to test
its usefulness. To validate LaCOLLA’s functionality,
we created a module to simulate user behavior
(generating events, instant messages, and opera-
tions) and have modified components to simulate
dynamic behavior (connections, disconnections,
failures, and mobility [change of location]).

We carried out the tests with 10 RAs, 10 GAPAs,
and between 10 and 80 UAs. For the tests, we
assumed that a member would connect from only
one UA. We used simulation time (steps) for the
tests rather than real time. To obtain significant
results, we repeated each experiment 150 times.

We divided each experiment into two phases.
The first phase involved user activity, component
dynamism, and internal mechanisms. We then sim-
ulated the system’s dynamic behavior. Table 1
shows the probability per step that a failure, dis-
connection, or mobility will occur. We also simu-
lated the user’s workload while collaborating using
the following data:

• events were 0.025 likely to occur in each step;
• objects, 0.015; and
• instant messages, 0.025.

There was a 0.025 probability that no activity would
occur (random with a [60, 540] interval). Each
experiment in this phase involved approximately
3,000 steps, which corresponds to a rather long ses-
sion resembling real collaborative scenarios.

The second phase involved only the internal
mechanisms (repair); we evaluated the number of
steps it took LaCOLLA to achieve consistent infor-
mation in all the components. Figure 2a shows, in
number of steps after entering the second phase, the
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Table 1. Probability of and duration range
for dynamic behaviors (per step).

Agent Failure Disconnections Mobility
Probability Interval Probability Interval Probability

(in steps) (in steps)
User agents 0.0005 [15, 120] 0.0025 [60, 540] 0.00035
Repository agents 0.000125 [12, 60] 0.0005 [15, 120] 0.0001
and GAPAs*

*Group administration and presence agents



cumulative probability that all the components have
received all the events. LaCOLLA is designed for
groups of 10, 20, or 30 members. In groups with 10
UAs, more than 93 percent of the components had
consistent event information when the first phase
ended (0 steps in the second phase); 100 percent of
components were consistent by the third step of the
second phase. For 20 members, these values were
89 percent and the sixth step, respectively.

As the number of UAs increases, the perform-
ance decreases almost linearly. Despite this,
LaCOLLA converges in a small number of steps (for
80 UAs, 95 percent in nine steps and 100 percent

in 14 steps). Translating simulation time to real
time, LaCOLLA provides users with a fairly precise
view of the group’s state with little overhead. Time
per step is a trade-off between system load and
immediateness. (In this context, immediateness
refers to a time that users perceive as immediate
enough for an asynchronous collaboration.) When
actions occur, information is immediately multi-
cast to the group. In the case of an incidence such
as a network failure, the system also converges
(consistency sessions) in a few steps.

Figure 2b shows how the components gain a
consistent view of the objects after a small num-
ber of steps. Likewise, Figure 2c shows the cumu-
lative probability for presence information. We
should stress that the optimistic design we used to
implement LaCOLLA implies that convergence
occurs at different rates. Despite this, convergence
appears adequate, and the consistency sessions
rate can be adjusted by users to guarantee that
members can perceive the effect of their actions
according to each application’s requirements.

Finally, LaCOLLA can achieve system conver-
gence at a low cost in terms of the time and space
resources used to attain synchronization and avail-
ability of information on various nodes. We can
keep the cost low for small groups that require
short messages for the presence information
exchanged. In the current LaCOLLA release, con-
sistency sessions are carried out periodically
(approximately two or three per minute) and are
distributed fairly uniformly among components —
a component does a consistency session with
another selected randomly from among all known
components. The weak-consistent optimistic
approach introduces a low overhead compared to
pessimistic approaches and avoids the bottlenecks
and points of failure of centralized solutions.

Implementation and API
LaCOLLA middleware has an open source license
and is written in Java. Tables 2 and 3 show the API
between the applications and LaCOLLA. Communi-
cation among LaCOLLA components is carried out
through TCP sockets. When an application wants to
log in, send an event, or get an object, it invokes the
appropriate API function in the UA. Similarly, the
UA can send notifications to the application.

T he current LaCOLLA release implements the
functionality we present in this article. A proto-
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Figure 2. Cumulative probability that in N seconds (a) information
about events is consistent in all components, (b) information about
objects in all components is consistent and objects are replicated at
least replication-factor times, and (c) information about presence
and location is consistent in all components for between 10 and 80
user agents (UAs).
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type application that uses LaCOLLA in a real situ-
ation showed that people can tolerate certain
degrees of inconsistency, but extensive collabora-
tive use cases are certainly needed to characterize
this further. We’re developing additional collabora-
tive applications that use LaCOLLA and are look-
ing to gain experience with real users at the online
Open University of Catalonia.

Ongoing work is focused on deploying servic-
es using computational resources provided to the
group and on exploring how to provide registra-

tion and authentication in a decentralized manner
without depending on external entities. Finally,
we’re studying the feasibility of extending
LaCOLLA to support radically decentralized and
limited-capability devices, such as PDAs, mobile
phones, and location and presence sensors.
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Table 2. Functions that LaCOLLA user agents offer to applications.

Category Function Description
Presence login Connects user to the group

logout Disconnects user from the group
whoIsConnected Indicates which members are connected to the group.

Events disseminateEvent Sends an event to all applications belonging to the group
eventsRelatedTo Indicates which events have occurred to a specific object

Objects putObject Stores an object in LaCOLLA
getObject Obtains an object stored in LaCOLLA
removeObject Removes an object stored in LaCOLLA

Tasks submitTask Submits a task to be executed by computational resources belonging to the group
stopTask Stops a task
getTaskState Gets the task’s state

Instant messaging sendInstantMessage Sends a message to specified group members
Groups addGroup Creates a new group

removeGroup Removes a group
modifyGroup Modifies a group’s properties
getGroupInfo Gets information about the properties of a group. (see groupInfo function)
getGroupInfoSync Gets information about the properties of a group synchronously (function doesn’t return until the

operation is completed and a result is available)
Members addMember Creates a new member

removeMember Removes a member
modifyMember Modifies a member’s properties
getMemberInfo Gets information about the member’s properties

Table 3. Functions that applications should offer to LaCOLLA user agents.

Category Function Description
Presence newConnectedMember Notifies that a new member has connected

memberDisconnected Notifies that a member has disconnected
Events newEvent Receives an event that occurred in the group
Tasks taskStopped Notifies that the task has been stopped correctly

taskEnded Notifies the end of a task
Instant messaging newInstantMessage Receives a new instant message
Groups groupInfo Receives the group information
Other functions exception Notifies that an internal exception or anomalous situation has occurred

appIsAlive User agent queries the application state to see if application is alive and connected to group
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