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A growing body of research shows that epigenetic mechanisms are critically involved in

normal and pathological aging. The Senescence-Accelerated Mouse Prone 8 (SAMP8)

can be considered a useful tool to better understand the dynamics of the global

epigenetic landscape during the aging process since its phenotype is not fully explained

by genetic factors. Here we investigated dysfunctional age-related transcriptional profiles

and epigenetic programming enzymes in the hippocampus of 2- and 9-month-old

SAMP8 female mice using the Senescent-Accelerated Resistant 1 (SAMR1) mouse

strain as control. SAMP8 mice presented 1,062 genes dysregulated at 2 months of

age, and 1,033 genes at 9 months, with 92 genes concurrently dysregulated at both

ages compared to age-matched SAMR1. SAMP8 mice showed a significant decrease

in global DNA methylation (5-mC) at 2 months while hydroxymethylation (5-hmC) levels

were increased in SAMP8 mice at 2 and 9 months of age compared to SAMR1. These

changes were accompanied by changes in the expression of several enzymes that

regulate 5-mC and methylcytosine oxidation. Acetylated H3 and H4 histone levels were

significantly diminished in SAMP8 mice at 2-month-old compared to SAMR1 and altered

Histone DeACetylase (HDACs) profiles were detected in both young and old SAMP8

mice. We analyzed 84 different mouse miRNAs known to be altered in neurological

diseases or involved in neuronal development. Compared with SAMR1, SAMP8 mice

showed 28 and 17 miRNAs differentially expressed at 2 and 9 months of age,

respectively; 6 of these miRNAs overlapped at both ages. We used several bioinformatic

approaches to integrate our data in mRNA:miRNA regulatory networks and functional
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predictions for young and aged animals. In sum, our study reveals interplay between

epigenetic mechanisms and gene networks that seems to be relevant for the progression

toward a pathological aging and provides several potential markers and therapeutic

candidates for Alzheimer’s Disease (AD) and age-related cognitive impairment.

Keywords: epigenetics, aging, brain, Alzheimer’s disease, chromatin-modifying enzymes, microRNA, DNA

methylation, histone acetylation

INTRODUCTION

With the dramatic rise in life expectancy, the prevention or delay
of age-related cognitive decline is becoming a critical issue to
improve human health-span (Prince et al., 2013, 2015). Aging
is a multifaceted process in the continuous, progressive, and
inevitable cycle of life; it is responsible for various depletive
alterations in the physiological function of organisms and is
molecularly associated with an increase in transcriptional noise
(López-Otín et al., 2013). Research on age-related disorders has
recently focused in epigenetic mechanisms since they are known
to regulate gene expression in a stable and potentially reversible
way and allow for the integration of long-lasting non-genetic
inputs in the genome. Thus, a growing number of investigations
have revealed that epigenetic mechanisms can modify the
gene expression of processes involved in the etiopathological
processes of Alzheimer’s Disease (AD): Oxidative Stress (OS);
mitochondrial and immune function; neuroinflammation and
neurotoxicity (Wang et al., 2008; Gräff et al., 2012; Hendrickx
et al., 2014; Iwata et al., 2014; Gjoneska et al., 2015; Yu et al., 2015;
Grossi et al., 2016; Smith et al., 2016).

Aging is the main risk factor for AD which is also influenced
by genetic factors such as the presence of full penetrant mutations
in Amyloid precursor protein (APP), Presenilin 1 and 2 (PSEN1
and PSEN2) and Apolipoprotein E (APOE), sex (prevalence and
incidence of AD are higher in women) and environmental
and lifestyle factors (Jiang et al., 2013; Benayoun et al., 2015;
Sohn et al., 2018). Converging evidence suggests that the
pathophysiological process of AD starts decades before the first
clinical symptoms. Although the etiology of the disease remains
unclear, studies in both humans and rodents have shown that
gene expression dysregulation is present in the development and
progression of the emerging pathology (Heerboth et al., 2014;
Mufson et al., 2016; Block and El-Osta, 2017).

One of the most characterized ways of epigenetic regulation
is through the chromatin remodeling by DNA methylation or
hydroxymethylation of the fifth position of cytosine (5-mC
and 5-hmC, respectively) as well as by acetylation of histone
residues. These mechanisms play a pivotal role in several
brain functions, as well as in cell senescence (Sidler et al.,
2017) and highly influence aging, neuropsychiatric disorders
and neurodegenerative diseases such as AD (Irier and Jin,
2012; Coppieters et al., 2014; Millan, 2014; Spiegel et al.,
2014; Wen et al., 2016; Ponnaluri et al., 2017). 5-hmC is the
hydroxymethylated form of 5-mC, which is unusually abundant
in the adult brain (Coppieters et al., 2014). It is well-known that
5-mC is highly present in CpG islands (CGIs) and is principally

associated with transcriptional silencing of genes (Jones, 2012).
In contrast, 5-hmC and acetylation of histone lysine residues
correlate with gene activation (Feng et al., 2007; Sun et al.,
2014). Controversy exists about the magnitude of global 5-mC,
5-hmC and acetylation changes reported in the AD brain most
probably because different brain regions have been analyzed and
different detection techniques employed (Lashley et al., 2015;
Sanchez-Mut and Gräff, 2015).

MicroRNAs (miRNAs), a class of small non-coding RNAs,
are also involved in gene expression regulation. These molecules
promote the post-transcriptional silencing of their target
mRNAs, and alterations in miRNA profiles have been
associated with aging (Jung and Suh, 2012) and cognitive
and neurodegenerative disorders (Hébert et al., 2009; Goodall
et al., 2013; Nadim et al., 2017). Particularly, abnormal levels of
specific miRNAs have been detected in several regions of the AD
brain (Femminella et al., 2015).

The Senescence-Accelerated Prone 8 (SAMP8) mouse strain
is a mouse model of accelerated aging, phenotypically selected
from the AKR / J strain by Dr. Takeda lab at Kyoto University
(Miyamoto, 1997). These mice prematurely exhibit traits of
an aging process in several organs and systems, including
the brain, and show significant shortening of life expectancy
(Miyamoto, 1997; Nomura and Okuma, 1999). Behavioral
abnormalities, cognitive decline as well as characteristic features
of AD are detectable in old mice (e.g., Aβ accumulation Tau
hyperphosphorylation, neuronal loss, dendritic spine density and
microgliosis), but also in young adults (e.g., astrogliosis and
spongiform degeneration patterns) (Morley et al., 2012a,b). In
general, SAMP8 mice are considered an excellent model to
study brain aging and neurodegeneration (Pallàs, 2012), while
the Senescent-Accelerated Resistant 1 (SAMR1) mice, with a
similar genetic background to SAMP8 mice and normal aging
characteristics, have been extensively used as an appropriate
control model. The SAMP8 mouse model can be considered
a useful tool to better understand the dynamics of the
global epigenetic landscape during the aging process, since its
phenotype is not fully explained by genetic factors (Griñán-Ferré
et al., 2018).

The present work hypothesizes that early and late-onset
transcriptional alterations triggered by a dysfunctional age-
related epigenetic programming contribute, at least in part, to the
accelerated senescence phenotype and cognitive decline observed
in the SAMP8 mouse model. Given the central role of the
hippocampus in memory and learning (Leuner and Gould, 2010;
Jahn, 2013), and the fact that this tissue is particularly impaired
in AD patients, we explored changes in the expression of
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22,000 genes, and measured levels of epigenetic marks (5-mC/5-
hmC, histone acetylation), miRNAs and chromatin-modifying
enzymes in the hippocampus of 2- and 9 month-old SAMP8 and
SAMR1 mice. We chose to conduct the experiments in female
mice since women have a higher risk of developing AD and
females are underrepresented in animal models of the disease
(Beery and Zucker, 2010; Lin and Doraiswamy, 2015; Nebel et al.,
2018; Sohn et al., 2018).

METHODS

Mouse Handling
Female SAMR1 (n = 40) and female SAMP8 mice (n = 40)
(Envigo), of 2 and 9 months of age were used for the present
experiments. Animals had free access to food and water and were
maintained under standard temperature conditions (22 ± 2◦C)
and 12:12 h light-dark cycles (300 lx/0 lx).

Studies were performed following the Institutional Guidelines
for the Care and Use of Laboratory Animals established by
the Animal Experimentation Ethics Committee (CEEA) at the
University of Barcelona.

Brain Processing and Subcellular
Fractionation
Animals were euthanized by cervical dislocation. Subsequently,
brains were immediately removed and, the hippocampus was
then isolated, frozen on powdered dry ice, and maintained at
−80◦C until protein extraction, RNA and, DNA isolation.

For subcellular fractionation, 150 µL of lysis buffer (10mM
HEPES pH 7.9, 10mM KCl, 0.1mM EDTA pH 8, 0.1mM EGTA
pH 8, 1mM DTT, 1mM PMSF, protease inhibitors) was added
to each sample and incubated on ice for 15min. Samples were
then homogenized with a tissue homogenizer, and 12.5 µL of
Igepal 1% was added to each Eppendorf before vortexing for 15 s.
Following 30 s of full-speed centrifugation at 4◦C, supernatants
were collected (cytoplasmic fraction); 80 µL of lysis buffer
(with 20mM HEPES pH 7.9, 0.4M NaCl, 1mM EDTA pH 8,
0.1mM EGTA pH 8, 20% Glycerol 1mM DTT, 1mM PMSF,
and protease inhibitors) was added to each pellet and incubated
under agitation at 4◦C for 15min. Subsequently, the samples
were centrifuged for 10min at full speed at 4◦C. Supernatants
were collected (nuclear fraction) and 40 µL of lysis buffer+ HCl
(lysis buffer with 0.2N HCl) was added to the pellet. After a 30-
min incubation on ice, samples were centrifuged, again at full
speed, at 4◦C for 10min, and the supernatants were collected
(histone fraction).

Western Blotting
For Western blot (Wb), 15 µg of nuclear and cytoplasmic
hippocampal fractions and 5 µg of histone fraction were
used. Protein samples from 16 females (n = 4 per group)
were separated by Sodium Dodecyl Sulfate-PolyAcrylamide Gel
Electrolysis (SDS–PAGE) (8–18%) and transferred into PVDF
membranes (Millipore). The membranes were blocked in 5%
non-fat milk in TBS containing 0.1% Tween 20 (TBS-T) for 1 h
at room temperature, followed by an overnight incubation at 4◦C
with the primary antibodies listed in Supplementary Material 1.

Membranes were then washed and incubated with secondary
antibodies for 1 h at room temperature. Immunoreactive protein
was viewed with a chemiluminescence-based detection kit,
following the manufacturer’s protocol (ECL Kit; Millipore), and
digital images were acquired using a ChemiDoc XRS+ System
(BioRad). Semi-quantitative analyses were carried out using
Image Lab software (BioRad), and results were expressed in
Arbitrary Units (AU). Protein loading was routinely monitored
by phenol red staining of the membrane or by immunodetection
of TBP and GADPH.

Global DNA Methylation and
Hydroxymethylation Determination
Isolation of genomic DNA from 16 samples (n = 4 per
group) was conducted using the FitAmpTM Blood and Cultured
Cell DNA Extraction Kit according to the manufacturer’s
instructions. Then, Methylflash Methylated DNA Quantification
Kit (Epigentek, Farmingdale, NY, United States) andMethylFlash
HydroxyMethylated DNA Quantification Kit were used in order
to detect methylated and hydroxymethylated DNA. Briefly,
these kits are based on specific antibody detection of 5-mC
and 5-hmC residues, which trigger an ELISA-like reaction that
allows colorimetric quantification by reading absorbance at
450 nm using a Microplate Photometer. The absolute amount
of methylated or hydroxymethylated DNA (proportional to the
Optical Density [OD] intensity) was measured and quantified
using a standard curve plotting OD values vs. five serial dilutions
of a control methylated and hydroxymethylated DNA (0.5–10
ng).

RNA Extraction and MicroRNAs
Expression Array
For microRNAs expression array, total RNA was extracted
employing the mirVanaTM RNA Isolation Kit (Applied
Biosystems) according to the manufacturer’s instructions.
The yield, purity, and quality of the samples were determined
by the A260/280 ratio in a NanoDrop R© ND-1000 apparatus
(Thermo Scientific).

RNA samples from 16 females (n = 4 per group) were
converted into cDNA through a Reverse Transcription (RT)
reaction using the miScript II RT Kit (Qiagen) according to
the manufacturer’s instructions. The expression of 84 mature
miRNAs was then analyzed using miScript R© miRNA PCR
Array-Neurological Development & Disease miRNA PCR Array
(Qiagen). miRNAs expression was measured in a CFX384
TouchTM Real-Time PCR Detection System (BioRad through
SYBR R© Green-based real-time PCR). The data obtained were
processed using the Web-based miScript miRNAs PCR Array
online software data-analysis tool. The mean of the relative gene
expression of the small non-coding RNAs (sncRNA) SNORD68,
SNORD72, SNORD95, and SNORD96A was used to normalize
results since they presented similar expression levels between
groups and the lowest Standard Deviations (SD) among all of the
housekeepings proposed.
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Microarray Printing, Probe Preparation,
Hybridization, Data Acquisition, and
Analysis
Complementary DNA (cDNA) was synthesized from 10 µg
of total RNA isolated from whole hippocampus (n = 3
per group), incorporating dUTP-Cy3 or dUTP-Cy5. Equal
quantities of the labeled cDNA were hybridized to the Mus
musculus 22 thousand 65-mer Oligo Library from Sigma-
Genosys, as described previously (Rojas-Mayorquín et al., 2008;
Ortuño-Sahagún et al., 2012). Acquisition and quantification
of the microarray images were performed in a ScanArray
4,000 apparatus employing the accompanying ScanArray 4,000
software (Packard BioChips; Perkin-Elmer, MN, United States).
All of the data and normalized microarray generated in this study
were deposited in the NCBI Gene Expression Omnibus (GEO).
All images were captured as described (Rojas-Mayorquín et al.,
2008). In all cases, the fluorescence signal was from seven to
10 times more intensive than the background signal, and the
background evaluation was always made just beside the labeled
spot.

Microarray data analysis was performed using the GenArise
free software, developed by the Computing Unit at the Institute
of Cellular Physiology of the National Autonomous University of
Mexico (UNAM) (Gómez-Mayen et al., 2006) to identify genes
that are good candidates for differential expression by calculating
an intensity-dependent score. GeneArise performs a number of
transformations: background correction, lowest normalization,
intensity filter, replicate analysis, and selection of differentially
expressed genes. According to these criteria, elements with a
Z-score of more than 2 standard deviations are genes likely to
be differentially expressed (Gómez-Mayen et al., 2006; Ortuño-
Sahagún et al., 2012).

RNA Extraction and Gene Expression
Determination
Total RNA isolation was carried out using TRIzol R© reagent
according to manufacturer’s instructions. The yield, purity, and
quality of RNA were determined spectrophotometrically with
a NanoDropTM ND-1000 (Thermo Scientific) apparatus and an
Agilent 2100B Bioanalyzer (Agilent Technologies). RNAs with
260/280 ratios and RIN higher than 1.9 and 7.5, respectively,
were selected. Reverse Transcription-Polymerase Chain Reaction
(RT-PCR) was performed as follows: 2 µg of messenger RNA
(mRNA) was reverse-transcribed using the High Capacity
cDNA Reverse Transcription Kit (Applied Biosystems). Real-
time quantitative PCR (qPCR) was used to quantify mRNA
expression of chromatin-modifying genes as well as to validate
selected genes from microarray data results.

SYBR R© Green real-time PCR was performed in a Step One
Plus Detection System (Applied-Biosystems) employing SYBR R©

Green PCR Master Mix (Applied-Biosystems). Each reaction
mixture contained 7.5 µL of complementary DNA (cDNA)
(which concentration was 2 µg), 0.75 µL of each primer (which
concentration was 100 nM), and 7.5 µL of SYBR R© Green PCR
Master Mix (2X).

TaqMan-based real-time PCR (Applied Biosystems) was also
performed in a Step One Plus Detection System (Applied-
Biosystems). Each 20 µL of TaqMan reaction contained 9 µL
of cDNA (25 ng), 1 µL 20X probe of TaqMan Gene Expression
Assays and 10 µL of 2X TaqMan Universal PCR Master Mix.

Data were analyzed utilizing the comparative Cycle threshold
(Ct) method (11Ct), where the housekeeping gene level was
used to normalize differences in sample loading and preparation
(Griñán-Ferré et al., 2016). Normalization of expression levels
was performed with β-actin for SYBR R© Green-based real-time
PCR results and TATA-binding protein (Tbp) for TaqMan-
based real-time PCR. Primers and TaqMan probes are listed
in Supplementary Material 2. Each sample (n = 4 per group)
was analyzed in duplicate, and the results represent the n-fold
difference of the transcript levels among different groups.

MicroRNAs Validation by Single Real-Time
PCR
TaqMan-based real-time PCR was performed on the detection
system StepOnePlus (Applied Biosystems) for microRNA
expression. In compliance with the TaqMan Small RNA Assays
Protocol, each reaction mixture contained 1 µL of TaqMan Small
RNA Assay (20X), 1.33 µL of product from RT reaction, 10 µL
of Quantimix Easy Kit probes (BioTools) (instead of TaqMan
Universal PCR Master Mix II [2X]), and 7.67 µL of nuclease-free
water. Data were analyzed using the comparative cycle threshold
(Ct) method (11Ct), in which the U6 snRNA transcript level
was employed to normalize differences in sample loading and
preparation. Each sample (n = 4 per group) was analyzed in
duplicate, and the results represent the n-fold difference of the
transcript levels among different groups.

Data Analysis
The statistical analysis was conducted using GraphPad Prism
ver. Six statistical software. Data are expressed as the mean ±

Standard Error of the Mean (SEM) of at least 3 samples per
group. Time and group effects for mRNA expression profile
and epigenetic marks were assessed by the Two-Way ANOVA
analysis of variance, followed by Tukey post-hoc analysis.
Comparisons between groups and mRNA:miRNA validation
were also performed by two-tail Student’s T-test for independent
samples. Statistical significance was considered when p < 0.05.
The Statistical outliers were determined with Grubbs’ test and
subsequently removed from the analysis.

Prediction of mRNA:miRNA Pairs, Network
Construction and Go Pathway Analysis
A miRNA target gene prediction tool from an R package,
RmiR, was used to predict putative target genes of differentially
expressed miRNAs (Favero, 2018). Putative mRNA:miRNA pairs
were predicted by at least five of the following six commonly
used miRNA target databases: Target Scan, miRanda, mirTarget,
tarBase and, miRBase. The threshold for the target was predicted
by ≥5 algorithms. miRNAs up or downregulate the expression
of its target genes post-transcriptionally, so the target genes
whose expressions were inversely correlated with corresponding
miRNAs were selected as miRNA targets with high accuracy
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based on the obtained gene expression data. We assigned priority
to the mRNA:miRNA pairs included in networks that are more
likely to play critical roles in aging, neurodegeneration, and
AD according to the bibliography. Using GeneMANIA, an App
from Cytoscape (http://www.cytoscape.org/) (Kutmon et al.,
2013), miRNA-target gene interaction networks were constructed
(Santiago and Potashkin, 2014).

Functional Annotation
To analyse the function and the potential pathways of miRNA-
target genes, functional annotations by Gene Ontology (GO)
enrichment analysis of molecular functions, biological processes,
among others, were performed using Enrichr (Chen et al.,
2013) and the interactive and collaborative HTML5 gene list
enrichment analysis tool. Enrichr determines the distribution of
the target gene list across GO terms and pathways. The p-value
was calculated using the right-sided hypergeometric test and
derived from the DataSet statistics tab of the Enrichr main page;

GO categories with p-values and Benjamini adjustment <0.05
were considered statistically significant.

RESULTS

Hippocampal mRNAs Expression Profile Is
Altered in Young and Aged Female SAMP8
Mice
With the aim of identifying early and late age-related genes
involved in the brain (pathological) aging, we performed
microarray studies in the hippocampus from 2 and 9 months
of age SAMP8 and SAMR1 mice. From a total of 22,000 genes
tested we selected those genes that yield a z-score >2.0 for
further comparison analysis (i.e., genes whose expression in the
SAMP8 mice is at least 2 standard deviations away from the
reference group mean). Several genes were altered in SAMP8
mice compared to SAMR1 mice. At 2-month-old, 1,062 genes
were dysregulated, 571 of which were upregulated and 491

FIGURE 1 | Gene dysregulation in 2- and 9-month-old SAMP8 mice compared to age-matched SAMR1. Representative pie chart of genes altered in the

hippocampus of 2-month-old SAMP8 mice compared to age-matched SAMR1 (A). Representative pie chart of genes altered in the hippocampus of 9-month-old

SAMP8 mice compared to age-matched SAMR1 (B). Venn diagram highlighting hippocampal genes concurrently altered in SAMP8 mice at 2 and 9 months of age

(C). Venn diagram includes genes significantly dysregulated in 2-month-old SAMP8 mice compared to age-matched SAMR1 mice (left circle), and genes significantly

dysregulated in 9-month-old SAMP8 mice compared to age-matched SAMR1 mice (right circle). The intersection of circles corresponds to genes that are altered in

SAMP8 at both early adulthood and aged stages.
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downregulated (Figure 1A), while at 9 months, 1,033 genes
were dysregulated, 346 of which were upregulated and 687
were downregulated (Figure 1B) (dysregulated genes are listed
in Supplementary Material 3). Finally, according to microarray
results, 20,938 genes were similarly expressed in both strains at 2
months, and 20,967 genes were similarly expressed in both strains
at 9 months (Figures 1A,B).

Genes differentially expressed in SAMP8 and SAMR1 mice
at 2 and 9 months of age were integrated into a Venn diagram.
Remarkably, only 92 genes, approximately 5% of the total altered
genes, were concurrently dysregulated in SAMP8 mice at both 2
and 9 months (Figure 1C, Venn diagram). The overlap between
genes dysregulated at 2 and 9 months of age in SAMP8 mice was
statistically significant, as indicated by Chi-square test with Yates
correction (χ²= 38.324, p < 0.001).

Additionally, to identify possible different expression profile
between sexes, we performed a comparison of our results in
mRNA expression profile with the results of the other two main
studies of mRNA expression profile performed in male SAMP8
hippocampus at 2, 6 and 12 months of age from Cheng et al.
(2007) and Cheng et al. (2013). Notably, analysis rendered that
only 7 genes were concurrently dysregulated in both sexes, while
22 genes were concurrently dysregulated in the males SAMP8
studies. Results of dysregulated genes are listed and presented in
a Venn diagram (Supplementary Material 6).

Temporal Alterations in Hippocampal DNA
Methylation and Hydroxymethylation
Levels in Female SAMP8 Mice
We first explored the potential contribution of 5-mC and
5-mhC on the temporal gene expression changes observed
in SAMP8 mice. We determined global levels of 5-mC as

well as 5-hmC in DNA samples from 2- and 9-month-old
SAMP8 and SAMR1 mice. Compared to SAMR1, SAMP8
mice showed a significant decrease in global 5-mC at 2
months (Tukey’s post-hoc, p < 0.01; Table 1 and Figure 2A).
However, at 9 months SAMR1 mice presented a significant
loss of this same epigenetic mark (Tukey’s post-hoc, p <

0.001), while SAMP8 mice maintained the same levels as in
2 months (Tukey’s post-hoc, p = ns; Figure 2A). Regarding 5-
hmC levels, they were increased in SAMP8 mice at 2 months
and remained increased at 9 months compared to SAMR1
mice [two-way ANOVA, F(1, 8) = 14.32, p < 0.01, Table 1 and
Figure 2B].

5-mC is catalyzed by the specialized de novo DNA
methyltransferase enzymes DNMT3A and DNMT3B, and
perpetuated through cell divisions by DNMT1 (Ito et al., 2011);
whereas Ten-Eleven TranslocationMethylcytosine Dioxygenases
(TETs) family enzymes are involved in the oxidation of 5-mC
to 5-hmC as well as in the active DNA demethylation pathway
(Lu et al., 2015). Therefore, we analyzed the gene expression of
relevant DNMTs and TETs family members. Dnmt1, Dnmt3a,
and Tet1 genes were significantly downregulated in SAMP8
compared to SAMR1 mice at both 2 and 9 months of age [two-
way ANOVA, F(1, 12) = 32.12, p < 0.001; two-way ANOVA,
F(1, 12) = 74.96, p < 0.001; two-way ANOVA, F(1, 12) = 9.045, p
< 0.05, respectively; Table 1 and Figures 2C,D,F]. Interestingly,
Dnmt1 was significantly upregulated in the control group at 9
months compared to 2 months (Tukey’s post-hoc, p < 0.05).
Dnmt3b gene expression levels were increased in the senescent
strain at 2months (Tukey’s post-hoc, p< 0.01); while at 9 months,
it was downregulated, reaching similar levels than the control
group (Tukey’s post-hoc, p = ns; Table 1 and Figure 2E). Finally,
Tet2 gene expression was unaltered at 2 months of age, but was
upregulated in SAMR1 mice at 9 months (Tukey’s post-hoc, p <

TABLE 1 | Results of Two-way ANOVA analysis for epigenetic marks and epigenetic enzymes in the hippocampus of 2- and 9-month -old SAMP8 and SAMR1 mice.

Two-way ANOVA

Interaction Age Strain

Epigenetic mark N/group F (DFn, DFd) P-value F (DFn, DFd) P-value F (DFn, DFd) P-value

5-mC 3 F (1, 8) = 24.03 0.001 F (1, 8) = 22.5 0.002 F (1, 8) = 8.335 0.020

5-hmC 3 F (1, 8) = 0.007 0.933 F (1, 8) = 0.009 0.927 F (1, 8) = 14.32 0.005

Ac-H3 4 F (1, 12) = 6.375 0.027 F (1, 12) = 15.2 0.002 F (1, 12) = 3.163 0.101

Ac-H4 4 F (1, 12) = 2.928e-005 0.996 F (1, 12) = 7.807 0.016 F (1, 12) = 2.274 0.157

Epigenetic enzyme mRNA

Dnmt1 4 F (1, 12) = 3.598 0.082 F (1, 12) = 7.353 0.019 F (1, 12) = 32.12 <0.001

Dnmt3a 4 F (1, 12) = 3.454 0.088 F (1, 12) = 4.001 0.069 F (1, 12) = 74.96 <0.001

Dnmt3b 4 F (1, 12) = 12.47 0.004 F (1, 12) = 4.871 0.048 F (1, 12) = 9.045 0.011

Hdac1 4 F (1, 12) = 2.181 0.166 F (1, 12) = 38.18 <0.001 F (1, 12) = 10.32 0.007

Hdac2 4 F (1, 12) = 17 0.001 F (1, 12) = 14.23 0.003 F (1, 12) = 22.92 <0.001

Sirt1 4 F (1, 12) = 1.455 0.251 F (1, 12) = 3.242 0.097 F (1, 12) = 27.83 <0.001

Sirt2 4 F (1, 12) = 1.982 0.184 F (1, 12) = 1.208 0.293 F (1, 12) = 4.512 0.055

Sirt6 4 F (1, 12) = 7.19 0.020 F (1, 12) = 19 <0.001 F (1, 12) = 21.22 <0.001

Tet1 4 F (1, 12) = 0.385 0.547 F (1, 12) = 11.79 0.005 F (1, 12) = 30.94 <0.001

Tet2 4 F (1, 12) = 23.07 <0.001 F (1, 12) = 1.401 0.260 F (1, 12) = 11.78 0.005
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FIGURE 2 | Global levels of 5-methylated cytosines and 5-hydroxymethylated cytosines in the hippocampus of 2 and 9 months of age SAMP8 and SAMR1 mice

(A,B). Relative gene expression of Dnmt1, Dnmt3a, Dnmt3b, Tet1, and Tet2 in the hippocampus of 2- and 9-month-old SAMP8 and SAMR1 mice (C,D,E,F,G). Gene

expression was measured by real-time PCR analysis from hippocampal mRNA and expressed relative to Tbp or β-actin (n = 4–5/group). Mean ± standard error

performed in triplicates are represented; Two-way ANOVA followed by Tukey’s post-hoc test results are indicated as *p < 0.05; **p < 0.01; ***p < 0.001 and; ****p <

0.0001.

0.01) reaching higher levels than age-matched SAMP8 (Tukey’s
post-hoc, p < 0.001; Table 1 and Figure 2G).

Temporal Alterations in Hippocampal
Histone Acetylation Levels in Female
SAMP8 Mice
We next explored whether changes in histone acetylation levels
and its enzymatic machinery could be contributing to the
temporal transcriptional dysregulation observed in SAMP8mice.

Acetylated H3 and H4 protein levels were significantly lower in
SAMP8 mice at 2 months of age compared to SAMR1 mice,
although in the case of H4 only by T-test (Tukey’s post-hoc,
p < 0.05; T-test, p < 0.05, respectively). Both groups of mice
showed downregulation of acetylated H3 and upregulation of
acetylated H4 marks at 9 months [two-way ANOVA, F(1, 12) =
41.37, p < 0.01, two-way ANOVA, F(1, 12) = 35.36, p < 0.05,
respectively, Table 1], leading to similar levels between strains
at this later stage (Tukey’s post-hoc, p = ns; Figures 3A–D). In
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FIGURE 3 | Representative Western blot (Wb) for acetylated and total H3 and H4 protein levels (A,B), and quantification (C,D). Relative gene expression of Hdac1,
Hdac2, Sirt1, Sirt2, and Sirt6 in the hippocampus of 2-and 9-month-old SAMP8 and SAMR1 mice (E,F,G,H,I). Values in bar graphs are adjusted to 100% for protein

levels of SAMR1 at different ages. Gene expression was measured by real-time PCR analysis from hippocampal mRNA and expressed relative to β-actin (n =

4–5/group). Mean ± standard error from five independent experiments performed in duplicates are represented; Two-way ANOVA followed by Tukey’s post-hoc test

results are indicated as *p < 0.05; **p < 0.01 and; ***p < 0.001.
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addition, we studied the gene expression of the main members
of HDACs families I and III, which are known to be expressed
in the hippocampus and to play a role in memory and learning,
particularly in the context of AD (Kilgore et al., 2010; Volmar
andWahlestedt, 2015). The expression of bothHdac1 andHdac2
(representative of HDACs class I family) genes was significantly
increased in SAMP8 mice at 2 months compared to SAMR1
mice, although in the case of Hdac1 only by T-test (T-test,
p < 0.05; Tukey’s post-hoc, p < 0.001, respectively). At 9
months, Hdac1 was significantly upregulated in both groups
[two-way ANOVA, F(1, 12) = 38.18, p < 0.001, Table 1], but
SAMP8 kept presenting higher gene expression levels of the
enzyme (Tukey’s post-hoc, p < 0.05); while for Hdac2, SAMP8
was downregulated at 9 months (Tukey’s post-hoc, p < 0.001)
reaching similar levels to the control group (Tukey’s post-hoc,
p = ns; Figures 3E,F). Regarding HDAC family III genes, we
observed a significant reduction in Sirt1 gene expression at 2
months in SAMP8 mice compared to age-matched SAMR1,

which was maintained at 9 months [two-way ANOVA, F(1, 12)
= 27.83, p < 0.001, Table 1 and Figure 3G]. Similarly, Sirt6
was significant downregulated in the senescent strain compared
to SAMR1 mice, but only at 9 months (Tukey’s post-hoc, p <

0.01; Figure 3I). We did not observe significant differences in
gene expression of Sirt2 among groups or ages (Table 1 and
Figure 3H).

Temporal Changes in Hippocampal
miRNAs Expression Profile in Female
SAMP8 Mice
To identify miRNAs that could be underlying the transcriptional
changes observed in both young and aged SAMP8, we conducted
a microRNA PCR array using hippocampal samples from 2 and
9 months of age SAMP8 and SAMR1 mice. This array analyzed
84 different mouse miRNAs known to be altered in neurological
diseases or involved in neuronal development. We found that
39 miRNAs were altered in SAMP8 mice compared to SAMR1:

FIGURE 4 | miRNAs dysregulation in SAMP8 mice compared to SAMR1 mice at 2 and 9 months of age. Representative pie chart of miRNAs altered in the

hippocampus of 2-month-old SAMP8 mice compared to age-matched SAMR1 (A). Representative pie chart of miRNAs altered in the hippocampus of 9-month-old

SAMP8 mice compared to age-matched SAMR1 (B). Venn diagram highlighting hippocampal miRNAs concurrently altered in SAMP8 mice at 2 and 9 months of age

(C). Venn diagram includes miRNAs significantly dysregulated in 2-month-old SAMP8 mice compared to age-matched SAMR1 (left circle), and miRNAs significantly

dysregulated in 9-month-old SAMP8 mice compared to age-matched SAMR1 (right circle). The intersection of circles corresponds to miRNAs that are altered in

SAMP8 mice at both early adulthood and aged stages.
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28 miRNAs were altered at 2 months of age, 6 of which were
upregulated, and 22 downregulated (Figure 4A). At 9 months
of age, 17 miRNAs were altered, 13 of which were upregulated,
and 4 downregulated (Figure 4B). Altered miRNAs are listed in
Supplementary Material 4.

MicroRNAs differentially expressed in SAMP8 and SAMR1
mice at 2 and 9 months were integrated into a Venn diagram.
Only 6 miRNAs, approximately 15% of the total altered miRNAs,
were found dysregulated in SAMP8 at both 2 and 9 months
(Figure 4C Venn diagram). However, the overlap between
miRNAs dysregulated in 2- and 9-month-old SAMP8 mice was
not statistically significant, as indicated by Fisher’s exact test
(p > 0.1).

Integrated mRNA:miRNA Regulatory
Networks in Young and Aged Female
SAMP8 Mice
With the purpose of establishing possible regulatory relationships
between significantly dysregulated genes and miRNAs in SAMP8
aging mice, we constructed co-expression networks at 2 and
9 months of age. We integrated six commonly used miRNA
target databases to predict miRNA targets using a tool from
an R package: RmiR (Yang et al., 2017). We calculated all
the pair expression correlations from target relations using
miRNAs target databases: Target Scan, miRanda, mirTarget,
tarBase and, miRBase and selected putative mRNA:miRNA pairs
by at least five of the six databases. Significant interactions of

FIGURE 5 | Systematic workflow used to explore mRNA:miRNA pairs differentially expressed in young and aged SAMP8 mice compared to age-matched SAMR1 ,

and their potential role in regulatory networks related with aging, neurodegeneration, and AD.
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mRNA:miRNA were predicted by the co-expression network.
We assigned priority to the mRNA:miRNA pairs included in
networks that are more likely to play critical roles in aging,
neurodegeneration and AD (Figure 5). At 2 months, we detected
187 putative mRNA:miRNA pairs, of which 140 consisted
on upregulated target genes and downregulated miRNAs, and
47 on downregulated target genes and upregulated miRNAs
(Figure 5). At 9 months, we detected 61 putative mRNA:miRNA
pairs, of which 21 consisted on upregulated target genes
and downregulated miRNAs, and 40 on downregulated target
genes and upregulated miRNAs (Figure 5). Only 3 putative
mRNA:miRNA pairs were found at both 2 and 9 months of
age (Figure 5). Complete lists of upregulated or downregulated
mRNAs and miRNAs that are part of putative mRNA:miRNA
pairs at 2 and 9 months of age are listed separately in Tables 2,
3, respectively. Table 4 summarizes mRNA:miRNA integrative
analysis at different ages.

To better understand the impact of miRNA perturbation
on gene expression, mRNA:miRNA regulatory networks
were constructed based on these predicted mRNA:miRNA
interaction pairs using GeneMania Cytoscape app (Santiago and
Potashkin, 2014). Enrichment terms were scored by p-value,
Z-score, and combined score. Thus, interaction networks
were mapped and visualized for each condition (upregulated
miRNAs and downregulated mRNAs, or downregulated
miRNAs and upregulated mRNAs) at both 2 and 9 months
of age. Figures 6A,B show two regulatory networks altered in
2-month-old SAMP8 mice based on the interactions between
6 upregulated miRNAs and their 491 downregulated targets
(Figure 6A), and on 22 downregulated miRNAs and their
571 upregulated targets (Figure 6B). On the other hand,
Figures 6C,D show two regulatory networks altered in 9-month-
old SAMP8 based on the interactions between 13 upregulated
miRNAs and their 687-downregulated targets (Figure 6C), and
on 4 downregulated miRNAs, and their 346-upregulated targets
(Figure 6D).

Functional Categories Based on Gene
Ontology and Biological Pathways
To integrate the functions of the potentially affected mRNAs,
we performed pathway enrichment analysis on the different
networks using Gene Ontology (GO) database. The results
show that at 2 months the main associated GO cell processes
or pathways correspond to brain development (GO: 0007420);
Wnt signaling pathway (GO: 0016055); regulation of extrinsic
apoptotic signaling (GO: 1902041); insulin receptor signaling
(GO: 00082686); embryonic morphogenesis (GO: 0048598);
calcium ion homeostasis (GO: 0055074); neuronal development
(GO: 0048666); neuronal migration (GO: 0001764) and behavior
(GO: 0007610); response to oxygen levels (GO: 0070482);
cellular senescence (GO: 0090398), and inflammatory response
(GO: 0006954). On the other hand, at 9 months, the main
associated GO cell processes or pathways correspond to: memory
(GO: 0007613); synaptic transmission (GO: 0007268); activation
of the innate immune response (GO: 0002218); learning or
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TABLE 3 | MicroRNAs differentially expressed in the hippocampus of SAMP8 that belong to mRNA:miRNA predicted pairs.

2-month-old SAMP8 9-month-old SAMP8

Upregulated microRNAs Downregulated microRNAs Upregulated microRNAs Downregulated microRNAs

miRNA/Fold Change/p-value miRNA/Fold Change/p-value miRNA/Fold Change/p-value miRNA/Fold Change/p-value

mmu-let-7b-5p/ 1.311 /0.025 mmu-miR-107-3p/0.616/0.039 mmu-miR-128-3p/1.400/0.049 mmu-let-7b-5p/0.711/0.046

mmu-let-7e-5p/1.505/0.050 mmu-miR-132-3p/0.836/0.049 mmu-miR-140-5p/2.617/0.047 mmu-let-7c-5p/0.580/0.020

mmu-miR-148b-3p/1.384/0.020 mmu-miR-134-5p/0.622/0.00031 mmu-miR-148b-3p/1.498/0.045 mmu-let-7d-5p/0.707/0.0222

mmu-miR-151-3p/1.211/0.031 mmu-miR-146a-5p/0.436/0.060 mmu-miR-342-3p/1.09/0.049 mmu-let-7e-5p/0.738/0.054

mmu-miR-298-5p/1.34/0.042 mmu-miR-181a-5p/0.341/0.014 mmu-miR-98-5p/3.820/0.034

mmu-miR-181d-5p/0.625/0.000603 mmu-miR-107-3p/1.397/0.049

mmu-miR-24-3p/0.716/0.035

mmu-miR-26b-5p/0.263/0.0082

mmu-miR-27a-3p/0.715/0.0051

mmu-miR-29a-3p/0.171/0.014

mmu-miR-30e-5p/0.788/0.048

mmu-miR-7a-5p/0.611/0.030

mmu-miR-92a-3p/0.668/0.035

memory (GO: 0007611); cognition (GO: 0050890); neuron-
neuron synaptic transmission (GO: 0007270); histone acetylation
(GO: 0016573); negative regulation of neuronal differentiation
(GO: 0045665), and negative regulation of neurogenesis (GO:
0050768), among others. Remarkably, all these pathways are
critically involved in aging, neurodegeneration, and AD (listed
in Table 4 and Supplementary Material 5).

Validation of a Representative Subset of
mRNA:miRNA Pairs Involved in Brain Aging
and Neurodegeneration
To validate previous results from microarray and miRNA
PCR array, expression levels of a representative subset of
mRNA:miRNA pairs from Table 5 were measured by single
real-time PCR in hippocampal samples from 2- and 9-
month-old SAMP8 and SAMR1 mice. After bibliographic
research to concrete pairs with the highest association with
neurodegeneration and aging, eight mRNA:miRNA pairs
were chosen for validation. The selected mRNA:miRNA
pairs correspond to P2rx1:let-7e-5p, Hmgb20:miR-181a-
5p, Hmgb20:miR-26b-5p, Pbx1:let-7e-5p, Pbx1:let-7c-5p,
Nup160:miR-29a-3p, Pou3f2:miR-146a-5p, and Socs6:miR-
128-3p. Notably, real-time PCR results demonstrated a strong
inverse correlation between mRNA:miRNA selected pairs and
results were coincident with microarray and miRNA PCR array
data (Table 5 and Figures 7A–H).

Brain-Derived Neurotrophic Factor (BDNF)
Is Diminished in 9-Month-Old SAMP8 Mice
Since 9-month-old SAMP8 mice present dysregulated levels
of miR-191, a miRNA known to target Bdnf mRNA, we
proceeded to confirm this potential regulatory relationship.
miR-191 upregulation by single real-time PCR in 9-month-
old hippocampus samples from SAMP8 and SAMR1 mice was
validated (T-test, p < 0.0001; Figure 8A). Consistent with PCR
experiments, a significant reduction of BDNF protein levels

was found in 9-month-old SAMP8 mice compared to SAMR1
mice (T-test, p < 0.05; Figures 8C–D). In addition, Spearman’s
correlation analysis revealed a strong negative correlation
between BDNF protein levels and miR-191, further supporting
this regulatory association (r =−0.8095, p < 0.05, Figure 8B).

DISCUSSION

The present study aimed to evaluate the global epigenetic
landscape, as well as the contribution of miRNAs on the unique
AD-like and age-related phenotype of SAMP8mice. Importantly,
taking into account that women have a higher risk of developing
AD and females are underrepresented in animal models of the
disease (Beery and Zucker, 2010; Lin and Doraiswamy, 2015;
Nebel et al., 2018; Sohn et al., 2018) the current study was
performed in female SAMP8 mice.

We assessed global levels of DNA 5-mC/5-hmC mark,
histone H3 and H4 acetylation and their regulatory enzymes,
as well as the expression profiles of mRNAs and miRNAs
in the hippocampus of 2 and 9 months of age SAMP8
female mice compared to control SAMR1 mice. In brief, we
identified temporal changes in hippocampal transcriptional
profiles, epigenetic marks, and mRNA:miRNA regulatory pairs
and networks.

Aberrant 5-mC and 5-hmC is linked to neurodegeneration
and AD by altering gene expression, thereby altering neuronal
function (Delgado-Morales and Esteller, 2017; Stricker and Götz,
2018). 2-month-old SAMP8 mice showed reduced global 5-mC
levels, downregulation of Dnmt1 and Dnmt3a, and upregulation
of Dnmt3b gene expression. Since the loss of 5-mC is a well-
known hallmark of aging brain and the loss of DNMT1 and
DNMT3a proteins is known to trigger a cognitive decline in mice
(Xu, 2015), these findings may indicate a premature impact of
DNA methylation disturbances on SAMP8 mice cognition.

At 9 months of age, 5-mC levels were reduced in SAMR1mice
as expected due to aging, whereas in SAMP8 mice did not differ
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TABLE 4 | mRNAs and microRNAs from significant mRNA:miRNA predicted pairs and their associated Top 10 biological processes after pathway enrichment analysis.

MicroRNAs Target mRNAs Top 10 GO Biological process p-value Z.score Combined

score

2-MONTH-OLD SAMP8

miRNAs up:

mRNAs down

mmu-miR-298-5p,
mmu-miR-148-5p,
mmu-miR-151-3p,
mmu-let-7b-5p,
mmu-let-7e-5p

Adss, Ctnnd1, Comt, Cyp7bp1, Flt4, Ltf,
Masp1, P2rx1, Pcp4, Nptn, Sepp1,
Slc17a1, Atp8a1, Gabra1, Maff, Man1a2,
Ndst2, Serf2, Skil, Coro1c, Abca1,
Atp6v0d1, Tcp1, Pdk4, Pbx3, Hp, Pdlim4,
Ykt6, Kox17, Mesdc2, Tmem167, Serpb1,
Lipt2, Atg12, Loh12cr1, Mrpl19, Manba,
Trps1, Kremen1

Regulation of membrane lipid

distribution (GO:0097035)

0.00260 −2.53 4.08

Cellular response to extracellular

stimulius (GO:0031668)

0.00299 −2.26 3.66

Regulation of extrinsic apoptotic

signaling pathway via death domain

receptors (GO:1902041)

0.00555 −2.37 3.33

Wnt signaling pathway

(GO:0016055)

0.01844 −2.26 3.18

Brain development (GO:0007420) 0.01021 −2.25 3.16

Neuron-neuron synaptic

transmission (GO:0007270)

0.00891 −2.05 2.88

Insuline receptor signaling pathway

(GO: 0008286)

0.04929 −1.97 2.77

Cellular ion homeostasis

(GO:0006873)

0.07075 −1.96 2.76

Positive regulation of neuron

projection development

(GO:0010976)

0.04696 −1.89 2.65

Locomotory behavior

(GO:0007626)

0.07133 −1.83 2.57

miRNAs down:

mRNAs up

mmu-miR-92a-3p,
mmu-miR-24-3p,
mmu-miR-27a-3p,
mmu-miR-30e-5p,
mmu-miR-107-3p,
mmu-miR-26b-5p,
mmu-miR-7a-5p,
mmu-miR-181a-
5p,
mmu-miR-181d-
5p,
mmu-miR-132-3p,
mmu-miR-146a-
5p,
mmu-miR-134-5p,
mmu-miR-29a-3p

Adam10, Bsn, Crcp, Csf3r, Ncan,
Cyp561, Elk4, Gabrg2, Gata5, Gif, Slc6a9,
H3f3b, Hlx, Hmg20b, Hyal1, Kif5b, Kpna1,
Zfp239, Nsd1, Pde7a, Pik3ca, Pml,
Pou3f2, Rab23, Ret, Rfng, Sema5a, Snca,
Tarpb2, Tbx2r, Tgfbr1, Thrb, Unc5c,
Nrsn1, Zhx1, Neurod6, Atp2b2, C3ar1,
Casp6, Runx1, Cxcr4, En1, Esr2, Nr6a1,
Gpr37, Hoxa5, Ids, Klf12, Matn3, Ndufs4,
Pik3c2a, Ppara, Cyth3, Ptpre, Sncg, Tfeb,
Tdg, Ercc5, Mrps12, Chst4, Add2, Crem,
Eif4a2, Mmp9, Pam, Pax6, Sh3yl1, Mga,
Rasal1, Slc33a1, Dkk3, Galns, Dnajc5,
Irf6, Slc5a3, Chst2, Cldn8, Grpbp2,
Rbms2, Plp2, Amotl2, Cyp2d22, Stx5a,
C1qtnf1, Pnkd, Insm2, Srf, Nup160,
Rhot1, Midn, Tsc1, Cmtm3, Tceanc2,
Srek1ip1, Fbxo32, Nacc2, Efcab2

Embryonic morphogenesis

(GO:0048598)

0.00079 −2.40 6.34

Brain development (GO:0007420) 0.00591 −2.13 4.17

Synapse organization

(GO:0050808)

0.00501 −2.06 4.07

Neuron migration (GO:0001764) 0.00583 −2.05 4.01

Neuron development (GO:0048666) 0.00672 −2.06 3.97

Behavior (GO:0007610) 0.01035 −2.18 3.60

Regulation of synaptic transmission

(GO:0050804)

0.01713 −2.04 3.16

Response to oxygen levels

(GO:0070482)

0.02114 −2.09 3.11

Cellular senescence (GO:0090398) 0.01385 −1.90 2.98

Inflammatory response

(GO:0006954)

0.02707 −1.91 2.65

miRNAs up:

mRNAs down

mmu-miR-107-3p,
mmu-miR-140-5p,
mmu-miR-148b-
3p,
mmu-miR-342-3p,
mmu-miR-98-5p,
mmu-miR-128-3p

Capza2, Cav1, Chuk, Dll3, Drd4, Pdia3,
Gcdh, Gria1, H3f3b, Htr1f, Kcnj8, Dnajc3,
Clpb, Itga5, Itk, Cyth3, Hsp90b1, Hs2st1,
Spry4, Map2k7, Fgf9, Atp11a, Mapk6,
Slc5a3, Socs6, Thsd1, B3galtn1, Kcna4,
Txnip, Vps50, Arl4d, Cdip1, Mmachc,
Ergic1, Chac2, Cttnbp2nl, Gpr63

Memory (GO:0007613) 0.00138 −2.23 4.11

Response to tumor necrosis factor

(GO:0034612)

0.00247 −2.31 3.96

Synaptic transmission (GO:007268) 0.03559 −2.32 3.88

Activation of innate immune

response (GO:0002218)

0.00574 −2.21 3.70

Learning or memory (GO:0007611) 0.01189 −2.20 3.63

Cognition (GO:0050890) 0.01703 −2.16 3.57

Positive regulation of canonical Wnt

signaling pathway (GO:0090263)

0.00920 −2.11 3.49

Cellular response to unfolded

protein (GO:0034620)

0.01849 −2.01 3.32

Neuron-neuron synaptic

transmission (GO:0007270)

0.00891 −2.01 3.32

Response to carbohydrate

(GO:0009743)

0.04411 −1.89 3.11

(Continued)
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TABLE 4 | Continued

MicroRNAs Target mRNAs Top 10 GO Biological process p-value Z.score Combined

score

9-MONTH-OLD SAMP8

miRNAs down:

mRNAs up

mmu-let-7b-5p,
mmu-let-7c-5p,
mmu-let-7d-5p,
mmu-let-7e-5p

Ncoa3, Pbx1, Mxd1, Pald1, Trp53rk,
Klhl13

Positive regulation of cell cycle

G2/M phase transition

(GO:1902751)

0.00420 −2.74 9.30

Positive regulation of G2/M

transition of mitotic cell cycle

(GO:0010971)

0.00420 −2.74 9.29

Positive regulation of mitotic cell

cycle (GO:0045931)

0.02884 −2.15 6.24

Intracellular steroid hormone

receptor signaling pathway

(GO:0030518)

0.02059 −2.07 6.09

Negative regulation of

sequence-specific DNA binding

transcription factor activity

(GO:0043433)

0.03514 −2.10 5.95

Histone acetylation (GO:0016573) 0.02829 −2.05 5.93

Developmental growth

(GO:0048589)

0.04520 −2.16 5.83

Negative regulation of neuron

differentiation (GO:0045665)

0.04085 −2.15 5.83

Positive regulation of cell cycle

process (GO:0090068)

0.06054 −2.29 5.74

Negative regulation of neurogenesis

(GO:0050768)

0.05032 −2.14 5.56

from those at 2 months of age.Dnmt1 was slightly upregulated in
SAMR1 at 9 months, which could be a potential compensatory
mechanism. However, Dnmt1 and Dnmt3a remained lower in
9-month-old SAMP8 mice, and Dnmt3b gene expression was
reduced to SAMR1 levels, suggesting that the dysregulation of
this enzyme is a feature of early stages, possibly as an attempt to
reestablish 5-mC levels.

5-hmC is mainly involved in the up-regulation of gene
expression and, recent studies have highlighted its potential role
in neurodegenerative disorders (Sherwani and Khan, 2015). The
levels of 5-hmC in the brain increase progressively during aging
(Chouliaras et al., 2012). For instance, it has been reported that
accelerated aging and transgenic AD mice models exhibit an
increase in hippocampal 5-hmC levels, which could affect DNA
repair and neurogenesis (Chouliaras et al., 2012; Yokoyama et al.,
2017). Consistently, we observed higher global 5-hmC levels in
the hippocampus of SAMP8 mice compared to SAMR1 mice
at both ages. In contrast, we did not observe a regulation of
5-hmC by age in SAMR1, possibly because in this particular
model 9-month-old mice are too young to manifest this age-
related hallmark. Future studies should include older mice to
better understand the dynamics of this epigenetic mark along
the aging process. Regarding the enzymatic machinery, Tet1 gene
expression was downregulated in 2- and 9 -month-old SAMP8,
whereas Tet2 gene expression was only decreased at 9 months of
age. These results are in line with one study reporting a reduction
of hippocampal TET1 and TET2 gene expression in aged-mice
(Jessop and Toledo-Rodriguez, 2018). Moreover, loss of TET2

has been reported to be associated with regenerative decline
while restoring its levels rescues neurogenesis and enhances
cognition in the hippocampus of mice. Therefore, the increase
of this enzyme in SAMR1 might constitute a natural protective
mechanism against age-related cognitive impairment (Gontier
et al., 2018), which is absent in SAMP8 mice. Future research
could assess changes in these enzymes at older stages to see if
SAMR1 mice fail to maintain high Tet2 levels as age-related
cognitive impairment progresses. On the other hand, we found
discrepancies with our previous results in 5xFAD mice model,
which had lower levels of 5-hmC at 2 and 8 months of age,
as well as opposite changes in the expression of epigenetic
machinery (DNMTs and TETs) (Griñán-Ferré et al., 2016). These
differences among strains highlight the importance of genetic
background and age when studying the epigenetic contribution
to pathological aging and AD.

Histone acetylation, which is essential for hippocampal gene
expression, synaptic plasticity, and memory, decreases with
aging and lower levels are associated with neurodegenerative
diseases such as AD (Lu et al., 2015). Several studies have
shown that HDAC class I inhibitors exhibit neuroprotective
effects in AD mouse models, but the role of specific HDACs
regarding learning and memory in age-related diseases is still
controversial (Yang et al., 2017). Here, we observed that H3
and H4 acetylation levels were lower in 2-month-old SAMP8
mice compared to age-matched SAMR1. Consistently, Hdac1
and Hdac2 gene expression was higher in 2-month-old SAMP8
mice compared to age-matched SAMR1. This increase of HDACs
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FIGURE 6 | Representative gene interaction networks of microRNAs target genes (from mRNA:miRNA predicted pairs) built with GeneMANIA App. Network of 39

genes for the condition miRNAs up: messenger RNAs (mRNAs) down in 2-month-old SAMP8 mice (A), network of 97 genes for the condition miRNAs down: mRNAs

up in SAMP8 mice at 2 months of age (B), network of 37 genes for the condition of miRNAs up: mRNAs down in 9-month-old SAMP8 mice (C), and network of 6

genes for the condition miRNAs down: mRNAs up in SAMP8 mice at 9 months of age (D). Genes-of-interest are represented as black circles, and their related genes

as gray circles. Genetic interactions are displayed as light green lines, predicted related genes as orange lines, physical interactions as red lines, co-localization as blue

lines, shared protein domains as dark green lines, and co-expression as violet lines. Node size is proportional to the number of edges (interactions, represented as

lines) for each circle.

mRNA levels could contribute to the early loss of acetylation
marks as a mechanism underlying the pathological phenotype of
the strain. Compared to the same group of mice at 2 months of
age, 9-month-old SAMR1 mice showed a downregulation of H3
acetylation levels, which is considered a feature of normal aging,
together with an upregulation of Hdac1. For its part, SAMP8
showed further downregulation of Hdac1 at 9 months of age.
These findings reinforce the role of this HDAC on age-related
histone acetylation loss. Regarding the Sirtuin protein family, we
found reduced gene expression of Sirt1 in SAMP8 mice at both
ages, further confirming our former results (Cosín-Tomás et al.,
2014). SIRT1 knockout mice are associated with cognitive deficits
and alterations in synaptic plasticity (Michán et al., 2010). Sirt6
gene expression was also downregulated at 9-month-old SAMP8
mice compared to age-matched SAMR1. Notably, Kaluski et al.

reported severe behavioral and cognitive impairments in SIRT6
KO mice, together with increased Tau hyperphosphorylation
(Kaluski et al., 2017) as occurs in SAMP8 mice (Casadesús et al.,
2012).

These findings provide further evidence that alterations in
acetylation enzymes have an impact on chromatin remodeling
which might be contributing to SAMP8 mice pathological
phenotype. Future research should explore locus-specific
epigenetic changes in genes identified here and/or in other
studies to establish potential mechanisms and markers of
age-related cognitive decline and AD.

It is well-known that changes in mRNAs and their respective
pathways have been associated with the aging process and
aging-related disease (Cao et al., 2010; Deschênes and Chabot,
2017). Here, we showed dramatic changes in mRNA expression
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consisting on 1,062 genes dysregulated at an early age, and 1,033
at a later stage (aproximately 9% of the total genes), of which 92
genes were concurrently dysregulated in SAMP8 mice compared
to SAMR1 mice at both ages. This suggests that expression of
a number of genes is differentially regulated in SAMP8 mice
across time. Additionally, integrating data from other relevant
transcriptional studies on SAMP8, we found that only 7 genes
were commonly dysregulated in SAMP8 females and males,
whereas up to 22 genes were concurrently dysregulated when
comparing studies performed in males only. These data support
the sex differences in gene expression involved in learning and
memory and illustrate the complexity underlying sex and gender
differences in neurodegenerative processes (Bundy et al., 2017),
reinforcing the need to include both sexes in research studies.
However, it is important to note that differences in the age
of animals could explain part of the gene expression profile
differences between studies.

In contrast to mRNAs, little is known about changes in
miRNAs and their target genes in age-related cognitive decline
and AD (Dorval et al., 2013). For this reason, there is an
increasing interest in miRNAs as potential biomarkers and
therapeutic targets for age-related cognitive decline and AD
(Cosín-Tomás et al., 2017). The miRNA array results revealed
that a considerable percentage of the 84 studied miRNAs are
altered in SAMP8 vs. SAMR1 mice at 2 months (33.3%) and
at 9 months of age (20.2%). Six of these miRNAs (let-7b-
5p, let-7e-5p, miR-101b-3p, miR-107-3p, miR-148b-3p, miR-151-
3p) were equally altered at both ages, although the overlap
did not reach the statistical significance. Notably, a number
of these miRNAs were predicted to regulate the expression
of genes detected with the microarray analysis. At 2 months,
our integrative analysis of mRNAs and miRNAs allowed
us to identify 187 putative mRNA:miRNA pairs, most of
which consisted of upregulated target genes and downregulated
miRNAs. In contrast, at 9 months, we identified 61 putative
mRNA:miRNA pairs, most of which consisted of downregulated
target genes and upregulated miRNAs. Interestingly, only 6
miRNAs and 3 mRNA:miRNA pairs were altered at both ages.
This distinct temporal pattern of mRNA:miRNA pairs suggests
that the progression to brain degeneration might be partly
orchestrated by the participation of different miRNAs across
time.

Two mRNA:miRNA regulatory networks were constructed
for each age based on the predicted mRNA:miRNA
interaction pairs. The enrichment analysis with all mRNAs
comprised in the regulatory networks confirmed that altered
mRNA:miRNA pairs found likely have an impact on pathways
involved in aging, neurodegeneration and, AD (Table 4 and
Supplementary Material 5).

Finally, a representative subset of mRNA:miRNA pairs
were successfully validated by RT-PCR: P2rx1:let-7e-5p;
Pou3f2:miR-146a-5p; Hmgb20:miR-26b-5p, and Pbx1:let-7c-5p in
2-month-old mice; and Pbx1:let-7e-5p; Hmgb20:miR-181a-5p;
Nup160:miR-29a-3p; and Socs6:miR-128-3p in 9-month-old
mice. These miRNAs, therefore, could be considered early-
onset miRNAs involved in post-transcriptional age-related
dysregulations persistent throughout adulthood.

TABLE 5 | Results of T-test analysis for the real-time PCR validation of

mRNA:miRNA pairs in the hippocampus of 2- and 9-month-old SAMP8 mice.

T-test

miRNA N/group t P-value

2 months Let-7e-5p 4 5.048 0.002

miR-26b-5p 4 5.457 0.002

miR-29a-3p 4 8.992 <0.001

miR-146a-5p 4 3.059 0.022

miR-181a-5p 4 5.107 0.002

9 months Let-7c-5p 4 7.032 <0.001

Let-7e-5p 4 6.336 <0.001

miR-128-3p 4 4.784 0.003

miR-191 4 29.79 <0.0001

mRNA

2 months Hmg-20b 4 10.95 <0.001

Nup160 4 2.842 0.047

Pou3f2 4 3.093 0.037

P2rx1 4 2.245 0.066

9 months Pbx1 4 2.976 0.025

Socs6 4 4.737 0.003

miRNA let-7e-5p was upregulated, whereas its target gene,
a purinergic receptor P2X, ligand-gated ion channel (P2rx1)
was downregulated in 2-month-old SAMP8. The let-7 family
is associated with neurological diseases, such as Parkinson
Disease (PD), Amyotrophic Lateral Sclerosis (ALS), and AD,
among others (Grasso et al., 2014). Moreover, it has been
found that miRNAs of this family regulate Amyloid Precursor
Protein (APP) levels in an AD model (Niwa et al., 2008). It is
well-known that purinergic signaling plays an important role
in neurotransmission and neuromodulation, being involved in
pathophysiological processes such as neuroinflammation and
ROS production in AD and other neurodegenerative diseases
(Burnstock, 2017). In fact, there is an increasing interest in
developing P2X receptors antagonists as a therapy for these
kinds of disorders (Woods et al., 2016). As widely reported
SAMP8 mice display ROS as early as 2 months of age (Griñán-
Ferré et al., 2016), the downregulation of P2X receptor by let-
7e-5p could be an early mechanism of the brain to prevent
inflammation and ROS production. In contrast, in 9-month-old
SAMP8, let-7c-5p and let-7e-5pwere significantly downregulated,
while their target gene Pbx1 was upregulated. Pbx1, which
encodes a nuclear protein that belongs to the PBX homeobox
family of transcriptional factors, is involved in neurogenesis
during development and adulthood (Grebbin et al., 2016). Of
note, a general downregulation of let-7 family members, as well
as an increase in Pbx1 gene expression, has been previously
described in AD patients (Maes et al., 2009; Bennett and Keeney,
2018).

Another miRNA that plays a role in cognitive function
and its alteration is associated with brain disorders is miR-128
(Lin et al., 2011; Ching and Ahmad-Annuar, 2015). Notably,
overexpression of miR-128 correlates with impaired amyloid
degradation in patients with sporadic AD (Tiribuzi et al.,
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FIGURE 7 | Validation of a representative subset of mRNA:miRNA pairs involved in the brain aging and neurodegeneration. Relative expression of let-7c-5p,
miR-181a-5p, miR-26b-5p, let-7e-5p, miR-29a-3p, miR-146a-5p, and miR-128-3p in the hippocampus of 2 and/or 9 months of age SAMP8 and age-matched

SAMR1 mice (A–H). Relative expression of P2rx1, Hmg20b, Pbx1, Nup160, Pou3f2, and Socs6 in the hippocampus of 2- or 9-month-old SAMP8 and age-matched

SAMR1 mice (A–H). mRNAs and miRNAs expression was measured by real-time PCR analysis from hippocampal mRNA and small RNA fractions, and expressed

relative to U6 snRNA transcript or β-actin levels, respectively (n = 4–5/group). Mean ± standard error from five independent experiments performed in duplicates are

represented. Student’s T-test results are indicated as *p < 0.05; **p < 0.01; ***p < 0.001 and; ****p < 0.0001.

2014) and its target Socs6, which encodes a cytokine-signaling
suppressor (SOCS), is involved in inflammatory processes and
its expression is decreased in the β-amyloid peptide (Aβ)- and
inflammatory-stimulated microglia (Walker et al., 2015). miR-
128 upregulation and reduced Socs6 gene expressionwas found in
9-month-old SAMP8 mice, suggesting that this mRNA:miRNA

pair contribute to the chronic inflammation characteristic of the
SAMP8 phenotype.

Interestingly, a downregulation of bothmiR-181a-5p andmiR-
26b-5p, and an upregulation of their target gene Hmg20b were
found in 2-month-old SAMP8.miR-26b-5p is dysregulated in the
brain of sporadic AD patients and is known to be involved in
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FIGURE 8 | Brain-Deprived Neurotrophic Factor dysregulation in the hippocampus of 9-month-old SAMP8 mice. Validation of hippocampal miR-191 expression in

9-month-old SAMP8 and age-matched SAMR1 mice (A). Correlation between BDNF protein levels and miR-191 gene expression (B). Representative Western blot

(Wb) for determination of BDNF protein levels in 9-month-old SAMP8 and age-matched SAMR1 mice (C), and quantification (D). MicroRNA expression was measured

by real-time PCR analysis from hippocampal small RNAs fraction and expressed relative to U6 snRNA transcript levels (n = 4–5/group). Spearman correlation was

performed between protein levels of BDNF and miR-191 gene expression in both groups (n = 16). R and p-value were indicated on graphs. Mean ± standard error

from three independent experiments performed in duplicates is represented; Values in Wb bar graphs are adjusted to 100% for protein levels of 9-month-old SAMR1.

Student’s T-test results are indicated as *p < 0.05 and ****p < 0.001.

Tau and apoptosis pathophysiological processes (Hébert et al.,
2008; Hu et al., 2016), while miR-181-a-5p is involved in
hippocampus-dependent memory formation (Zhang et al., 2017)
and is also downregulated in CSF and brain of AD patients
(Cogswell et al., 2008).Hmg20b (or Braf35) gene encodes a DNA-
binding protein involved in neuronal differentiation that forms
complexes with other transcriptional and epigenetic factors
mediating repression of neuron-specific genes (Hakimi et al.,
2002; Ceballos-Chávez et al., 2012). These findings highlight
a potential early epigenetic regulation of Hmg20b that can be
related to gene expression alterations reported in the brain of
SAMP8 mice.

miR-146a-5p has been proposed to play a role in the
early pro-inflammatory response of AD by downregulating
complement factor H, interleukin-1 receptor, and tetraspanin-
12 and found to be upregulated in the hippocampus of
AD patients at early stages; consistently, we found increased
levels of this miRNA in 2-month-old SAMP8. Moreover, we
detected a downregulation of its target gene Pou3f2, which is
a transcription factor highly expressed in post-mitotic neurons
(Hagino-Yamagishi et al., 1997). Interestingly, this factor is
involved in neuron differentiation and interacts with other AD-
related proteins involved in endoplasmic reticulum stress (Huang

et al., 2005). miR-29a-3p, a brain-enriched miRNA known to
modulate BACE1 expression was upregulated in SAMP8 mice
at 2 months of age. The association between this miRNA and
AD pathology has been controversial since it has been found to
be both upregulated and downregulated in AD patient’s tissues
by different authors (Miya Shaik et al., 2018). In this study,
an upregulation of this miRNA and a downregulation of one
of its target genes, Nup160 was determined. Nup160 encodes a
key component of the nuclear pore complex, which mediates
nucleoplasmic transport. Age-related defects in NUP160 and
the nuclear pore complex has been proposed to contribute to
abnormal protein trafficking, and in turn to neurodegenerative
diseases (Woulfe et al., 2002; D’Angelo et al., 2009).

BDNF is an important neurotrophic factor involved in
neuroprotection. It has been described to be regulated by histone
acetylation, DNA methylation, and miRNAs. Thus, it can be
considered a representative example of the complex regulatory
network formed by these three mechanisms.miR-191 expression,
which is known to control BDNF gene expression (Nagpal et al.,
2013; Varendi et al., 2014) was found upregulated in aged SAMP8
correlating with decreased BDNF protein levels. These findings
support the existence of an effective epigenetic control of the Bdnf
gene, likely influencing brain function and cognitive capabilities

Frontiers in Genetics | www.frontiersin.org 19 December 2018 | Volume 9 | Article 596

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Cosín-Tomás et al. Time-Depedent Epigenetic Alterations SAMP8

in SAMP8mice. In the light of all results presented here, it can be
hypothesized that changes in 5-mC and histone acetylation levels
in the hippocampus might also be contributing to the repression
of Bdnf gene (Boulle et al., 2012; Koppel and Timmusk, 2013).

Overall, we identified temporal alterations in epigenetic
marks, chromatin-modifier enzymes, and miRNAs that appear to
be carefully orchestrating hippocampal gene expression changes
along the onset and development of pathological aging features
and AD-like pathology in SAMP8 mice. We hypothesize that
these gene expression changes are affecting processes related to
neurodegeneration such as OS, inflammation, APP processing,
Tau hyperphosphorylation, abnormal protein trafficking, cell
cycle dysregulation, neurogenesis, Endoplasmic Reticulum (ER)
stress, and behavioral changes among others, which may lead
to SAMP8 senescent and AD-like phenotype. This study points
to an interplay between epigenetic mechanisms and gene
networks that seems to be relevant for the progression toward
a pathological aging. At the same time, it provides several
potential markers as well as therapeutic candidates within the
epigenetic landscape and miRNA profile of SAMP8 to prevent
or delay the onset of age-related brain dysfunction, at least
in the hippocampus. Importantly, most of these epigenetic
marks, enzymes, and microRNAs are reported to be sensitive
to pharmacological and environmental interventions (Alegría-
Torres et al., 2011; Szyf, 2015; Christopher et al., 2016; Griñan-
Ferré et al., 2016a,b,c). Thus, future studies could estimate the
therapeutic potential of these interventions for preventing or
delaying neurodegenerative diseases by focusing on these targets

using the SAMP8 strain. Finally, since SAMP8 strain is a model of
accelerated aging that presents some AD-like features, our results

might be interpreted with caution (and general conclusions on
AD in humans should be avoided).
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