
A Petri Nets-based Scheduling Methodology for
Multipurpose Batch Plants
Daniel Riera

Mercedes Narciso
Systems Engineering and Automatic Control Group

Universitat Aut ònoma de Barcelona
Bellaterra, 08193

{daniel.riera, mercedes.narciso}@uab.es

Chouaib Benqlilou
Chemical Engineering Departement,

UPC
Barcelona, Spain

chouaib.benqlilou@upc.es

Keywords: Petri nets, Coverability tree, Simulation, Schedul-
ing, Batch

Abstract
This article presents an optimization methodology of batch
production processes assembled by shared resources which rely
on a mapping of state-events into time-events allowing in this
way the straightforward use of a well consolidated scheduling
policies developed for manufacturing systems. A technique to
generate the timed Petri net representation from a continuous
dynamic representation (Differential-Algebraic Equations systems
(DAEs)) of the production system is presented together with
the main characteristics of a Petri nets-based tool implemented
for optimization purposes. This paper describes also how the
implemented tool generates the coverability tree and how it can be
pruned by a general purpose heuristic. An example of a distillation
process with two shared batch resources is used to illustrate the
optimization methodology proposed.

1 INTRODUCTION

In the last few years, many methods and tools have been
developed to improve production performance in the man-
ufacturing industry. These approaches try to tackle changes
in production objectives such as high production diversity
(instead of high production volume),make to order(instead
of make to stock), and zero stock(just in time) policies. In
this paper, a methodology which uses a Petri nets-based tool
to optimize a system assembled by a set of shared batch
production resources is presented. Petri nets have been used
as the modelling formalism since they support properties
like parallelism, which is very useful for the description of
production processes (Murata [1989], Silva [1985]). By using
the proposed methodology, it is possible to optimize a wide
range of scheduling problems from the process industry taking
advantage of some algorithms developed in the manufacturing
industry field (Proth and Xie [1996], Silva and Valette [1989]).

Traditionally, optimization of batch plants was reduced to
a task sequencing problem where the processing units to be
visited by the different products and the time to be spent
in each one was specified (Fishwick [1995]). According to
each particular configuration between processing resources
(e.g. No Intermediate Storage, Unlimited Intermediate Storage,
Finite Intermediate Storage, etc. (Bahri et al. [2000])), different
planning policies can be obtained.

Since planning methods developed for manufacturing in-
dustries cope with the NP-hard problems that appear due to
the flexibility and reusability of shared production resources
(robots, Computer Numeric Control machines (CNCs), belts,
etc.), the proposed methodology has been evaluated on high
flexible batch plants. Thus, in the batch plant considered in
this paper, there arer (r > 1) products to be produced,s (s >
1) multipurpose shared processing units, a variable processing
time according to the amount of product and type of product
to be processed in each resource, and a preemptive policy in
the interaction between resources. The objective is to optimize
the process, finding the fastest way to treat a certain amount
of raw material in order to obtain the manufactured product.

By generating the Petri net of the process (see Section 2)
and using a tool that prunes the Petri net coverability tree (see
Section 3), the manufacturing lead time of the system can be
optimized.

Figure 1 illustrates the representative system that will be
used to introduce the modelling methodology, which is formed
by two shared batch resources (boilers) with capacity 2 and
5 litres respectively, and with different performance. The raw
material is stored in different tanks which hold ethanol mixed
with water at different concentrations. Boilers are used to
improve the mix purity by heating it to a vaporization phase,
and maintaining the pressure and temperature at a certain
liquid-vapour equilibrium phase during a variable amount of
time for the mix distillation. Raw material is placed in six
tanks each filled with different concentration of ethanol (from
0.7 to 0.2), and the processed mix is stored in six more empty
tanks (with target concentrations from 0.6 to 0.1). Given a set
of initial quantities (e.g. 50 l.(0.7)1, 70 l.(0.6) and 50 l.(0.4)),
the aim is to find the fastest process (using both boilers) to
achieve a desired output (e.g. 30 l.(0.2) and 10 l.(0.1)).

According to the distillation dynamic, the process is mod-
elled as a sequence of 2 tasks:

1) initial heating phase. The mix is heated to the evapora-
tion temperature and pressure. From this point, temper-
ature and pressure remain in a steady state. During this
phase the concentration decreases4C = −0.1.

150 l.(0.7) signifies 50 litres of liquid with concentration 0.7.

Fig. 1. The representative system

2) constant concentration decrease phase. The mix is main-
tained at a constant pressure while the concentration of
ethanol in the mix decreases a fixed rate (4C = −0.1).

Thus, the distillation process can be modelled as a sequence
of an initial heating phasefollowed by c constant concentra-
tion decreasing phases, where c will depend on the initial
concentration of the mix, and the target concentration. Since
a preemptive policy is allowed, at the end of anyconstant
concentration decrease phasean event can occur to move a
certain amount of the mix from one boiler (5-litre boiler) to
the other (2-litre boiler).

(a) (b)

Fig. 2. State-event to time-event mapping

Figure 2(a) illustrates the evolution of the variables of the
system (temperature, pressure, volume and concentration). In
order to make the mapping from state-events to a time-events
system, the process is discretised in terms of increments of
concentration (4C = −0.1).

Figure 2(b) shows the transformation into discretised system

states and transitions fired by time-events.
In this paper, several assumptions about the batch plant are

made in order to simplify the system and to focus on attention
to the main phases of the proposed optimization methodology:

• The setup time to pour the liquid either to the five-litre
boiler or from this to the two-litre one, is zero. In the
latter case, the liquid does not lose neither temperature
nor pressure in the exchange (restricted model).

• Because of the need to have sufficient surface for the
evaporation, the boilers can not be fully filled. The five-
litre boiler can be filled up to4.5 litres and the two-litre
boiler to 1.4.

• The initial heating phasehappens once for every quantity
of liquid processed.

• The five-litre boiler can perform both phases while the
two-litre one can only perform the second phase due to
its low performance for theinitial heating phase.

2 CONTINUOUS MODEL TO PETRI NET METHOD-
OLOGY

A. Petri nets background

A Petri net (PN) is a particular kind of directed graph,
together with an initial state called theinitial marking. An
ordinary PN is a 5-tupleN = (P, T, I, O,M0):
• P = {p1, . . . , pn} is the set of places, represented

graphically by circles.
• T = {t1, . . . , tm} is the set of transitions, represented

graphically by bold lines or rectangles.
• I : (P × T) → N is a function that defines the weight of

directed arcs from places to transitions.
• O : (T × P) → N is a function that defines the weight

of directed arcs from transitions to places.
• M0 is the initial marking.

A marking is an array that assigns to each place a non-
negative integer. If a marking assigns to placep a valuek
(k ∈ Z, k ≥ 0), p is marked with k tokens, which are
represented graphically by black dots.

A transition ti is said to be enabled by a markingM , if
∀p ∈ M : M(p) ≥ I(p, ti). The firing transition generates
a new markingM ′ which can be computed by withdrawing
I(pk, ti) tokens from eachpk input place ofti, and by adding
O(pj , ti) tokens to eachpj output place ofti.

In manufacturing terms,transitions are used to model
operations (firing a transition can represent a task (or process)
initiation or an ending of a task),placesare used to model
buffers and resources status, connectingarcs specify logical
relationships and resource constraints among operations, and
tokensrepresent material and resources conditions. Metamod-
elling in simulation of complex systems is traditionally used
to carry out simulation in a computationally more efficient
way than the simulation itself. By associating time functions
to transitions (timed Petri nets) a system whose behaviour is
time dependent can be described (Popova-Zeugmann [1993],
Gu and Bahri [1999]). Tables 1–3 summarize the time func-
tions obtained by discretising the continuous dynamics (initial

heating phase, constant concentration decrease phase) of each
boiler.

Given a batch production system which is composed by a set
of shared resources the specification of the system topology,
subsystem dynamics, raw material and production targets in
the Petri nets formalism can be achieved by the following
four steps:
• Analysis of System Topology.
• Selection of Places and Transitions.
• Time Transition Functions Specification.
• Cost Function Specification.

B. Analysis of System Topology

Given a system, the analysis of its topology will lead to
a specification of subsystem components together with the
subsystem interaction. By using a bottom-up approach each
subsystem together with the interactions with its context can
be formalized in one sub-Petri net. Once a Petri net has been
specified for each shared resource, the Petri net specification
of the overall system can be obtained by assembling shared
places of the different sub-Petri Nets.

In the considered process (see Figure 1), two subsystems
(shared boilers) have been identified:
• 5-litre boiler: This subsystem consists of six entry tanks

(with liquid concentrations from0.7 to 0.2), a five-litre
boiler and six exit tanks (from0.6 to 0.1)(notice that in
Figure 1 only the relevant tanks for later experiments are
pictured).

• 2-litre boiler: This subsystem consists of a mass flow
entry from the 5 litre boiler, (with mix concentrations
from 0.7 to 0.2), a two-litre boiler and six exit tanks
(from 0.6 to 0.1).

It cannot be assumed that the two subsystems are indepen-
dent. Although they are modelled separately, they have some
dependent dynamics which must be taken into account when
the subsystems are assembled to obtain the representation of
the global production process.

C. Selection of Places and Transitions

The second step is to determine the Petri net components
that must be used to formalize each subsystem description:
• Places: The indivisible parts of each subsystem (atomic

elements). Usually they are queues (tanks) and servers
(processing units).

• Transitions: All the events that represent a possible
change in the state of the system.

• Arcs: Specify the relationship between events (Transi-
tions) and queues or servers (Places).

• Tokens: Elements that are used to describe the matter
that flows through the system, or Boolean information
that describes the state of a shared resource.

Thus, the whole production process can be formalized by a
set of tasks (represented by Petri net components) that cannot
be decomposed any further: filling a boiler, filling a tank,
heating phase, concentration decrement phases and draining
the product.

Two types of places are used: queue and binary places. The
former — which can contain a number of tokens between 0
andu — are used to represent the material, the available space
in a boiler, the number of repetitions of an operation, etc. The
binary places — with 0 or 1 tokens — are used to indicate
whether a resource is currently being used or not, to check if
a decision has been taken, etc.

The Petri net of the system being considered is shown in
Figure 3.

Fig. 3. Petri net representing the system

where the places represent:

• p1,p2: Boiler Free (5 l. and 2 l.).
• p3,p4: Boiler available free space (5 l. and 2 l.).
• p5,...,p10: Initial volume2.
• p11,...,p16:Initial concentration selected2.
• p17,...,p22: Amount of mix in 5 l. boiler2.
• p23,...,p28: Heating mix in 5 l. boiler2.
• p29,...,p34: Amount of hot mix in 5 l. boiler3.
• p35,...,p40: Ethanol concentration in 2 l. boiler3.
• p41,...,p46: Amount of hot liquid in 2 l. boiler3.
• p47,...,p52: Required amount of final product3.
• p53,...,p58: Amount of mix processed3.

and the transitions:

• t1,...,t6: Initial filling of 5 l. boiler from raw mix tanks2.
• t7,...,t12: Filling a 5 l. boiler from a tank2.
• t13,...,t18: Heating start in 5 l. boiler2.
• t19,...,t24: Heating end in 5 l. boiler2.
• t25,...,t30: Liquid movement into 2 l. boiler3.
• t31,...,t36: Draining the mix from 5 l. boiler3.
• t37,...,t42: Draining the mix from 2 l. boiler3.
• t43,...,t47: Initiating one stepconstant concentration de-

crease phasein 5 l. boiler4.
• t48,...,t52: Initiating one stepconstant concentration de-

crease phasein 2 l. boiler4.
• t53,t54: Boiler release3.

2For each concentration from 0.7 to 0.2
3For each concentration from 0.6 to 0.1
4For each concentration from 0.6 to 0.2

D. Metamodels: Specification of Time Transition Functions

Every transition has an associated time which corresponds
to the time spent by the system to ‘move’ tokens from the
entry places to the exit places of that transition. This time
can be either constant or variable according to the event
dynamic represented by the transition. When the time value
is a constant, it is usually zero — no transition time is
consumed to move the tokens from the entry places to the
exit ones (e.g. a logical change in the state of a shared
resource: from busy to available). When the transition time is
variable, it is represented by a function which is formulated by
experimenting with the mathematical continuous model (DAE)
in a simulator.

Computer intelligence metamodels are used in simulation
for different goals such as prediction, optimization, verification
or validation of simulation models. Here, regression functions
are specified by simulating the heating and evaporation phases
according to different operating conditions. Results obtained
are applied to perform what-if analysis and to determine the
best scheduling policy.

Thus, to derive the time function of a transition it is neces-
sary first to obtain the mathematical continuous representation
of each subsystem behaviour. After the subsystem has been
modelled and simulated, the results are used to generate the
time functions. If the resulting function depends on the number
of tokens received by the transition, it is simulated for different
entry values (represented in the Petri net by different number
of entry tokens to a transition). Otherwise, it has a value which
will correspond to a unique simulation result. Once the times
have been calculated, it is possible to find a polynomial that
fits with these values.

A transition may also have an associated function to rep-
resent a relationship between input and output tokens which
depends on the quantity of the input tokens (e.g. consumption
of the mass mix due to evaporation). Functions describing this
relationship are calculated in a similar way as time functions.
Tables I to III present the polynomials for time and volume
consumption associated to the corresponding transitions. Once
these functions have been calculated, the Petri net of the
overall production process can be formalized.

C0 4V 4T
0.7 0.447 · V0 − 0.209 3.022 · V0 − 3.721
0.6 0.338 · V0 − 0.078 2.700 · V0 − 3.500
0.5 0.272 · V0 − 0.005 2.530 · V0 − 4.000
0.4 0.231 · V0 + 0.151 2.468 · V0 − 3.427
0.3 0.207 · V0 + 0.250 2.515 · V0 − 2.015
0.2 0.206 · V0 + 0.294 2.766 · V0 + 0.574

TABLE I

TIME AND VOLUME CONSUMPTION POLYNOMIALS FOR THE HEATING IN

THE FIVE-LITRE BOILER

In Tables I to III, V0 corresponds to the initial amount of
mix with concentrationC0, and4T and4V are the time
and volume consumption polynomials corresponding to a step
(4C = −0.1) in the mixing process.

C0 4V 4T
0.6 0.326 · V0 + 0.005 5.685 · V0 + 0.103
0.5 0.263 · V0 + 0.044 4.799 · V0 + 0.790
0.4 0.214 · V0 + 7.988 4.291 · V0 + 30.124
0.3 0.200 · V0 − 0.035 4.229 · V0 − 0.604
0.2 0.198 · V0 + 0.015 4.823 · V0 + 0.365

TABLE II

TIME AND VOLUME CONSUMPTION POLYNOMIALS FOR THE TWO-LITRE

BOILER

C0 4V 4T
0.6 0.340 · V0 + 0.110 1.429 · V0 + 1.867
0.5 0.274 · V0 + 0.067 1.217 · V0 + 3.216
0.4 0.233 · V0 + 0.327 1.106 · V0 + 5.708
0.3 0.210 · V0 − 0.136 1.094 · V0 + 4.266
0.2 0.209 · V0 − 0.035 1.262 · V0 − 4.619

TABLE III

TIME AND VOLUME CONSUMPTION POLYNOMIALS FOR THE FIVE-LITRE

BOILER

E. Cost Function Specification

Once the Petri net is finished, the weights associated to
the places are allocated. These weights are used by the tool
which prunes the coverability tree. This tool uses heuristics
(see Section 3) associated with these weights to calculate the
‘quality’ of any possible discretised state of the system (a node
of the coverability tree).

These weights may be used to give information to the
optimization tool about the use (and cost) of the different
resources of the system.

3 COVERABILITY TREE

Given a Petri net and an initial markingMo (initial state of
the system: amount of raw material, state of each boiler,etc),
the coverability tree is a very suitable representation to de-
scribe both:

• All the states (markings) which can be reached starting
from these initial system conditions (Mo), and:

• The transition sequence to be fired to drive the system
from the initial condition to a desired end-state or final
marking (Mf).

The initial marking (Mo) can be represented by a vector
of n elements (see Equation 1), wheren corresponds to the
number of places used in the Petri net representation of the
system.

Mo = [TokP lace1 · · · TokP lacen] (1)

The coverability tree evaluates for each system state (mark-
ing) the possible events that can appear (enabled transitions)
and generates for each event the new marking (new state)
obtained after the event has been processed.

Figure 4 illustrates the first 4 levels of the coverability tree
of the system being studied. It can be seen that given an initial
marking there are only 2 events (represented by transitions T1
and T2) which can appear, leading to two new states (markings

in the first level of the coverability tree). For each one of these
new states, the enabled events are fired obtaining new states
and so on. It can be readily noted that the coverability will
expand according to the flexibility (number of shared resources
to be assigned at each time) of the production process, which
will lead to a NP-hard problem when evaluating scheduling
policies of complex systems. Such problems require a great
amount of computer resources (like CPU time and memory).

Fig. 4. Example of first levels of a coverability tree

Since it is not always possible to build the total coverability
tree, two solutions are available:

• Choose a higher abstraction level to describe the system
characteristics.

• Use heuristics to prune the tree.

The former option can reduce the size of the coverability
tree considerably, however, it makes generally impossible to
generate a plan with sufficient detail for all the production
architecture decision variables. On the other hand, although
the latter option does not guarantee an optimal solution, it
offers a good enough answer for industrial scheduling and
re-scheduling requirements. These are forced (due to time
constraints) to accept a prompt sub-optimal solution rather
than a delayed optimal solution. Note that fast re-scheduling is
essential to quickly react to changes (e.g. machine shutdowns).

A. Defining the Objective Function

The formalization of an objective function to drive the
program through the search space will allow the inclusion of
certain expert knowledge and express it in the mathematical
formalism used by the search algorithms. The knowledge
expressed through the objective function can be used to select
those markings (states) within the solutions space which could
lead to the optimal solution.

In industry, production requirements are usually defined as
a compromise between time and cost. To assess a production
process, the engineer has to be aware of performance indexes
such as: total time that a part spends in a queue; total time
that parts spend in transport systems; equipment utilization;
proportions of time a machine is broken, blocked (waiting for
a finished part to be removed), or undergoing setup operations,
etc.

The production performance indexes are group together
into a suitably defined cost function. This cost function is
formed by two components: a place or ‘work in process’ (WIP)
component and a time component.

‘Work in process’ is the current number of pieces (or
quantity of material, in the processes industry case) in the
production line. In terms of Petri nets, the WIP can be obtained

by computing the sum of tokens in every place representing
a stock. Thus, the cost that a company pays for pieces stored
in particular queues (places), can be expressed mathematically
by an objectiveP-function(see Equation 2).

Jp =
n∑

i=1

Ai · Pi (2)

wherePi represents the internal value of the placei (number
of pieces or tokens stored in queuei), andAi is a weighting
parameter defined by the user.

Note that the performance of theP-function depends on
the selection of the weighting parameters. Thus, the user can
penalize those places where tokens should not encounter long
delay (row material places).

In the case under consideration, different policies have been
studied by changing the weight of the tokens in places such
as the initial liquid tanks (in order to empty stocks as soon
as possible), or the two and five-litre boilers (in order to use
them for shorter or longer), etc.

The second component of the cost function corresponds
to the processing time required to drive the system from
an original work load to a desired particular work load. It
is computed by evaluating the firing time of each activated
transition. An objectiveT-function(Jt) is proposed to describe
the time of a given sequence of transitions. TheT-function is
defined in Equation 3.

Jt = max(t1, . . . , tm) (3)

whereti represents the time when transitioni is fired.
In order to look for a good compromise between the

manufacturing lead time and the work in process, a cost
function (see Equation 4) has been formulated containing the
valuesJt andJp.

J = (e
1

Jt
·ln Jp

Jp0 − 1) · 100 (4)

whereJp0 is the value of theP-functionfor the initial marking
(M0).

B. Use of a Heuristic Pruning Algorithm

The aim of the heuristic algorithm is to decompose the
complete coverability tree of a Petri net into a set oft sub-trees
of constant depthl, wherel is the number of fired transitions.
The values for the parameterst andl are selected by the user.

When a sub-tree is pruned,t paths are selected, where each
path is a sequence of transitions from the root to a final node at
the levell. Paths selection is made through the cost function
(see Equation 4) comparison by using the value at levell.
Selected paths are stored with the initial and final markings.
A path is selected according to the following criteria:

Given a set oft selected pathsψ a non-selected paths will
be selected if:

∀p ∈ ψ : J(s)− J(p) < 0 (5)

The t selected markings are used as root markings for the
next sub-tree set. The first tree (marking rootM0) is pruned at

level l and onlyt paths are selected. From theset paths, a set
of sub-trees is generated. Once each one of these sub-trees has
been pruned, the best paths are selected and stored, obtaining
in this way a set oft × t paths, from which only the bestt
paths are retained, and the others are removed.

This operation is repeated successively until the target mark
is achieved (see Figure 5).

Fig. 5. Coverability tree pruning heuristic

In the case being studied, various combinations of these
parameters have been tested. In Section 5, the influence of the
parameters in the search over the coverability tree is discussed.

4 OPTIMISATION TOOL CHARACTERISTICS

To generate the coverability tree and to find a solution for
a given problem, the PNPLAN tool (Gambin et al. [1999],
Gambin [1999], Piera and Gambin [1998]) has been used. This
tool reads the model, parses it for possible missing elements
and syntax errors, and generates the coverability tree, using
the heuristic defined in the previous section in order to prune
the tree and reach a quasi-optimal solution.

A. Input Data

There are four elements which must be defined before the
optimization can begin. All of them are passed to the program
as a text file:

• The Petri net
This includes the places, transitions, and the input and
output weight functions for the arcs connecting them.
These functions can be either constants or functions
depending on the entries to the transition (see Section
2-D).

• The initial and final markings
These indicate the initial state (how many tokens and
where are they placed) of the system, and the objective

state after processing the material and obtaining the
results. The user has the possibility of leaving some
indeterminate nodes in the final marking, corresponding
to places which are unimportant for the definition of the
final marking. Note that these markings determine the
root node and the leaves of the coverability tree.

• The weights for each place
These weights are used by the program to calculate the
cost of every (intermediate) opened marking. A value
of Wp for place p means that, when applying the cost
function, the value added by that place isWp ·Tp, where
Tp is the number of tokens in placep at that moment.
Using these values, the user can give higher penalty to the
misuse of a shared resource by a machine, the selection
of one path instead of another faster path, etc.

• The number of levels and paths
These form the second part of the heuristic which can be
defined by the user. By changing these parameters it is
possible to control the quality of the solutions found. The
pruning of the tree depends directly on the depth reached
and the number of stored paths in every step (see Section
3-B).

B. Output Data

Once the coverability tree is complete, the program returns
text files containing the fired transitions sorted by time. If
there is no solution (or no solution has been found), no files
are generated, and if there are multiple solutions, a maximum
of t files5 are returned.

Also, since the user has the possibility of leaving some
indeterminate places in the final marking, the program also
returns the final marking with all places now defined.

5 RESULTS

In order to evaluate the sensitivity of the proposed method-
ology in front of parameter value changes, this section sum-
marizes the most important results obtained.

A. Precision of the Petri Net Representation

Table IV summarizes the results obtained when discretising
the continuous dynamic of the boiler according to different
amounts of mix. An experiment was performed to obtain 300
ml. of 0.2 ethanol concentration, given 4500 ml. of0.7 ethanol
concentration. The amount of liquid consumed together with
the production time needed to achieve the final product is
shown in Table IV for different discretisations: 1 token means
100 ml., 2 tokens means 200 ml., and so on.

As it could be expected, the lower precision is chosen in
discretisation of the continuous system dynamics, to more
time is spent in achieving the final marking and more mix
is consumed.

5t is the parameter which represents the number of sub-trees stored in every
step (see Section 3-B).

Prec. [ml] Opt.Time Cons.liq. [ml] t l
100 12064.6 2600 8 8
200 12064.6 2600 8 8
500 17020.6 3000 8 8
900 12366.8 2700 8 8
1500 17020.6 3000 8 8
4500 20735.5 4500 8 8

TABLE IV

RESULTS FOR DIFFERENT SYSTEM MODELLING PRECISION

B. Objective Function Weights

By using different scheduling policies it is possible to find
different suitable solutions for specific requirements. In order
to achieve the best solution the weights for every place were
modified.

Experiment: Given 20 litres (200 tokens) of liquid with
concentration0.7, it is desired to find the best scheduling pol-
icy to achieve 1 litre (10 tokens) of0.2 ethanol concentration.

The following policies have been considered:
1) Penalize the use of the five-litre boiler.

By raising the weight of the places corresponding to
liquid in the five-litre boiler (places from P29 to P34), it
can be observed in the solutions found that the liquid is
moved to the two-litre boiler just after it has been heated
(using transition T25).

2) Penalize the use of the two-litre boiler.
Similar to the previous policy. In this case, the penalized
places are those corresponding to the two-litre boiler
(places from P41 to P46). Because of the experiment
setup and the heating speed of both boilers, this policy
gave the optimal solution.

3) Balanced use of boilers.
By giving similar values to the weights representing
both boilers, more balanced solutions are found. As was
mentioned in the previous policy, the two-litre boiler
is slower than the five-litre boiler. Thus, this solution
is worse than the previous one. In a case with higher
quantities of liquid to process, the parallelization would
make the solution better. Figure 6 presents a Gantt
diagram for this policy.

Fig. 6. Gantt diagram for a balanced policy.

4) Fast production (by penalizing the objective product).
The processed mix is collected (in the exit tanks) at the
shortest time. To satisfy this target, the places with the
target tokens are penalized (places from P47 to P52). In
the solution, it can be observed that instead of using

the maximum capacity of the five-litre boiler, the liquid
is poured in smaller quantities in order to produce the
objective liquid more quickly.

The results obtained when applying these policies is sum-
marized in Table V.

Policy Opt. Time t l
1 71918.0 8 8
2 41471.1 8 8
3 41569.5 8 8
4 67344.1 8 8

TABLE V

RESULTS FOR DIFFERENT POLICIES

C. Pruning Parameters

The parameterst andl determine the size of the coverability
tree (see Section 3-B).

Experiment: Given 10 litres (100 tokens) of liquid with
concentration0.7, we seek to achieve 200 millilitres (2 tokens)
of liquid with concentration0.4, 200 millilitres (2 tokens) of
liquid with concentration0.3 and 300 millilitres (3 tokens) of
liquid with concentration0.2.

The combination of different values fort and l yielded the
following results:

t\l 1 5 10 15 20
1 - 52875.1 52875.1 40543.9 52875.1
3 - 51407.3 45168.2 39608.4 52875.1
5 - 50207.0 40944.8 39608.4 52758.8
7 - 50207.0 40944.8 31342.1 43564.8
9 - 50207.0 27390.5 31342.1 43564.8
11 - 50207.0 27252.7 31342.1 43564.8

TABLE VI

RESULTS FOR DIFFERENT NUMBER OF PATHSt AND DEPTHS l

Note that the horizontal lines ‘-’ mean that no solution has
been found.

It can be observed in Table VI that the best results are
obtained with a depth of 10. In this case, the different opened
trees do not contain a full cycle. This means that they do
not include the transitions from the pouring of liquid into the
five-litre boiler to the collection of the processed liquid in the
output tanks.

On the other hand, the greater the number of paths stored
in memory, the better is the solution obtained. This holds
until a certain number of paths, when the solutions start to
be repeated, and the memory overhead becomes a liability.

6 CONCLUSIONS

In this paper, a methodology to optimize a batch production
system based on the translation of state-events into time-events
(see Section 1) has been presented.

A formalization of time-events into Petri nets allows the use
of tools like the coverability tree. This gives the possibility of
use both heuristics in the construction of the tree and external
techniques like Tabu Search and Simulated Annealing.

Although such tools are usually used to optimize discrete
systems, the methodology shows the steps to convert a continu-
ous system into its corresponding discrete system (see Section
2).

The way the tool optimizes the Petri net has also been
presented. It generates the coverability tree (see Section 3) and
because of the need for a fast solution (instead of the optimal)
the tree is pruned by the use of a heuristic (see Section 3-B)
set up by the user and by other techniques related to the Petri
net definition.

Using this methodology it is possible to optimize some types
of continuous systems such as those from the manufacturing
industry, and find a quasi-optimal solution by setting up some
parameters. The tool used for the optimization takes the Petri
nets-based model and initial and objective states, and finds a
set of transitions firings which minimize the time (of the last
transition fire) and a cost function based on the use of the
system resources. From the transition sequence, the optimal
policy can be derived.

References

P. A. Bahri, T. Gu, and P. Lee. Petri-net based modelling and
scheduling of batch processing plants - a heuristic algorithm.
International Symposium on Advanced Control of Chemical
Processes, June 2000.

P. Fishwick.Simulation Model Design and Execution. Prentice
Hall, 1995.

A. J. Gambin. Estado del arte del kernel para simulación de
redes de petri. Internal report, Departament de Telecomu-
nicacío i Enginyeria de Sistemes. UAB, 1999.

A. J. Gambin, M. A. Piera, and D. Riera. A petri nets based
object oriented tool for the scheduling of stochastic flexible
manufacturing systems. In7th IEEE International Confer-
ence on Emerging Technologies and Factory Automation,
pages 1091–1098, Barcelona, Spain, 1999.

T. Gu and P. Bahri. Timed petri-net representation for short
term scheduling of multi-product batch plants.Proceedings
of the 1999 American Control Conference, pages 4092–
4096, 1999.

T. Murata. Petri nets: Properties, analysis and applications.
Proceedings of IEEE, 77(4):541–580, April 1989.

M. A. Piera and A. J. Gambin. Object oriented stochastic petri
nets simulator: A generic kernel for heuristic planning tools.
LNAI 1415, Springer-Verlag, pages 244–253, 1998.

L. Popova-Zeugmann. Petri nets with time restrictions.Jour-
nal of System Analysis Modelling Simulation, 13:13–20,
1993.

J. M. Proth and X. Xie.Petri Nets. A Tool for Design and
Management of Manufacturing Systems. Wiley, 1996.

M. Silva. Las Redes de Petri: en la Automática y la In-
formática. AC, Madrid, 1985.

M. Silva and R. Valette. Petri nets and flexible manufacturing.
LNCS. Advances in Petri Nets, 424:374–417, 1989.

Daniel Riera i Terr én studied Computer Science
at the Universitat Aut̀onoma de Barcelona (UAB).
He has held a teaching position at the UAB and
an FPI research grant from the Spanish government.
After two six-month study periods at the ICParc,
in the Imperial College of London, he is currently
preparing his PhD dissertation. His research areas
include automation, modelling and simulation, and
industrial processes. He is research fellow in the
UAB, teacher in the Universitat Oberta de Catalunya
(UOC) and researcher of the LOGISIM.

Mercedes Narciso Fariasstudied Systems Engi-
neering at the University of Los Andes, Venezuela.
After working several years in a private company
(consultancy and development of software in di-
rection positions), she worked as researcher in the
Computer Science Department of the University of
Los Andes. In 1998 received the degree of Mag-
ister in Computer Science in this university. From
1999 she develops research works in the Universitat
Autònoma de Barcelona, where she is associated
professor in the Department of Telecommunications

and Systems Engineering, and prepares her PhD dissertation on a tool for
search and optimisation problems.

Chouaib Benqlilou Benkiran received his degree
in physics from the University of Meknes, Morocco.
Holds a Master’s degree in Computer Science from
UAB University, Spain. He is finishing his PhD
at the Chemical Engineering Department of UPC
University, Spain. His main research interests in-
clude design and upgrade of instrumentation process
plant monitoring and process plant dynamic data
reconciliation. Over the 5 past years he has worked
at UPC on a broad variety of international projects
related to Computer Aided Process Engineering and

Process Plant data Management.

