
Multilevel Multifactor Single Sign-On

Author: Angel Linares Zapater

Master’s Degree in Information and Communication Technology Security

Authentication and Authorization Systems Area

Director: Antoni González Ciria (ANCERT)

Supervising Professor: Víctor Garcia Font (UOC)

December 31st, 2019

Multilevel Multifactor Single Sign-On

Copyright © 2019 Àngel Linares Zapater

This work is licensed under a Creative Commons Attribution-ShareAlike 3.0 Spain License

MISTIC - Angel Linares Zapater 2

https://creativecommons.org/licenses/by-sa/3.0/es/

Multilevel Multifactor Single Sign-On

Title: Multilevel Multifactor Single Sign-On

Author: Angel Linares Zapater

Director: Antoni González Ciria

Supervising professor: Víctor Garcia Font

Date: 12/2019

Degree or program:
Master’s Degree in Information and Communication

Technology Security

Area: Authentication and Authorization Systems

Language: English

Keywords:
login attribute retrieval, multilevel authorization,

multifactor authentication

 ABSTRACT:

The single sign-on mechanism (SSO) is a well-known technique to protect access to a set of

resources that require prior authentication and, possibly, additional authorization. The idea

behind the single sign-on procedure consists of requesting the user to provide access

credentials once and, thereafter, granting access to any of the resources. Besides the

practical benefits the user gets, this mechanism implies several limitations and drawbacks,

like granting an "all or nothing" access to all the resources, or making a simple attack to just

one user-name and password pair very dangerous because, when successful, it can provide

full access to all the protected resources.

In this work we first design an SSO solution following a classical architecture consisting of a

central authentication server and a user directory, dedicated to protect a set of internal

applications behind a perimeter network.

We explore how to define more complex security policies for a set of resources that could

allow setting multiple levels of authorization for the resources so that some users may only

be able to access a subset of the resources depending on their authorization level.

Also, we test the use of multiple factors of authentication to access the resources in order to

enhance their security by requesting different types of user credentials (e.g., user-

name/password pairs or digital certificates).

In this solution we also demonstrate how passing information to the client applications

about login procedure attributes allows implementing more complex authorization

techniques to protect access to these resources. Finally, we implement a basic case of a

single sign-off mechanism.

MISTIC - Angel Linares Zapater 3

Multilevel Multifactor Single Sign-On

 RESUM:

El mecanisme d’inici de sessió únic (SSO) és una coneguda tècnica per a protegir l’accés a un conjunt

de recursos que requereixen autenticació i, possiblement, autorització addicional. La idea darrere d’un

procediment d’inici de sessió únic consisteix en demanar a l’usuari que proporcioni les credencials

d’accés una sola vegada però que se li concedeixi l’accés a tots els recursos a partir d’aquí. A més

dels avantatges pràctics que n’obté l’usuari, aquest mecanisme comporta diverses limitacions i

inconvenients, com ara un accés “tot o res” a tots els recursos o fer que un atac simple a només un

nom d’usuari i contrasenya sigui molt perillós perquè, de tenir èxit, proporciona accés complet a tots

els recursos protegits.

En aquest treball primer dissenyem una solució SSO tot seguint una arquitectura clàssica formada per

un servidor d’autenticació central, juntament amb un directori d’usuaris, dedicat a protegir un conjunt

d’aplicacions internes darrere d’una xarxa perimetral.

A continuació explorarem com definir polítiques de seguretat més complexes per a un conjunt de

recursos que permetin definir diversos nivells d’autorització dels recursos de manera que alguns

usuaris només puguin accedir a un subconjunt dels recursos en funció del seu nivell d’autorització.

A més, posem a prova l’ús de diversos factors d’autenticació per a accedir als recursos per millorar la

seva seguretat sol·licitant diferents tipus de credencials d’usuari (per exemple, nom

d’usuari/contrasenya o certificats digitals).

En aquesta solució també demostrem com l’enviament d'informació sobre atributs del procediment

d'inici de sessió a les aplicacions client permet implementar tècniques d'autorització més complexes

per a protegir l'accés a aquests recursos. Finalment, implementem un cas bàsic de mecanisme de

desconnexió única.

 RESUMEN:

El mecanismo de inicio de sesión único (SSO) es una técnica bien conocida para proteger el acceso a

un conjunto de recursos que requieren autenticación y, posiblemente, autorización adicional. La idea

detrás de un procedimiento de inicio de sesión único consiste en solicitar al usuario que proporcione

credenciales de acceso una vez pero que otorgue acceso a todos los recursos a partir de entonces.

Aparte de los beneficios prácticos que obtiene el usuario este mecanismo implica varias limitaciones y

desventajas como otorgar un acceso de "todo o nada" a todos los recursos o hacer que un ataque

simple a un solo nombre de usuario y contraseña sea muy peligroso porque, de tener éxito,

proporciona acceso completo a todos los recursos protegidos.

En este trabajo, primero diseñamos una solución SSO siguiendo una arquitectura clásica consistente

en un servidor de autenticación central, junto con un directorio de usuarios, dedicado a proteger un

conjunto de aplicaciones internas detrás de una red perimetral.

Luego exploramos cómo definir políticas de seguridad más complejas para un conjunto de recursos

que permitan definir múltiples niveles de autorización para estos recursos, de modo que algunos

usuarios solo puedan acceder a un subconjunto de los recursos según su nivel de autorización.

También probamos el uso de múltiples factores de autenticación para acceder a los recursos con el fin

de mejorar su seguridad al solicitar diferentes tipos de credenciales de usuario (por ejemplo, nombre

de usuario/contraseña o certificados digitales).

En esta solución además demostramos cómo el pasar información sobre atributos del procedimiento

de inicio de sesión a las aplicaciones cliente permite implementar técnicas de autorización más

complejas para proteger el acceso a estos recursos. Finalmente, implementamos un caso básico de

mecanismo de cierre de sesión único.

MISTIC - Angel Linares Zapater 4

Multilevel Multifactor Single Sign-On

Contents

1 Introduction..8
1.1 Context and Justification...8

2 Single Sign-On Authentication..9
2.1 Motivation...9
2.2 Basic SSO authentication..9

2.2.1 SSO trade-offs..10
2.3 Available SSO solutions...10

2.3.1 Open Source solutions...10
2.3.2 Commercial solutions...11

3 Project Definition...12
3.1 Purpose...12
3.2 Objectives...13
3.3 Other requirements and constraints..13

3.3.1 Solution constraints...13
3.3.2 Cultural constraints..13

3.4 Methodology..14
3.4.1 Practical approach...14
3.4.2 Project management..14

4 Project Plan...15
4.1 Project Scope...15

4.1.1 Work Breakdown Structure...15
4.1.2 Out of scope...16

4.2 Project Schedule..17
4.2.1 Gantt diagram..17

5 Theoretical Study..19
5.1 SSO characterization...19

5.1.1 The authentication process..19
5.1.2 The authorization process..20
5.1.3 SSO Policies...21

5.2 Analysis of Alternative Products..21
5.2.1 Available alternatives...21

SSO server..21
User repositories..21
Application servers...22
Proxy..22
Digital certificates..23

5.2.2 Comparison of alternatives..23

6 Solution Architecture and Design..25
6.1 Solution Architecture...25

6.1.1 Protected Resources..25
6.1.2 DMZ...26
6.1.3 SSO subsystem..26

6.2 Solution Design...27
6.2.1 The Apps..27
6.2.2 The APP Server..28
6.2.3 The CAS Server..28
6.2.4 The LDAP Server..28
6.2.5 The SSO policy...28
6.2.6 Ancillary components...30
6.2.7 The network setup...30

7 Solution Implementation..31
7.1 The development environment...31

7.1.1 Host environment..31
7.1.2 Virtual environment...31
7.1.3 Certificates infrastructure..32

MISTIC - Angel Linares Zapater 5

Multilevel Multifactor Single Sign-On

Certificates at the user’s browser...32
CA root certificate at the user’s browser..33
Certificates for the PROXY and LDAP server...33
Certificates for the APP and CAS server..33

7.1.4 Custom applications...34
The Home Page..34
Developing the CAS client applications..34

7.2 The production environment...37
7.2.1 The DMZ Proxy...37
7.2.2 The APP server...37
7.2.3 The LDAP server...40
7.2.4 The CAS server..42

Configuring the CAS application...42
Configuring CAS services..44

7.3 Solution integration...45
7.3.1 Checking the SSO policy implementation..45

Accessing as a user with user-name and password..45
Accessing as a user with a digital certificate..47
Accessing an app that accepts only digital certificates..48

8 Project results...50
8.1 Specific results..50
8.2 Generic results and remarks..51
8.3 Future work...52

8.3.1 Theoretical approach...52
8.3.2 Practical implementation...53

9 Appendix 1: Installation Procedures..54
9.1 Creating a new machine from the base image..54

Cloning the base image..54
Configuring the network adapters..54
Customizing the cloned servers..55

9.2 Creating the certificates infrastructure for MISTIC.lan...56
9.2.1 Creating a Certification Authority certificate..56
9.2.2 Creating MISTIC-signed X.509 certificates..57
9.2.3 Creating Java keystores for the Tomcat servers...58

9.3 Installing Amazon Corretto 11...59
9.4 Installing Apache httpd as a reverse proxy..60

Installing the web server..60
Setting up the reverse proxy..61

9.5 Installing Apache Tomcat...62
Installing Apache Tomcat..62
Configuring Apache Tomcat for SSL connections..64

9.6 Installing OpenLDAP..65
9.7 Installing Apereo CAS server...67

10 Appendix 2: Source code and configuration files..70
10.1 PROXY server configuration files...70
10.2 APP server configuration files..71
10.3 CAS server configuration files..72
10.4 LDAP server configuration files..75
10.5 Applications source code...77

10.5.1 Home page..77
10.5.2 Client applications..77

11 Glossary..82

12 Bibliography..83

MISTIC - Angel Linares Zapater 6

Multilevel Multifactor Single Sign-On

Table of Figures

 Figure 1: Solution high-level diagram..12
 Figure 2: Work breakdown structure for the project..15
 Figure 3: Gantt diagram for the project...18
 Figure 4: Component Architecture of the SSO solution...25
 Figure 5: Network diagram for the project..30

MISTIC - Angel Linares Zapater 7

Multilevel Multifactor Single Sign-On

1 Introduction

1.1 Context and Justification

This project is based on a proposal by ANCERT1 to implement a single sign-on (SSO) solution
capable of authenticating users to an application server by using either passwords or digital
certificates. Depending on the type of credentials used to authenticate, the user will be granted
access to a different set of applications among those installed in the application server. In
addition to that, the applications should be able to retrieve some information about the logged-
in user from the authentication server and the user repository(*) 2.

It is also a requirement in the proposal that the implemented solution must be based on open
source projects such as Apereo CAS or OpenAM. Also, it is required that the authentication
and application servers must be protected from direct access from the Internet by the use of
proxy servers(*) located in a perimeter network(*). Indeed, to enhance security it is a common
architectural pattern to protect the servers in the internal network from the Internet by using
an intermediate network or demilitarized zone(*) (DMZ). Thus, the connections attempted from
the external network to the protected servers in the internal network are performed through
proxy servers.

As we will further analyze, this is a common scenario for corporate environments where a set of
resource servers, in this case application servers, need to be accessible for the corporation
users, either internal (e.g., employees) or external (e.g., customers or providers).

In a very simplistic scenario, these internal applications would require every user to
authenticate separately to each one of the applications. To avoid these repetitive login steps, a
single sign-on mechanism is implemented in such a way that, after a first successful
authentication to any of the applications, the following accesses to any other application are
automatically granted to the user without prompting again for the user’s credentials.

One side effect of this basic SSO scheme is that the user gets access to all the applications
protected by the authentication server. While this is sometimes the required behavior, in some
scenarios not all the protected applications in the same environment should be accessible for a
given user but just a smaller subset of them according to some corporate policy. In this case,
an ordered set of access privileges can be defined so that a user with an access level of, say, 2
cannot use resources with access level 3, but access is effectively granted to resources at level
1 just with one login operation.

Although this multilevel3 authorization(*) scheme for SSO provides enhanced capabilities to
configure and manage access to a set of applications, it may imply new, but not always
evident, consequences that we will explore in the theoretical study in this work. Furthermore,
this layered approach should be not confused with multifactor authentication(*), where more
than one kind of credentials are requested from the user within the same authentication
operation (e.g., a pair of user/password plus a one-time sent SMS code). We will explore the use
of passwords and digital certificates as authentication factors.

The final result of this project is, therefore, the implementation of an SSO solution for a set
of applications, protected with passwords and/or certificates under a multilevel access policy.
Also, an exploratory theoretical analysis of the authentication function and its implications
will be presented.

1 Agencia Notarial de Certificación: https://www.ancert.com/
2 Terms marked with (*) are explained in the glossary chapter.
3 Multilevel and multifactor are sometimes used interchangeably in different contexts. We will use the term

multilevel to refer to authorization permissions and multifactor to refer to types of user credentials.

MISTIC - Angel Linares Zapater 8

https://www.ancert.com/

Multilevel Multifactor Single Sign-On

2 Single Sign-On Authentication

2.1 Motivation

A common practice to access a secured resource, like a corporate application in a networked
environment, is to request the user to provide some kind of credentials in other to verify that
the user is who he claims to be. This process is known as authentication. This authentication
process can be performed by the very final system being accessed. The credentials validation
may consist of simply verifying a valid match of user-name and password or may consist of a
more sophisticated technique like a presenting and verifying a digital certificate or entering an
SMS code just created and sent for this authentication attempt.

In any case, in some scenarios this same user may have to authenticate against several
systems in an internal network in order to perform her expected daily work. For example, this
would be the case of a corporate employee who needs to log in to the local workstation, access
the corporate e-mail server, work with one or more enterprise applications and access some
external services, like Google Drive, Dropbox, etc. The user is, therefore, forced to enter
several user-name/passwords, one for each system she needs to access. Moreover, when more
sophisticated authentication schemes are introduced, for example by requiring a two-factor
authentication4, the number of options that the user has to remember grows rapidly. These
repetitive, annoying actions may have the unwanted side effect of leading the user to simplify
these procedures by setting, for example, the same user/password for all the systems, a
practice that decreases the security of the whole system.

2.2 Basic SSO authentication

The Single Sign-On (SSO) authentication is a well known, broadly used authentication
mechanism for these environments, where there exists the need to simplify multiple logging
operations to several applications.

In this approach, when the user tries to access any of the applications for the first time, the
final application redirects the user to a central server that performs the actual authentication
on behalf of this application and also records the result of the authentication. Then, when the
user tries to access a second application, the same redirection to the central server is
performed but this time the authentication server is able to determine that this user has been
successfully logged in and grants this user access to the second application without prompting
for credentials. This process happens behind the scenes and the user experiences immediate
access to the second application without having to enter again the credentials.

This basic mechanism can be implemented in several ways depending on the need to support
different authentication schemes (e.g., user-names/passwords, digital certificates in the
browser, cryptographic pen-drives, SMS codes, etc.) or the need for policies defining
combinations of authorizations to access some of the internal resources.

Indeed, it is important to notice that, in this simplified scenario, this authentication process
(verifying who the user is) actually leads to an implicit authorization to use all the applications
protected by the same authentication server. However, granting the user any rights to use a
given resource, the authorization, is a different process than authenticating the user.

Finally, a common practice is to provide the internal application with additional information
about the users and their expected roles concerning the application. This allows the application
to customize the user experience and even more to authorize, or not, some features in the
application.

4 The two-factor authentication (2FA) is a current trend in web applications, where the user is required to enter a
random code received via SMS just after having entered the correct user-name and password.

MISTIC - Angel Linares Zapater 9

Multilevel Multifactor Single Sign-On

2.2.1 SSO trade-offs

Selecting a Single Sign-On as an authentication mechanism for a set of resources is not free
from some trade-offs. The final decision about implementing an SSO solution should, therefore,
be made by considering both the benefits and the disadvantages of this authentication
mechanism, especially in a scenario with multiple levels of authorization.

As a high level summary, the advantages of using an SSO mechanism are:

• One-time login: the user logs in only once (for a given period of time) no matter how
many applications under the control of a given SSO solution will use.

• Centralized administration: the management of the user repository and the
authentication policies are moved from each application to a central server, unifying the
configuration of the application authentication and authorization processes.

• Reduced surface attack: because the applications do not store authentication data
such as the passwords of each user that are centralized in the user’s repository, the
places where a leak of that information can happen are reduced.

And the disadvantages that an SSO implementation can imply are:

• Lack of user information: under this scheme, the applications lose the information
about the users because in some basic implementations this data is stored in the user
repository and the SSO server just provides the application with a binary result, i.e.,
whether the user was authenticated or not.

• Unlimited access: the user logged in one system has access to all the resources or
applications under the same SSO server. This effect can be modulated with the use of
access policies, like the multilevel authorization that we will explore.

• Single point of failure: once the authentication is centralized a very high dependency
of the central authorization server availability is introduced. If the server fails, no
application can be used. Fault tolerance, high availability techniques should be put in
place to deal with this risk.

We will explore these challenges and alternatives when defining the final architecture and
design of the solution to implement.

2.3 Available SSO solutions

The SSO approach has been in use for a long time in the industry. This means, in practical
terms, that a great number of solutions are already available in the market5.

These solutions can be divided into two broad categories:

• commercial solutions: developed by a given manufacturer with their own proprietary
implementation choices and closed source code, but possibly optimized for a given
technology or product line.

• open source solutions: developed by a broad community of users with the source
code available and, usually, under non-restrictive licenses.

All the actual alternatives usually provide a broader set of functionality besides the SSO itself,
such as access management6, federation of systems. legacy technology compatibility, etc.

2.3.1 Open Source solutions

Among the open source solutions, the following can be considered the main choices for a new
SSO project:

• OpenAM: This product was initially developed by Sun Microsystems as OpenSSO. After
this company was acquired by Oracle Corporation, the project was forked by ForgeRock.
When this company closed the source code, a new fork(*) of the codebase was created

5 See, for example, the Wikipedia specific article about the list of SSO implementations:
https://en.wikipedia.org/wiki/List_of_single_sign-on_implementations

6 To avoid confusion between authentication and authorization, some literature, especially commercial copy, may
use the terms identity management and access management, respectively.

MISTIC - Angel Linares Zapater 10

https://en.wikipedia.org/wiki/List_of_single_sign-on_implementations

Multilevel Multifactor Single Sign-On

and is now maintained by the Open ID Platform community7 under the name OpenAM.
The SSO solution is part of a broader portfolio of identity management solutions
including directory services, access management, etc.

• Keycloack: As part of the JBoss portfolio, Keycloack8 is the Red Hat solution for
Identity and access management. Like other broad solutions, it provides SSO
capabilities as one of the features of the product. The recent acquisition of Red Hat by
IBM poses some doubts about the future roadmap of this portfolio of solutions.

• Apereo CAS: This solution started out as an internal solution at Yale University. Later
on, the project joined the Java in Administration Special Interest Group (JASIG). In 2012,
JASIG and the Sakai Foundation joined into the Apereo Foundation9 where the solution is
maintained as Apereo CAS. This solution initially implemented its own authentication
protocol known as CAS (now in version 3.0) but later incorporated support for other
standard, open protocols, like OAuth10, which makes this product a flexible option for
SSO implementations.

2.3.2 Commercial solutions

Most of the main software companies offer an SSO solution, usually integrated with products of
broader capabilities, like access control, system federation, web services or API security, etc.

These products are usually tightly integrated with each manufacturer’s product line although
some may just be rebranded, existing open source solutions. Examples are: Microsoft Active
Directory Federation Services11, Oracle IAM12, IBM Enterprise Identity Mapping13, etc.

However, many independent vendors have started to offer SSO solutions in the cloud under a
software as a service(*) (SaaS) model. Two of the main cloud providers are:

• Okta: The provider Okta14 offers access management solutions in the cloud, which also
provide SSO capabilities. This offer is mainly directed towards corporate users to
integrate access to all their applications in one place.

• Auth0: This authentication and authorization offering from Auth015 is directed to
application developers but can also escalate to enterprises.

Selecting a commercial solution may depend on several factors, the main being having an
already installed base of applications and infrastructure services from a given manufacturer
(e.g., a Windows Server based company will probably choose Microsoft ADFS).

Nonetheless, it is not so uncommon that companies now choose to install open source based
solutions but integrated with their proprietary applications in an effort to migrate to an open
source model and avoid vendor lock-in(*).

7 https://www.openidentityplatform.org/
8 https://www.keycloak.org/
9 https://www.apereo.org/
10 https://oauth.net/
11 https://docs.microsoft.com/en-us/windows-server/identity/active-directory-federation-services
12 https://www.oracle.com/cloud/security/cloud-services/identity-access-cloud.html
13 https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_71/rzalv/rzalvmst.htm
14 https://www.okta.com/
15 https://auth0.com/

MISTIC - Angel Linares Zapater 11

https://auth0.com/
https://www.okta.com/
https://www.ibm.com/support/knowledgecenter/ssw_ibm_i_71/rzalv/rzalvmst.htm
https://www.oracle.com/cloud/security/cloud-services/identity-access-cloud.html
https://docs.microsoft.com/en-us/windows-server/identity/active-directory-federation-services
https://oauth.net/
https://www.apereo.org/
https://www.keycloak.org/
https://www.openidentityplatform.org/

Multilevel Multifactor Single Sign-On

3 Project Definition

3.1 Purpose

The purpose of this project is to study the practical application of the single sign-on mechanism
when a policy of access based on levels must be in place for a set of resources, in our case, an
application server with several software applications installed.

By access levels we must understand that a user having access to, say, level 3 applications, is
also granted access to applications of a lower level. Contrarily, a user given access to
applications at level 2 has no access to any application of a higher level.

Specifically, the main goal is to implement a solution as described in the high-level diagram
and the description below:

In this scenario, a user accessing from a client device some application, e.g., App1, connects to
the application via a proxy (1,2) in the DMZ.

The application redirects (3) this access attempt to an authentication server. This server now
requests the user to provide valid credentials, on behalf of App1 and always via a proxy (4,5).

The provided credentials (6,7) are checked by the authentication server against the user
repository (8,9) and, upon successful authentication, the information about the permissions,
and probably some additional user information, are sent back to the application (10) to provide
the expected functionality to the user (11,12).

After the first successful login, if the user wants to access another internal application, like
App2, the same flow is repeated with the exception of the authentication server prompting
again the user for new access credentials (4,5,6,7).

MISTIC - Angel Linares Zapater 12

Figure 1: Solution high-level diagram

Multilevel Multifactor Single Sign-On

3.2 Objectives

The main goals for this project are:

• (O1) To define the architecture and the detailed design of a solution capable of solving
the challenges described before.

• (O2) To implement a solution, as specified in the design, consisting of at least:

◦ (O2.1) a centralized authentication server along with a common user repository
(see Technological restrictions below),

◦ (O2.2) an application server with several custom applications installed.

◦ (O2.3) each of these applications will have different, increasing access levels and
will require different authentication techniques, specifically:

▪ App1 will be accessible to any user in the directory

▪ App2 will be accessible by users with a valid user-name and password

▪ App3 will be accessible by users with a valid user-name and password or with a
valid digital certificate

▪ App4 will be accessible by users only with a valid digital certificate

▪ users accessing any application will be granted SSO access to lower lever
applications (e.g., access to App3 provides SSO authentication to App2 and
App1, but not to App4).

• (O3) To allow the protected applications to retrieve some information about the user
and the login operation.

• (O4) To implement a demilitarized zone (DMZ) to protect these servers from direct
access from the Internet.

• (O5) To provide the tools to issue and verify digital certificates for those users that may
be required to access some of the applications with the type of credential.

Additional goals are:

• (O6) To characterize, from a theoretical point of view, an SSO policy, to allow a more
formal specification of the behavior that the final solution must implement.

• (O7) To analyze further implications, both theoretical and practical, about the different
scenarios that a more complex authentication function may provide in comparison to
just a simpler user-name/password authentication scheme (e.g., should users
successfully logged in App4 access App2 according to objective O2.3?)

3.3 Other requirements and constraints

3.3.1 Solution constraints

• (R1) For the open source based SSO solution, we choose to use Apereo CAS.

• (R2) For the user repository, the chosen solution must implement the LDAP protocol.

• All other technological choices for the application server, user repository, etc. are
delayed to a later phase.

3.3.2 Cultural constraints

• (R3) All the documentation of the project will be written in American English. Also, all
the computer code, user interface and other project deliverables for the implemented
solution will be in American English.

MISTIC - Angel Linares Zapater 13

Multilevel Multifactor Single Sign-On

3.4 Methodology

3.4.1 Practical approach

The nature of this project is practical, the main goal being to implement a proof of concept for
the specified SSO scenario.

Nonetheless, an analysis of the authentication and authorization processes considered as
functions with credentials as inputs and permissions as outputs will take a more theoretical,
qualitative approach.

The main strategy to implement the SSO solution is to select and use existing open source
products for each component of the final architecture (i.e., authentication server, user
repository, etc.) and configure and integrate all of them into a final product that satisfies the
specified goals.

3.4.2 Project management

Given the time constraints and compulsory partial deliverables of the project, we will apply a
predictive project management(*) method. Despite this deterministic approach, successive
iterations to refine or rework some deliverables throughout the development may take place.

MISTIC - Angel Linares Zapater 14

Multilevel Multifactor Single Sign-On

4 Project Plan

4.1 Project Scope

In this project we will explore different mechanisms to configure and manage these
authentication/authorization challenges for an SSO solution.

On one hand, we will use both user-names/passwords and digital certificates to require some
form of multiple factor authentication. On the other, we will also configure a multiple
level authorization scheme such that successfully logging in to an application of a given level
will grant access to applications with equal or lower levels, but not to applications with higher
levels.

Finally, we will explore mechanisms for the internal applications to get some information about
the successfully logged in user from the user repository.

4.1.1 Work Breakdown Structure

The scope of the project can be broken down into the following main work packages:

The work of the project will consist of a theoretical study and an actual SSO solution
implementation plus a final analysis of the results obtained with this implementation. Also,
included in the total work of the project are the required formal documents for the thesis
submission.

The Theoretical Study will characterize the SSO policy specification from a general
perspective and analyze the different alternatives available for the later implementation of the
components of the solution.

It will consist of:

• SSO characterization: The authentication/authorization process can be modeled by
means of what we will call authentication and authorization functions taking the
provided credentials as inputs and the resulting authorized resources as outputs. We will
study how far this model can be developed and how it applies to the specific case under
discussion.

• Alternatives Analysis: An analysis of the different, available alternatives for the actual
implementation of the practical case. We will focus on open source alternatives, as
required by the original proposal, and justify the selection of each of them.

MISTIC - Angel Linares Zapater 15

Figure 2: Work breakdown structure for the project

Multilevel Multifactor Single Sign-On

Also, a working SSO Solution will be implemented to test and validate the hypothesis and
choices made in the theoretical study.

Two work packages are defined:

• Solution design: First, a detailed architecture and design for the SSO solution will be
developed plus the necessary work environment and ancillary tools to develop and test
its functionality. This will include both the centralized SSO part of the solution and the
application server with custom applications that will use it.

• Solution development: Second, the actual solution will be implemented following the
requirements and choices made before. The development of the solution will require the
implementation of:

◦ a development environment: to build the final applications and the SSO solution,
as well as the necessary tools to provide digital certificates to the users.

◦ the actual implementation: of a computer network with, at least, an SSO server
plus a user repository, an application server with all the final applications protected
with the SSO solution.

The Results & Documentation part of the work includes two major work packages that will
be completed after the implementation and testing of the solution.

These are:

• a discussion of the actual results obtained from the solution implementation and
possible lessons learned in the process,

• the compulsory deliverables for the thesis submission, namely, the thesis document
or memory, and a presentation/demonstration video of the final solution.

4.1.2 Out of scope

It is not included in the scope of this project:

• using authentication credentials other than user-names and passwords pairs or digital
certificates.

• using user repository implementations other than an LDAP based server.

• using client devices other than internet browsers to connect via secure HTTP protocol to
the application server and to eventually provide a digital certificate.

• dealing with load balancing and high availability features on the final implementation

MISTIC - Angel Linares Zapater 16

Multilevel Multifactor Single Sign-On

4.2 Project Schedule

The work of the project is distributed in a period of 16 weeks, corresponding to an academic
semester. In the following high-level schedule the main activities and deliverables are shown
along with the main milestones.

Start End Main project activities and deliverables Academic milestones

1 Sept 18 Sept 22 Project planning

2 Sept 23 Sept 29

3 Sept 30 Oct 6 Theoretical SSO modeling Oct 1st - Project Plan

4 Oct 7 Oct 13 Alternatives analysis

5 Oct 14 Oct 20 Architecture of the solution

6 Oct 21 Oct 27 Design of the solution

7 Oct 28 Nov 3 Development environment and ancillary tools Oct 29th - PAC2

8 Nov 4 Nov 10 Network setup and certificates infrastructure

9 Nov 11 Nov 17 SSO server implementation and user repository

10 Nov 18 Nov 24 Application server implementation

11 Nov 25 Dec 1 Custom applications development Nov 26th - PAC3

12 Dec 2 Dec 8 Solution integration

13 Dec 9 Dec 15 Solution testing and benchmarking

14 Dec 16 Dec 22 Results collection

15 Dec 23 Jan 4 Thesis review and Slides presentation Dec 31st - Final thesis

16 Jan 5 Jan 12 Video recording Jan 7th - Video demonstration

The workload is distributed evenly across the semester at a pace of 15 hours per week, tallying
up a total of 225 hours of planned work, which corresponds to the academic estimation of 25
hours per credit for a 9 credits subject.

For the purpose of scheduling, the working weeks have been defined as a set of three weekly
sessions of 5 work hours each.

4.2.1 Gantt diagram

The following Gantt diagram provides a more detailed view of the activities to be executed.
This diagram will be further detailed as the solution design is developed and will serve as a
baseline for monitoring the progress of the project.

In this diagram, the activities purely related to thesis, presentation and video preparation are
not included.

MISTIC - Angel Linares Zapater 17

Multilevel Multifactor Single Sign-On

MISTIC - Angel Linares Zapater 18

Figure 3: Gantt diagram for the project

Multilevel Multifactor Single Sign-On

5 Theoretical Study

5.1 SSO characterization

In an SSO paradigm, a user providing some credentials may be authorized, upon successful
authentication, to access the protected resources. We can see that there are two sets involved
in this process, namely, the credentials provided (one or more) by any user and the resources
authorized (one, more than one, or none at all). Therefore, an SSO operation implies both an
authentication of the user and an authorization to some resources.

In order to characterize the SSO process, we will take the approach of starting by identifying
these two operations with simple mathematical functions and then examine how far this model
can be taken, by expanding the parameters and results of those functions, with regard to the
specification of any given SSO policy.

5.1.1 The authentication process

The authentication process can be modeled by means of what we will call an authentication
function. Indeed, we can see the authentication process as a mathematical function that takes
the credentials provided by the user as inputs and then yields a true/false result as the output
for that user authentication attempt (i.e., telling whether the user has been authenticated or
not).

Thus, we can define a function A:

A :(user identifier , credentials)→user authenticated

(u , c)→{0,1}

which takes a user identifier and the provided user credentials and returns a Boolean value to
indicate whether the user authentication was successful or not.

To define a complete SSO policy we must be more specific and enumerate the sets of valid
values for the domain of the function, both for the set of valid user identifiers and the set of
corresponding credentials. Thus, for the user identifier, a syntactically correct e-mail address or
a user-name formation rule may be defined, for example. And for the credentials, some string
of characters following some formation rules are usually specified by the application designers.
These set of definitions are specific to the concrete solution we want to implement in each real
case.

Multifactor authentication

To achieve an increased level of security, it is a good practice to require more than one kind of
credentials in the same authentication operation. This idea is based on the concept of factors
of authentication16. These factors may be:

• something the user knows: a password, a PIN, etc.

• something possessed only by the user: a card, a USB key, etc.

• something inherent only to the user: the fingerprint, the retina image or some
other biometric element

So, for the purpose of enhancing the authentication function, this enhanced case corresponds
to a mathematical function of several variables. Thus, we can redefine the function A as:

A :(user identifier , factor1 , factor2 ,...)→user authenticated

(u , f 1, f 2,…)→{0,1}

Again, the exact specification of the number and the type of factors is up to the application
designers. This set of information and the validation rules have to be implemented in the actual
authentication component of the SSO solution.

16 Two factor authentication is an increasing trend especially in cloud based applications. Indeed, applications with
higher security requirements may rely on requesting three or more authentication factors. See
https://en.wikipedia.org/wiki/Authentication#Authentication_factors for a first discussion.

MISTIC - Angel Linares Zapater 19

https://en.wikipedia.org/wiki/Authentication#Authentication_factors

Multilevel Multifactor Single Sign-On

Multilevel authentication

As commented previously, in an SSO solution, having a binary response to an authentication
challenge has the side effect of authorizing the authenticated user to access all the protected
resources in the same authentication server.

To deal with this (not always desired) behavior, we can now enhance the authentication
function on the side of the image. Indeed, nothing prevents us from defining a different image
set of values other than the Boolean set {0,1} or {false, true}.

A first enhancement can be to define the image of the authentication function A in some
subset of the natural numbers:

A :(user identifier , factor1 , factor2 ,...)→user level

(u , f 1 , f 2 ,…)→{0,1, 2,…}

In this case, the result of the authentication process is a value that can be interpreted as the
user level of authentication, where a 0 would mean "the user is not authenticated" and any
other value meaning "the user is authenticated at level N".

Again, the concrete specification of the image set for a given solution is left to the application
designers so the authentication server can be implemented accordingly.

5.1.2 The authorization process

At this point, it is important to note that in this definition of the authentication function there is
no information about the authorized resources that a user, with a given authentication level,
may be granted. We need to define which resources are accessible for a given authentication
level.

Having two different function keeps separate the authentication process from the authorization
one and prevents the side effect of having an implicit authorization by getting successfully
authenticated, as commented in section 2.2

Access level

To specify the authorization process to access some protected resources, we can define an
authorization function that yields, for some user and a given authorization level17, the set of
resources accessible by this user. Thus let’s define the function B:

B :(user identifier ,authentication level)→authorized resources

(u , l)→{r1 ,r 2 ,…}

This function gets the user’s identifier and the user’s access level and returns the set of
resources effectively granted for that user to access at that level.

The set of potential resources accessible is specific to each solution and must be implemented
by the SSO solution, as well as the exact combination of users, levels and resources authorized.
Notice that having an authentication level of 0 does not necessarily mean a null set of
resources; some resources could be authorized to any user, even anonymous users for that
access level in some scenarios.

Extra authorization requirements

Under some security requirements, the authorization to access some resources may be further
restricted with extra requirements besides getting an access level. This is the case of out App4,
that requires the user not only having an access level of 40 but also having logged in using a
digital certificate.

To model these additional parameters let’s expand the function B to include any additional
restriction in the domain of the function:

B :(user identifier ,acess level , restriction1, restriction2,…)→authorized resources

(u , l , q1,q2,…)→{r 1, r2 ,…}

17 We refer to the result of the authentication function as authentication level, but also as authorization level when
later used in the authentication function, or just to simplify as the access level. In this model there is a one-to-one
identification of the authentication level and the authorization level.

MISTIC - Angel Linares Zapater 20

Multilevel Multifactor Single Sign-On

The number of extra restrictions, again, is up to the designers of the final solution to decide.

Finally, it is important to realize that the complexity of the actual implementation needed to
check some of these restrictions, as well as their potential variety, is what makes the
authentication and authorization processes difficult to formalize as a generic framework.

5.1.3 SSO Policies

For our purposes, we can now model the complete SSO process as a combination of these two
functions, that is:

P:(user , factor1 , factor2 ,...)→authorized resources

(u ,(u , f 1 , f 2 ,…) ,(q1 , q2 ,…))→{r1 , r2 ,…}

We can define this "combination of functions" as an SSO policy, in the sense that it specifies
for a given user and the provided authentication factors which resources are actually allowed to
be accessed when the authentication of that user is successful.

Internally, the policy implementation relies on the intermediate "access level" obtained from
the authentication function and, taking into account any other authorization restrictions, yields
the final list of resources.

Therefore, to specify the SSO policy, for any given implementation of an SSO scheme, will need
to define:

• The set of valid user identifiers

• The set of authentication factors allowed for each user

• A table of valid user identifier/credential combinations and their specific validation rules
plus the access level obtained when authenticated

• The set of protected resources

• A table of resource/access level required to grant permissions18, plus any other extra
restriction imposed to any resource with the corresponding validation rule.

We will use this theoretical model to define the multilevel multifactor SSO policy for the project
in section 6.2.5 (page 28).

5.2 Analysis of Alternative Products

5.2.1 Available alternatives

SSO server
As discussed in section 2.3.1, many SSO products are available in the market to set up and
operate an SSO solution. Among the open source solutions, the two most prominent, that we
take into consideration, are Apereo CAS and OpenAM.

User repositories
The need for a central repository of user information in a software application has led to a
number of standardized solutions, commonly referred to as directories, and a set of protocols to
interact with these tools. A directory may not only include user information but also may store
information about resources in the network (e.g., shared printers, meeting rooms), etc.

Several proprietary directories have been developed by different vendors, e.g. Microsoft
Active Directory, but on the open source side, the Lightweight Directory Access Protocol,
LDAP has become the de facto industry standard for directory system access. Also, the recent
trend in cloud computing has increased the offering of SaaS solutions for user identification and
management, like Amazon IAM, for example.

These are the main alternatives for an open source LDAP server:

18 Note that in this model, the user gets "full permissions" for a given resource. To specify more fine-grained
permissions (e.g only to read, write, etc.) we will need other enhanced models. See Future work on page 52.

MISTIC - Angel Linares Zapater 21

Multilevel Multifactor Single Sign-On

• OpenLDAP19: an open source implementation for the LDAP protocol base directory and
tools.

• 389 Directory Server20: another LDAP directory server for Linux machines with
enterprise-class features.

• ApacheDS21: is an LDAP and Kerberos server written in Java and maintained at the
Apache Foundation. As a Java application can be easily embedded in Java applications
allowing them to use the LDAP functionality without the need for an external LDAP. It
also features interesting options like stored procedures to help administer the directory
in a more efficient way.

• OpenDJ22: is another project that started out as a fork of the Sun Microsystems
OpenDS. It can be seen as another member of the family of OpenAM.

To manage the LDAP repositories there is a great number of available client tools, among
others:

• JXplore23: a Java tool capable of connecting to an LDAP server to manage the directory
schema and entries (e.g.. groups of user, user information, etc.)

• Apache Directory Studio24: is a directory tooling platform particularly designed to
manage the ApacheDS server, written in Java as an Eclipse tool.

Application servers
In order to run applications in a Java Enterprise Edition (Java2 EE), now know as Jakarta EE25 at
the Eclipse Foundation, an execution environment or container is required. For the applications
needed in the SSO solution to develop, only the servlet(*) specification26 is needed.

The main open source alternatives for a servlet container are:

• Apache Tomcat27: a web server and servlet container, developed in Java, widely used
and proven by the Java community. Alternatively, when a full Jakarta EE application
server is needed another option is Apache Geronimo28.

• Eclipse Jetty29: is a servlet container from the Eclipse Foundation especially well suited
to be embedded in other applications which, this way, can deploy a servlet container
without the need of an external server.

• Redhat Wildfly30: formerly known as JBoss AS, is a light-weight but full-featured Jakarta
EE 8 application server, thus providing all the specification capabilities.

Proxy
The proxy component in the DMZ has the purpose of filtering all the incoming requests from
client devices and forwarding to the corresponding application.

This component can also be assigned responsibilities for load balancing and fault tolerance.
None of these features are requirements for our SSO solution.

The main open source products for implementing a proxy server are:

• HAproxy31: a specialized solution for high availability, load balancing and proxying
HTTP request.

• Apache httpd: the well known open source web server that also has proxying
capabilities. This option can be interesting in deployments where Apache httpd is
already installed or to take advantage of previous training with the product and Java
ecosystem in some corporations.

19 http://www.openldap.org/
20 http://www.port389.org/
21 http://directory.apache.org/apacheds/
22 https://forgerock.github.io/opendj-community-edition/
23 http://jxplorer.org/
24 http://directory.apache.org/studio/
25 https://jakarta.ee/
26 https://javaee.github.io/servlet-spec/
27 https://tomcat.apache.org/
28 http://geronimo.apache.org/
29 https://www.eclipse.org/jetty/
30 https://wildfly.org/
31 www.haproxy.org

MISTIC - Angel Linares Zapater 22

http://www.haproxy.org/
https://wildfly.org/
https://www.eclipse.org/jetty/
http://geronimo.apache.org/
https://tomcat.apache.org/
https://javaee.github.io/servlet-spec/
https://jakarta.ee/
http://directory.apache.org/studio/
http://jxplorer.org/
https://forgerock.github.io/opendj-community-edition/
http://directory.apache.org/apacheds/
http://www.port389.org/
http://www.openldap.org/

Multilevel Multifactor Single Sign-On

• Nginx: another well known, very fast web server that also includes proxy server
features.

Digital certificates
The SSO solution requires digital certificates for two main purposes. The first is to allow users
to provide enhanced credentials in the SSO dialog with respect to the pair user-name/password.
The second is to secure the communications between the user’s client device and the servers
in the internal network (in fact, irrespective of any actual specific application needs, at lease
the password has to be protected when traversing the network!).

The current standard for digital certificates in the web and internet applications is the X.509
specification32. The most common tools for creating digital certificates are:

• OpenSSL33: a suite of tools to work with the SSL/TLS protocols and also to create and
manage digital certificates.

• LibreSSL34: an alternative project, forked from OpenSSL, to modernize and further
secure the toolkit.

• Java keytool35: the Java runtime provides a tool to manage X.509 certificates and
certificate databases (a.k.a. keystores) for Java applications.

5.2.2 Comparison of alternatives

SSO servers

Both products, Apereo CAS and OpenAM, provide similar functionality in terms of supported
authentication and authorization protocols, SSO features, encrypted communications, etc.
Apereo CAS provides its own protocol (now in version CAS 3.0) but also supports other more
standardized protocols, like OAuth 2.0 or WS Federation, so there is no special reason to select
one over the others.

We choose Apereo CAS due to what seems a better (or at least broader) documentation and
wider support from stable organizations like Universities that are actually using the product in
real deployments.

Also, for long term projects, the recurrent changes in leadership and the multiple forks of the
OpenAM code base contrast with the steady level of support for Apereo CAS, either under the
JAAS group or the Apereo Foundation. Moreover, OpenAM is distributed under CDDL(*), a less
common license than Apereo CAS, under Apache 2.0 license. This latter license model has a
broader acceptance than the former, a choice factor that can be decisive in some projects.

User repositories

In the realm of open source LDAP servers, OpenLDAP is the best known and popular
implementation. Nonetheless, the set of tools to administer an OpenLDAP server is mainly
console-based and can pose some challenges to less experienced network administrators than
other choices like ApacheDS. This later solution not only provides the LDAP server but also
accompanies this product with a number of tools, like Apache Directory Studio, which can ease
the maintenance of the directory structure and contents.

In this project, the LDAP server is an intentionally-separated component from the SSO server,
so we can choose a more straightforward (and not Java based) product like OpenLDAP. Should
we had to administer, especially in a programmatic way, a heavily used and evolving user
directory in a Java environment, ApacheDS could be an appropriate choice.

Application servers

As the SSO server chosen requires a servlet container but does not need a complete Jakarta EE
application server, using Apache Tomcat seems the more common option for this scenario. It is
a well known product with broad support in the Java community. Indeed, the installation of
Apereo CAS can be implemented either by using an external Tomcat server or by embedding a
Tomcat server in the very same SSO application.

32 https://tools.ietf.org/html/rfc5280
33 https://www.openssl.org/
34 http://www.libressl.org/
35 https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html

MISTIC - Angel Linares Zapater 23

https://docs.oracle.com/javase/8/docs/technotes/tools/unix/keytool.html
http://www.libressl.org/
https://www.openssl.org/
https://tools.ietf.org/html/rfc5280

Multilevel Multifactor Single Sign-On

Is it important to note, however, that Apereo CAS makes no special assumption about the
servlet container used to run the SSO server. By having selected such an agnostic SSO solution,
a future migration to, say, Wildfly can be undertaken with minimal effort, either migrating from
an external Tomcat or from an embedded one.

Application frameworks

The Apereo CAS product is, indeed, a Spring Boot36 Java application itself. Although the
knowledge of this Java framework is not needed for the deployment of the SSO server, in this
specific project we choose to develop the simple, custom applications also as Spring-based Java
applications. The Spring suite of frameworks will provide convenient tools to secure and
connect these applications against any SSO server, and obviously against the Apereo CAS
server, being both sides built on top of the Spring libraries.

Proxies

Among the three proxy solutions seen in the previous section, namely Apache httpd, Nginx and
HAproxy, the latter is a highly specialized solution while the other two are mainly web servers
with additional proxy capabilities.

Given that we are not interested in testing high-availability and load balancing features in this
specific project, using a web server can be an acceptable solution for the proxy component in
the architecture. And, as the rest of the main components selected before gravitate around the
Java ecosystem and the Apache Foundation solutions, we choose to select Apache httpd as the
proxy in the DMZ37.

However, there is the risk that in the final implementation the requirement of end-to-end
encryption could not work completely well with this product in the DMZ. We can keep the
alternative of HAproxy as a backup solution to change this component implementation if
required by some unforeseen issues while dealing with digital certificates and encrypted traffic.

Digital certificates

For the creation of X.509 digital certificates we will use the Java keytool when convenient (e.g.,
to secure the Java based Tomcat server), but we will use OpenSSL when a generic certificate is
needed (e.g., providing a certificate to a user to log in some application).

Using LibreSSL, instead of OpenSSL, is a choice of preferences mainly due to licensing reasons.
For our project, there are no further implications and we will stick to OpenSSL.

36 https://spring.io/projects/spring-boot
37 In a more complex project, this option also has the benefits of serving the static web pages of the solution from this

server, saving the application server resources for heavier application workloads. Nevertheless, Nginx could also
perform the same role in the architecture.

MISTIC - Angel Linares Zapater 24

https://spring.io/projects/spring-boot

Multilevel Multifactor Single Sign-On

6 Solution Architecture and Design

6.1 Solution Architecture

As hinted in the high-level diagram on page 12, we can identify three main subsystems for the
solution architecture. On the one hand, there are the actual resources to be protected in the
internal network plus the proxy components in the perimeter network devoted to isolating
these resources from the Internet. And, on the other hand, there is an additional,
accompanying subsystem with two new components that implement the SSO features as
specified for the project.

The following diagram represents a two-layered architecture, where the SSO subsystem
enhances the protected resources in the internal network with the new SSO functionality:

6.1.1 Protected Resources

Custom Applications

We identify the set of protected resources in this project as a number of ad-hoc client
applications accessible from the external network under the SSO policy defined in the
objectives of the project (p. 13).

These applications are simple enough just to allow us to test that the security requirements are
met by the final solution. Thus, these simple applications will be only capable of displaying
information to identify the actual resource being accessed and providing some contextual
information about the security applied in the connection.

Obviously, in any real development, the resources in the internal network may vary in every
specific case. In this project, however, we will use an application server to host all these
applications.

Application server

All these "protected" applications will be running in the same execution environment, an
application server (just a servlet container, indeed). This approach resembles the typical Java-

MISTIC - Angel Linares Zapater 25

Figure 4: Component Architecture of the SSO solution

Multilevel Multifactor Single Sign-On

Enterprise-based installation in a corporate environment and allows sharing some security
configurations, set in one place, for all the applications.

Nonetheless, the authentication dialog with the SSO server is expected to be performed by
each application on its own without any intervention from the application server.

Finally, it is important to note that in a real deployment, the internal network could also host
some other servers and services, like database servers, etc. that are not included in this project
due to the simplicity of the applications tested, just focused on the SSO proof of concept.

6.1.2 DMZ

Perimeter Network

Other extra components to account for in the final solution are the proxies in the DMZ, as
required by the proposal. This is an extra layer in the architecture that is not necessarily linked
to the SSO functionality itself. However, it is a usual practice in any corporate environment
accessible from the Internet to implement such type of isolation between the external network
and the internal network.

Indeed, having this intermediate component in the architecture can pose some additional
challenges to the SSO implementation. This is especially relevant when dealing with secure
connections from the applications. which we intend to be secured end-to-end, that is, from the
user’s client device to both the application and SSO servers, and could be affected by the
presence of this intermediate element.

6.1.3 SSO subsystem

Authentication server

We define a unique, central user authentication server for all the resources in the internal
network. This centralized option provides a lot of benefits with respect to other possible
architectural patterns, like some form of a distributed authentication solution. It also simplifies
the selection of the commercial off the shelf(*) product from the actual market offering for SSO
servers.

Note that the authentication server also requires access to the Internet via the proxies in the
DMZ because the actual authentication dialog with the user’s client (e.g., the user’s browser or
a user’s mobile app) is delegated to the SSO server and not performed by the applications
themselves when a new authentication is required.

User repository

Although some form of user repository functionality can be implemented by the SSO server
itself, it is a good practice to separate, at least at an architectural level, this concern (i.e.,
managing the set of users) from the actual SSO functionality (to authenticate the user and
keep track of the valid sessions). In practice, indeed, the user management capabilities
provided by the main available SSO components can be very limited with respect to a proper
user repository product.

By defining a different sub-component for the user repository we gain a lot of flexibility for the
final solution, but at the cost of greater workload to install and configure the new component.
However having a separated component will allow us to further test one of the requirements for
the solution, namely, to let the applications receive some information about the logged in user
from the SSO server.

As a final note, the user repository could also be one of the existing servers in the internal
network dedicated to providing other identity management services to other network
components. In this architecture, no direct access from the applications to the user repository
is allowed.

MISTIC - Angel Linares Zapater 26

Multilevel Multifactor Single Sign-On

6.2 Solution Design

6.2.1 The Apps

The "secured" custom applications are very simple applications that contain the minimum
functionality to test the SSO solution and interact with the authentication server to retrieve and
display some information about the connection made and the privileges granted to the user.

Basic use cases

A set of very simple use cases for these applications can be specified with the following
scenarios:

APP Show App information

Actor user

Preconditions the user is logged in the App

Scenario 1. the application shows information about:

- the user details received from the SSO server

- the available details about the connection

Alternatives 1.1.a if the user is not logged execute the Log in use case

1.2.a if the user is already logged, according to the SSO server, continue.

Postconditions none

APP Log in

Actor user

Preconditions the user is not logged in the App

Scenario 1. the user enters the required credentials

2. the SSO server validates the credentials for the user and app

3. the SSO server keeps track of the logged session for this user

Alternatives 2.1.a if the authentication fails the App shows an error message and restarts

Postconditions the user is registered by the SSO server as logged in the App

APP Log out

Actor user

Preconditions the user is logged in the App

Scenario 1. the user selects the logout option

2. the SSO server clears the session

Alternatives

Postconditions the user is no longer registered in the SSO server as logged-in

It is important to note that step 3 in the Log In use case, "to keep track of the logged in
session", may be implemented in very different ways depending on the SSO server used in the
solution.

Furthermore, not all the SSO servers support a "multiple log out from all the applications"
feature when the user logs out from one application. This kind of extra features, far from being
required upfront in a project, are usually left upon the set of features provided by the chosen
SSO product.

MISTIC - Angel Linares Zapater 27

Multilevel Multifactor Single Sign-On

6.2.2 The APP Server

The application server will be an Apache Tomcat servlet container as selected above (p. Error:
Reference source not found). This choice is appropriate in his scenario where the SSO clients
are Spring applications and can leverage the needed tools from the Java Enterprise ecosystem.
Other different scenarios could be designed to test different kinds of clients against the same
Apereo CAS server, depending on the needs of the final solution. Examples of these clients are
Python applications, Android or iOS apps, etc.

In any case, the presence of the servlet container should not interfere with the applications
interacting directly with the SSO server.

6.2.3 The CAS Server

The Apereo CAS server, as an application itself, happens to be a Spring Boot application that,
therefore, requires a servlet container where to run. We will use a second Tomcat servlet
container for the CAS application, in a different machine that the Tomcat server where we will
install the custom client applications38.

This CAS server will be configured to connect to an external LDAP server. The user repository
will contain the necessary information to authenticate the user and, in our multilevel
authentication scenario, return the authentication level and the corresponding permissions to
access some of the applications depending on the authentication granted.

6.2.4 The LDAP Server

The user repository in this solution is an LDAP server, specifically an OpenLDAP server.

In a real environment this LDAP server could be already deployed in the network, or as in our
case be deployed only for SSO purposes. Having the LDAP functionality separated from the SSO
server allows this flexibility in implementing an SSO solution.

This LDAP server will implement the user repository containing not only the directory
information but also relevant meta-data about the SSO policy for the set of applications.

6.2.5 The SSO policy

The specification of the SSO policy should correspond to objective O2.3 of the project as
defined on page 13.

Authentication

We can first define the authentication function, by extension, including the allowed credential
factors for each user:

User credential type authentication level

user10 password level 10

user20 password level 20

user30 password level 30

user31 certificate level 30

user40 password level 40

user41 certificate level 40

For each enumerated user, if the authentication using the credential type shown is valid, the
SSO grants the authentication level indicated in the third column.

To accept a given credential as valid, we specify that:

38 The option to build the CAS server with a Tomcat server embedded is also possible with Apereo CAS.

MISTIC - Angel Linares Zapater 28

Multilevel Multifactor Single Sign-On

• for passwords, we will require them to match those defined in the corresponding user
directory entry.

• for certificates, we will require the certificate to be signed by out CA authority(*) and the
user-name included in the certificate to be found in the user directory.

Authorization

We can now specify the authentication level required to access each application, as well as any
other additional restriction imposed in this project (like requiring to log in using some type of
credential).

App credential type access level

App1 any level 10

App2 any level 20

App3 any level 30

App4 certificate level 40

We have to keep in mind that the semantics of this "access levels" implies that a user having a
greater authentication level can access applications of a lower level:

The resulting policy

Combining the two tables and the rule of increasing authentication levels we can obtain the
complete SSO policy for all users, provided that a user gets correctly authenticated using the
kind of credentials required. Explicitly:

User applications authorized after a single sign-on

user10 App1

user20 App1, App2

user30 App1, App2, App3

user31 App1, App2, App3

user40 App1, App2, App3

user41 App1, App2, App3, App4

This SSO policy, for this specific set of users and apps, should match the objectives set initially
for the project.

Some remarks to be noticed are:

• all users can access App1, if correctly logged in,

• user20 gets access to App1 when logging in to App2 as expected from an SSO scenario,

• user30 and user31, are required to use different credential types but obtain the same
effective authorization39

• user40, although getting an access level of 40, cannot access App4 due to the
additional requirement to access using a certificate. However, this user gets access to
the rest of the applications where the access level is sufficient.

In a real context, the complete SSO requirements would probably be given in the form of the
final table and we should have to work backward to find a combination of access levels and
credentials to match the expected policy.

39 A hypothetical user32, able to authenticate either by password OR certificate, can be tested in the final solution.
Also, requiring some user33 to use a password AND a certificate to log in could be defined.

MISTIC - Angel Linares Zapater 29

Multilevel Multifactor Single Sign-On

6.2.6 Ancillary components

X.509 certificate infrastructure

To secure the communication between components in the solution we will create and distribute
X.509 digital certificates. These certificates will be created either using the Java tools (for Java
applications) or using the OpenSSL suite for more general purposes.

A certificate to identify each server is created, plus a certificate for the users who need to log in
using this kind of credential to any App that requires such an authentication mechanism.

6.2.7 The network setup

The development environment

All the systems deployed in the SSO solution will be created as virtual machines running on a
development machine on the network 192.168.1.0/24.

This network will act as the "external network" of the project and provide access to the
Internet, via the proxies in the "perimeter network", to the "internal network" servers.

The perimeter and internal networks

To build the internal network for the solution we select a DNS name (mistic.lan) for the
machines and a TCP/IP class C address range (192.168.2.0/24) different from the external
network (192.168.1.0/24).

The following diagram summarizes the network setup for the project:

Figure 5: Network diagram for the project

Notice the proxy machine proxy.mistic.lan having two internet addresses, one for each
network adapter, and acting therefore as a TCP/IP bridge between both networks.

MISTIC - Angel Linares Zapater 30

Multilevel Multifactor Single Sign-On

7 Solution Implementation

7.1 The development environment

7.1.1 Host environment

The local network at range 192.168.1.x represents the "external network" of the solution, which
provides access to the Internet via the router 192.168.1.1. In this host environment, where the
guest virtual environment will be built, the machine at IP address 192.168.1.11 will act as a
client device accessing the internal applications from this external network (or from the
internet, for that matter).

This machine will also work as an application development system, and as a systems
administration machine to create virtual machines, manage and deploy digital certificates, etc.

In this machine, we can set the /etc/hosts file to have the DNS names needed to access the
internal network, which by design is just the PROXY server named www.mistic.lan.

127.0.0.1 localhost

192.168.1.200 www.mistic.lan

7.1.2 Virtual environment

To provision the "internal network" machines we create a dedicated Oracle Virtualbox 6.0.x
environment in the development machine. Then we prepare a set of Virtualbox-based virtual
servers in a different network range.

All these machines have their network adapters in the internal address range 192.168.2.x
except for the DMZ Proxy that has also an additional, second adapter on the internal network
192.168.1.x, as detailed in The network setup diagram (p. 30). The DMZ Proxy, with interfaces
both in the external and the internal networks, provides bridging capabilities between both
networks, allowing all the internal network machines to connect to external network clients but
in a supervised, protected way.

Debian 10 virtual machine base image

We create, for convenience, a virtual machine server100 (192.168.1.100) with Debian 10
x64 as a base image to clone later the actual servers for the solution. In this base machine, we
install the most basic software packages with no graphical interface using the Expert
Installation mode (namely, the Standard System Utilities and the SSH server packages from the
Debian installation menu). We upgrade the system and install some tools for better
administration (like Midnight Commander, Emacs, etc.) and change the default configuration of
the SSH server to allow the root user40 to log in:

$ ssh root@192.168.1.100
root@192.168.1.100's password:
Linux Debian10base 4.19.0-6-amd64 #1 SMP Debian 4.19.67-2+deb10u1 (2019-09-20) x86_64
The programs included with the Debian GNU/Linux system are free software;
the exact distribution terms for each program are described in the
individual files in /usr/share/doc/*/copyright.

root@Debian10base:~# uname -a
Linux Debian10base 4.19.0-6-amd64 #1 SMP Debian 4.19.67-2+deb10u1 (2019-09-20) x86_64 GNU/Linux

This base image has only one network interface, at address 192.168.1.100, which will allow us
to connect to this machine to further customize it after each cloning operation.

40 Allowing the root user to ssh with user-name and password into a system is considered a bad security practice. We
set this option for easier development and management of this installation. In a production environment, however,
more secure configurations should be considered.

MISTIC - Angel Linares Zapater 31

Multilevel Multifactor Single Sign-On

Development using the internal network machines

In this setup, reaching the internal network machines from the development machine for
testing purposes may require to add an additional network route41 in the development PC. To be
able to reach and connect to the internal servers, we can add the additional route:

sudo ip route add 192.168.2.0/24 via 192.168.1.200

This will allow us to connect from the development machine at IP 192.168.1.11 to the machines
in the range 192.168.2.0/24. To remove the temporary route, just issue the command:

sudo ip route del 192.168.2.0/24

We can, also, set for temporary development and management purposes some other internal
network machines names in the /etc/hosts file:

192.168.2.200 proxy
192.168.2.101 app
192.168.2.111 cas
192.168.2.112 ldap

7.1.3 Certificates infrastructure

We create all the needed digital certificates for the servers to authenticate themselves and for
the users who are required to use this kind of credential instead of user-name and password
(see Creating the certificates infrastructure for MISTIC.lan p. 56).

Certificates at the user’s browser
For those users who need to authenticate by presenting a digital certificate, the corresponding
certificate has to be installed in their browsers. In the Mozilla Firefox browser, for example, a
user’s certificate can be imported in the Certificate Manager found in the Preferences/Privacy &
Security/View Certificates section:

41 This type of convenient network configurations, useful at development and deployment time, for example to ssh
into the internal servers, are not required in the production environment and should be removed and replaced with
more secure administration alternatives when needed.

MISTIC - Angel Linares Zapater 32

Multilevel Multifactor Single Sign-On

CA root certificate at the user’s browser
The development machine browser does not include the root certificate created for our CA. We
need to install this root certificate if we want to avoid annoying messages from the browser
warning that the servers visited in the internal network are presenting certificates not
recognized by any public CA. In a real environment, where the final certificates are usually
signed by a globally trusted CA, this warning will not show when the client connects to the
production servers.

Certificates for the PROXY and LDAP server
We create the certificates for both the PROXY and the LDAP servers (see Creating MISTIC-
signed X.509 certificates , p. 57).

After provisioning these two servers we will install the corresponding public and private key pair
in each server.

scp www.mistic.lan.{crt,key} root@proxy:/srv/www/mistic
root@proxy.mistic.lan's password:
www.mistic.lan.crt 100% 1996 2.8MB/s 00:00
www.mistic.lan.key 100% 3272 7.4MB/s 00:00

scp ldap.mistic.lan.{crt,key} root@ldap:/etc/ldap/certs
root@ldap.mistic.lan's password:
ldap.mistic.lan.crt 100% 1996 2.8MB/s 00:00
ldap.mistic.lan.key 100% 3272 7.4MB/s 00:00

and also will copy the root CA certificate in the Proxy and LDAP servers for later validation of
the certificates received from clients:

scp ../certs/ca.mistic.lan.crt root@proxy:/srv/www/mistic
root@ldap's password:
ca.mistic.lan.crt 100% 2126 2.1MB/s 00:00

scp ../certs/ca.mistic.lan.crt root@ldap:/etc/ldap/certs
root@ldap's password:
ca.mistic.lan.crt 100% 2126 2.1MB/s 00:00

Certificates for the APP and CAS server
For the servers running Tomcat servlet containers, namely APP and CAS, we create their
certificates using the Java keytool utility instead of using certificates created with openssl (see
Creating Java keystores for the Tomcat servers p. 58).

These Java keystores will be installed in the /opt/tomcat/conf directory at the corresponding
Tomcat server machine (APP or CAS):

$ scp app.mistic.lan.jks root@app:/opt/tomcat/conf
root@app's password:
app.mistic.lan.jks 100% 2615 3.9MB/s 00:00

Also, in the case of the CAS server, the keystore for the CA certificate has to be copied:

$ scp ca.mistic.lan.jks root@cas.mistic.lan:/opt/tomcat/conf
root@cas.mistic.lan's password:
ca.mistic.lan.jks 100% 1834 1.7MB/s 00:00

This choice of tool to create certificates eases the configuration of the Tomcat servlet
containers. Nevertheless, Tomcat supports the use of other formats of certificate containers like
PKCS#12 via the JSSE facility42.

It is important to note that, using keytool in this way, implies that these certificates are not
signed by the MISTIC CA authority but self-signed during their creation process. For internal
connections, there is no need to validate these certificates as issued by the MISTIC CA. In fact,
the communications with external users on the Internet are handled by the proxy server in the
DMZ which checks against the CA, but the internal connections originated at the PROXY and
the APP server can be secured with self-signed certificates.

42 See https://tomcat.apache.org/tomcat-8.0-doc/ssl-howto.html

MISTIC - Angel Linares Zapater 33

https://tomcat.apache.org/tomcat-8.0-doc/ssl-howto.html

Multilevel Multifactor Single Sign-On

7.1.4 Custom applications

The Home Page
To have all the applications grouped for the external users in one place, we create a simple
home web page and install it in the APP server Tomcat’s ROOT directory just replacing the
default Tomcat home web page43. This way, users connecting to the main URL
https://www.mistic.lan will get this greeting page (after convenient redirection by the DMZ
proxy) with the menu of the available applications:

Developing the CAS client applications
According to the project objectives for the applications (see Objectives, p. 13) these
applications must implement some kind of log in procedure and session management. We
create them as very simple Spring Boot applications (see Applications source code, p. 77) and
configure them as CAS clients.

Securing the application as CAS clients

The custom applications require the user to provide a user-name and password or a digital
certificate that will be validated in the single sign-on process. To secure these applications we
add the Spring Security CAS client module44 dependency in the application pom.xml file:

<dependency>
 <groupId>org.jasig.cas.client</groupId>
 <artifactId>cas-client-support-springboot</artifactId>
 <version>3.6.1</version>
</dependency>

Then we add the necessary code to configure45 the connection between the application, as a
CAS client, and the actual CAS server.

Finally, in the application.properties file, we add the entries:

cas.server-url-prefix=https://www.mistic.lan/cas
cas.server-login-url=https://www.mistic.lan/cas/login
cas.client-host-url=https://www.mistic.lan

43 Installing this page in the ROOT directory or in a dedicated subdirectory is a matter of preference. When installed
as an application in a subdirectory, like home, users will have to use longer URLs: https://www.mistic.lan/home

44 This process sometimes is referred to as casifying the application.
See https://docs.spring.io/spring-security/site/docs/3.0.x/reference/cas.html

45 See https://github.com/apereo/java-cas-client, at section Spring Boot AutoConfiguration.

MISTIC - Angel Linares Zapater 34

https://github.com/apereo/java-cas-client
https://docs.spring.io/spring-security/site/docs/3.0.x/reference/cas.html
https://www.mistic.lan/

Multilevel Multifactor Single Sign-On

These are the URLs that the CAS client will issue and the DMZ proxy will translate into internal
network addresses.

Note that the destination URLs are formed as seen by the CAS client (i.e. the user’s browser)
from outside the internal network, that is, using the name www.mistic.lan (or 192.168.1.200
IP address) instead of names like proxy.mistic.lan or cas.mistic.lan (or any reference to the
internal 192.168.2.x addresses). From the point of view of any user in the external network, the
internal addresses (or their DNS names) are completely unknown and there is only one point of
interaction, namely, the PROXY server.

Logging in to the App and the SSO server

When the user connects to an application, the browser presents the web page returned by each
application from the APP server:

Of course, before accessing this web page, the CAS server takes care of the authentication
process and checks that the user and the credentials provided are correct according to the SSO
policy we have implemented.

Authorizations at the application level

Notice that the application can show some information about the login operation that travels
back from the CAS server (and the LDAP server) to the CAS client, so the app can show (or
work with, as we will see with App4) this information and other attributes retrieved from the
CAS and LDAP servers.

So, in addition to be able to implement a common mechanism of authentication via an LDAP
server or defining authorization levels via services at the CAS server, we can take advantage of
the information received from the CAS server at the application code to implement even further
conditions for authorizing the use of the application or some of its features.

In this project, for example, App4 has an extra authorization requirement: this application is
only available for users not only having an access level of 40 but also accessing the application
with X.509 certificate credentials.

To implement this requirement the App4 code handling the main request can check for the type
of credentials used, as received from the CAS server in the login procedure:

 // Check for a correct credential type
 if (attributeName.equals("credentialType") && attributeValue.equals("X509CertificateCredential"))
 {
 return "unauthorized";
 }

In this case, the access to App4 can be denied when necessary and an unauthorized.html
page showing a message is returned to automatically redirect the user to the logout page.

MISTIC - Angel Linares Zapater 35

Multilevel Multifactor Single Sign-On

Single sign-off

Besides being able to log in to an SSO session, the users should be able to log out not only
from one application but also from the SSO session46 and all the logged in applications. This
process is also known as single sign-off or single log out, in analogy to the concept of single
sign-on.

When the user clicks the logout link in the application page, the CAS server is notified by
calling the URL https://www.mistic.lan/cas/logout (specifically, the user is first redirected to
the application logout.html page which redirects to this URL. See this redirection at any
logout.html page in the custom applications code, p. 79).

<meta http-equiv="Refresh" content="0; url=https://www.mistic.lan/cas/logout" />

After closing the SSO session, the CAS server notifies all the applications that were active in the
same SSO session for them to close their respective application sessions. This behavior is
defined in the CAS service configuration file, defining a call to a logout URL, so this call is
automatically done by the CAS server:

 "logoutType" : "FRONT_CHANNEL",
 "logoutUrl" : "https://www.mistic.lan/app3/logout_cas"

The specific semantics of a single logout action, if allowed in a given set of applications,
depends on the requirements for that application. This is why the CAS server "just" notifies of a
"log out" and then the applications must implement the behavior for them specified.

This feature can be enabled or not in an SSO solution depending on the requirements of the
domain application because the user may experience that behavior as unexpected logouts. We
implemented, in the CAS services configuration, that all the application sessions should be
terminated after one logout in any of them, and we programmed the application controllers to
accept a request to /logout_cas for closing the application session.

 @RequestMapping("/logout_cas")
 public String logout_CAS()
 {
 session.invalidate();

 return "logout";
 }

In this example below, after the user logs out from App3 the server notifies App1 and App2:

46 See https://apereo.github.io/cas/6.1.x/installation/Logout-Single-Signout.html for a discussion.

MISTIC - Angel Linares Zapater 36

https://apereo.github.io/cas/6.1.x/installation/Logout-Single-Signout.html

Multilevel Multifactor Single Sign-On

7.2 The production environment

For the production environment, we provide and configure the servers in the internal network
that implement the SSO solution.

7.2.1 The DMZ Proxy

Provisioning the server

Using the cloning feature of Virtualbox, we clone the base image server to create a new server
as the Proxy at the DMZ. Once cloned, we reconfigure the machine to meet the corresponding
settings as server proxy.mistic.lan (see Creating a new machine from the base image, p. 54).

Installing the proxy component

We install the Apache httpd software component with the proxy modules enabled to allow
access to the internal servers via this machine (see Installing Apache httpd as a reverse proxy,
p. 60).

Once properly configured, the DMZ proxy will transparently redirect all the external requests to
the address https://www.mistic.lan to the internal servers either at the APP server address
https://app.mistic.lan or at CAS server https://cas.mistic.lan as needed.

7.2.2 The APP server

Provisioning the server

Using again the cloning features, we clone a new machine for the APP server. Once cloned we
reconfigure the machine to meet its corresponding settings as the server app.mistic.lan.

Installing the application server

In this APP server, we first install Amazon Corretto 11 to have the Java runtime ready (see
Installing Amazon Corretto 11, p.59), and then install a Tomcat server (see Installing Apache
Tomcat, p.62) where the internal applications will run.

To test the accessing the APP server via the Proxy server from the external network, just
requesting the address of the www.mistic.lan from the client browser we actually obtain the
default Tomcat pages at app.mistic.lan:

We can also check that the connection to the internal server working as expected passing
through the proxy :

MISTIC - Angel Linares Zapater 37

Multilevel Multifactor Single Sign-On

$ traceroute app.mistic.lan
traceroute to app.mistic.lan (192.168.2.101), 30 hops max, 60 byte packets
 1 www.mistic.lan (192.168.1.200) 0.162 ms 0.156 ms 0.155 ms
 2 app.mistic.lan (192.168.2.101) 0.362 ms 0.369 ms 0.371 ms

and that the connections are secured with the MISTIC certificates and the MISTIC CA:

Requesting "More Information" about the certificate, the user can check the issuer of the
certificate and the corresponding Certification Authority:

MISTIC - Angel Linares Zapater 38

Multilevel Multifactor Single Sign-On

Installing the custom applications

In the APP server, we can deploy the custom applications App1, App2, App3 and App4 from
the development environment.

To do so, we have access to the Tomcat’s Manager application installed by default at the APP
Tomcat server and use this interface to deploy the WAR files of the custom applications to the
APP server:

or we can simply copy the applications into the /opt/tomcat/webapps directory in the APP
server from the development machine, or even use the Eclipse IDE capabilities to deploy the
WAR after a successful built.

Once all the custom applications are installed and deployed, the Tomcat Manager will show
them up and running at https://www.mistic.lan/manager47:

Finally, we install the Home Page at the ROOT directory at /opt/tomcat/webapps (the original
Tomcat server home page can be saved by renaming the ROOT directory as tomcat, for
example, so it is still accessible at www.mistic.lan/tomcat). The MISTIC main page can be now
accessed from https://www.mistic.lan.

47 Although useful for development purposes, these administration applications should be removed from external
access to better secure the installation on production.

MISTIC - Angel Linares Zapater 39

Multilevel Multifactor Single Sign-On

7.2.3 The LDAP server

Provisioning the server

We clone a new virtual machine for the LDAP server and configure it with the necessary
settings to act as the ldap.mistic.lan server (see Creating a new machine from the base
image p.54).

Installing the LDAP service

After installing the directory service (see Installing OpenLDAP, p. 65) we are ready to configure
the MISTIC organization scheme to set up the right users and their attributes for the
applications.

Configuring the MISTIC directory

We define the list of users and organizational units for the MISTIC corporation in an LDIF(*) file
(see lan.mistic.ldif at LDAP server configuration files, p.75).) with all the needed directory
entries for users and their attributes. Then we can load the scheme into the LDAP directory
using the command ldapadd. At the LDAP server, with the file available, we run the command:

root@ldap# ldapadd -v -D cn=admin,dc=mistic,dc=lan -x -w mistic -c -f lan.mistic.ldif

The ldapadd command connects to the LDAP server as user admin.mistic.lan and password
mistic and loads the contents of the file lan.mistic.ldif. Then, we can use the command
slapcat to check the scheme:

root@ldap# slapcat
dn: dc=mistic,dc=lan
objectClass: top
objectClass: dcObject
objectClass: organization
o: mistic.lan
dc: mistic
structuralObjectClass: organization
entryUUID: 0acbdb7a-b4f4-1039-944d-c9cba5f02b93
creatorsName: cn=admin,dc=mistic,dc=lan
createTimestamp: 20191217083619Z
entryCSN: 20191217083619.365920Z#000000#000#000000
modifiersName: cn=admin,dc=mistic,dc=lan
modifyTimestamp: 20191217083619Z

<...some lines are omitted...>

dn: ou=users,dc=mistic,dc=lan
objectClass: organizationalUnit
ou: Users
structuralObjectClass: organizationalUnit
entryUUID: 9c2d9fd2-b4f8-1039-8b53-f74736586912
creatorsName: cn=admin,dc=mistic,dc=lan
createTimestamp: 20191217090901Z
entryCSN: 20191217090901.263213Z#000000#000#000000
modifiersName: cn=admin,dc=mistic,dc=lan
modifyTimestamp: 20191217090901Z

dn: uid=user10,ou=users,dc=mistic,dc=lan
objectClass: inetOrgPerson
uid: user10
userPassword:: dXNlcjEw
cn: user10
sn: User 10
employeeType: 10
structuralObjectClass: inetOrgPerson
entryUUID: 9c2fb48e-b4f8-1039-8b54-f74736586912
creatorsName: cn=admin,dc=mistic,dc=lan
createTimestamp: 20191217090901Z
entryCSN: 20191217090901.276851Z#000000#000#000000
modifiersName: cn=admin,dc=mistic,dc=lan
modifyTimestamp: 20191217090901Z

<...the rest of the scheme omitted...>

MISTIC - Angel Linares Zapater 40

Multilevel Multifactor Single Sign-On

At this point, we can also use any graphical tool for browsing an LDAP directory, like JXplorer,
to connect and navigate this new LDAP scheme:

Once connected to the LDAP directory, we can navigate through the MISTIC organization and
users there defined:

MISTIC - Angel Linares Zapater 41

Multilevel Multifactor Single Sign-On

7.2.4 The CAS server

The Apereo CAS software product is, indeed, a Spring Boot application that can be built either
as a WAR file to be deployed in any Tomcat server or as a JAR file with an embedded Tomcat
server. We choose to build a second server with another Tomcat installed, following the
procedures shown before but with no custom applications installed but just the Apereo CAS
application.

Provisioning the server

After cloning a new virtual machine for the CAS server, we reconfigure it with the appropriate
settings as server cas.mistic.lan (see Creating a new machine from the base image p.54).

Installing the Tomcat server

In this server, we also install Amazon Corretto 11 (see Installing Amazon Corretto 11, p.59), and
a Tomcat server ready to deploy the CAS WAR file (see Installing Apache Tomcat, p.62).

Installing the CAS application

We first build the CAS application from the Maven overlay48 and then deploy it in the CAS server
Tomcat container (see Installing Apereo CAS server p. 67) as a normal Java EE application.

Once the CAS application is installed in the Tomcat servlet container, the service is available for
the applications, via the proxy, at the URL https://www.mistic.lan/cas.

Configuring the CAS application
To completely configure the CAS application to work with the LDAP server to validate users, we
have to log in to the CAS server to review and change the CAS configuration file
at /etc/cas/config/cas.properties.

We replace the default values with the configuration needed for the MISTIC project purposes
(see CAS server configuration files, p. 72).

Also, in this configuration file, there is a reference to another configuration file for the CAS
server logs. As the Tomcat server is run under the tomcat user and this user has no permissions
to write in the default directory /var/log, we choose to change the /etc/cas/config/log4j2.xml
file to instead write the CAS server logs in the directory /opt/tomcat/logs:

48 https://apereo.github.io/cas/6.0.x/installation/WAR-Overlay-Installation.html

MISTIC - Angel Linares Zapater 42

https://apereo.github.io/cas/6.0.x/installation/WAR-Overlay-Installation.html

Multilevel Multifactor Single Sign-On

<Configuration monitorInterval="5" packages="org.apereo.cas.logging">
 <Properties>
 <Property name="baseDir">/opt/tomcat/logs</Property>

After these changes are done in the /etc/cas files, we restart the server and accessing to the
URL https://www.mistic.lan/cas again we can log in with an LDAP user (e.g. using user10)
and check that the CAS server correctly logs in the user:

Indeed, we can check the attributes received from the CAS server and retrieved from the LDAP
directory, thanks to the configuration defined in the /etc/cas/config/cas.properties file:

These are attributes above are retrieved from the LDAP server and sent to the applications,
after successful authentication. More specifically, we will use the employeeType attribute for
further authorization at the application layer, even for those users correctly authenticated.

MISTIC - Angel Linares Zapater 43

Multilevel Multifactor Single Sign-On

Configuring CAS services
The Apereo CAS solution allows defining dedicated configurations for the different client
applications that can connect to the server, called services in the CAS terminology. We use this
feature to implement the authorization policy for each application depending on the LDAP
attribute employeeType retrieved after the user authentication. Otherwise, if we try to
connect from the MISTIC menu from the Java CAS applications we get an authorization error,
even using the right user credentials:

To register the different services (client applications) that the CAS server will go through for
further checks and test after user authentication, we copy the service configuration files from
CAS server configuration files, p73 in the /etc/cas/services/ directory, one for each of our
custom applications.

After restarting the CAS Tomcat server, now we are able to access these applications at the APP
server, after getting authorization from the CAS server.

Notice the CAS login form customized to show the CAS service being accessed (e,g. App1):

MISTIC - Angel Linares Zapater 44

Multilevel Multifactor Single Sign-On

7.3 Solution integration

7.3.1 Checking the SSO policy implementation

With all the servers installed and configured, now we can test the whole solution by connecting
to the main page and accessing each application using different user credentials. This will test
the correct and complete implementation of the SSO policy for the project as defined in The
SSO policy (p. 28).

Accessing as a user with user-name and password

Testing as user10

User10 is required to log in using a valid user-name and password and can only access
applications at level 10, namely, only App1.

When we connect to the MISTIC main page and click on the App1 link, the browser connects to
the App1 at APP server, but being App1 a CAS client, it connects in turn to the CAS server to
authenticate the user.

At this point the CAS server prompts the user49 for user-name and password:

If the credentials are correct (once validated against the LDAP directory), the user gets access
and connects to the App1 application:

49 The login page can be customized to use the corporate logo and design for better integration in the corporate
environment and seamless user experience. We are using the default pages from CAS version 6.1.x.

MISTIC - Angel Linares Zapater 45

Multilevel Multifactor Single Sign-On

However, if the provided credentials are not valid, the CAS server returns an error and prevents
the user from using the application:

If this user10 has logged in correctly, and therefore has initiated a single sign-on session, he or
she could enter immediately in any other application defined at level 10. However, if the user
attempts to access a higher-level application, as defined in the project policy, the CAS server
will not authorize this access. For example, if user10 tries to access App2, the CAS server
responds:

The key point is that the CAS services defined at the CAS server include an "access strategy"
based on certain attributes, in our case "a required" attribute and value for "employeType" as
retrieved from the LDAP server account after a correct authentication.

Notice that App1 accepts all our specified access levels:

 "accessStrategy" : {
 "@class" : "org.apereo.cas.services.DefaultRegisteredServiceAccessStrategy",
 "requiredAttributes" : {
 "@class" : "java.util.HashMap",
 "employeeType" : ["java.util.HashSet", ["10" "20" "30" "40"]]
 }
 }

but App2, and respectively all other applications, only accept higher access levels:

 "accessStrategy" : {
 "@class" : "org.apereo.cas.services.DefaultRegisteredServiceAccessStrategy",
 "requiredAttributes" : {
 "@class" : "java.util.HashMap",
 "employeeType" : ["java.util.HashSet", ["20" "30" "40"]]
 }
 }

This effectively restricts user10 to level 10 applications, but correctly provides at the same time
a valid SSO session to use other level 10 applications at the same APP server.

MISTIC - Angel Linares Zapater 46

Multilevel Multifactor Single Sign-On

Testing as user20

User20 is required to log in using a valid user-name and password but, having been granted a
level access of 20 (by the employeeType attribute at the LDAP directory) in case of correct log,
in, this user will be able to access applications at level 20, that is only App2, but also without a
second log in procedure to applications at lower level, App1 in this case.

Testing as user30

User30 is required to log in using a valid user-name and password. Like user20, this user is able
to access App3, App2 and App1 with one single log in operation in any one of these
applications. The access to the rest of the applications is granted with the SSO session
obtained in the first correct authentication.

Accessing as a user with a digital certificate

Testing as user31

User31 is required to authenticate using a digital certificate. When this user access App3, the
CAS server requests the browser to prompt the user to provide a digital certificate (depending
on the browser used, the user can select which certificate to use if more than one):

If a valid certificate is installed in the browser and the user selects the correct one, then the
certificate is validated as signed by a recognized certification authority. If the certificate is
accepted, then the CAS server uses the user-name in the certificate to access the LDAP server
to validate the user and retrieve the rest of the needed attributes. If everything is correct, the
user can access the authorized applications, without entering user-name and password, but
with a valid SSO session available:

MISTIC - Angel Linares Zapater 47

Multilevel Multifactor Single Sign-On

Accessing an app that accepts only digital certificates

Additional requirements for App4

App4 has a different authorization requirement with respect to the other apps that can be
accessed by users either with user-name and password or with digital certificates. For App4,
besides requiring an access level of 40, there exists the extra requirement that states that only
users presenting a digital certificate can access the app regardless of their access level.

Testing as user40

User40 has been given user-name and password credentials and an access level of 40 in the
user directory. However, this is not enough to access App4 because no digital certificate is
presented as a credential in the login procedure.

Thus, when user40 logs in App4, even though the CAS server grants a valid SSO session to the
user, the application in the APP server detects that the log in credentials were not a digital
certificate and, in our implementation, automatically logs out the user from the application:

Nonetheless, user40 has a valid SSO session and enough access level to enter all the other
applications at lower levels:

Testing as user41

User41, instead, has been given a digital certificate, plus the access level of 40 in the user
directory. This translates in this solution in that user41 can effectively access App4 along with
the rest of applications using the digital certificate as user credentials.

For example, when user41 clicks the App4 access link, the correct certificate can be provided:

MISTIC - Angel Linares Zapater 48

Multilevel Multifactor Single Sign-On

and having an SSO session granted, this user can also access other applications with no extra
steps:

MISTIC - Angel Linares Zapater 49

Multilevel Multifactor Single Sign-On

8 Project results

8.1 Specific results

Single sign-on

In this project, we have implemented a Single Sign-On solution based on the Apereo CAS
product and custom Java client applications.

The CAS product offers a complete set of features to implement an SSO solution, which
provided us with the necessary tools to implement the objectives for the project with the
exception of the extra, specific validation for App4 to restrict the users to log only using digital
certificates.

The CAS server is capable of validating users against several sources of user information. We
implemented an OpenLDAP server in this project and we could not only validate the user-name
and password but also perform additional lookups in the LDAP database to retrieve more
attributes for the user. This was the case of the "access level", that we implemented using the
existing employeeType field on the inetOrgPerson object class provided by OpenLDAP.

Single sign-off

One issue with the SSO sessions, sometimes an unexpected behavior but other times a
requirement for the project, is having the possibility to log out from all the applications, where
a user is logged in, using just a single log out operation.

Apereo CAS provides a feature to signal to all the applications involved in the same SSO
session when a logout is performed at one application. Nonetheless, it is still the responsibility
of each application to implement its own sign off procedures when that signal is received.

Multilevel authentication

The SSO scheme, by its very own nature, implies that a user logging in to an application in the
set of protected resources gets immediate access to the rest of the applications. This can be
sometimes regarded as a drawback, and a much more detailed degree of control over the
authorizations to use some applications may be required.

We have implemented a multilevel authorization mechanism that allows defining an SSO policy
specifying which "access level" is required to access each application. This provides the
capability to define multiple tiers of authorization for a set of applications.

Multifactor authentication

Having the possibility to request more than one type of credential in the same log in operation
has become a common trend, especially in web applications on the internet, as a mechanism to
increase the security of these applications and prevent identity impersonation attacks50.

We have implemented in our solution two types of credentials, namely user-name/passwords
and X.505 digital certificates, for user authentication. And we have defined in our SSO policy
when a user should access using which type.

However, we have not explored all the possible cases, like requiring a user to provide both
types of credentials in the same login operation. We have considered an authentication
successful with just one type or the other is valid.

Nonetheless, the current trend in the industry is to implement forms of multifactor
authentication requiring more than one credential type in the same authentication procedure.
This is the case of the so-called Two Factor Authentication (2FA) where a user, after a
successful user-name and password validation. is temporarily provided with a second token, via
SMS for example, to ensure that the user logging in is really the owner of the first credentials.
Other mechanisms are been deployed by the main industry actors, like replacing the SMS
code51 with a dedicated authentication application installed in the user’s smartphone.

50 See a case of building an impersonation attack on SSO systems at Mayer (2014).
51 The 2FA solution is already regarded as insecure as more and more successful attacks are being discovered. See,

for example, Grimes (2019)

MISTIC - Angel Linares Zapater 50

Multilevel Multifactor Single Sign-On

Traffic encryption

All the network connections have been secured even in the internal network, with the exception
of the connection from the PROXY to the CAS server. This limitation is imposed by the need to
pass information from the user’s certificate (which is actually validated by the PROXY server) to
the CAS server so it can obtain the user identifier and then perform the needed lookups and
validations on the LDAP server. This security feature is important in the increasing trend to
move corporate workloads to the cloud, where the "internal network" connecting different
servers should no longer be considered secure, especially when multiple vendors are involved
or in hybrid cloud environments.

8.2 Generic results and remarks

Choosing an SSO server

The choice of Apereo CAS as the base product for the SSO solution has revealed as a good
alternative. However, Apereo CAS is a fast-moving platform (during the development of the
project we had the opportunity to change from version 6.0.x to 6.1.x, for example).

This implies that implementing a long term SSO solution based on Apereo CAS (or any other
modern product, for that matter) should require provisioning the necessary human resources to
keep the solution not just updated with the latest product patches but to be able to upgrade to
newer releases at the pace the vendor releases more versions and features.

Choosing an LDAP server

Although an LDAP server seems a more mature and stable product in the industry, other
aspects may be considered when choosing the LDAP server. The choice of implementing an
LDAP server just dedicated to the SSO solution or, instead, using an existing user directory
(say, a Microsoft Active Directory in the corporate network) can have architectural and security
implications especially about where the SSO policy is actually defined and by who.

SSO clients dependency

Besides any internally developed applications, other third-party or closed-source applications
could be required to be put under the same SSO policy. As long as not all the features required
to fully implement an SSO policy can be assigned to, and therefore implemented in, the SSO
server (in our case, limiting the access to App4 to digital certificates requires dedicated code in
the Java client), defining some complex SSO policies can be difficult to implement in some
environments.

We also have seen that even the latest Internet browsers (like Mozilla Firefox) may have some
degree of incompatibility when interacting with the SSO solution (e.g. the TLS v1.3 and Tomcat
post handshake problems).

Also, not all Internet browsers may behave the same way when dealing with the user’s digital
certificates (Firefox has to be closed and restarted to forget the last certificate used) which
results in an inconsistent experience for lay users and different behaviors among the variety of
user platforms.

Automation and centralization

Centralizing the point of authentication, and even authorization, in an SSO solution has obvious
implications with respect to the availability of the solution, now with a single point of failure (*).
And despite the initial strategy to concentrate efforts and resources around the SSO solution,
the diversity of potential clients (say, in a BYOD(*) environment) makes almost impossible to
avoid the nuances of dealing with multiple types of client devices.

Finally, although the automated deployment of clients and unattended installation of
certificates in final user machines can ease the workloads of deploying and maintaining a
complete SSO solution, all these extra requirements should be carefully considered when
deciding to move towards an SSO solution in a given organization.

MISTIC - Angel Linares Zapater 51

Multilevel Multifactor Single Sign-On

8.3 Future work

8.3.1 Theoretical approach

SSO policy specifications

Our very basic theoretical approach to the "SSO policy" has allowed us to design a decoupled
authentication/authorization model based on an indirection52 via the notion of "access level". In
order for this approach to evolve to a more consistent theoretical framework, several
improvements should be developed.

Nonetheless, the advantages of having some kind of formal specification for a (complex)
authentication and authorization scheme seem promising at least at the degree of being able
to define unambiguously the expected behavior of any actual SSO implementation.

Algebraic properties

The notion of multilevel authorization assumes a tiered scheme; that is, a layer of authorized
resources one on top of another. This is due to the inherent semantics associated with using
natural numbers (and its relation of order) as access levels, thus resulting in increasing (and
including) subsets of authorized resources. Indeed, our specific project relies on an ordered set
of just four elements {10, 20. 30, 40} more than in the whole set of natural numbers.

Whether this choice of using natural numbers as the image set of the authentication function
reveals as an unnecessary limitation and the model is open to other looser or wider algebraic
structures to gain further flexibility can be explored53.

Validation expressions

The definition of how the multiple factors of authentication are combined to validate a user’s
login is not clearly specified in this model. For example, in our case, whether two credentials
are required in an OR-type or AND-type combination is not specified. In the case of the default
set up of Apereo CAS, the different authentication solvers are called one after another resulting
in a valid authentication when one method succeeds (thus implementing an OR-type check).

More sophisticated definitions for "expressions", using some formal language grammar, could
be added to the model to enhance the specification on how to combine multiple factors of
authentication.

Fine-grained permissions

In this model, once the user gets access to a resource, no additional information about the
allowed use of the resource is specified. An example of such more detailed permissions is to
define whether the user can modify the resource or just read it, or whether some features of a
given application (e.g. access some menu options) are authorized.

This kind of permission management is usually left to the application to implement54, but
exploring how to move some of these permission assignments to the SSO policy could be
interesting, for example, in the actual trend of publishing open web services under public APIs
to allow accessing internal database, or to provide some form of RBAC(*)-like capabilities to the
model.

SLO specifications

Finally, note that the defined policy provides no formal information about the requirements of
the single sign-off procedure. In this project, we just explored one way Apereo CAS allows
implementing a given form of single log out, which signals to all the now-in-use applications
that a logout operation has been performed in some other application.

52 An aphorism attributed to David Wheeler states that "All problems in computer science can be solved by another
level of indirection". The opposite idea attributed to Jim Grat, says "There is no performance problem that can not
be solved by eliminating a level of indirection", according to Coulouris (2012) ch 6.1.

53 See Gollmann (2002), ch. 5.8 for the use of lattices. For a historical perspective on first attempts of formalization,
see Bell (1973) or Demming (1976).

54 This is a present day, common requirement and most modern protocols support it to some extent. See, for
example, https://tools.ietf.org/html/rfc6749#page-10 about access tokens in Oauth 2.0 and also
https://tools.ietf.org/html/rfc6750 for widely used bearer tokens.

MISTIC - Angel Linares Zapater 52

https://tools.ietf.org/html/rfc6750
https://tools.ietf.org/html/rfc6749#page-10

Multilevel Multifactor Single Sign-On

8.3.2 Practical implementation

Load balancing and fault tolerance

The use of Apache httpd as a proxy server can be improved with load balancing and failure
tolerance capabilities, which should be basic requirements for a complete corporate solution.

Alternatively, in order to deploy these types of features, this proxy/web server component can
be replaced with a specialized proxy component. For example, moving from such a "generic"
product like Apache httpd to a more "specialized" one, like HAproxy, could provide a different
approximation to load balancing and fault tolerance features.

Service ports selection

In this particular case, we replicated the entries for both ports 443 and 8443 at the PROXY
server configuration, due to the fact that CAS expects the Tomcat server to work on port 8443
while we set up our APP server to work on the standard port 443.

A careful selection of service ports at design time, obviously conditioned by the availability of
free port numbers in the actual installation should be considered upfront. Or, alternatively, a
redesign of the whole solution to only use non-standard, non-reserved ports could avoid
potential collisions with already-in-use port numbers and could, thus, simplify the connection
configurations between all the implicated servers.

LDAP schemes

The LDAP scheme used is the very basic and standard one provided by OpenLDAP. For an
enhanced solution, a dedicated LDAP scheme with new, specialized attributes for the SSO
policy could be considered, especially in cases where the user directory to use is an existing
one in the installation or the solution has to be integrated with other proprietary products.

Securing internal communications

On another side, the debate whether all network connections should be encrypted or not in the
"internal network" remains alive in the industry, with a tendency to go for the all-encrypted
approach55. We tried this latter approach but had to settle, though, to use AJP, a not-well
documented and non-encrypted protocol56, to connect the APP server to the CAS server to be
able to pass details of the user certificate to the CAS server. Further work on this issue could
provide a huge improvement because this single fact (having to rely on AJP) prevents the
deployment of an "all-encrypted" standardized solution.

Also on the side of the Tomcat servers, we used Java keystores to ease the installation of both
APP and CAS servers. The Tomcat’s Catalina engine already supports the use of X.509
certificates without the need of using Java based keystores. This choice would be at the price of
making Tomcat dependent of an external suite like OpenSSL installed on the same server, but
would provide the benefits of relying on just one security framework to handle all the digital
certificates.

Cloud deployment

Finally, in an increasing tendency of the industry to move to cloud based deployments,
refactoring this solution for a container based infrastructure, like Docker or LXC/LXD, could be a
needed improvement for real deployments of corporate SSO solutions in the cloud. Managing
the set of deployed servers with tools like Kubernetes would be the final approach to a cloud
deployable, production-grade SSO solution.

55 Insider attacks can be performed by internal employees but also by cloud provider personnel and related
secondary actors. See a review at Duncan (2015).

56 Some documentation is available at https://tomcat.apache.org/connectors-doc/ajp/ajpv13a.html

MISTIC - Angel Linares Zapater 53

https://tomcat.apache.org/connectors-doc/ajp/ajpv13a.html

Multilevel Multifactor Single Sign-On

9 Appendix 1: Installation Procedures

9.1 Creating a new machine from the base image

Cloning the base image
Using the cloning feature of Virtualbox create a new machine from the base image server100
while assigning a new MAC address to the network adapter to avoid collisions with other cloned
machines.

Configuring the network adapters

Create a VirtualBox internal network

Then configure the network of the machines in the internal network to use the same name for a
Virtualbox network, e.g. mistic.lan, so they can connect to each other while remaining isolated
from other VMs or the host machine:

MISTIC - Angel Linares Zapater 54

Multilevel Multifactor Single Sign-On

Configuring a second adapter for the proxy

Besides the configuration for the internal network, for the specific case of the DMZ proxy we
need to add a second network adapter connected to the external network via the VirtualBox
bridged adapter:

This is not needed for the rest of the servers.

Customizing the cloned servers
To customize each server, set the correct host name (/etc/hostname), known hosts in the
network and interfaces. (see Appendix 2: Source code and configuration files p. 70)

Bridging the networks at the DMZ server

Only in the case of the DMZ Proxy, the network adapters in this server are configured with 2 IP
addresses (192.168.2.200 and 192.168.1.200) to bridge the external and the internal network
(see PROXY server configuration files, p.70):

ip addr
1: lo: <LOOPBACK,UP,LOWER_UP> mtu 65536 qdisc noqueue state UNKNOWN group default qlen 1000
 link/loopback 00:00:00:00:00:00 brd 00:00:00:00:00:00
 inet 127.0.0.1/8 scope host lo
 valid_lft forever preferred_lft forever
 inet6 ::1/128 scope host
 valid_lft forever preferred_lft forever
2: enp0s3: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen
1000
 link/ether 08:00:27:b5:6c:48 brd ff:ff:ff:ff:ff:ff
 inet 192.168.2.200/24 brd 192.168.2.255 scope global enp0s3
 valid_lft forever preferred_lft forever
 inet6 fe80::a00:27ff:feb5:6c48/64 scope link
 valid_lft forever preferred_lft forever
3: enp0s8: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1500 qdisc pfifo_fast state UP group default qlen
1000
 link/ether 08:00:27:09:d0:08 brd ff:ff:ff:ff:ff:ff
 inet 192.168.1.200/24 brd 192.168.1.255 scope global enp0s8
 valid_lft forever preferred_lft forever
 inet6 2a01:c50e:21b2:7700:a00:27ff:fe09:d008/64 scope global dynamic mngtmpaddr
 valid_lft 1779sec preferred_lft 579sec
 inet6 fe80::a00:27ff:fe09:d008/64 scope link
 valid_lft forever preferred_lft forever

Also, depending on the specific version of the operating system, it may be necessary to enable
IP forwarding (setting net.ipv4.ip_forward=1 in the file /etc/sysctl.conf) to allow TCP/IP packets
to pass the bridge between the two network adapters.

MISTIC - Angel Linares Zapater 55

Multilevel Multifactor Single Sign-On

9.2 Creating the certificates infrastructure for MISTIC.lan

9.2.1 Creating a Certification Authority certificate

Preparing the development machine

To create and work as a new Certification Authority (CA), the OpenSSL toolkit in the issuing
machine needs to be properly configured.

As root user, create a directory /root/CA as the working environment for this CA and change the
current directory. Then create a set of needed subdirectories and files:

root@PCALZ11phy:~ # mkdir CA
root@PCALZ11phy:~ # cd CA

root@PCALZ11phy:~/CA # mkdir certs crl newcerts private
root@PCALZ11phy:~/CA # chmod 700 private
root@PCALZ11phy:~/CA # touch index.txt
root@PCALZ11phy:~/CA # echo 1000 > serial

and modify the OpenSSL configuration file (/etc/ssl/openssl.conf) to use this new configuration:
[CA_default]
dir = /root/CA
certificate = $dir/certs/ca.mistic.lan.crt
private_key = $dir/private/ca.mistic.lan.key

Create the private key for the CA

Now, in order to create a Certification Authority, first create the private RSA key:

root@PCALZ11phy:~/CA # openssl genrsa -out private/ca.mistic.lan.key 4096
Generating RSA private key, 4096 bit long modulus
...++++
.......................++++
e is 65537 (0x010001)

root@PCALZ11phy:~/CA # chmod 400 private/ca.mistic.lan.key

Creating the root certificate for the CA

Then create the root certificate for the CA and provide the requested information:

root@PCALZ11phy:~/CA # openssl req -new -x509 -extensions v3_ca \
 -sha256 -days 3650 -verbose \
 -key private/ca.mistic.lan.key -out certs/ca.mistic.lan.crt

Using configuration from /etc/ssl/openssl.cnf
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:ES
State or Province Name (full name) [Some-State]:Catalunya
Locality Name (eg, city) []:Barcelona
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MISTIC
Organizational Unit Name (eg, section) []:CA
Common Name (e.g. server FQDN or YOUR name) []:ca.mistic.lan
Email Address []:support@mistic.lan

For security reasons, is a good practice to create a new intermediate CA which will sign the
final certificates. In this project we will sign the certificates using the root CA, for simplicity.

MISTIC - Angel Linares Zapater 56

Multilevel Multifactor Single Sign-On

9.2.2 Creating MISTIC-signed X.509 certificates

To create a new certificate (e.g. www.mistic.lan for a server or user31.users.mistic.lan for a
user) signed by the previously created CA, first create a new RSA pair of keys:

root@PCALZ11phy:~/CA # openssl genrsa -out newcerts/www.mistic.lan.key 2048
Generating RSA private key, 2048 bit long modulus
..................++++
..++++
e is 65537 (0x010001)

root@PCALZ11phy:~/CA # chmod 400 newcerts/www.mistic.lan.key

Then create a certificate signing request (CSR) using the previous keys and enter the data for
the new certificate:

root@PCALZ11phy:~/CA # openssl req -new -sha256 \
 -key newcerts/www.mistic.lan.key -out newcerts/www.mistic.lan.csr
You are about to be asked to enter information that will be incorporated into your certificate
request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:ES
State or Province Name (full name) [Some-State]:Catalunya
Locality Name (eg, city) []:Barcelona
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MISTIC
Organizational Unit Name (eg, section) []:CA
Common Name (e.g. server FQDN or YOUR name) []:www.mistic.lan
Email Address []:support@mistic.lan

Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

In the case of certificate for a user in the organization, special care must be taken in the
organizational information provided in the certificate because this piece of information will be
used by the CAS server to validate the user against the LDAP directory:

root@PCALZ11phy:~/CA # openssl req -new -sha256 \
 -key newcerts/user31.users.mistic.lan.key -out newcerts/user31.users.mistic.lan.csr
You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:ES
State or Province Name (full name) [Some-State]:Catalunya
Locality Name (eg, city) []:Barcelona
Organization Name (eg, company) [Internet Widgits Pty Ltd]:MISTIC
Organizational Unit Name (eg, section) []:users.mistic.lan
Common Name (e.g. server FQDN or YOUR name) []:user31
Email Address []:user31@users.mistic.lan
Please enter the following 'extra' attributes
to be sent with your certificate request
A challenge password []:
An optional company name []:

Finally, sign these CSR requests using the CA certificate to create the signed certificates:

openssl x509 -sha256 -days 365 -req -in newcerts/user31.users.mistic.lan.csr \
 -CA certs/ca.mistic.lan.crt -CAkey private/ca.mistic.lan.key -CAcreateserial \
 -out newcerts/user31.users.mistic.lan.crt
Signature ok
subject=C = ES, ST = Catalunya, L = Barcelona, O = MISTIC, OU = users.mistic.lan, CN = user31,
emailAddress = user31@users.mistic.lan
Getting CA Private Key

MISTIC - Angel Linares Zapater 57

Multilevel Multifactor Single Sign-On

Also, in the case of user certificates, to import them later into the user’s browsers it may be
convenient to distribute them in PKCS12 format:

openssl pkcs12 -export -in newcerts/user31.users.mistic.lan.crt \
 -inkey newcerts/user31.users.mistic.lan.key -out newcerts/user31.users.mistic.lan.p12
Enter Export Password:
Verifying - Enter Export Password:

The password included in this PKCS12 file is for security reasons to protect the processes of
importing and exporting the certificate at the user’s machine.

9.2.3 Creating Java keystores for the Tomcat servers

The Tomcat certificates keystore

The Tomcat servers, both APP and CAS, need a keystore to hold their own certificate when
working with the SSL/TLS connector to work with other machines.

Create RSA keys and the save them in a Java keystore (one for each server, that is
app.mistic.lan.jks and cas.mistic.lan.jks) using the Java keytool utility:

$ keytool -genkeypair -alias cas.mistic.lan -keyalg RSA -keystore cas.mistic.lan.jks
Enter keystore password:
Re-enter new password:
What is your first and last name?
 [Unknown]: cas.mistic.lan
What is the name of your organizational unit?
 [Unknown]: CA
What is the name of your organization?
 [Unknown]: MISTIC
What is the name of your City or Locality?
 [Unknown]: Barcelona
What is the name of your State or Province?
 [Unknown]: Catalunya
What is the two-letter country code for this unit?
 [Unknown]: ES
Is CN=cas.mistic.lan, OU=CA, O=MISTIC, L=Barcelona, ST=Catalunya, C=ES correct?
 [no]: yes

We use the password mistic and set the proper organizational values.

The MISTIC CA keystore

Besides the keystore for Tomcat server certificates, we need to create a second keystore to
hold the trusted certificates, like our CA, that will be used to validate the received X.509
certificates (e.g., when an application at the APP server connects to the CAS server).

We import the ca.mistic.lan.crt certificate into a new Java keystore using the Java keytool utility:

$ keytool -import -alias ca.mistic.lan -file ca.mistic.lan.crt -keystore ca.mistic.lan.jks
Enter keystore password:
Re-enter new password:
Owner: EMAILADDRESS=support@mistic.lan, CN=ca.mistic.lan, OU=CA, O=MISTIC, L=Barcelona,
ST=Catalunya, C=ES
Issuer: EMAILADDRESS=support@mistic.lan, CN=ca.mistic.lan, OU=CA, O=MISTIC, L=Barcelona,
ST=Catalunya, C=ES
Serial number: 95a81684197c6a69
Valid from: Fri Nov 08 11:44:03 CET 2019 until: Mon Nov 05 11:44:03 CET 2029
Certificate fingerprints:

 SHA1: 94:4C:81:DF:30:15:64:DC:8D:E6:56:6B:E9:D4:DA:DC:E7:37:28:B7
 SHA256:

B6:61:37:D1:06:E0:BA:E3:AA:9E:07:A2:05:CB:9B:AF:53:91:E4:D4:E0:73:44:25:DF:FD:6C:AB:5C:70:E9:D3
Signature algorithm name: SHA256withRSA
Subject Public Key Algorithm: 4096-bit RSA key
Version: 3

Extensions:

#1: ObjectId: 2.5.29.35 Criticality=false
AuthorityKeyIdentifier [
KeyIdentifier [
0000: DF B2 61 40 B7 4E 68 13 F4 85 9D 29 AF 1E 35 EA ..a@.Nh....)..5.
0010: 6A AB CF DA j...

MISTIC - Angel Linares Zapater 58

Multilevel Multifactor Single Sign-On

]
]

#2: ObjectId: 2.5.29.19 Criticality=true
BasicConstraints:[
 CA:true
 PathLen:2147483647
]

#3: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: DF B2 61 40 B7 4E 68 13 F4 85 9D 29 AF 1E 35 EA ..a@.Nh....)..5.
0010: 6A AB CF DA j...
]
]

Trust this certificate? [no]: yes
Certificate was added to keystore

We use the password mistic to access this keystore.

9.3 Installing Amazon Corretto 11

Download the package from Amazon.com in the development machine and copy the tarball in
the desired server (e.g. app.mistic.lan or cas.mistic.lan):

$ scp amazon-corretto-11.0.4.11.1-linux-x64.tar.gz root@app:/opt
root@app's password:

amazon-corretto-11.0.4.11.1-linux-x64.tar.gz 100% 183MB 132.5MB/s 00:01

Now log in this machine and uncompress the tarball in the /opt directory and rename it:

root@app# cd /opt
root@app:/opt# tar -xvf amazon-corretto-11.0.4.11.1-linux-x64
root@app:/opt# mv amazon-corretto-11.0.4.11.1-linux-x64 corretto-11

Create the file /etc/profile.d/corretto-11.sh with the JAVA_HOME and PATH variables:

root@app# more /etc/profile.d/corretto-11.sh
export JAVA_HOME=/opt/corretto-11
export PATH=$PATH:$JAVA_HOME/bin

Log out and log in again to the server (or just source the new /etc/profile.d file), to check the
installation of the Java runtime:

root@app# source /etc/profile.d/corretto-11.sh
root@app# java -version
openjdk version "11.0.4" 2019-07-16 LTS
OpenJDK Runtime Environment Corretto-11.0.4.11.1 (build 11.0.4+11-LTS)
OpenJDK 64-Bit Server VM Corretto-11.0.4.11.1 (build 11.0.4+11-LTS, mixed mode)

MISTIC - Angel Linares Zapater 59

Multilevel Multifactor Single Sign-On

9.4 Installing Apache httpd as a reverse proxy

Installing the web server
Install the Apache http webserver package from the Debian repositories:

root@proxy:~# apt-get install apache2
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
 apache2-bin apache2-data apache2-utils libapr1 libaprutil1 libaprutil1-dbd-sqlite3 libaprutil1-
ldap libbrotli1 libcurl4 libjansson4 liblua5.2-0 ssl-cert
Suggested packages:
 apache2-doc apache2-suexec-pristine | apache2-suexec-custom www-browser openssl-blacklist
The following NEW packages will be installed:
 apache2 apache2-bin apache2-data apache2-utils libapr1 libaprutil1 libaprutil1-dbd-sqlite3
libaprutil1-ldap libbrotli1 libcurl4 libjansson4 liblua5.2-0 ssl-cert
0 upgraded, 13 newly installed, 0 to remove and 0 not upgraded.
Need to get 2,959 kB of archives.
After this operation, 9,663 kB of additional disk space will be used.
Do you want to continue? [Y/n]

Test the webserver by connecting to http://www.mistic.lan from the development machine
browser:

Enabling SSL/TLS

Enable the Apache httpd SSL modules:

root@proxy:~# a2enmod ssl
Considering dependency setenvif for ssl:
Module setenvif already enabled
Considering dependency mime for ssl:
Module mime already enabled
Considering dependency socache_shmcb for ssl:
Enabling module socache_shmcb.
Enabling module ssl.
See /usr/share/doc/apache2/README.Debian.gz on how to configure SSL and create self-signed
certificates.

In this module, disable TLSv1.3 because some common browsers like Firefox do not yet
implement post-handsake authentication57. This would prevent a user entering an application
that does not require a certificate to be able to provide a certificate in the same browser
session (the user should close the browser application and start again with a clean session). In
the file /etc/apache/mods-enabled/ssl.conf add an exception for protocol TLS v1.3:

 # The protocols to enable.
 # Available values: all, SSLv3, TLSv1, TLSv1.1, TLSv1.2
 # SSL v2 is no longer supported
 SSLProtocol all -SSLv3 -TLSv1.3

57 See, for example, https://bz.apache.org/bugzilla/show_bug.cgi?id=62975

MISTIC - Angel Linares Zapater 60

https://bz.apache.org/bugzilla/show_bug.cgi?id=62975

Multilevel Multifactor Single Sign-On

Setting up the reverse proxy

Creating a website configuration

For the proxy server to perform the expected redirections, create a website configuration file
/etc/apache2/sites-available/www.mistic.lan.conf with the contents shown at PROXY
server configuration files, p. 70. This file defines a new website at the webserver, but note that
this website only acts only as a proxy and does not serve any HTML document.

In this configuration all HTTP requests (port 80) are redirected to HTTPS (port 443):

<VirtualHost *:80>
 ServerName www.mistic.lan
 Redirect / https://www.mistic.lan/
</VirtualHost>

and a VirtualHost for port 8443 is created58 just to redirect all connections to port 443. This is
because the CAS server expects the work on the former but our APP server works on the latter.

Note that all proxy redirections to the APP server are done under HTTPS protocol59 and are
redirected to app.mistic.lan, except the URLs starting with /cas that are derived to the CAS
application at cas.mistic.lan/cas using the AJP protocol at port 8009:

 ProxyPassReverse /cas ajp://cas.mistic.lan:8009/cas

 ProxyPassReverse / https://app.mistic.lan:8443/

Finally, create the home directory for the website at /srv/www/mistic with permissions for the
Apache httpd user to write there the website logs:

root@proxy:~# mkdir -p /srv/www/mistic/logs
root@proxy:~# chown www-data /srv/www/mistic

Install also there, with the proper restricted permissions, the certificates created for both the
Proxy server and CA authority as the files indicated in the SSL configuration section for the
website:

 SSLEngine on
 SSLCertificateFile /srv/www/mistic/www.mistic.lan.crt
 SSLCertificateKeyFile /srv/www/mistic/www.mistic.lan.key
 SSLCACertificateFile /srv/www/mistic/ca.mistic.lan.crt

Configuring the reverse proxy

For the webserver to act as a reverse proxy, enable the Apache proxy_httpd and proxy_ajp
modules and restart the web server :

root@proxy:~# a2enmod proxy_http
Considering dependency proxy for proxy_http:
Enabling module proxy.
Enabling module proxy_http.
root@proxy:~# a2enmod proxy_ajp
Considering dependency proxy for proxy_ajp:
Module proxy already enabled
Enabling module proxy_ajp.
root@proxy:~# systemctl apache2 restart

The first module enables the reverse proxy for HTTP/HTTPS connections while the second one
enables the special Apache protocol AJP used to be able to pass to the CAS server the
certificates received from the client.

Test again the web server with TLS/SSL by connecting to https://www.mistic.lan (instead of
http://) from the development machine.

58 Listening to this port 8443 has to be enabled in the /etc/apache/ports.conf file.
59 Although in a protected environment the connections inside the internal network may be considered secure, there

is no warranty that any server will not moved in the future to another location (like a cloud base data center) that
could then require to configure a secured connection.

MISTIC - Angel Linares Zapater 61

Multilevel Multifactor Single Sign-On

9.5 Installing Apache Tomcat

Installing Apache Tomcat
Download the package from apache.org at the development machine and copy the tarball in
the desired machine:

$ scp apache-tomcat-9.0.26.tar.gz root@app:/opt
root@app's password:

apache-tomcat-9.0.26.tar.gz 100% 12MB 228.0MB/s 00:00

Uncompress the tarball at the remote server and rename the new extracted directory.

root@app# cd /opt
root@app# tar -xvf apache-tomcat-9.0.26.tar.gz
root@app# mv apache-tomcat-9.0.26 tomcat

Create a dedicated user for the Tomcat server and change the owner of the Tomcat directory:

root@app# useradd -r -m -U -d /opt/tomcat -s /bin/false tomcat
root@app# chown -R tomcat tomcat

Create a systemd unit file as shown below and then enable and start the new service:

root@app# more /etc/systemd/system/tomcat.service
[Unit]
Description=Tomcat 9 Servlet Container
After=network.target

[Service]
Type=forking

User=tomcat

Environment="JAVA_HOME=/opt/corretto-11"
Environment="JAVA_OPTS=-Djava.security.egd=file:///dev/urandom"

Environment="CATALINA_BASE=/opt/tomcat"
Environment="CATALINA_HOME=/opt/tomcat"
Environment="CATALINA_PID=/opt/tomcat/temp/tomcat.pid"
Environment="CATALINA_OPTS=-Xms512M -Xmx1024M -server"

ExecStart=/opt/tomcat/bin/startup.sh
ExecStop=/opt/tomcat/bin/shutdown.sh

[Install]
WantedBy=multi-user.target

root@app# systemctl enable tomcat.service
Created symlink /etc/systemd/system/multi-user.target.wants/tomcat.service →
/etc/systemd/system/tomcat.service.

root@app# systemctl start tomcat
root@app# systemctl status tomcat
● tomcat.service - Tomcat 9 Servlet Container
 Loaded: loaded (/etc/systemd/system/tomcat.service; disabled; vendor preset: enabled)
 Active: active (running) since Wed 2019-10-23 10:08:54 UTC; 4min 40s ago
 Main PID: 1202 (java)
 Tasks: 48 (limit: 4701)
 Memory: 165.1M
 CGroup: /system.slice/tomcat.service
 └─1202 /opt/corretto-11/bin/java -Djava.util.logging.config.file=/opt/tomcat-
9/conf/logging.properties -Djava.util.logging.manager=org.apache.juli.ClassLoaderLogManager
-Djava.security.egd=file:///dev

Oct 23 10:08:54 app.mistic.lan systemd[1]: Starting Tomcat 9 Servlet Container...
Oct 23 10:08:54 app.mistic.lan startup.sh[1195]: Tomcat started.
Oct 23 10:08:54 app.mistic.lan systemd[1]: Started Tomcat 9 Servlet Container.

The server now should respond to direct requests at port 8080:

MISTIC - Angel Linares Zapater 62

Multilevel Multifactor Single Sign-On

Configuring Apache Tomcat for remote administration

Optionally, for development purposes but also to be able to administer the application server
remotely, modify the configuration file /opt/tomcat/conf/tomcat-users.xml to provide Tomcat
administration roles to a new user, for example named admin with password tomcat:

<role rolename="admin-gui,manager-gui"/>
<user username="admin" password="tomcat" roles="admin-gui,manager-gui"/>

and also modify the file /opt/tomcat/webapps/manager/META-INF/context.xml to allow remote
access from external network machines addresses:

Context antiResourceLocking="false" privileged="true" >
 <Valve className="org.apache.catalina.valves.RemoteAddrValve"
 allow="192.168.\d+.\d+|127\.\d+\.\d+\.\d+|::1|0:0:0:0:0:0:0:1" />

Restart the Tomcat service now to be able to administer the server remotely at the address
http://192.168.2.101:8080/manager:

systemctl restart tomcat

MISTIC - Angel Linares Zapater 63

Multilevel Multifactor Single Sign-On

Configuring Apache Tomcat for SSL connections

Configuring APP server’s Apache Tomcat for SSL

Log in to the Tomcat server and enable the Catalina connector for port 8443, by setting the
following entry in the file /opt/tomcat/conf/server.xml in the Connector section, to point to
the right certificate keystores:

 <Connector port="8443" protocol="org.apache.coyote.http11.Http11NioProtocol"
 maxThreads="150" scheme="https" secure="true" SSLEnabled="true"
 keystoreFile="conf/app.mistic.lan.jks" keystorePass="mistic"
 clientAuth="want" sslProtocol="TLS" />

or. for the CAS server, add also the trusted keystore for the CA certificate:

 <Connector port="8443" protocol="org.apache.coyote.http11.Http11NioProtocol"
 maxThreads="150" scheme="https" secure="true" SSLEnabled="true"
 keystoreFile="conf/cas.mistic.lan.jks" keystorePass="mistic"
 truststoreFile="conf/ca.mistic.lan.jks" truststorePass="mistic"
 clientAuth="want" sslProtocol="TLS" />

and restart the Tomcat server to allow SSL connections:

systemctl restart tomcat

Now, for example, the APP server is accessible via the proxy at the URL https://www.mistic.lan:

The DMZ proxy redirects the connection from the user’s browser to www.mistic.lan to the
internal APP server at app.mistic.lan, while using a secure connection with certificates signed
by the MISTIC CA authority.

Adding the CA root certificate to the Java Runtime keystore at the CAS server

In addition to configuring the Tomcat container in the CAS server to be able to receive TLS/SSL
connections from the APP server, the CAS server itself connects to the LDAP server. To allow
encrypted connections when the CAS server is a TLS/SSL client, import the MISTIC CA root
certificate into the global Java Amazon Corretto 11 keystore (located at /opt/corretto-
11/lib/security/cacerts with a standard password changeit) to be able to validate any other
certificate signed by our CA authority:

root@cas:/etc/cas# keytool -import -alias ca.mistic.lan -file ca.mistic.lan.crt -cacerts
Enter keystore password:
Owner: EMAILADDRESS=support@mistic.lan, CN=ca.mistic.lan, OU=CA, O=MISTIC, L=Barcelona,
ST=Catalunya, C=ES

MISTIC - Angel Linares Zapater 64

https://www.mistic.lan/

Multilevel Multifactor Single Sign-On

Issuer: EMAILADDRESS=support@mistic.lan, CN=ca.mistic.lan, OU=CA, O=MISTIC, L=Barcelona,
ST=Catalunya, C=ES
Serial number: 95a81684197c6a69
Valid from: Fri Nov 08 10:44:03 UTC 2019 until: Mon Nov 05 10:44:03 UTC 2029
Certificate fingerprints:

 SHA1: 94:4C:81:DF:30:15:64:DC:8D:E6:56:6B:E9:D4:DA:DC:E7:37:28:B7
 SHA256:

B6:61:37:D1:06:E0:BA:E3:AA:9E:07:A2:05:CB:9B:AF:53:91:E4:D4:E0:73:44:25:DF:FD:6C:AB:5C:70:E9:D3
Signature algorithm name: SHA256withRSA
Subject Public Key Algorithm: 4096-bit RSA key
Version: 3

Extensions:

#1: ObjectId: 2.5.29.35 Criticality=false
AuthorityKeyIdentifier [
KeyIdentifier [
0000: DF B2 61 40 B7 4E 68 13 F4 85 9D 29 AF 1E 35 EA ..a@.Nh....)..5.
0010: 6A AB CF DA j...
]
]

#2: ObjectId: 2.5.29.19 Criticality=true
BasicConstraints:[
 CA:true
 PathLen:2147483647
]

#3: ObjectId: 2.5.29.14 Criticality=false
SubjectKeyIdentifier [
KeyIdentifier [
0000: DF B2 61 40 B7 4E 68 13 F4 85 9D 29 AF 1E 35 EA ..a@.Nh....)..5.
0010: 6A AB CF DA j...
]
]

Trust this certificate? [no]: yes
Certificate was added to keystore

9.6 Installing OpenLDAP

Installing the directory service

Install the OpenLDAP packages for the server and utilities from the Debian repositories60:

root@ldap# apt-get install slapd ldap-utils
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
 libodbc1
Suggested packages:
 libmyodbc odbc-postgresql tdsodbc unixodbc-bin ldap-utils libsasl2-modules-gssapi-mit | libsasl2-
modules-gssapi-heimdal
The following NEW packages will be installed:
 libodbc1 slapd
0 upgraded, 2 newly installed, 0 to remove and 0 not upgraded.
Need to get 1,659 kB of archives.
After this operation, 16.7 MB of additional disk space will be used.
Do you want to continue? [Y/n]

Enter the password mistic for the LDAP administrator user:

60 To use the Debian repositories from the Internet, a temporary network adapter can be configured bridged to the
external network just to download and install the software and then can be removed from this server.

MISTIC - Angel Linares Zapater 65

Multilevel Multifactor Single Sign-On

Once the installation completes:
Get:1 http://ftp.cica.es/debian buster/main amd64 libodbc1 amd64 2.3.6-0.1 [223 kB]
Get:2 http://ftp.cica.es/debian buster/main amd64 slapd amd64 2.4.47+dfsg-3+deb10u1 [1,436 kB]
Fetched 1,659 kB in 1s (2,657 kB/s)
Preconfiguring packages ...
Selecting previously unselected package libodbc1:amd64.
(Reading database ... 33644 files and directories currently installed.)
Preparing to unpack .../libodbc1_2.3.6-0.1_amd64.deb ...
Unpacking libodbc1:amd64 (2.3.6-0.1) ...
Selecting previously unselected package slapd.
Preparing to unpack .../slapd_2.4.47+dfsg-3+deb10u1_amd64.deb ...
Unpacking slapd (2.4.47+dfsg-3+deb10u1) ...
Setting up libodbc1:amd64 (2.3.6-0.1) ...
Setting up slapd (2.4.47+dfsg-3+deb10u1) ...
 Creating new user openldap... done.
 Creating initial configuration... done.
 Creating LDAP directory... done.
Processing triggers for systemd (241-7~deb10u1) ...
Processing triggers for man-db (2.8.5-2) ...
Processing triggers for libc-bin (2.28-10) ...

check that the service is installed and running:

systemctl status slapd

● slapd.service - LSB: OpenLDAP standalone server (Lightweight Directory Access Protocol)
 Loaded: loaded (/etc/init.d/slapd; generated)
 Active: active (running) since Wed 2019-10-16 07:56:42 UTC; 3min 35s ago
 Docs: man:systemd-sysv-generator(8)
 Tasks: 3 (limit: 4701)
 Memory: 3.5M
 CGroup: /system.slice/slapd.service
 └─1933 /usr/sbin/slapd -h ldap:/// ldapi:/// -g openldap -u openldap -F /etc/ldap/slapd.d

Now that LDAP is installed, use the Debian command dpkg-reconfigure to initialize a new
scheme and replace the default one:

dpkg-reconfigure slapd

Entering the values for the project when prompted, create a simple organization mistic.lan
and a group of users user.mistic.lan. This organization is just for testing purposes.

Finally. test the LDAP directory with the slapcat command:

slapcat
dn: dc=mistic,dc=lan
objectClass: top
objectClass: dcObject
objectClass: organization
o: MISTIC
dc: mistic
structuralObjectClass: organization
entryUUID: 26a3f3ce-a094-1039-8579-fddcb6c02024
creatorsName: cn=admin,dc=mistic,dc=lan
createTimestamp: 20191121101931Z
entryCSN: 20191121101931.138999Z#000000#000#000000
modifiersName: cn=admin,dc=mistic,dc=lan
modifyTimestamp: 20191121101931Z

dn: ou=users,dc=mistic,dc=lan
objectClass: organizationalUnit
ou: application users
ou: users
structuralObjectClass: organizationalUnit
entryUUID: c9dae318-a094-1039-85a2-e916b965a1a1
creatorsName: cn=admin,dc=mistic,dc=lan
createTimestamp: 20191121102404Z
entryCSN: 20191121102404.967672Z#000000#000#000000
modifiersName: cn=admin,dc=mistic,dc=lan
modifyTimestamp: 20191121102404Z

MISTIC - Angel Linares Zapater 66

Multilevel Multifactor Single Sign-On

Enabling TLS/SSL connections for the LDAP server

To allow the LDAP server to establish TLS/SSL connections with LDAP clients (the CAS server in
this case), copy the certificates created for the LDAP server and also the CA authority
certificate at the /etc/ldap/certs directory.

Then modify the LDAP server configuration by creating an LDIF file (e.g.
/etc/ldap/sdap.d/sldapssl.ldif) with the values for these certificates locations:

dn: cn=config
changetype: modify
replace: olcTLSCertificateKeyFile
olcTLSCertificateKeyFile: /etc/ldap/certs/ldap.mistic.lan.key
-
replace: olcTLSCertificateFile
olcTLSCertificateFile: /etc/ldap/certs/ldap.mistic.lan.crt
-
replace: olcTLSCACertificateFile
olcTLSCACertificateFile: /etc/ldap/certs/ca.mistic.lan.crt

and issue the command ldapmodify to load this new configuration to the LDAP server:

root@ldap:/etc/ldap/slap.d# ldapmodify -Y EXTERNAL -H ldapi:/// -f slapdssl.ldif
SASL/EXTERNAL authentication started
SASL username: gidNumber=0+uidNumber=0,cn=peercred,cn=external,cn=auth
SASL SSF: 0
modifying entry "cn=config"

Now the LDAP server has its own MISTIC certificate installed to handle TLS/SSL connections
plus the MISTIC CA certificate to validate the certificate received from the CAS server when
acting as an LDAP client.

To enable the LDAP protocols to be used by the service, edit the file /etc/default/sldapd to
allow connections via the secured channel:

slapd normally serves ldap only on all TCP-ports 389. slapd can also
service requests on TCP-port 636 (ldaps) and requests via unix
sockets.
Example usage:
SLAPD_SERVICES="ldap://127.0.0.1:389/ ldaps:/// ldapi:///"
SLAPD_SERVICES="ldaps:/// ldap:/// ldapi:///"

and restart the service and check the the LDAP service is listening to port 636 (ldaps://) as well
as port 398 (ldap://):

root@ldap# systemctl restart sladp

root@ldap# ss -ntl4
State Recv-Q Send-Q Local Address:Port Peer Address:Port
LISTEN 0 128 0.0.0.0:22 0.0.0.0:*
LISTEN 0 20 127.0.0.1:25 0.0.0.0:*
LISTEN 0 128 0.0.0.0:636 0.0.0.0:*
LISTEN 0 128 0.0.0.0:389 0.0.0.0:*

9.7 Installing Apereo CAS server

Building and installing the CAS service

Download the CAS overlay template from the GitHub repository for Apereo projects61 and unzip
the ZIP file at the development machine:

$ unzip cas-overlay-template-6.1.zip
Archive: cas-overlay-template-6.1.zip
83e0044cc91250393462396f665c67ef25566c0d
 creating: cas-overlay-template-6.1/
 inflating: cas-overlay-template-6.1/.gitattributes
 creating: cas-overlay-template-6.1/.github/
 inflating: cas-overlay-template-6.1/.github/FUNDING.yml

61 https://github.com/apereo/cas-overlay-template/tree/6. 1

MISTIC - Angel Linares Zapater 67

https://github.com/apereo/cas-overlay-template/tree/6.1
https://github.com/apereo/cas-overlay-template/tree/6.1

Multilevel Multifactor Single Sign-On

 inflating: cas-overlay-template-6.1/.gitignore
 inflating: cas-overlay-template-6.1/.mergify.yml
 inflating: cas-overlay-template-6.1/.travis.yml
 inflating: cas-overlay-template-6.1/Dockerfile
 inflating: cas-overlay-template-6.1/LICENSE.txt
 inflating: cas-overlay-template-6.1/README.md
 inflating: cas-overlay-template-6.1/build.gradle
 inflating: cas-overlay-template-6.1/docker-build.sh
 inflating: cas-overlay-template-6.1/docker-compose.yml
 inflating: cas-overlay-template-6.1/docker-push.sh
 inflating: cas-overlay-template-6.1/docker-run.sh
 creating: cas-overlay-template-6.1/etc/
 creating: cas-overlay-template-6.1/etc/cas/
 creating: cas-overlay-template-6.1/etc/cas/config/
 inflating: cas-overlay-template-6.1/etc/cas/config/cas.properties
 inflating: cas-overlay-template-6.1/etc/cas/config/log4j2.xml
 creating: cas-overlay-template-6.1/etc/cas/saml/
 inflating: cas-overlay-template-6.1/etc/cas/saml/.gitkeep
 creating: cas-overlay-template-6.1/etc/cas/services/
 extracting: cas-overlay-template-6.1/etc/cas/services/.donotdel
 inflating: cas-overlay-template-6.1/etc/cas/thekeystore
 inflating: cas-overlay-template-6.1/gradle.properties
 creating: cas-overlay-template-6.1/gradle/
 inflating: cas-overlay-template-6.1/gradle/dockerjib.gradle
 inflating: cas-overlay-template-6.1/gradle/springboot.gradle
 inflating: cas-overlay-template-6.1/gradle/tasks.gradle
 creating: cas-overlay-template-6.1/gradle/wrapper/
 inflating: cas-overlay-template-6.1/gradle/wrapper/gradle-wrapper.jar
 inflating: cas-overlay-template-6.1/gradle/wrapper/gradle-wrapper.properties
 inflating: cas-overlay-template-6.1/gradlew
 inflating: cas-overlay-template-6.1/gradlew.bat
 extracting: cas-overlay-template-6.1/settings.gradle
 creating: cas-overlay-template-6.1/src/
 creating: cas-overlay-template-6.1/src/main/
 creating: cas-overlay-template-6.1/src/main/jib/
 creating: cas-overlay-template-6.1/src/main/jib/docker/
 inflating: cas-overlay-template-6.1/src/main/jib/docker/entrypoint.sh

Then change into the new extracted directory to build the actual WAR to deploy:

$ cd /opt/cas-overlay-template-6.1

First, add the needed dependencies in the build.gradle file, to be able to:

• load CAS services from a JSON configuration file,

• add support for LDAP authentication,

• add support for X.509 authentication

dependencies {
 // Other CAS dependencies/modules may be listed here...
 compile "org.apereo.cas:cas-server-support-json-service-registry:${casServerVersion}"
 compile "org.apereo.cas:cas-server-support-ldap:${project.'cas.version'}"
 compile "org.apereo.cas:cas-server-support-x509-webflow:${project.'cas.version'}"
}

Once the template is configured for the SSO project, issue the gradlew build command to
compile and build the WAR file (the gradle tool will be installed if not available):

$ gradlew build
Starting a Gradle Daemon (subsequent builds will be faster)
> Task :compileJava NO-SOURCE
> Task :processResources NO-SOURCE
> Task :classes UP-TO-DATE
> Task :extractCasBootWarOverlay UP-TO-DATE
> Task :bootWar UP-TO-DATE
> Task :war SKIPPED
> Task :assemble UP-TO-DATE
> Task :compileTestJava NO-SOURCE
> Task :processTestResources NO-SOURCE
> Task :testClasses UP-TO-DATE
> Task :test NO-SOURCE
> Task :check UP-TO-DATE
> Task :build UP-TO-DATE

Deprecated Gradle features were used in this build, making it incompatible with Gradle 6.0.

MISTIC - Angel Linares Zapater 68

Multilevel Multifactor Single Sign-On

Use '--warning-mode all' to show the individual deprecation warnings.
See https://docs.gradle.org/5.6.3/userguide/command_line_interface.html#sec:command_line_warnings

BUILD SUCCESSFUL in 1s
2 actionable tasks: 2 up-to-date

Now copy the default CAS configuration folder etc/cas in the CAS server /etc directory.

$ scp -r etc/cas root@cas:/etc
root@cas's password:
log4j2.xml 100% 7217 4.6MB/s 00:00
cas.properties 100% 162 144.0KB/s 00:00
.gitkeep 100% 71 65.7KB/s 00:00
.donotdel 100% 0 0.0KB/s 00:00
thekeystore 100% 2266 1.8MB/s 00:00

and, finally, deploy the WAR file named cas.war in the directory build/libs. This is the CAS
application ready to be deployed to the CAS Tomcat server as a regular application. Simply
copy the WAR file in the /opt/tomcat/webapps directory in the CAS server:

$ scp build/libs/cas.war root@cas:/opt/tomcat/webapps
root@cas.mistic.lan's password:
cas.war 100% 90MB 160.3MB/s 00:00

and the application will be automatically deployed and run by the Tomcat server.

Testing the CAS server

Test the CAS application running in this Tomcat server and check that is accepting connections
via the DMZ proxy from the URL https://www .mistic.lan/cas. Upon receiving the connection
the CAS application redirects the user to the default login page:

MISTIC - Angel Linares Zapater 69

https://www.mistic.lan/cas
https://www.mistic.lan/cas

Multilevel Multifactor Single Sign-On

10 Appendix 2: Source code and configuration files

10.1 PROXY server configuration files

/etc/hosts

127.0.0.1 localhost
192.168.1.200 www.mistic.lan www

192.168.2.101 app.mistic.lan app
192.168.2.111 cas.mistic.lan cas

The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

/etc/network/interfaces

This file describes the network interfaces available on your system
and how to activate them. For more information, see interfaces(5).

source /etc/network/interfaces.d/*

The loopback network interface
auto lo
iface lo inet loopback

The primary network interface
allow-hotplug enp0s3
iface enp0s3 inet static

address 192.168.2.200/24
allow-hotplug enp0s8
iface enp0s8 inet static

address 192.168.1.200/24
gateway 192.168.1.1
dns-* options are implemented by the resolvconf package, if installed
dns-nameservers 1.1.1.1
dns-search mistic.lan

/etc/apache2/sites-available/www.mistic.lan.conf

<VirtualHost *:80>
 ServerName www.mistic.lan
 Redirect / https://www.mistic.lan/
</VirtualHost>
<VirtualHost *:8443>
 ServerName www.mistic.lan

 SSLEngine on
 SSLCertificateFile /srv/www/mistic/www.mistic.lan.crt
 SSLCertificateKeyFile /srv/www/mistic/www.mistic.lan.key
 SSLCACertificateFile /srv/www/mistic/ca.mistic.lan.crt

 <Location /app3>
 SSLVerifyClient optional
 SSLVerifyDepth 2

 SSLOptions +ExportCertData
 </Location>

 <Location /app4>
 SSLVerifyClient optional
 SSLVerifyDepth 2

 SSLOptions +ExportCertData
 </Location>

 Redirect / https://www.mistic.lan/

MISTIC - Angel Linares Zapater 70

Multilevel Multifactor Single Sign-On

</VirtualHost>

<VirtualHost *:443>
 ServerName www.mistic.lan

 DocumentRoot /srv/www/mistic/html/

 SSLEngine on
 SSLCertificateFile /srv/www/mistic/www.mistic.lan.crt
 SSLCertificateKeyFile /srv/www/mistic/www.mistic.lan.key
 SSLCACertificateFile /srv/www/mistic/ca.mistic.lan.crt

 <Location /app3>
 SSLVerifyClient optional
 SSLVerifyDepth 2

 SSLOptions +ExportCertData
 </Location>

 <Location /app4>
 SSLVerifyClient optional
 SSLVerifyDepth 2

 SSLOptions +ExportCertData
 </Location>

 SSLProxyEngine on

 ProxyPass /cas ajp://cas.mistic.lan:8009/cas
 ProxyPassReverse /cas ajp://cas.mistic.lan:8009/cas

 ProxyPass / https://app.mistic.lan:8443/
 ProxyPassReverse / https://app.mistic.lan:8443/

 ErrorLog /srv/www/mistic/logs/error.log
 CustomLog /srv/www/mistic/logs/access.log combined
</VirtualHost>

/etc/apache/ports.conf

If you just change the port or add more ports here, you will likely also
have to change the VirtualHost statement in
/etc/apache2/sites-enabled/000-default.conf

Listen 80

<IfModule ssl_module>
 Listen 443
 Listen 8443
</IfModule>

<IfModule mod_gnutls.c>
 Listen 443
 Listen 8443
</IfModule>

vim: syntax=apache ts=4 sw=4 sts=4 sr noet

10.2 APP server configuration files

/etc/hosts

127.0.0.1 localhost
192.168.2.101 app.mistic.lan

192.168.1.200 www.mistic.lan
192.168.2.111 cas.mistic.lan

The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

MISTIC - Angel Linares Zapater 71

Multilevel Multifactor Single Sign-On

/etc/network/interfaces

This file describes the network interfaces available on your system
and how to activate them. For more information, see interfaces(5).

source /etc/network/interfaces.d/*

The loopback network interface
auto lo
iface lo inet loopback

The primary network interface
allow-hotplug enp0s3
iface enp0s3 inet static
 address 192.168.2.101/24
 gateway 192.168.2.200

10.3 CAS server configuration files

/etc/hosts

127.0.0.1 localhost
192.168.2.101 app.mistic.lan app
192.168.2.111 cas.mistic.lan cas
192.168.2.200 proxy.mistic.lan proxy

The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

/etc/network/interfaces

This file describes the network interfaces available on your system
and how to activate them. For more information, see interfaces(5).

source /etc/network/interfaces.d/*

The loopback network interface
auto lo
iface lo inet loopback

The primary network interface
allow-hotplug enp0s3
iface enp0s3 inet static
 address 192.168.2.111/24
 gateway 192.168.2.200

/etc/cas/config/cas.properties

#==
CAS Server
#==

cas.server.name=https://www.mistic.lan
cas.server.prefix=${cas.server.name}/cas
cas.host.name=cas.mistic.lan

#==
Logging
#==

logging.config=file:/etc/cas/config/log4j2.xml

#==
Service Registry
#==

#cas.serviceRegistry.initFromJson=true
cas.serviceRegistry.json.location=file:///etc/cas/services
cas.serviceRegistry.watcherEnabled=true

MISTIC - Angel Linares Zapater 72

Multilevel Multifactor Single Sign-On

#==
Authentication
#==

#--
Static authentication
#--

Disable static authentication
cas.authn.accept.users=

#--
X.509 Authentication
#--

cas.authn.x509.principalType=SUBJECT
cas.authn.x509.principalDescriptor=$CN

#--
LDAP Authentication
#--

cas.authn.ldap[0].ldapUrl=ldaps://ldap.mistic.lan

cas.authn.ldap[0].connectionStrategy=ACTIVE_PASSIVE
cas.authn.ldap[0].useSsl=true
cas.authn.ldap[0].useStartTls=false
cas.authn.ldap[0].connectTimeout=5000

cas.authn.ldap[0].type=DIRECT
cas.authn.ldap[0].bindDn=uid=admin,ou=ca,dc=mistic,dc=lan
cas.authn.ldap[0].bindCredential=mistic

cas.authn.ldap[0].baseDn=ou=users,dc=mistic,dc=lan
cas.authn.ldap[0].subtreeSearch=true
cas.authn.ldap[0].searchFilter=uid={user}

cas.authn.ldap[0].enhanceWithEntryResolver=true

cas.authn.ldap[0].dnFormat=uid=%s,ou=users,dc=mistic,dc=lan

cas.authn.ldap[0].principalAttributeId=uid
cas.authn.ldap[0].principalAttributePassword=userPassword

#==
Attribute retrieval
#==

cas.personDirectory.principalAttribute=cn
cas.personDirectory.returnNull=false

cas.authn.attributeRepository.merger=MERGE

#--
LDAP attributes to retrieve
#--

cas.authn.attributeRepository.ldap[0].order=0
cas.authn.attributeRepository.ldap[0].ldapUrl=ldaps://ldap.mistic.lan
cas.authn.attributeRepository.ldap[0].useSsl=true
cas.authn.attributeRepository.ldap[0].useStartTls=false

cas.authn.attributeRepository.ldap[0].bindDn=uid=admin,ou=ca,dc=mistic,dc=lan
cas.authn.attributeRepository.ldap[0].bindCredential=mistic

cas.authn.attributeRepository.ldap[0].baseDn=ou=users,dc=mistic,dc=lan
cas.authn.attributeRepository.ldap[0].searchFilter=uid={0}

cas.authn.ldap[0].principalAttributeList=cn,uid,employeeType

/etc/cas/config/services/App1-1111.json

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "https://www\\.mistic\\.lan:8443/app1.*",
 "name" : "App1",
 "id" : 1111,

MISTIC - Angel Linares Zapater 73

Multilevel Multifactor Single Sign-On

 "evaluationOrder" : 1,
 "logoutType" : "FRONT_CHANNEL",
 "logoutUrl" : "https://www.mistic.lan/app1/logout_cas"
 "attributeReleasePolicy" : {
 "@class" : "org.apereo.cas.services.ReturnAllAttributeReleasePolicy"
 },
 "accessStrategy" : {
 "@class" : "org.apereo.cas.services.DefaultRegisteredServiceAccessStrategy",
 "requiredAttributes" : {
 "@class" : "java.util.HashMap",
 "employeeType" : ["java.util.HashSet", ["10" "20" "30" "40"]]
 }
 }
}

/etc/cas/config/services/App2-2222.json

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "https://www\\.mistic\\.lan:8443/app2.*",
 "name" : "App2",
 "id" : 2222,
 "evaluationOrder" : 2,
 "logoutType" : "FRONT_CHANNEL",
 "logoutUrl" : "https://www.mistic.lan/app2/logout_cas"
 "attributeReleasePolicy" : {
 "@class" : "org.apereo.cas.services.ReturnAllAttributeReleasePolicy"
 },
 "accessStrategy" : {
 "@class" : "org.apereo.cas.services.DefaultRegisteredServiceAccessStrategy",
 "requiredAttributes" : {
 "@class" : "java.util.HashMap",
 "employeeType" : ["java.util.HashSet", ["20" "30" "40"]]
 }
 }
}

/etc/cas/config/services/App3-3333.json

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "https://www\\.mistic\\.lan:8443/app3.*",
 "name" : "App3",
 "id" : 3333,
 "evaluationOrder" : 3,
 "logoutType" : "FRONT_CHANNEL",
 "logoutUrl" : "https://www.mistic.lan/app3/logout_cas"
 "attributeReleasePolicy" : {
 "@class" : "org.apereo.cas.services.ReturnAllAttributeReleasePolicy"
 },
 "accessStrategy" : {
 "@class" : "org.apereo.cas.services.DefaultRegisteredServiceAccessStrategy",
 "requiredAttributes" : {
 "@class" : "java.util.HashMap",
 "employeeType" : ["java.util.HashSet", ["30" "40"]]
 }
 }
}

/etc/cas/config/services/App4-4444.json

{
 "@class" : "org.apereo.cas.services.RegexRegisteredService",
 "serviceId" : "https://www\\.mistic\\.lan:8443/app4.*",
 "name" : "App4",
 "id" : 4444,
 "evaluationOrder" : 4,
 "logoutType" : "FRONT_CHANNEL",
 "logoutUrl" : "https://www.mistic.lan/app4/logout_cas"
 "attributeReleasePolicy" : {
 "@class" : "org.apereo.cas.services.ReturnAllAttributeReleasePolicy"
 },
 "accessStrategy" : {
 "@class" : "org.apereo.cas.services.DefaultRegisteredServiceAccessStrategy",

MISTIC - Angel Linares Zapater 74

Multilevel Multifactor Single Sign-On

 "requiredAttributes" : {
 "@class" : "java.util.HashMap",
 "employeeType" : ["java.util.HashSet", ["40"]]
 }
 }
}

10.4 LDAP server configuration files

/etc/hosts

127.0.0.1 localhost
192.168.2.110 cas.mistic.lan cas
192.168.2.111 ldap.mistic.lan ldap
192.168.2.200 proxy.mistic.lan proxy

The following lines are desirable for IPv6 capable hosts
::1 localhost ip6-localhost ip6-loopback
ff02::1 ip6-allnodes
ff02::2 ip6-allrouters

/etc/network/interfaces

This file describes the network interfaces available on your system
and how to activate them. For more information, see interfaces(5).

source /etc/network/interfaces.d/*

The loopback network interface
auto lo
iface lo inet loopback

The primary network interface
allow-hotplug enp0s3
iface enp0s3 inet static
 address 192.168.2.101/24
 gateway 192.168.2.200

/etc/ldap/slap.d/slapdssl.ldif

dn: cn=config
changetype: modify
replace: olcTLSCertificateKeyFile
olcTLSCertificateKeyFile: /etc/ldap/certs/ldap.mistic.lan.key
-
replace: olcTLSCertificateFile
olcTLSCertificateFile: /etc/ldap/certs/ldap.mistic.lan.crt
-
replace: olcTLSCACertificateFile
olcTLSCACertificateFile: /etc/ldap/certs/ca.mistic.lan.crt

/etc/ldap/slap.d/lan.mistic.ldif

This file contains the actual list organizational units and users for the MISTIC organization:

MISTIC LDIF file

MISTIC.LAN
dn: dc=mistic,dc=lan
objectClass: top
objectClass: dcObject
objectClass: organization
dc: mistic
o: MISTIC

CA
dn: ou=ca,dc=mistic,dc=lan
objectClass: organizationalUnit
ou: MISTIC CA

MISTIC - Angel Linares Zapater 75

Multilevel Multifactor Single Sign-On

dn: uid=admin,ou=ca,dc=mistic,dc=lan
objectClass: inetOrgPerson
uid: admin
userPassword: mistic
cn: admin
sn: Admin

USERS
dn: ou=users,dc=mistic,dc=lan
objectClass: organizationalUnit
ou: Users

dn: uid=user10,ou=users,dc=mistic,dc=lan
objectClass: inetOrgPerson
uid: user10
userPassword: user10
cn: user10
sn: User 10
employeeType: 10

dn: uid=user20,ou=users,dc=mistic,dc=lan
objectClass: inetOrgPerson
uid: user20
userPassword: user20
cn: user20
sn: User 20
employeeType: 20

dn: uid=user30,ou=users,dc=mistic,dc=lan
objectClass: inetOrgPerson
uid: user30
userPassword: user30
cn: user30
sn: User 30
employeeType: 30

dn: uid=user31,ou=users,dc=mistic,dc=lan
objectClass: inetOrgPerson
uid: user31
userPassword: e1NIQX1zTmF4OGR2MVhXSmhoWU9mK05lQnpMN1BsVms=
cn: user31
sn: User 31
employeeType: 30

dn: uid=user40,ou=users,dc=mistic,dc=lan
objectClass: inetOrgPerson
uid: user40
userPassword: user40
cn: user40
sn: User 40
employeeType: 40

dn: uid=user41,ou=users,dc=mistic,dc=lan
objectClass: inetOrgPerson
uid: user41
userPassword: e1NIQX1zTmF4OGR2MVhXSmhoWU9mK05lQnpMN1BsVms=
cn: user41
sn: User 41
employeeType: 40

lan.mistic.sh

This scheme can be loaded as many times as needed using an script like this at the LDAP
server:
#!/bin/bash

Clean directory
echo "Deleting previous organization..."
ldapdelete -v -D cn=admin,dc=mistic,dc=lan -x -w mistic -r dc=mistic,dc=lan
echo

Create LDAP scheme
echo "Creating MISTIC organization..."
ldapadd -v -D cn=admin,dc=mistic,dc=lan -x -w mistic -c -f lan.mistic.ldif
echo

MISTIC - Angel Linares Zapater 76

Multilevel Multifactor Single Sign-On

10.5 Applications source code

10.5.1 Home page

The home page is a simple HTML file that links to the applications installed in the server.

apps/WebContent/index.html

<!DOCTYPE HTML>
<html>
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />

<meta charset="utf-8">
 <title>MISTIC CORPORATE SITE</title>
</head>
<body>
 <h1>Welcome to the MISTIC Corporate Site</h1>
 <h4>running at app.mistic.lan</h4>

 <h3>App1</h3>
 Enter App1

 <h3>App2</h3>
 Enter App2

 <h3>App3</h3>
 Enter App3

 <h3>App4</h3>
 Enter App4

</html>

10.5.2 Client applications

The Java applications developed are all very similar, because we included no specific business
logic besides configuring them as CAS client Java applications. The exception is App4, which
has an additional requirement that needs specific code, as shown later.

As an example of a Java CAS client application, these are the files needed to create the App2
client application (App1 and App3 are similar):

app2/src/main/java/lan/mistic/app2/App2Application.java

package lan.mistic.app1;

import org.jasig.cas.client.boot.configuration.EnableCasClient;
import org.springframework.boot.SpringApplication;
import org.springframework.boot.autoconfigure.SpringBootApplication;

@SpringBootApplication
@EnableCasClient
public class App1Application {

public static void main(String[] args) {
SpringApplication.run(App1Application.class, args);

}

}

app2/src/main/java/lan/mistic/app2/ServletInitializer.java

package lan.mistic.app1;

import org.springframework.boot.builder.SpringApplicationBuilder;
import org.springframework.boot.web.servlet.support.SpringBootServletInitializer;

public class ServletInitializer extends SpringBootServletInitializer {

MISTIC - Angel Linares Zapater 77

Multilevel Multifactor Single Sign-On

@Override
protected SpringApplicationBuilder configure(SpringApplicationBuilder application) {

return application.sources(App1Application.class);
}

}

app2/src/main/java/lan/mistic/app2/App2Controller.java

package lan.mistic.app2;

import java.util.Iterator;
import java.util.Map;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;

import org.jasig.cas.client.authentication.AttributePrincipal;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.RequestMapping;

@Controller
public class App2Controller
{

 @Autowired
 @HttpSession session;

 @Autowired
 HttpServletRequest request;

 @RequestMapping("/")
 public String index(Model model)
 {
 if (request.getUserPrincipal() != null)
 {
 AttributePrincipal principal = (AttributePrincipal) request.getUserPrincipal();

 final Map attributes = principal.getAttributes();
 if (attributes != null)
 {
 Iterator<?> attributeNames = attributes.keySet().iterator();
 if (attributeNames.hasNext())
 {
 for (; attributeNames.hasNext();)
 {
 String attributeName = (String) attributeNames.next();
 final Object attributeValue = attributes.get(attributeName);
 model.addAttribute(attributeName, attributeValue);
 }
 }
 }
 }

 return "index";
 }

 @RequestMapping("/logout")
 public String logout_GET()
 {
 return "logout";
 }

 @RequestMapping("/logout_cas")
 public String logout_CAS()
 {
 session.invalidate();

 return "logout";
 }

}

MISTIC - Angel Linares Zapater 78

Multilevel Multifactor Single Sign-On

app2/src/main/java/resources/application.properties

cas.server-url-prefix=https://www.mistic.lan/cas
cas.server-login-url=https://www.mistic.lan/cas/login
cas.client-host-url=https://www.mistic.lan

app2/src/main/java/resources/templates/index.html

<!DOCTYPE HTML>
<html xmlns:th="http://www.thymeleaf.org">
<head>
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <meta charset="utf-8">
 <title>MISTIC APP2</title>
</head>
<body>

<h1>Welcome to App2 at the MISTIC Corporate Site</h1>
<h4>running at app.mistic.lan</h4>

<p>Welcome user: UNKNOWN</p>

<p>Your access level is: UNKNOWN</p>

<p>You logged in using the credential type: <span th:text="$
{credentialType}">UNKNOWN</p>

<p>at: UNKNOWN</p>

Click here to log out.
</html>

app2/src/main/java/resources/templates/logout.html

<!DOCTYPE HTML>
<html xmlns:th="http://www.thymeleaf.org">
<head>
 <meta http-equiv="Refresh" content="0; url=https://www.mistic.lan/cas/logout" />
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <meta charset="utf-8">
 <title>MISTIC APP1</title>
</head>
<body>

<h1>App1 Logout</h1>
</body>
</html>

app2/pom.xml

<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-

4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.2.1.RELEASE</version>
<relativePath/> <!-- lookup parent from repository -->

</parent>
<groupId>lan.mistic</groupId>
<artifactId>app2</artifactId>
<version>0.0.1</version>
<packaging>war</packaging>
<name>app2</name>
<description>App2@MISTIC.lan</description>

<properties>
<java.version>11</java.version>

</properties>

<dependencies>
<dependency>
<groupId>org.springframework.boot</groupId>

MISTIC - Angel Linares Zapater 79

Multilevel Multifactor Single Sign-On

<artifactId>spring-boot-starter-web</artifactId>
</dependency>
<dependency>
 <groupId>org.springframework.boot</groupId>
 <artifactId>spring-boot-starter-thymeleaf</artifactId>
</dependency>

 <dependency>
<groupId>org.jasig.cas.client</groupId>
<artifactId>cas-client-support-springboot</artifactId>
<version>3.6.1</version>

 </dependency>
 <dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-tomcat</artifactId>
<scope>provided</scope>

</dependency>
<dependency>

<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
<exclusions>

<exclusion>
<groupId>org.junit.vintage</groupId>
<artifactId>junit-vintage-engine</artifactId>

</exclusion>
</exclusions>

</dependency>
</dependencies>

<build>
<finalName>${artifactId}</finalName>
<plugins>

<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>

</plugin>
</plugins>

</build>

</project>

App4, on the other hand, requires some dedicated code in the controller to deal with the extra
validations about the type of credentials used in the login operation.

app4/src/main/java/lan/mistic/app4/App4Controller.java

package lan.mistic.app4;

import java.util.Iterator;
import java.util.Map;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpSession;

import org.jasig.cas.client.authentication.AttributePrincipal;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.stereotype.Controller;
import org.springframework.ui.Model;
import org.springframework.web.bind.annotation.RequestMapping;

@Controller
public class App4Controller {

 @Autowired
 HttpSession session;

 @Autowired
 HttpServletRequest request;

 @RequestMapping("/")
 public String index(Model model)
 {

 if (request.getUserPrincipal() != null)
 {
 AttributePrincipal principal = (AttributePrincipal) request.getUserPrincipal();

MISTIC - Angel Linares Zapater 80

Multilevel Multifactor Single Sign-On

 final Map attributes = principal.getAttributes();
 if (attributes != null)
 {
 Iterator<?> attributeNames = attributes.keySet().iterator();
 System.out.println("Attributes:");
 if (attributeNames.hasNext())
 {
 for (; attributeNames.hasNext();)
 {
 String attributeName = (String) attributeNames.next();
 final Object attributeValue = attributes.get(attributeName);
 model.addAttribute(attributeName, attributeValue);

 // Check for a correct credential type
 if (attributeName.equals("credentialType") &&
 ! attributeValue.equals("X509CertificateCredential"))
 {
 return "unauthorized";
 }
 }
 }
 }
 }

 return "index";
 }

 @RequestMapping("/logout")
 public String logout_GET()
 {
 return "logout";
 }

 @RequestMapping("/logout_cas")
 public String logout_CAS()
 {
 session.invalidate();

 return "logout";
 }
}

In case of denying the access, at the application level, an intermediate web page template is
returned to redirect the user to the logout page after showing a message:

app4/src/main/java/resources/templates/unauthorized.html

<!DOCTYPE HTML>
<html xmlns:th="http://www.thymeleaf.org">
<head>
 <meta http-equiv="Refresh" content="10; url=https://www.mistic.lan/cas/logout" />
 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8" />
 <meta charset="utf-8">
 <title>MISTIC APP4</title>
</head>
<body>

<h1>App4 Logout</h1>

<p>You accessed this application using a credential type not allowed.</p>
<p style="color:red">You will be logged out automatically in 10 seconds...</p>

</body>
</html>

MISTIC - Angel Linares Zapater 81

Multilevel Multifactor Single Sign-On

11 Glossary

authentication: the action of verifying that a user/application is who claims to be.

authorization: the action of granting permissions to access or use a resource.

BYOD: Bring your own device. A policy that allows, and fosters, the users to use their own
personal devices (e.g. smartphones) in the organization network.

certification authority: an organization that is trusted to sign other certificates so the client
can trust the final certificates by validating the chain of certification from the final certificate
up to the trusted authority (abbr. CA).

commercial off the shelf: a software component, already built by a third party, usually
selected to be used to compose, or integrate with, a more complex product along with other
parts (abbr. COTS).

CDDL: Common Development and Distribution License. A free and open source license from
Sun Microsystems.

demilitarized zone: a kind of perimeter network (abbr. DMZ).

fork: forking an open source project is the process of copying the codebase under a new name
and start from there a new, different project from the original, usually due to different criteria
of the future development of the product by a set of developers or due to changes in the
licensing of the original product.

LDIF: LDAP Data Interchange Format. A file format to interchange data and provide
configuration information to LDAP servers.

perimeter network: an intermediate network set between a public network, like the Internet,
and the internal network to isolate and protect the internal servers from direct access. To
achieve this, all the connections from the external users pass through servers located in this
intermediate layer.

predictive project management: an approach to managing a project where all the tasks are
defined and planned before the actual work on these tasks starts. This approach is also
known as waterfall project management.

proxy web server: an intermediate server used to cache and serve web pages from an
external web server from the local network, to avoid consume Internet bandwidth, control the
pages accessed, etc.

reverse proxy: an intermediate server, usually in a DMZ, dedicated to protecting internal
server from external users.

role base access control: a model to account for the user’s roles in an organization to assign
specific permissions to some set of secured resources (abbr. RBAC)

servlet: a small Java program running in a servlet container or application server, that
interacts via HTTP/HTTPS requests with its clients.

single point of failure: a component or part of a system that, when unavailable, renders the
whole system inaccessible.

software as a service: a paradigm for software distribution where, instead of providing
copies of the software to the user on some media, like CD-ROM, DVD, etc., the solution is
provided on the Internet for the users to use it without any local software installation.

user repository: a database with information about the users in the system with their
identifiers, names, position, and other corporate attributes, etc. plus meta-data about the
user like the account status, statistics, etc.

vendor lock-in: an undesired situation where a company or organization has developed its
solutions tightly based on some proprietary product or technology, thus making the costs of
changing to another provider or technology very expensive.

MISTIC - Angel Linares Zapater 82

Multilevel Multifactor Single Sign-On

12 Bibliography

Bell. E., LaPadula, L. (1973) Secure Computer Systems: Mathematical Foundations. MITRE
Technical Report 2547, Volume I. March 1973.

Coulouris, G., Dollimore, J., Kindberg, T., Blair, G. (2012) Distributed Systems: Concepts
and Design. International 5th Edition. Pearson Education Limited.

Deeming, D. (1976) A lattice model of security information flow. Comm. of the ACM. Vol 19.
Num.5. May 1976.
https://doi.org/10.1145/360051.360056

Duncan, A., Creese, S., Goldsmith, M. (2015) An overview of insider attacks in cloud
computing. Concurrency and Computation: Practice & Experience. Vol 27. Num. 12.
https://doi.org/10.1002/cpe.3243

Fett, D., Küsters, R., Schmitz, G. (2016) A Comprehensive Formal Security Analysis of
OAuth 2.0 Proc. of the 2016 ACM SIGSAC Conference on Computer and Communications
Security. October 2016. p 1204–1215
https://doi.org/10.1145/2976749.2978385

Gollmann, D. (2002) Computer Security. John Wiley and Sons.

Grimes, R. (2019) The many ways to hack 2FA. Network Security, September 2019, p. 8-13.

Kotrappa, S., Kulkarni, P.J. (2010) Multilevel Security Using Aspect Oriented Programming
AspectJ. 2010 International Conference on Advances in Recent Technologies in
Communication and Computing.
https://doi.org/ 10.1109/ARTCom.2010.87

Mayer, A., Niemietz, M., Mladenov, V., Schwenk, J. (2014) Guardians of the Clouds:
When Identity Providers Fail. Proc. of the ACM Conference on Computer and Communications
Security, 7 November 2014, p. 105-116
https://doi.org/10.1145/2664168.2664171

Maachaoui M., Abou El Kalam A., Fraboul C., Ait Ouahman A. (2012) Multi-level
Authentication Based Single Sign-On for IMS Services. In: De Decker B., Chadwick D.W. (eds)
Communications and Multimedia Security. CMS 2012. Lecture Notes in Computer Science, vol
7394. Springer, Berlin, Heidelberg
https://doi.org/10.1007/978-3-642-32805-3_14

Naik T., Koul. S. (2013) Multi-Dimensional and Multi-Level Authentication Techniques.
International Journal of Computer Applications 75, p. 17-22, August 2013
https://doi.org/10.5120/13163-0845

Sandhu, R.S. (1993) Lattice-Based Access Control Models. IEEE Computer. Vol. 26. Num. 11.
November 1993
https://doi.org/10.1109/2.241422

San-Tsai S. and Beznosov, K. (2012) The devil is in the (implementation) details: an
empirical analysis of OAuth SSO systems. CCS '12: Proc. of the 2012 ACM conference on
Computer and Communications Security. October 2012. p. 378–390
https://doi.org/10.1145/2382196.2382238

Usha Rani, K. and Rajeswari, P. (2018) An Efficient Approach for Multilevel Authentication
System for Banking Services. Int. Journal for Research in Applied Science & Engineering
Technology (IJRASET) Volume 6 Issue II, March 2018.

MISTIC - Angel Linares Zapater 83

https://doi.org/10.1145/2382196.2382238
https://doi.org/10.1109/2.241422
https://doi.org/10.5120/13163-0845
https://doi.org/10.1007/978-3-642-32805-3_14
https://doi.org/10.1145/2664168.2664171
https://doi.org/10.1109/ARTCom.2010.87
https://doi.org/10.1007/978-3-642-32805-3_14
https://doi.org/10.1145/2976749.2978385
https://doi.org/10.1002/cpe.3243
https://doi.org/10.1145/360051.360056

	1 Introduction
	1.1 Context and Justification

	2 Single Sign-On Authentication
	2.1 Motivation
	2.2 Basic SSO authentication
	2.2.1 SSO trade-offs

	2.3 Available SSO solutions
	2.3.1 Open Source solutions
	2.3.2 Commercial solutions

	3 Project Definition
	3.1 Purpose
	3.2 Objectives
	3.3 Other requirements and constraints
	3.3.1 Solution constraints
	3.3.2 Cultural constraints

	3.4 Methodology
	3.4.1 Practical approach
	3.4.2 Project management

	4 Project Plan
	4.1 Project Scope
	4.1.1 Work Breakdown Structure
	4.1.2 Out of scope

	4.2 Project Schedule
	4.2.1 Gantt diagram

	5 Theoretical Study
	5.1 SSO characterization
	5.1.1 The authentication process
	5.1.2 The authorization process
	5.1.3 SSO Policies

	5.2 Analysis of Alternative Products
	5.2.1 Available alternatives
	SSO server
	User repositories
	Application servers
	Proxy
	Digital certificates

	5.2.2 Comparison of alternatives

	6 Solution Architecture and Design
	6.1 Solution Architecture
	6.1.1 Protected Resources
	6.1.2 DMZ
	6.1.3 SSO subsystem

	6.2 Solution Design
	6.2.1 The Apps
	6.2.2 The APP Server
	6.2.3 The CAS Server
	6.2.4 The LDAP Server
	6.2.5 The SSO policy
	6.2.6 Ancillary components
	6.2.7 The network setup

	7 Solution Implementation
	7.1 The development environment
	7.1.1 Host environment
	7.1.2 Virtual environment
	7.1.3 Certificates infrastructure
	Certificates at the user’s browser
	CA root certificate at the user’s browser
	Certificates for the PROXY and LDAP server
	Certificates for the APP and CAS server

	7.1.4 Custom applications
	The Home Page
	Developing the CAS client applications

	7.2 The production environment
	7.2.1 The DMZ Proxy
	7.2.2 The APP server
	7.2.3 The LDAP server
	7.2.4 The CAS server
	Configuring the CAS application
	Configuring CAS services

	7.3 Solution integration
	7.3.1 Checking the SSO policy implementation
	Accessing as a user with user-name and password
	Accessing as a user with a digital certificate
	Accessing an app that accepts only digital certificates

	8 Project results
	8.1 Specific results
	8.2 Generic results and remarks
	8.3 Future work
	8.3.1 Theoretical approach
	8.3.2 Practical implementation

	9 Appendix 1: Installation Procedures
	9.1 Creating a new machine from the base image
	Cloning the base image
	Configuring the network adapters
	Customizing the cloned servers

	9.2 Creating the certificates infrastructure for MISTIC.lan
	9.2.1 Creating a Certification Authority certificate
	9.2.2 Creating MISTIC-signed X.509 certificates
	9.2.3 Creating Java keystores for the Tomcat servers

	9.3 Installing Amazon Corretto 11
	9.4 Installing Apache httpd as a reverse proxy
	Installing the web server
	Setting up the reverse proxy

	9.5 Installing Apache Tomcat
	Installing Apache Tomcat
	Configuring Apache Tomcat for SSL connections

	9.6 Installing OpenLDAP
	9.7 Installing Apereo CAS server

	10 Appendix 2: Source code and configuration files
	10.1 PROXY server configuration files
	10.2 APP server configuration files
	10.3 CAS server configuration files
	10.4 LDAP server configuration files
	10.5 Applications source code
	10.5.1 Home page
	10.5.2 Client applications

	11 Glossary
	12 Bibliography

