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Esta obra está sujeta a una licencia de Reconocimiento - NoComercial - CompartirIgual

3.0 España de CreativeCommons.

i

https://creativecommons.org/licenses/by-nc-nd/3.0/es/


ii



FICHA DEL TRABAJO FINAL

T́ıtulo del trabajo: Distant galaxies analysis with Deep Neural Networks.

Nombre del autor: Raúl Cacho Mart́ınez
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Nombre del PRA: Albert Solé Ribaltal
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Abstract

In this work we face a very common problem in Astrophysics. One of the first parameters to

obtain from a galaxy spectrum is the redshift. The redshift at which a galaxy is, can tell us a lot

of things about the large scale structure of the Universe. However, the telescope time is limited,

and it would take a lot of time to survey the whole sky observing the spectrum of galaxies. This

is the reason why surveys using narrowband photometry (for example ALHAMBRA or JPAS)

are arising. These surveys allow to observe a large number of galaxies in much less time than

using spectroscopy, thus making astronomers able to disentangle the structure of the Universe

and the features of very distant galaxies.

Traditionally, the features have been derived using the technique known as SED-fitting,

which consists in deriving the features of the galaxy from its spectrum. This is not an easy

problem, not only because of the large number of variables in play (velocity, velocity dispersion,

age and metallicity for each single stellar population, or SSP), but because of the degeneracies.

A degeneracy happens when two different SSPs show almost undistinguishable spectra. For

example, a degeneracy exists between age and metallicity, with and old and metal-rich1 SSPs

showing similar spectrum to that of a young and metal-poor SSPs.

In this Master Thesis we evaluate the ability of Deep Neural Networks, using as input the

observations of a galaxy, to obtain the parameters of the galaxy (redshift, mass and galaxy

type).

1In astrophysics, all elements different from Hydrogen and Helium are called metals
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Resumen

En este trabajo vamos a afrontar un problema habitual en Astrof́ısica. Uno de los primeros

parámetros a medir en el espectro de una galaxia es el redshift o desplazamiento al rojo. El de-

splazamiento al rojo de una galaxia puede dar mucha información acerca de la estructura a gran

escala del Universo. Sin embargo, el tiempo de telescopi oes limitado, y llevaŕıa mucho tiempo

observar todo el cielo obteniendo el espectro de las galaxias. Por ello están proliferando los

catálogos de observaciones basados en photometŕıa de banda estrecha (por ejemplo, ALHAM-

BRA o JPAS). Estos catálogos permiten observar un gran núnero de galaxias en mucho menos

tiempo que usando espectroscoṕıa, permitiendo a los astrónomos desentrañar la estructura del

Universo a gran escala y pudiendo medir las caracteŕısticas de las gaalxias más lejanas.

Tradicionalmente, las caracteŕısticas de las galaxias se ha obtenido usando una técnica

conocida como SED-fitting o ajuste espectral. Esta técnica consiste en ajustar un espectro

a las observaciones fotométricas, permitiendo obtener las caracteŕısticas de la galaxia. Este

problema no es sencillo, no solo por la gran cantidad de variables involucradas, sino también

por las degeneraciones existentes. Una degeneración ocurre cuando dos poblaciones estelares

simples (SSP) tienen espectros prácticamente indistinguibles a pesar de que sus parámetros son

completamente diferentes. Es ampliamente conocida, por ejemplo, las degeneraciones existentes

entre la edad y la metaliciad, por la que una galaxia vieja y rica en metales 2 tiene un espectro

muy parecido al de una galaxia joven pobre en metales.

En este trabajao evaluaremos la capacidad de Redes Neuronales Profundas de, usando como

entrada las observaciones de una galaxia, obtener los parámetros fundamentales de dicha galaxia

(desplazamiento al rojo, masa, y tipo de galaxia).

Palabras clave: Galaxies, stellar decomposition, inversion problem, stellar content, Deep

Neural Networks, Deep Learning.

2En astrof́ısica se llaman metales a todos los elementos más allá del Helio
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Chapter 1

Introduction

1.1 Description

Spectral Synthesis is a well known and very extended technique to recover the stellar pa-

rameters of populations underlying the spectra (or the spectral energy distribution, SED)

of galaxies, with a lot of tools already developed for this purpose (see, for example http:

//www.sedfitting.org/Fitting.html.

The most advanced codes (like STARLIGHT, Cid Fernandes et al. 2005; STECKMAP,Ocvirk

et al. 2006a,b; or PPxF, Cappellari and Emsellem 2004) can recover non-parametric distribu-

tions of kinematics. However, it is still complicated to establish a clear relationship between

age, metallicity and kinematics for each stellar population (see Chapter 4 in Cacho, 2015).

Despite some efforts have been made in this direction, the results are still not accurate, as some

degeneracies are involved in the process, and the uncertainties in the models are still large.

However, the high resolution SED fitting techniques can only be applied when nearby galax-

ies are involved. For distant galaxies, SED fitting must be based on narrow band filters, seeming

like low resolution spectroscopy. In the last few years, some projects like ALHAMBRA or JPAS

have succeeded in observing galaxies with a large number of overlapping filters.

The main advantage of this technique is that imaging is much less time-consuming than

spectroscopy, and large areas of the sky can be observed in a single shot. Therefore, a larger

number of galaxies can be observed, highly increasing the amount of data available for astro-

physical studies.

1.2 Motivation

There are several motivations to achieve the goals identified in Sect. 1.3. The main motivation

is continuing the work started during my PhD (Cacho, 2015). One of the main caveats was the

3
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4 Introduction

lack of consistency in the results obtained with different codes devoted to recovering the stellar

properties of galaxies. This was specially true when more then two SSPs were present in the

spectrum. Moreover, in Astrophysics, the implantation of Machine/Deep Learning is not yet

fully implemented. Therefore, there are not many tools using ML/DL. In fact most of them are

devoted to Computer Vision to identify, or classify different features in celestial bodies (see, for

example Tuccillo et al., 2016; Hon et al., 2018; Silburt et al., 2019; Gillet et al., 2019; Herbel

et al., 2018).

A secondary motivation is my present job, in which we want to initiate Machine Learning

into some projects, in order to detect, identify and classify different types of electromagnetic

emissions. Therefore, getting some expertise in the use of deep neural networks (DNN) in the

analysis of electromagnetic signals could be of great advantage.

1.3 Goals

During the implementation of this project, it came out that the original goals could not be

achieved within the scope of a Master Thesis. Therefore, the goals had to be changed. The

original goals will be described in Appendix B.1. The final objectives of this work are the

following:

1. Learn the whole life cycle of data, in particular the capture, the cleaning, the analysis

and the visualization.

2. Being able to design one or several models capable of predicting different variables related

to distant galaxies (redshift and stellar mass, among others).

3. To design, train and test a neural network, capable of accepting the emission of the

galaxies in different predefined filters as the input, and returning a reliable array as close

as possible to the parameters previously obtained for the galaxy using other techniques.

1.4 Methodology

To achieve the goals described in Sect 1.3, we will try to adapt some different algorithms used for

a different purpose. For example, in telecommunications, Neural Networks are used to detect,

identify and classify communication signals (O’Shea et al., 2016; West and O’Shea, 2017; Chen

et al., 2019). Whilst the objectives are different, the fundamentals are similar, as there are a

number of different signals underlying the spectrum. Moreover, these signals can be associated

to templates modified under different conditions which can be parametrized.

The tools to be used in the project are the following:
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• Python 3.6.6, with the following frameworks and modules installed

– AstroPY, version 3.2.1

– ipython, version 6.5.0

– keras, version 2.2.4 using TensorFlow backend

– matplotlib, version 2.2.2

– numpy, version 1.15.2

– PyAstronomy, version 0.13.0

– scipy, version 1.1.0

– spectres

– TensorFlow, version 1.12.0

• ProjectLibre and MSProject, for the planning

• SublimeText, for coding

• TeXworks, using MikTeX backend for writing the report

1.5 Planning

The next page shows a Gantt diagram in which high level tasks have been identified and

planned. The beginning and end of the project correspond to the beginning and end of the

semester. The Master Thesis was planned to span for 18 weeks. To cover the 12 ECTS credits,

which correspond, approximately to 300h, the mean dedication should be around 17 hours a

week.



Id Nombre de tarea Duración Comienzo Fin Predecesoras

1 Definición y planificación del trabajo 9 días mié 18/09/19 dom 29/09/19

2 Lectura de bibliografía 6 días mié 18/09/19 mié 25/09/19

3 Definición del trabajo 3 días jue 26/09/19 dom 29/09/192

4 PEC 1 1 día dom 29/09/19 dom 29/09/19

5 Estado del Arte 16 días? lun 30/09/19 dom 20/10/191
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Chapter 2

State of the Art

2.1 Computer Vision and Signal Processing

Computer vision (CV) and feature detection are among the more prominent techniques when

talking about Machine Learning. A quick look at https://paperswithcode.com/sota shows

that there are around 700 papers related to CV, whilst the next discipline, Natural Language

Processing (NLP) has approximately 1/3 of publications.

Very similar to CV is signal processing (SP). Both of them try to find and recognize features

to identify objects in pictures or signals in electromagnetic spectra. Li et al. (2019) reviews

algorithms and different approaches to signal analysis, in particular, to modulation recognition.

It has to be mentioned that these techniques work under a series of premises:

• They are used on communication signals, which have a dominant periodic component

(however, some non-periodic signals can be found along with the carrier periodic wave).

This opens the door to a simplification of the problem using analytical techniques, such

as Fourier or Wavelet Transforms (FT, WT)

• The modulation and features of the signals are finite, and well known. You only have to

describe the frequency of the signal (probably not known, but constrained by the brand

and model of the radio-frequency receivers) and the modulation1 (which can be analog:

AM, FM, ...; or digital: ASK, APSK, QPSK, 8PSK,...). Once these two parameters are

known, the signal can be demodulated, and its content accessed (unless it is encrypted).

• The signals do not overlap, this is, there is only a signal at a given frequency. In scenarios

in which two or more signals of the same frequency arrive to the receiver simultaneously,

the performance of these algorithms drops dramatically.

1In https://en.wikipedia.org/wiki/Modulation further explanation and a list of possible modulations
can be found.

7
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2.2 Machine Learning in Astrophysics

Machine and Deep learning are just incipient techniques in Astrophysics. They are mostly used

for data mining, and for the analysis of large amount of data, understanding this as lots of

objects (galaxies, stars, etc.). In fact, the most extended use is for classifying images in large

surveys. For example, Convolutional Neural Networks have been used to discriminate between

stars and galaxies (Kim and Brunner, 2016) in the Sloan Digital Sky Survey (SDSS) or for

classification galaxies by their morphology (Katebi et al., 2019; Walmsley et al., 2019) in the

Galaxy Zoo Project 2.

Another extended use of Machine Learning in Astrophysics is what is known as Data Aug-

mentation (DA). DA consists in taking a dataset and, by transforming it in permitted ways (for

example, an image can be stretched, flipped, cropped, ...), increasing the number of different

elements in the dataset. This can be useful to generate synthetic galaxies, in order to simulate

surveys, or how galaxies with given features will be observed through telescopes. (Ma et al.,

2018; Regier et al., 2018; Fussell and Moews, 2019; Reiman and Göhre, 2019; Khan et al., 2019).

2.3 Stellar Population Synthesis

Despite Stellar Population Synthesis is one of the most powerful techniques to understand the

behavior and evolution of galaxies, not many steps forward have been achieved. For example,

one of the latest code released, FIREFLY (Wilkinson et al., 2017), still makes use of “classical”

statistics to get the results.

However, there are some groups trying to introduce Machine Learning for this purposes.

For example Salvato et al. (2019) approaches the inversion problem to SED3 fitting. Also Simet

et al. (2019); Lovell et al. (2019) use Machine Learning to derive galactic properties from the

spectrum of galaxies. However, they only take into account the Star Formation History of

galaxies. Kinematics is not considered, and it is well known that degeneracies exist between

kinematics and age, leading to wrong results if kinematics is not taken into account.

2.4 Narrow band filters surveys

During the late 80’s, the first attempt to survey the whole sky, the Digital Sky Survey (DSS),

was made. It consisted of a compilation of photographic plates taken from telescopes around

the world. It was taken in two different epochs, using three different filters (red, blue and

2also based on SDSS
3SED comes from Spectral Energy Distribution, and usually corresponds to low resolution spectra of galaxies



2.4. Narrow band filters surveys 9

infrared).

Almost two decades later, in 2000, a pilot study was launched to observe the sky in different

filters. In particular, 5 different filters were used(called u, g, r, i, z ), from ultraviolet (u) to

infrared (z ). Not only photometric data was taken, but also, using optical fibers, the spectra

of the brightest object was taken, allowing for direct comparison between photometric and

spectroscopic data, proving the capability of measuring galactic parameters from images instead

of spectra.

This studies led to the appearance of different surveys4 using narrow band filters to observe

and study distant galaxies. The data of two of the most important surveys (ALHAMBRA and

JPAS) was taken in Spanish observatories.

2.4.1 ALHAMBRA survey

ALHAMBRA (Advanced Large, Homogeneous Area Medium Band Redshift Astronomical Sur-

vey) is a survey (and a catalog with the same name) of galaxies taken from the 3.5m telescope

in Calar Alto (Almeŕıa, Spain). This survey observed well known fields of galaxies (previously

observed with other space and ground-based telescopes, like Hubble, or Spitzer), in order to

measure the redshift of the galaxies in the fields, among other magnitudes.

The fields were observed using 24 different narrow band filters (see Fig. 2.1.

Finally, the catalog consists in the flux of around 450,000 objects in the different filters in

which they were observed (see section 3.1 for details).

2.4.2 JPAS survey

J-PAS (Javalambre Physics of the Accelerating Universe Astrophysical Survey5) will cover at

least 8,000 deg2 in approximately 5 years, using an unprecedented system of 56 narrow band

filters in the optical. The filter system (see Fig. 2.2) was optimized to pursue three main

scientific goals: first, to accurately measure photometric redshifts for galaxies; second, to study

stellar populations in nearby galaxies; and third, to resolve broad spectral features of objects

such as AGNs and supernovae.

It is being performed in the Observatorio Astronómico de Javalambre, in Teruel (Spain),

and plans to observe around half a billion of galaxies. This survey is still in progress, with

the first data released in December 2019, covering 1 deg2, and with data of more than 64,000

galaxies

4http://alhambrasurvey.com/otros_surveys.php
5http://www.j-pas.org/

http://alhambrasurvey.com/otros_surveys.php
http://www.j-pas.org/
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Figure 2.1: Wavelength coverage and spectral transmission of the filters used in ALHAMBRA
Survey

Figure 2.2: Wavelength coverage and spectral transmission of the filters used in JPAS Survey



Chapter 3

Implementation

3.1 The data

The data used for this Master Thesis is the result of the ALHAMBRA survey. ALHAMBRA is

a photometric survey devoted to the observation of distant galaxies in some well known fields.

The main goal of the survey is to measure the flux of galaxies in different narrow band filters

(each filter overlapping with the adjacent ones) in order to estimate the stellarity1, the range

of minimum and maximum possible redshift, along with the most probable one, and the mass

of stars in the galaxy, derived from its luminosity.

The data is publicly available, and can be downloaded from the web of the project 2. The

data consists of a csv file with the data of 446,343 objects. For each object, among other, the

following information can be found:

• ID (int): Identification number of the observed object.

• ObjID (int): Alhambra Identification of the detection, constructed using the detection

image (3 digits), the field (1 digit), the pointing (2 digits), the CCD (1 digit) and the

Filter set ID (5 digits).

• Field (int): The field where the object is in.

• Pointing (int): The pointing of the telescope within the field.

• CCD (int): the number of the sensor in which the object was captured.

• RAdeg and DECdeg (float): the coordinates of the sky in which the object can be found.

1The probability that a given object is a star or a galaxy
2http://svo2.cab.inta-csic.es/vocats/alhambra/download/alhambra.csv.gz

11
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• x, y (float): coordinates on the CCD of the centroid of the object.

• area, fwhm (float): area (in pixels and arcsec) covered by the 90% of the light of the

object.

• stell (float): indicator of the object being a star or a galaxy.

• ell (float): ellipticity of the object.

• a, b, theta (float): semi major, semi minor axis and orientation of the major axis of the

object.

• RK, RF (float): Kron apertures and fraction-of-light radii.

• FXXXW, dFXXXW (float): Flux and associated uncertainty of the object on the filter

with central wavelength XXX.

• F814W 3arcs, dF814W 3arcs (float): Flux and associated uncertainty contained in an

aperture of diameter 3 arcsec in the image obtained with the filter F814.

• zb 1, zb min 1, zb max 1 (float): most probable redshift, and minimum and maximum

possible values of the redshift for the observed object.

• tb 1 (int): spectral type of the object.

• Stellar Mass (float): Mass of the stellar content of the galaxy.

• M ABS 1: absolute (AB) magnitude for the Johnson B-band.

3.2 Preprocessing

Data is read as a pandas dataframe. Most of the magnitudes of interest are well determined,

and there is no need for interpolating or removing NaNs. However, sometimes the flux in some

filter may be too low or too high, being marked by 99 and -99, respectively. These are very

extreme values, they were clipped to 0 and 27. These values are not randomly defined, as there

will be no galaxies with fluxes over or under them.

For the categorical values, we convert the values to categorical data, considering the ranges

in which each category falls.

The need of normalizing the data was also explored. A comparison was made between the

results obtained using normalized and not-normalized data, obtaining similar results (with the

obvious exception of the value range). Therefore we decided to not normalize the data.
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3.3 Modeling

The main goal is to predict the stellarity, redshift, spectral type, stellar mass of a galaxy, and

absolute magnitude of a galaxy using the observed flux in each of the filters.

One possible solution is to implement a DNN which would take as the input the measured

values of the flux in each filter. However, as the predicted variables have different natures, we

could not use only one single neural network for the task: stellarity is a categorical variable

(with 2 categories), whilst the other parameters are continuous magnitudes.

Moreover, a large amount of cross talk among the outputs was detected. Therefore the best

strategy is to build four independent Neural Networks, one for each predicted variable, and

ensemble them to work as one neural network instead of four independent networks.

3.3.1 Neural network for redshift

This is a neural network designed as a correlation model between the input and the predicted

redshift. The neural network consists in an input layer of 75 elements and a hidden layer of

120 elements. These two layers have a linear activation function. The output layer consists of

1 neuron with no activation function.

Adam is the chosen optimizer, “mean square error” the loss function and r2 the metric.

Please note that the regression is not linear, and therefore r2 is not a valid measurement of the

goodness of the fit, but only an indicator of it. This can be seen as r2 cannot be higher than 1

in linear regression.

No overfitting was detected, so no regularization is needed.

Figure 3.1: Model designed for the calculation of redshift.
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3.3.2 Neural network for stellarity

In this case the neural network is built for classification. An architecture with 4 layers has

been implemented: the input layer has 75 neurons with a relu activation function; the output

layer has two neurons (one for each category) and softmax activation function; and two hidden

layers were added with 500 and 600 neurons respectively, with relu activation functions.

In this case, the optimizer is adam, the loss function is “categorical crossentropy” and the

metric is “accuracy”.

Figure 3.2: Model designed for the calculation of stellarity.

3.3.3 Neural Network for Stellar Mass

This network is similar to that for the redshift, as this network is also a regression model. In

this case, there are three hidden layers with 120, 200 and 50 elements with linear activation

function (as shown in Fig. 3.3). For this neural network we use adam optimizer, with mse and

r2 as loss function and metrics, respectively.
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Figure 3.3: Model designed for the calculation of Stellar Mass.

3.3.4 Neural network for Spectral Type

This network is devoted to regression, as the spectral type is a continuous magnitude. This

network consists in an input layer of 75 elements, an output layer of 5 elements (as there are 5

categories) and 3 hidden layers with 120 and 500 neurons.

3.3.5 Training

First of all, the optimal training epochs for these neural networks has to be decided. A training

for a large number of epochs is performed, plotting both loss function and metrics. The optimal

number of epochs is, approximately, the number when both the loss and metrics functions start

to settle. To do this, one random sample of 10% (44,635) elements from the original sample

was built for training and a sample of 1% (4,463) of the galaxies for validating.

The optimal number of epochs is as follows:
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Figure 3.4: Model designed for the calculation of Spectral Type.

• redshift: 80 epochs

• stellarity: 20 epochs

• stellar mass: 7 epochs

• spectral type: 10 epochs

Once the optimal number of epochs is established, the neural networks are built using a

95% of the sample (424,025 objects) for training, and a 5% (22,317 objects) for validation.

3.3.6 Postprocessing

Once the results are obtained, they must be turned into valid values with physical sense.

Therefore the predicted data has to be transformed, using the inverse transformations in the

opposite order as we did for the output data used for training. To undo the normalization, the
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results have to be multiplied by the range of the original variable and add the minimum value

of that variable in the dataset, so the original range of the variable can be recovered.

As it will be shown in Sect. 4, the correlation between expected and predicted values for

the neural networks devoted to regression is strong, but there is a need for a correction to

recover the original values. This correction consists in fitting a high order polynomial between

the expected and the predicted values. Once the value for a particular input is predicted, we

apply the polynomial on that value to get the final result.

3.3.7 Ensemble

Instead of combining the neural networks and combine the results, the best option was to

handle each result in a separate way. However, a short function was written to simplify the

calculation of the results from a single input, returning an array with all the outputs from the

neural networks.
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Chapter 4

Results

4.1 Redshift

Figure 4.1 shows a comparison of the predicted (output) and the expected results for the

redshift. As it can be seen there is a linear positive correlation between both of them below

z = 0.9. However, over this value, the results cannot be trusted, as there is more than one

possible value of the expected redshift for each predicted redshift.

This issue responds to the fact that there are much less galaxies with redshifts between 0.9

and 1.0, as it will be discussed later.

19
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Figure 4.1: Comparison of the prediction as a function of the expected output for the redshift.

4.2 Stellarity

To analyze the accuracy of the calculation of the parameter compare the predicted and expected

labels is compared (see Table 4.1). The table shows the predicted and expected labels for the

test set. The table shows that, for the 22318 items in the set, 22106 were classified correctly,

whilst 212 were misclassified. This means around a 99% accuracy in the prediction. Figure 4.2

shows the confusion matrix obtained for the stellarity.
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Expected

Galaxy Star

Galaxy 21700 23
Predicted

Star 189 406

Table 4.1: Predicted and expected frequencies of the stellarity

Figure 4.2: Confusion matrix for the parameter stellarity.

4.3 Stellar Mass

Figure 4.3 shows the predicted stellar mass against the expected mass for the test dataset. In

this case, there is a linear positive correlation between both magnitudes. However, the slope of

the correlation is not the unity.
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Figure 4.3: Comparison of the values for the parameter Stellar Mass.

4.4 Spectral Type

Figure 4.4 shows the predicted value for the galaxies in the test dataset, as a function of the

expected value. In this occasion, the correlation is clear, with a correlation between them close

to one.
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Figure 4.4: Comparison of the Spectral type for the test dataset.
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Chapter 5

Summary and Conclusions

In this work it has been proven the capability of neural networks to solve a complex problem in

Astrophysics as is the measurement of different properties in distant galaxies using only narrow

band imaging of the galaxies. To achieve this main goal, the data had to be taken from the

original source, “cleaned” and transformed prior to its analysis.

In total, four different models were developed in order to interpret the data and to predict

the output (redshift, stellarity, stellar mass and spectral type) of new inputs consisting of the

data taken from the observations.

We show the comparison between the estimated redshift using neural networks and the

redshift obtained in ALHAMBRA survey. Whilst in ALHAMBRA the uncertainties are around
∆z
1+z

= 0.03, we obtain uncertainties lower than 0.006.

It is also shown how the neural network classifies the objects as stars or galaxies with an

accuracy very close to 100%, with the advantage that no threshold or assumption has to be

taken into account. Moreover, the algorithm considers not only the shape and the properties

of an object in a single image, but also the observed flux in each of the filters.

Robust predictions of the stellar mass of a galaxy using neural networks can be performed.

The mass is a magnitude which is tightly linked to the evolution of the Universe, and knowing

the mass of the galaxies at different epochs, may shed some light on how the Universe evolved

in its early stages.

Related to this is the spectral type of the galaxies. The spectral type gives an idea about

how the galaxy is, and how it has evolved. Again, knowing the evolution of individual galaxies

is really important to understand the evolution of the Universe itself.

With this proof of concept, we think that it is possible to use DL techniques to the study

of distant galaxies, improving the telescope efficiency (as only images are needed, instead of

spectroscopy, much more time consuming) and thus being able to observe more galaxies in the

same amount of time.

25
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With the advent of large telescopes (like GTC, TMT, etc...) the smaller telescopes will have

a second youth as survey telescopes. Using DL in this surveys, can lead to increased efficiency

and homogeneity, which may be a key for the interoperability of the small telescopes.



Chapter 6

Future Work

From the conclusions obtained in this work, the following lines are proposed for an improvement

of the results and/or their application on different fields.

• The problem faced in this work is clearly a non-linear problem. Neural networks are

non-linear regressors, so they should be able to solve non-linear regression problems. As

it has been shown in Sect. 4, there is a margin for improvement. It is worth trying a

different number of hidden layers with different numbers of neurons in each layer.

• The first dataset of JPAS survey has become publicly available recently. JPAS relies on

the same concept as ALHAMBRA, this is, imaging galaxies in narrow band filters and

calculating their parameters from the observation in those filters. The biggest difference

is that JPAS uses 56 different filters, while ALHAMBRA consists of 20 filters. It would

be interesting to test the capability of similar models to those developed in this work to

predict the data in JPAS survey.

• Classical SED fitting methods for the estimation of photometric redshifts usually try to

recover the spectrum of the galaxy. This is usually done by considering a reduced number

of stellar populations (usually two), convolving the spectra with the transmission of each

filter and comparing with the observed fluxes. It could be interesting to use DL techniques

to estimate the spectrum. For example, a number of galaxy spectra could be taken from a

library, and implement a Generative Adversarial Neural Network to predict the spectrum

responsible of the measured emission in each of the narrow band filters.

• One extra step is to decrease the width of the filters. In the limit, there will be a

convergence between narrow band photometry and low resolution spectroscopy. It could

be studied if the techniques used in this work would be also valid when talking about

spectroscopy. It would be necessary to estimate the minimum or maximum spectral

27
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resolution at which these techniques are still useful, as well as other parameter which

are not taken into account here, like signal-to-noise ratio, intrinsic properties of galaxies,

conditions in which the data were obtained, etc.
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Appendix A

Code

A.1 Frameworks

from astropy.io import fits

import glob

import numpy as np

import os

import pandas as pd

import pylab as plt

import seaborn as sns

import tensorflow as tf

from keras.models import Sequential, load_model

from keras.layers import Dense, Dropout, Flatten, Reshape, Conv1D,

MaxPooling1D, GlobalAveragePooling1D, Activation

from keras.optimizers import SGD, Adam, RMSprop, Adadelta

from keras.regularizers import l1

from keras.utils import to_categorical

from sklearn.metrics import classification_report, confusion_matrix

import keras.backend as K
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A.2 Function definition

# root mean squared error (rmse) for regression (only for Keras tensors)

def rmse(y_true, y_pred):

from keras import backend

return backend.sqrt(backend.mean(backend.square(y_pred - y_true), axis=-1))

# mean squared error (mse) for regression (only for Keras tensors)

def mse(y_true, y_pred):

from keras import backend

return backend.mean(backend.square(y_pred - y_true), axis=-1)

# coefficient of determination (R^2) for regression (only for Keras tensors)

def r_square(y_true, y_pred):

from keras import backend as K

SS_res = K.sum(K.square(y_true - y_pred))

SS_tot = K.sum(K.square(y_true - K.mean(y_true)))

return ( 1 - SS_res/(SS_tot + K.epsilon()) )

def min_max(x):

return (x + np.min(x))/(np.max(x) - np.min(x))

A.3 Reading Data

Alhambra_data = pd.read_csv(’../Alhambra/alhambra.csv’, delimiter=’,’)

filters = [’id’, ’objID’,

’Field’, ’Pointing’,

’CCD’,

’RAdeg’,’DECdeg’,

’x’,’y’,’area’,’fwhm’,

’stell’, ’ell’,

’a’,’b’,’theta’,

’rk’,’rf’,’s2n’,

’photoflag’,

’F365W’,’dF365W’,
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’F396W’,’dF396W’,

’F427W’,’dF427W’,

’F458W’,’dF458W’,

’F489W’,’dF489W’,

’F520W’,’dF520W’,

’F551W’,’dF551W’,

’F582W’,’dF582W’,

’F613W’,’dF613W’,

’F644W’,’dF644W’,

’F675W’,’dF675W’,

’F706W’,’dF706W’,

’F737W’,’dF737W’,

’F768W’,’dF768W’,

’F799W’,’dF799W’,

’F830W’,’dF830W’,

’F861W’,’dF861W’,

’F892W’,’dF892W’,

’F923W’,’dF923W’,

’F954W’,’dF954W’,

’J’,’dJ’,

’H’,’dH’,

’KS’,’dKS’,

’F814W’,’dF814W’,

’F814W_3arcs’,’dF814W_3arcs’,

’F814W_3arcs_corr’,’nfobs’,’xray’,’PercW’,’Satur_Flag’]

parameters = [’Stellar_Flag’]

wavelengths = [3650,

3960,

4270,

4580,

4890,

5200,

5510,

5820,
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6130,

6440,

6750,

7060,

7370,

7680,

7990,

8140,

8300,

8610,

8920,

9230,

9540,

12500,

16500,

21900

]

np.random.seed(42)

Alhambra_data_shuffled = Alhambra_data.sample(frac=1).reset_index(drop=True)

A.4 Preprocessing

input_data = Alhambra_data_shuffled[filters]

input_data[input_data == -99] = 99

input_data = input_data.clip(0, 27)

output_data = Alhambra_data_shuffled[parameters]

output_data_norm = Alhambra_data_shuffled[parameters]

output_data_norm.loc[:,’zb_1’] = min_max(Alhambra_data_shuffled

.loc[:,’zb_1’])

output_data_norm.loc[:,’zb_min_1’] = min_max(Alhambra_data_shuffled

.loc[:,’zb_min_1’])

output_data_norm.loc[:,’zb_max_1’] = min_max(Alhambra_data_shuffled
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.loc[:,’zb_max_1’])

output_data_norm.loc[:,’tb_1’] = min_max(Alhambra_data_shuffled

.loc[:,’tb_1’])

output_data_norm.loc[:,’Stell_Mass_1’] = min_max(Alhambra_data_shuffled

.loc[:,’Stell_Mass_1’])

output_data_norm.loc[:,’M_ABS_1’] = min_max(Alhambra_data_shuffled

.loc[:,’M_ABS_1’])

A.5 Training and Test sets

We show here the code for zb 1, but the code is the same for every parameter:

param = ’zb_1’

input_dim = len(input_data.loc[0,:])

output_dim = len(output_data.loc[:, param])

train_perc = 0.10

test_perc = 0.01

n_train = int(output_dim*train_perc)

n_test = int(output_dim*test_perc)

NN_train_input = np.array(input_data.loc[0:n_train, :])

NN_train_output = np.array(output_data_norm.loc[0:n_train, param])

.reshape(n_train+1, 1)

NN_train_output = np.power(NN_train_output, 0.1)

NN_test_input = np.array(input_data.loc[0:n_test, :])

NN_test_output = np.array(output_data_norm.loc[0:n_test, param])

.reshape(n_test+1, 1)

NN_test_output = np.power(NN_test_output, 0.1)
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A.6 Neural Network for zb 1

model = Sequential()

model.add(Dense(120, input_dim=len(filters), activation=’linear’))

model.add(Dense(1))

#model.add(Dropout(0.05))

sgd = SGD(lr=1e-12, decay=1e-6, momentum=1, nesterov=False)

model.compile(optimizer=’adam’, loss=’mse’, metrics=[r_square])

history = model.fit(NN_train_input, NN_train_output,

epochs=150,

batch_size=64,

validation_data=(NN_test_input, NN_test_output),

verbose=1)

model.save(’model_Zb1.h5’)

A.7 Neural Network for stellarity

model = Sequential()

n_Dense = np.linspace(24, 1, 2)

model.add(Dense(2, input_dim=len(filters), activation=’relu’))

model.add(Dense(3, activation=’relu’))

model.add(Dense(2, activation=’softmax’))

model.compile(optimizer=’adam’,

loss=’categorical_crossentropy’,

metrics=[’accuracy’])

history = model.fit(NN_train_input, NN_train_output,

epochs=150,

batch_size=16,

validation_data=(NN_test_input, NN_test_output),
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verbose=1)

model.save(’model_stellarity.h5’)
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Appendix B

First Project

During this project, the original considered goals were different to the ones in the late stages

of the project. This happened as it turned out that they were too ambitious to be achieved

within the temporal scope of the project.

This Appendix summarizes the goals, the fails and the successes identified during the early

stages of the project, as a starting point for reaching the original goals with enough time and

dedication.

B.1 Goals

The main objectives of the work were the following:

1. To build a dataset for training and testing, formed by SSP!s (SSP!s) with known

parameters (kinematics, age and metallicity). The dataset will be formed by a large

number of spectra of different signal-to-noise ratios (S/N or SNR, as this is a key factor

for correctly deriving the stellar parameters) and arrays containing the parameters of the

SSPs. The input arrays (spectra) will have a size of 1×4300, while the output arrays will

have an estimated size of 1×17501

2. To design, train and test a Neural Network, capable of accepting the spectra of the

galaxies as the input, and returning a reliable array as close as possible to the parameters

with which the spectrum was built. By means of a confusion matrix, we can estimate the

accuracy of the Neural Network.

3. Once a high accuracy is obtained, the next goal should be to define the range of

spectral parameters (in terms of spectral resolution, SNR, etc.) for which the Neural

1If the size of the network proves to be excessive for the computer available, there is the option of reducing
both the sizes input and the output arrays.
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network performs better.

4. Establish a comparison among the results obtained with different codes and the results

obtained with the Neural Network.

5. Apply the Neural Network to real well known galaxies. This step will be of great

usefulness to measure the performance of the Neural Network with real data, which may

be significantly different from synthetic spectra.

B.2 Achievements

From the goals enumerated previously, the following could be achieved:

1. A large dataset was built from the MILES stellar population library (Falcón-Barroso et al.,

2011). This dataset was built using data augmentation, creating custom transformations

(simulating redshift, radial velocity, velocity dispersion, extinction by dust and emission

by ionized gas). This transformations were applied to a low number of templates which

were assigned a weight, normalized and added to simulate the spectrum of a galaxy.

2. A neural network was designed, trained and tested, being able to ingest and process the

data.

B.3 Implementation

The first approach considered to achieve the goals was to try and estimate the parameters of

the transformations applied to each one of the 350 templates in the MILES library. As there are

6 parameters for each one (redshift, radial velocity, velocity dispersion, extinction, gas emission

and weight) the network has to derive 1,400 parameters.

Once this approach proved unreachable, the decision was to simplify the problem. A new

set of data was created, but including only up to 4 different templates. With this approach, the

number of parameters associated to each parameter is 8 (the same six as before, but we have

to add the age of the stars contributing to the spectrum in the template, and the fraction of

chemical elements relative to hydrogen). In this case, the network has to predict 32 parameters

B.4 Difficulties

While training and testing the neural network, some issues arised:
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• As there are many input and output parameters, a large amount of crosstalk among

neurons has been detected. This issue is amplified by the fact that the neural network

was devoted to very different tasks at the same time. For instance, for a single template,

the network has to predict: redshift, which ranges from 0 to 1; radial velocity, with values

between -500 and 500 km/s; chemical abundances, which goes from 0 to 0.03...

• The input is too large. Considering that the spectra in MILES goes from 3540.5Å to 7409

Å with a spectral resolution of 0.9Å, the input array has a size of 4300. As the output

size is 1400, the network necessarily consists of a very large number of parameters (in

the order of 40 to 300 million). Therefore, it is necessary a huge amount of data to be

able to build large enough training and testing datasets. It is estimated that a minimum

of 500,000 synthetic galaxies are needed, which is a very time- and storage-consuming

process.

B.5 New approaches

During the execution of the project, the two different approaches were incorrect, at least taking

into account the temporal frame of the project. As future work, the following perspectives

should be considered:

• Dividing the network in smaller networks. This point of view should be taken into ac-

count. The ideal situation would be to implement a number of networks equal to the

number of outputs (1400). However, training, testing and using the model could be very

computationally expensive, so a better approach would be to split the network in 6, one

for each type of parameter to be predicted. A compromise solution would be to build 350

networks, one to predict the values associated to each of the templates.

• Using Invertible Neural Networks. These are a kind of networks which are trained using

the input as output and vice versa. Once the network is trained, it is inverted (al-

gebraically). This approach has the difficulty that the network must cover a series of

requirements in order to be invertible.

• Using Generative networks. The idea behind this approach is to generate a synthetic

spectrum with a set of parameters and compare the synthetic and the real spectrum. A

reward function has to be defined, in order to maximize the function when the two spectra

are identical.
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