

Citation for published version

Cabot, J. & Teniente López, E. (2006). Incremental Evaluation of OCL
Constraints. Lecture Notes in Computer Science, 4001(), 81-95.

DOI
https://doi.org/10.1007/11767138_7

Document Version

This is the Accepted Manuscript version.
The version in the Universitat Oberta de Catalunya institutional repository,
O2 may differ from the final published version.

Copyright and Reuse

This manuscript version is made available under the terms
of the Creative Commons Attribution Non Commercial No Derivatives
licence (CC-BY-NC-ND)
http://creativecommons.org/licenses/by-nc-nd/3.0/es/, which permits
others to download it and share it with others as long as they credit you,
but they can’t change it in any way or use them commercially.

Enquiries

If you believe this document infringes copyright, please contact the
Research Team at: repositori@uoc.edu

Universitat Oberta de Catalunya Research archive

https://doi.org/10.1007/11767138_7
http://creativecommons.org/licenses/by-nc-nd/3.0/es/

Incremental Evaluation of OCL Constraints

Jordi Cabot1 and Ernest Teniente2

1Estudis d'Informàtica i Multimèdia, Universitat Oberta de Catalunya
jcabot@uoc.edu

2 Dept. Llenguatges i Sistemes Informàtics, Universitat Politècnica de Catalunya
teniente@lsi.upc.edu

Abstract: Integrity checking is aimed at determining whether an operation
execution violates a given integrity constraint. To perform this computation
efficiently, several incremental methods have been developed. The main goal of
these methods is to consider as few of the entities in an information base as
possible, which is generally achieved by reasoning from the structural events
that define the effect of the operations. In this paper, we propose a new method
for dealing with the incremental evaluation of the OCL integrity constraints
specified in UML conceptual schemas. Since our method works at a conceptual
level, its results are useful in efficiently evaluating constraints regardless of the
technology platform in which the conceptual schema is to be implemented.

1. Introduction

Integrity constraints (ICs) play a fundamental role in defining the conceptual schemas
(CSs) of information systems (ISs) [8]. An IC defines a condition that must be
satisfied in every state of an information base (IB). The state of an IB changes when
the operations provided by the IS are executed. The effect of an operation on an IB
may be specified by means of structural events [18]. A structural event is an
elementary change in the population of an entity or relationship type, such as insert
entity, delete entity, update attribute, insert relationship, etc.

The IS must guarantee that the IB state resulting from the execution of an operation
is consistent with the ICs defined in the CS. This is achieved by ensuring that the
structural events that define the operation’s effect do not violate any ICs. This process,
which is known as integrity checking, should be performed as efficiently as possible.

Efficiency is usually achieved by means of incremental integrity checking, i.e. by
exploiting the information that is available on the structural events to avoid having to
completely recalculate the ICs. Hence, the main goal of these methods is to consider
as few of the entities in the IB as possible during the computation of IC violations.

For example, a ValidShipDate constraint in the CS in Fig. 1.1, which states that “all
sales must be completely delivered no later than 30 days after the payment date,” may
be violated by the execution of the AddSaleToShipment(s:Sale,sh:Shipment)
operation, which creates a new relationship between sale s and shipment sh, since sh
may be planned for a date beyond the last acceptable date for s.

 Sale
id : Natural
paymentDate: Date

Shipment
id: Natural
plannedShipDate: Date

1..* *DeliveredIn

Fig. 1.1. A conceptual schema for sales and their shipments

To verify that ValidShipDate is not violated after the execution of the previous
operation it is sufficient to consider sale s and shipment sh of the new relationship, as
incremental methods do, rather than carrying out a naive evaluation which must check
the previous constraint for all sales and shipments.

In this paper, we propose a new method for coping with the incremental evaluation
of ICs at the conceptual level. We assume that CSs are specified in UML [12] and that
ICs are defined as invariants written in OCL [11]. For each IC ic in the CS and for
each structural event ev that may violate it, our method provides the most incremental
expression that can be used instead of the original IC to check that the application of
ev does not violate ic. By most incremental we mean the one that considers the
smallest number of entities of the IB. Our method ensures the most incremental
evaluation of the ICs regardless of their specific syntactic definition in the original CS.

If our method were applied to the previous example, it would return an expression
whose computation would only verify that the value of the attribute plannedShipDate
of sh does not exceed the value of the attribute paymentDate of s by more than 30
days.

Since our method works at the conceptual level, it is not technology-dependent.
Therefore, the most incremental expressions obtained by our method can be used to
efficiently verify the ICs regardless of the target technology platform chosen to
implement the CS. Therefore, our results may be integrated into any code-generation
method or any MDA-compliant tool to automatically generate an efficient evaluation.

To the best of our knowledge, ours is the first incremental method for OCL
constraints. Several proposals have been made for an efficient evaluation of OCL
constraints, but with limited results. Moreover, our method is no less efficient than
previous methods for the incremental computation of integrity constraints in deductive
or relational databases. A comparison with related research is provided in this paper.

The research described herein extends our previous research in [2], in which we
proposed a method for computing the entities that might violate an integrity constraint;
this method provides partial efficiency results in the evaluation of ICs. The main
limitation of that research was that the results were totally dependent on the particular
syntactic definition of the IC chosen by the designer, which involved, in the worst
case, an almost complete recomputation of the IC after certain structural events. For
instance, with the previous definition of ValidShipDate, after the AddSaleToShipment
operation, [2] would verify that the planned date of all shipments of s is correct with
regards to the payment date (instead of considering just sh and s, which is achieved
using the method we propose here).

The paper is organized as follows. In the subsequent section we present several
basic concepts. Section 3 describes our method for incremental integrity checking.
Section 4 introduces an optimization for dealing with sets of structural events. An
example of the method’s application is shown in Section 5. Section 6 compares our
approach to related research. Finally, Section 7 presents the conclusions and points
out further work.

2. Basic concepts

Our method assumes that CSs are specified in UML [12]. In UML, entity types and
relationship types are represented as classes and associations respectively, while
entities are called objects and relationships are referred to as links.

Additionally, the method assumes that textual ICs are defined as invariants written
in OCL [11]. Graphical constraints supported by UML, such as cardinality or
disjointness constraints, can be transformed into a textual OCL representation, as
shown in [6]; therefore, they can also be handled by our method.

As an example, consider the CS in Fig. 2.1, which was designed to (partially)
model a simple e-commerce application. The CS contains information on the sales and
the products they contain. Sales can be delivered split up into several shipments and
shipments can be reused to ship several sales. Finally, sales may be associated with
registered customers who benefit from discounts depending on their category.

The CS includes three textual ICs. The first IC (CorrectProduct) verifies that all
products have a price greater than zero and a max discount of 60% (the maximum
discount permitted by the company). The second one is the previous ValidShipDate
IC, stating that sales must be completely shipped within 30 days after the payment
date (and that therefore all shipments of that sale must be planned before that date).
Finally, NotTooPendingSales holds if customers do not have pending sales for an
amount greater than the maxPendingAmount value in their category.

Note that an IC in OCL is defined in the context of a specific type1 or context type,
and its body (the Boolean OCL expression that states the IC condition) must be
satisfied by all instances of that type. For example, in ValidShipDate, Sale is the
context type, the variable self refers to an entity of Sale and the date condition (the
body) must hold for all possible values of self (i.e. all entities of Sale).

Category

Sale
Purchases 1..*

name : String
maxPendingAmount:Money
discount: Percentage

id : Natural
date: Date
amount: Money
paymentDate: Date

context Product inv CorrectProduct: self.price>0 and self.maxDiscount<=60
context Sale inv ValidShipDate: self.shipment->forAll(s| s.plannedShipDate<=self.paymentDate+30)
context Category inv NotTooPendingSales:
self.customer->forAll(c| c.sale->select(paymentDate>now()).import->sum()<=self.maxPendingAmount)

SaleLine
quantity: Natural

0..1
Customer

Id: Natural
name : String
nationality: String
creditCard: String

BelongsTo
*
1

Product
id : Natural
name: String
price: Money
maxDiscount:Percentage
description: String

1..**

Shipment
id: Natural
plannedShipDate: Date
address: Address

1..*

*
DeliveredIn

 Fig. 2.1. Our running example

As we mentioned above, ICs must be checked after structural events have been
applied. In this paper, we consider the following kinds of structural event types:

1 In UML 2.0, the context type may be either an entity type or a relationship type since both

types are represented in the UML metamodel as subclasses of the Classifier metaclass.

- InsertET(ET): inserts an entity in the entity type ET
- UpdateAttribute(Attr,ET) updates the value of attribute Attr.
- DeleteET(ET) deletes an entity of entity type ET.
- SpecializeET(ET) specializes an entity of a supertype of ET to ET.
- GeneralizeET(ET) generalizes an entity of a subtype of ET to ET.
- InsertRT(RT) creates a new relationship in the relationship type RT.
- DeleteRT(RT) deletes a relationship of relationship type RT.

3. Determining the incremental expressions of an OCL constraint

In this section, we describe the method we propose for obtaining the most incremental
expressions that should be used instead of the original IC, to ensure that the IC is not
violated when a structural event is applied to the IB. We start by providing an
overview of the method in Section 3.1. Then, in Sections 3.2 to 3.4, we define the
three main operators used in our method to obtain these incremental expressions. An
implementation of the method is described in [4].

3.1 An overview of the method

A direct evaluation of the original OCL definition of an IC, i.e. the one specified in
the CS, may be highly inefficient. For example, a direct evaluation of the constraint
ValidShipDate (as stated in Fig. 2.1) after an event InsertRT(DeliveredIn), which
creates a new relationship d between sale s and shipment sh, would require taking into
account all sales (because this is the context type) and, for each sale, all its shipments
(because of the forAll operator), leading to a total cost proportional to PsxNsh, where
Ps is the population of the Sale type and Nsh is the average number of shipments per
sale. However, if we take the structural event into account we may conclude that the
following expression:

exp ≡ d.shipment.plannedShipDate<=d.sale.paymentDate+30
suffices to verify ValidShipDate (since the IB satisfies exp iff ValidShipDate also
holds). Evaluating exp only requires that two entities be taken into account: the
shipment participating in d (d.shipment) and its sale (d. sale). Clearly, evaluating this
expression is much more efficient than directly evaluating the original IC.

The main goal of our method is to translate an OCL constraint ic into the set of
most incremental OCL expressions that allow an efficient evaluation of ic every time a
structural event is applied over the IB. In general, there will be a different most
incremental expression for each IC and each structural event that may violate it.

By incremental we mean that the evaluation of the expression does not need to take
all entities of the context type of ic and all their relationships into account, since it can
reason forward directly from the entities that have been updated by the structural
event. The most incremental expression is the one that considers the lowest number of
entities of the IB. Obviously, the more entities required to evaluate an expression the
less efficient is its computation. We use inc<ic,ev> to denote the most incremental

expression for a constraint ic after a structural event ev has been applied. In the
previous example, exp is the most incremental expression for ValidShipDate after the
event InsertRT(DeliveredIn) has been applied.

The events that may violate an IC are called potentially violating structural events
(PSEs) for that IC and may be determined by the method proposed in [1]. Applied to
our example, this method would state that only InsertRT(DeliveredIn),
UpdateAttibute(plannedShipDate, Shipment) and UpdateAttribute(paymentDate,
Sale) can violate ValidShipDate. Note that other events such as DeleteET(Sale) or
UpdateAttribute(address,Shipment) may never violate that IC. The most incremental
expressions of an IC must only be defined by events in the set of PSEs of the IC.

Determining the most incremental expressions depends on the given PSE and on
the structure of the IC. Moreover, it generally requires changing the context type of
the initial IC, since we cannot guarantee that the context chosen by the designer to
specify the IC is the most appropriate one as far as efficiency is concerned.

Intuitively, our method works as follows. First, it selects from all possible context
types for the constraint (those types referenced in the body of the IC) the most
appropriate one with respect to the structural event (i.e. the one that will produce the
most efficient expression at the end of the process for that event). Second, it redefines
the body of the IC in terms of this new context type ct’. Third, it computes the
instances of ct’ that may have been affected by the event. Finally, the incremental
expression is obtained by refining the body of the IC to be applied only over those
relevant instances. This procedure is specified in the following algorithm.

Algorithm: Obtaining the most incremental expressions
Given an IC ic, which is defined in terms of a context type ct and an event ev (where
ev is a PSE for ic), the following IncrementalExpression algorithm returns the
inc<ic,ev> expression:

IncrementalExpression(ic: Constraint, ev: Event) : Expression
Type bestContext := BestContext(ic,ev)
Constraint ic’:= Translate(ic,ev,bestContext);
Expression rel := Relevant (ic’, ev)
return (Merge(rel, ic’))

where
1. BestContext(ic:Constraint, ev:,Event) returns the type that must be used as a

context of ic to generate an incremental expression for ic after event ev.
2. Translate(ic:Constraint, ev:Event, t:Type) returns an IC ic’, which is defined

using t as a context type, such that ic’ is equivalent to ic regarding ev.
3. Relevant(ic:Constraint, ev:Event) returns an OCL expression whose evaluation

returns the instances of ct (the context type of ic) affected by ev.
4. Merge(exp:Expression, ic:Constraint) creates the final inc<ic,ev> expression by

applying b (the body of ic) to all entities reached in exp (the expression
computing the relevant instances). If the evaluation of exp returns a single
instance (i.e. all navigations included in exp have ‘1’ as a maximum multiplicity),
this operator just replaces all occurrences of self in b with exp. Otherwise, the
final expression is exp-> forAll(v|b) where all occurrences of self in b are
replaced with v.

Let us again consider the event InsertRT(DeliveredIn) and the constraint
ValidShipDate. As we have seen their incremental expression is exp, which is
obtained using our method in the following way:

1. BestContext(ValidShipDate,InsertRT(DeliveredIn)) = DeliveredIn
2. Translate(ValidShipDate, InsertRT(DeliveredIn), DeliveredIn) =

context DeliveredIn inv newIC:
self.shipment.plannedShipDate<=self.sale.paymentDate+30

3. Relevant(newIC,InsertRT(DeliveredIn)) = d, the new relationship created
by the InserRT event over DeliveredIn

4. Merge(d,newIC) (i.e. inc<ValidShipDate,InsertRT(DeliveredIn)>) =
d.shipment.plannedShipDate <= d.sale.paymentDate+30

We show in [3] that the expression generated by the previous algorithm is always
the most incremental one.

In the rest of this section we formally define the BestContext, Translate and
Relevant operators. To facilitate their definition, our method assumes a normalized
representation of the ICs. The normalization reduces the number of different OCL
operators appearing in their body (for instance, replacing the implies operator with a
combination of the not and or operators or the exists operator with a combination of
the select and size operators). This representation is automatically obtained from the
initial IC and does not entail a loss of expressive power of the ICs we deal with.

All three operators work with the ICs represented as an instance of the OCL
metamodel [11]. According to this representation, they can handle the OCL
expression by forming the body of the IC as a binary tree, in which each node
represents an atomic subset of the OCL expression (an operation, an access to an
attribute or an association, etc.) and the root is the most external operation of the OCL
expression. As an example, in Fig. 3.1 the constraint ValidShipDate is represented by
means of the OCL metamodel. Each node is marked with the set of PSEs produced by
that node [1] (i.e. the events that are PSEs of the IC because of that particular node).

3.2 BestContext(ic:Constraint, ev:,Event)

The best context to verify an IC ic after applying an event ev to the IB is automatically
drawn from the node where ev is assigned in the tree representing IC. We use nodeev to
denote this node (when different nodeev exist we repeat the process for each node).
The BestContext operator always returns the same result regardless of the original
syntactic definition of ic, since all possible syntactic definitions of ic must contain
nodeev (because all of them may be violated by ev).

To determine the context type, we must consider whether nodeev participates (i.e. is
included) in an individual condition or in a collection condition. Intuitively, individual
conditions must be verified for each individual entity (for instance, each individual
product must satisfy the CorrectProduct IC). In contrast, collection conditions must
be verified by the set of entities affected by the condition as a whole (for instance, in
NotTooPendingSales, the sum of all sales of a customer must satisfy the
maxPendingAmount condition). Individual and collection conditions are formalized in
Definitions 3.2.1 and 3.2.2.

 :IteratorExp
 (forAll)

:OperationCallExp
 (<=)

:AssociationEndCallExp
 (shipment)

:VariableExp
 (self)

:AttributeCallExp
(plannedShipDate)

:VariableExp
 (sh)

UpdateAttribute(plannedShipDate, Shipment)

InsertRT(DeliveredIn)

:AttributeCallExp
 (paymentDate)

:VariableExp
 (self)

UpdateAttribute(paymentDate, Sale)

:OperationCallExp
 (+)

:IntegerLiteralExp
(30)

Fig. 3.1. The OCL metamodel of ValidShipDate and its set of PSEs

Definition 3.2.1 A node n participates in a collection condition when n is used to
compute an aggregate operator. Formally, when n verifies that {∃ n’| n’∈ PathRoot(n)
and n’.oclIsTypeOf(OperationCallExp) and n’.referredOperation ∈ {size, sum,
count}}, where PathRoot(n) is defined as the ordered sequence of nodes encountered
between n (the first node in the sequence) and the root of the tree (the last one).
OclIsTypeOf and referredOperation are elements defined in the OCL metamodel.

Definition 3.2.2. A node n participates in an individual condition if it does not
participate in a collection condition.

Clearly, since individual conditions must hold for each individual entity restricted
by the constraint, the most incremental expression will be the one that only takes into
account the single entity updated by the event. The original IC must then be redefined
in terms of the type of entity to obtain this expression.

Proposition 3.2.3 Let ev be an event over an entity e (resp. relationship r) of type E
(resp. R). If nodeev is included in an individual condition, BestContext returns the
same type E (resp. R) as the best context.

In our example, the constraint ValidShipDate may be violated by three different
structural events, all of them included in individual conditions: InsertRT(DeliveredIn),
UpdateAttribute(plannedShipDate,Shipment) and
UpdateAttribute(paymentDate,Sale), as shown in the tree in Fig. 3.1. Their best
contexts are therefore DeliveredIn, Shipment and Sale respectively.

The same idea cannot be applied to events included in collection conditions since
those conditions must be satisfied by the collection as a whole and not by each single
instance. Thus, to consider the modified entity or relationship is not enough to verify it
because, after every modification, the whole collection must be recomputed again and
the other entities in the collection must also be taken into account. For this reason, in
selecting the best context it must be ensured that, after each modification, only the
exact set of entities involved in the condition is checked.

For instance, an InsertRT(Purchases) event (i.e. the assignment of a sale s to a
customer c) may violate the constraint NotTooPendingSales. In this case, the
maxPendingAmount condition must be satisfied by the set of sales of each customer;
thus, after assigning a sale to a customer c, it is enough to verify the set of sales of c.
In this way, the Customer type is the origin of the collection condition. Note that
Category is not the origin since it is not the union of sales of all customers in a
category who must satisfy the condition.

Therefore, if the event ev in the call to the BestContext operator is included in a
collection condition, the type defined as the origin of the collection is the best context.
This will be especially true when dealing with sets of events (see Section 4).

Definition 3.2.4 Given a node n, PathVar(n) is defined as the ordered sequence of
nodes encountered between n (the first node) and the node representing the self
variable (the last node) of the subtree to which n belongs. More precisely, PathVar(n)
is computed as follows:
- The first node is n.
- For each node included in PathVar we also include its child (or the left child if

the node has two children), if any.
- When a node n included in PathVar represents a variable other than self (i.e.

variables used in select or forAll iterators), we add as a left child the node
pointed to in n.referredVariable.loopExpr (i.e. the node representing the iterator;
referredVariable and loopExpr are associations defined in the OCL metamodel).

Definition 3.2.5 Given an integrity constraint ic, an event ev and the sequence
PathVar(nodeev), nodeor, the node origin of a collection condition is
- The left child of a node n∈ PathVar(nodeev), representing a forAll iterator, when

a select iterator is not encountered between the self variable and n.
- Otherwise, the last node in PathVar(nodeev) (i.e. the node representing the self

variable). If following the self variable there is a set of nodes representing
navigations r1...rn where all ri have a maximum multiplicity of 1, then the final
nodeor is the node at rn.

Proposition 3.2.6 Let ev be an event included in a collection condition. The type of
the entities at nodeor is then returned as the best context.

In the NotTooPendingSales constraint, Customer is the origin of the condition since
it is the type of the entities accessed in the node previous to the forAll iterator (the
node navigating to customers from category). Therefore, Customer is the BestContext
for all events included in the collection condition (updates of the paymentDate and
amount attributes and inserts of Purchases relationships). The PSEs
UpdateAttribute(maxPendingAmount) and InsertRT(BelongsTo) are included in
individual conditions; thus, their best contexts are Category and BelongsTo
respectively (as determined by Proposition 3.2.3).

3.3 Translate(ic:Constraint, ev:Event, t:Type)

Given an IC ic that has a context type t and an event ev, the Translate operator returns
an IC ic’ defined over a type t’, t’≠ t, which is semantically equivalent to ic with

respect to event ev. Having applied ev over the IB, ic’ and ic are semantically
equivalent when ic’ is satisified iff ic is also satisfied in the new state of the IB.

The Translate operator extends the method we presented in [5] since the context
changes required in the work reported here present two particularities that can be used
in order to provide a more optimized redefinition than the one in the previous
reference.

First, t’ is the type returned by the BestContext operator (this implies, for instance,
that t’ is referenced in the body of ic). Second, ic and ic’ need only be equivalent with
regards to the particular event ev. Therefore, ic’ need not worry about all the literals of
ic that cannot be violated by ev.

For instance, given that the body of ic follows the pattern L1 and L2 (as
CorrectProduct in Fig. 2.1) and that ev can only induce a change in the truth value of
L1, ic’ does not need to include the verification of L2. L2 was true before ev was
executed (since all the states of the IB must be consistent) and, since ev does not affect
it, L2 will still hold after its execution. When it does not hold it is because some other
event, ev’, has been applied. The incremental expression for ev’ will take care of this
possible violation.

Translate is defined in two separate steps. First, the tree is pruned to remove the
irrelevant conditions. Then the remaining tree is redefined over the context type t’ to
obtain the final body of the translated constraint ic’.

Definition 3.3.1 Let ev be an event attached to a node nodeev. A node nand
representing an AND condition may be pruned if {nand ∈ PathRoot(nodeev) and ¬∃ n’|
n’∈ PathRoot(nand) and n’.oclIsTypeOf(IteratorExp) and n’.name=”select”}. Nand
nodes are replaced with the child node nchild ∈ PathRoot(nodeev). Consequently, the
other child of nand (i.e. the other condition) is removed from the tree.

Definition 3.3.2 Given a pruned tree tr that represents a constraint ic defined using a
context type t, an event ev and the new context type t’, the redefined tree tr’ that
represents an equivalent IC ic’ defined over t’ is obtained according to the following
steps (see [5] for a more detailed explanation and examples):
- Determining the node nodet’. Nodet is the node ∈ PathVar(nodeev) whose

evaluation returns entities of type t’. If t’ is a relationship type, nodet’ is the node
previous to the navigation through a role of t’.

- Replacing all subtrees that match the sequence seq=PathVar(nodet’) with a single
node representing the self variable.

- Replacing all other nodes that represent self variables with the subtree
corresponding to the expression self.r1…rn (or self.r1…rn->forAll(v|) when the
maximum multiplicity of some ri is greater than 1), where r1..rn are the roles
needed to navigate from t’ to t (the roles opposite to the ones used in the ic to
navigate from t to t’). Formally, r1...rn = Inverse(PathVar(nodet)) with Inverse
defined as {∀ n ∈ PathVar(nodet) | n.oclIsTypeOf(AssociationEndCallExp) �
OppositeRole(n) ∈ Inverse(PathVar(nodet))}.

- Adding the subtree that corresponds to the expression self.r1…rn->notEmpty()
implies X (where X is the tree resulting from the previous steps) to ensure that
only those instances of t’ related to a given instance of t are verified (otherwise,
they were not involved in the original IC).

The resulting tree can be simplified [5] by, for instance, replacing the subtree
self.r1...rn->notEmpty() with true if all multiplicities of r1...rn are at least 1 or by
removing the forAll iterators over single entities.

For example, Translate(NotTooPendingSales,UpdateAttr(paymentDate,Sale),
Customer) transforms the constraint NotTooPendingSales, as defined in Fig. 2.1, in
the following NotTooPendingSales’ constraint defined with the context Customer:

context Customer inv: self.sale->select(paymentDate>now()).amount>sum()
<=self.category.maxPendingAmount

where, after step one, self.customer has been replaced with self, the other self variable
has been replaced with self.category (category is the role required to navigate from
customer to category) and finally, self.category->notEmpty() has been simplified (all
customers belong to a category) and the forAll has been removed.

3.4 Relevant(ic:Constraint, ev:Event)

After issuing a PSE ev for an IC ic whose context type is t, only the instances of t that
may have been affected as a result of applying ev should be verified. The goal of the
Relevant operator is to return an expression exp that returns this set of relevant
instances when it is evaluated; exp can be automatically derived from the tree
representing ic [2].

Intuitively, the relevant instances of t are the ones related to the instance modified
by ev. Therefore, the basic idea is that exp will consist of the sequence of navigations
required to navigate back from the modified instance to the instances of t. As in the
previous operator, the navigations required are obtained by reversing the navigations
used to navigate from the self variable to nodeev.

Definition 3.4.1 Let ic be an IC and ev a PSE that appears in nodes nodeev1…nodeevn.
Then, Relevant(ic,ev) = Inverse(PathVar(nodeev1)) ∪ … ∪ Inverse(PathVar(nodeevn)).

As an example, let us consider the NotTooPendingSales’ IC (as redefined in the
previous section). After the event UpdateAttribute(amount, Sale) that updates a sale s,
the IC must be verified over customers returned by Relevant(NotTooPendingSales’,
UpdateAttribute(amount, Sale)). In this case, the operator returns the expression
s.customer, which implies that we just need to verify the customer that the sale is
assigned to (at most one, because of the maximum multiplicity specified in
Purchases). In the expression, customer represents the opposite role of the sale role of
the Purchases relationship type (the single role appearing in the PathVar sequence of
nodes for the nodeev of the update event).

4. Dealing with sets of events

Up to now we have provided a method that generates incremental expressions for the
efficient verification of an IC after issuing a PSE ev. Obviously, if an operation
consists of several PSEs for the IC, the consistency of the new state of the IB can be

verified using the incremental expressions corresponding to each individual event.
However, the efficiency can be improved by taking into account the relationship
between the different events when computing the affected instances. This
improvement is only relevant to events included in collection conditions (events in
individual conditions must be individually verified by each entity).

By way of example, let us assume that the execution of an operation updates the
amount of two sales (s1 and s2) and assigns a sale s3 to a customer c. If one (or both) of
the updated sales were also assigned to c, we must verify the NotTooPendingSales
constraint over c several times (once because of the sale assignment and the other
times because of the update of sales of c). However, if we first merge the customers
affected by each single event and then verify them, we avoid having to verify the same
customer several times.

Proposition 4.2 Let set={ev1,ev2,…evn} be a set of different events for an IC ic
sharing the same IC definition ic’ after the the BestContext and Translate operators,
and included in the same operation (without loss of generality, we assume that each
operation constitutes a single transaction). The Relevant operator is then redefined as

Relevant(ic’,set):= Relevant(ic’ ,ev1) ∪ ... ∪ Relevant(ic’, evni)
Following the previous example, now the relevant customers (i.e. the ones that will be
verified) are computed with the expression
 c.union->(s1.customer->union(s2.customer))
Thus, each relevant customer will be verified only once.

5. Applying the method

We have applied our method to obtaining the most incremental expressions of all ICs
in the CS in Fig. 2.1. The results are shown in Table 5.1. The first column indicates
the IC. The second one specifies the structural events2 that may violate each IC.
Finally, the third column shows the most incremental expressions obtained for each IC
due to each of the events. In this column, the initial variable represents the entity or
relationship modified by the event (d represents the created DeliveredIn relationship,
sh the updated Shipment and so forth).

For instance, Table 5.1 allows us to detect that the application of an event
UpdateAttribute(paymentDate,Sale) over a sale s may violate the ICs: ValidShipDate
and NotTooPendingSales. The most incremental expressions that allow us to verify
that the new state of the IB does not violate any ICs are given by expressions 3 and 7.

As we said, using the most incremental expressions to verify the ICs in the original
CS ensures the optimal efficiency of the integrity checking process as far the number
of entities involved during the computation is concerned. To illustrate the importance
of those results, Table 5.2 compares the cost of the most incremental expressions for
ValidShipDate (as given by Table 5.1) with the cost of directly evaluating the original
IC (see Fig. 2.1).

2 To simplify, we use the notation UpdateAttr(attr) when the type is clear from the context.

Table 5.1 Results of applying our method over the example CS

IC Event Incremental expression
InsertRT(DeliveredIn) 1. d.shipment.plannedShipDate<=d.sale.paymentDate+30
UpdateAttr(plannedShip
Date)

2. sh.sale->forAll(s| sh.plannedShipDate <=
s.paymentDate+30)

Valid
Ship
Date

UpdateAttr(paymentDate) 3. s.shipment->forAll(sh| sh.plannedShipDate <=
s.paymentDate+30)

UpdateAttr(maxPending
Amount)

4. c.customer->forAll(cu| cu.sale->select(paymentDate>
now()).amount->sum()<=c.maxPendingAmount

InsertRT(BelongsTo) 5. b.customer.sale ->select(paymentDate>now()).amount-
>sum()<=b.category.maxPendingAmount

InsertRT(Purchases) 6. pur.customer.sale ->select(paymentDate>now()).amount-
>sum()<=pur.customer.category.maxPendingAmount

UpdateAttr(paymentDate)

NotToo
Pend
Sales

UpdateAttr(amount)
7. s.customer.sale->select(paymentDate>now()).amount-

>sum()<=s.customer.category.maxPendingAmount

UpdateAttr(price) 8. p.price>0
UpdateAttr(maxDiscount) 9. p.maxDiscount<=60

Correct
Prod

InsertET(Product) 10. p.price>0 and p.maxDiscount<=60

In Table 5.2, Ps stands for the number of instances of Sale, Nsh for the average
number of shipments per sale and Ns for the average number of sales per shipment.
Cost comparisons for the evaluation of the other ICs are given in [3].

Table 5.2 Cost comparisons for ValidShipDate

Event Cost(ValidShipDate) Cost (Incremental Expression)
InsertRT(DeliveredIn) Ps x Nsh 2
UpdateAttribute(paymentDate) Ps x Nsh 1+1xNsh
UpdateAttribute(plannedShipDate) Ps x Nsh 1+1xNs
Other events Ps x Nsh 0

Designers may use the most incremental expressions to efficiently verify the ICs
when they are implementing the CS in any final technology platform. For instance,
during code generation for an object-oriented technology, adding expressions 3 and 7
to methods that include the UpdateAttribute(paymentDate, Sale) event is enough to
ensure that the IB is not violated after the application of the event. Additionally, when
we are using a relational database as an IB, we may create a set of triggers that verify
both expressions before we apply the change to the Sale table data. For example, Fig.
5.1 shows a possible verification of expression 3 in both technologies.

6. Related work

Two kinds of related research are relevant here: methods devoted to the problem of
integrity checking, of which there is a long tradition, especially in the database field
(see Section 6.1), and tools that provide code-generation capabilities that may include
facilities for improving the efficiency of integrity checking (see Section 6.2).

 MethodX(Sale s,…)
{ . . . s.paymentDate = value; …
 //Verification of expression 3
 Iterator setsh = s.shipments.iterator();
 while (setsh.hasNext())
 { Shipment sh = (Shipment) setsh.next();
 If (sh.plannedShipDate>s.paymentDate+30)
 throw new Exception(“Invalid date”);
 }
}

create trigger uPaymentDate
before update of PaymentDate on Sale for each row
Declare v_Error NUMBER;
 EInvalidDate Exception;
Begin --Verification of expression 3
 SELECT count(*) into v_Error
 FROM DeliveredIn d, Shipment sh
 WHERE d.sale = :new.id and d.shipment = sh.id
 and sh.plannedShipDate>:new.paymentDate+30;
 If (v_Error>0) then raise EInvalidDate; end if;
End;

Fig. 5.1. Examples of incremental expressions implemented in particular technologies

6.1 Integrity checking methods for deductive or relational databases

The most important results of related research of an incremental checking of integrity
constraints are provided by methods proposed for integrity checking in deductive
databases. In what follows we briefly show that the efficiency of our incremental
expressions is equivalent to the incremental rules generated by the most representative
proposals in this field (see [7] for a survey).

They define ICs as inconsistency predicates that will be true whenever the
corresponding IC is violated. For example, they would represent ValidShipDate as
(where S stands for Sale, Sh for Shipment, D for DeliveredIn, pd for paymentDate and
psh for plannedShipDate)

IcValidShipDate ← S(s,pd) ∧ D(s,sh) ∧ Sh(sh, psd) ∧ pd+30>psd

To incrementally check this constraint they would consider the following rules:

1. IcValidShipDate ← iS(s,pd) ∧ D(s,sh) ∧ Sh(sh, psd) ∧ pd+30>psd
2. IcValidShipDate ← uS(s,pd’) ∧ D(s,sh) ∧ Sh(sh, psd) ∧ pd’+30>psd
3. IcValidShipDate ← S(s,pd) ∧ iD(s,sh) ∧ Sh(sh, psd) ∧ pd+30>psd
4. IcValidShipDate ← S(s,pd) ∧ D(s,sh) ∧ iSh(sh, psd) ∧ pd+30>psd
5. IcValidShipDate ← S(s,pd) ∧ D(s,sh) ∧ uSh(sh, psd’) ∧ pd+30>psd’

where iX(y) means that the entity y of type X has been inserted and uX means that it
has been updated (those updates are only considered explicitly in [17]).

After applying our method to the same constraint, we obtain the following three
incremental expressions (as shown in Table 5.1):

a. s.shipment->forAll(sh|s.paymentDate+30> sh.plannedShipDate)
b. sh.sale->forAll(s| s.paymentDate+30>sh.plannedShipDate)
c. d.sale.paymentDate+30>=d.shipment.plannedShipDate

where s is the updated sale, sh the updated shipment and d the new DeliveredIn
relationship. The definitions we get are respectively equivalent to Rules 2, 5 and 3 in
those methods. Note that the insertion of a shipment (Rule 4) cannot violate the
constraint if it is not assigned to a sale, which is already controlled by our expression c
(similarly, for the insertion of sales, Rule 1).

6.2 Tools with code-generation capabilities

Almost all current CASE tools offer code-generation capabilities. However, most of
them do not allow the definition of OCL constraints or (more commonly) do no take
them into account when they generate the code. This is the case of tools such as
Rational Rose, MagicDraw, ArcStyler, OptimalJ, Objecteering/UML and many more.

All tools that are able to generate code for the verification of OCL constraints
depart from the ICs exactly as defined by the designer; thus, their efficiency depends
on the concrete syntactic representation of the IC. The differences between these tools
lie in how they decide when the IC needs to be checked and the amount of entities
they take into account every time the IC is checked.

Tools such as Octopus [10] or OCLE [16] transform the IC into a Java method;
when the method is executed, an exception is raised if the IC does not hold. However,
the decision of when to verify the IC is left to the designer. The OO-Method [13]
verifies all ICs whose context type is t whenever a method of t is executed (even if the
changes produced by the method cannot violate a given IC). Dresden OCL [15]
verifies the ICs only after events that modify the elements appear in the IC body, but it
does not consider whether that sort of change can really induce its violation. For
instance, Dresden OCL would verify ValidShipDate after deletions of DeliveredIn
relationships, although only the latter event can really violate the IC. OCL2SQL
(included in [15]) transforms each IC into an SQL view so that the view returning data
indicates that the IC does not hold. Nevertheless, the view is not incremental. Every
time an entity is modified, the view verifies all the entities of the context type.

7. Conclusions and further work

We have presented a method that generates the most incremental expressions for OCL
constraints defined in UML CSs. These expressions can be used instead of the original
IC when the IB is verified after modifications caused by a set of structural events. The
method has been implemented in [4].

The most incremental expressions use information on the structural events issued
during the operation to optimize the integrity checking process by considering as few
entities of the IB as possible. In this way, we ensure an optimal verification of the ICs
regardless of the concrete syntactic definition originally chosen by the designer.

The main advantage of our approach is that it works at a conceptual level;
therefore, it is not technology-dependent. In contrast with previous approaches, our
results can be used regardless of the final technology platform selected to implement
the CS. In fact, any code-generation strategy able to generate code from a CS, such as
the ones presented in the previous section, could be enhanced with our method for the
purpose of automatically generating an optimal integrity checking code for the ICs.

As further work, we could try to further improve the efficiency of the whole
integrity checking process by considering, at the conceptual level, additional
optimization techniques initially proposed for databases like [9] and [14]. Moreover,
we would also like to adapt our method for the incremental maintenance of derived
elements specified in a CS.

Acknowledgments

We would like to thank the people of the GMC group J. Conesa, D. Costal, X. de
Palol, C. Gómez, A. Olivé, A.Queralt, R. Raventós and M. R. Sancho for their many
useful comments in the preparation of this paper. This work has been partially
supported by the Ministerio de Ciencia y Tecnologia under project TIN2005-06053.

References

1. Cabot, J., Teniente, E.: Determining the Structural Events that May Violate an
Integrity Constraint. In: Proc. 7th Int. Conf. on the Unified Modeling Language
(UML'04), LNCS, 3273 (2004) 173-187

2. Cabot, J., Teniente, E.: Computing the Relevant Instances that May Violate an OCL
Constraint. In: Proc. 17th Int. Conf. on Advanced Information Systems Engineering
(CAiSE'05), LNCS, 3520 (2005) 48-62

3. Cabot, J., Teniente, E.: Incremental Evaluation of OCL Constraints (extended
version). UPC, LSI Research Report, LSI-05-12-R (2005)

4. Cabot, J., Teniente, E.: A Tool for the Incremental Evaluation of OCL Constraints.
Available at www.lsi.upc.edu/~jcabot/research/tools/caise06 (2006)

5. Cabot, J., Teniente, E.: Transforming OCL Constraints: A Context Change Approach.
In: Proc. 21st Annual ACM Symposium on Applied Computing (Model
Transformation Track), (2006)

6. Gogolla, M., Richters, M.: Expressing UML Class Diagrams Properties with OCL.
In: A. Clark and J. Warmer, (eds.): Object Modeling with the OCL. Springer-Verlag
(2002) 85-114

7. Gupta, A., Mumick, I. S.: Maintenance of Materialized Views: Problems,
Techniques, and Applications. In: Materialized Views Techniques, Implementations,
and Applications. The MIT Press (1999) 145-157

8. ISO/TC97/SC5/WG3: Concepts and Terminology for the Conceptual Schema and
Information Base. ISO, (1982)

9. Lee, S. Y., Ling, T. W.: Further Improvements on Integrity Constraint Checking for
Stratifiable Deductive Databases. In: Proc. 22nd Int. Conf. on Very Large Data
Bases. Morgan Kaufmann (1996) 495-505

10. Klasse Objecten.: Octopus: OCL Tool for Precise UML Specifications. (2005)
11. OMG: UML 2.0 OCL Specification. OMG Adopted Specification (ptc/03-10-14)
12. OMG: UML 2.0 Superstructure. OMG Adopted Specification (ptc/03-08-02)
13. Pastor, O., Gómez, J., Insfrán, E., Pelechano, V.: The OO-Method Approach for

Information Systems Modeling: From Object-Oriented Conceptual Modeling to
Automated Programming. Information Systems 26 (2001) 507-534

14. Ross, K. A., Srivastava, D., Sudarshan, S.: Materialized View Maintenance and
Integrity Constraint Checking: Trading Space for Time. In: Proc. ACM SIGMOD
international conference on Management of data, (1996) 447-458

15. Dresden University.: Dresden OCL Toolkit. (2005)
16. Babes-Bolyai University.: Object Constraint Language Environment 2.0.
17. Urpí, T., Olivé, A.: A Method for Change Computation in Deductive Databases. In:

Proc. 18th Int. Conf. on Very Large Data Bases. Morgan Kaufmann (1992) 225-237
18. Wieringa, R.: A Survey of Structured and Object-Oriented Software Specification

Methods and Techniques. ACM Computing Surveys 30 (1998) 459-527

View publication statsView publication stats

https://www.researchgate.net/publication/225207183

	Caratula_Article_Postprint_CC_BY-NC-ND_en(8)
	Cabot_LNCS_Incremental

