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Abstract

Genetic Algorithms (GA) have been previously applied to Error-Correcting Out-
put Codes (ECOC) in state-of-the-art works in order to find a suitable coding
matrix. Nevertheless, none of the presented techniques directly take into ac-
count the properties of the ECOC matrix. As a result the considered search
space is unnecessarily large. In this paper, a novel Genetic strategy to optimize
the ECOC coding step is presented. This novel strategy redefines the usual
crossover and mutation operators in order to take into account the theoretical
properties of the ECOC framework. Thus, it reduces the search space and lets
the algorithm to converge faster. In addition, a novel operator that is able to
enlarge the code in a smart way is introduced. The novel methodology is tested
on several UCI datasets and four challenging computer vision problems. Fur-
thermore, the analysis of the results done in terms of performance, code length
and number of Support Vectors shows that the optimization process is able to
find very efficient codes, in terms of the trade-off between classification per-
formance and the number of classifiers. Finally, classification performance per
dichotomizer results shows that the novel proposal is able to obtain similar or
even better results while defining a more compact number of dichotomies and
SVs compared to state-of-the-art approaches.

Keywords: ECOC, Genetic Algorithms, Multi-class classification

1. Introduction

In classification problems the goal is to find a function f : S → K, where
S is the set of observations and K the set of possible mutually exclusive labels
(|K| > 2 for the multi-class context). The goal of f is to map any possible
observation s ∈ S to a label k ∈ K. There are many possible strategies for esti-
mating f , nevertheless, literature has shown that the complexity for estimating
a unique f for the whole multi-class problem grows with the cardinality of the
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label set. In this sense, most of the strategies aim to either model the probability
density function of each category. Moreover, lazy learning methods like Nearest
Neighbours which try to estimate k by a local search of the most proximate
observations. Another noticeable procedure is known as the divide and conquer
approach, in which instead of developing a method to cope with the multi-class
case, the classification task is divided into a set of n binary problems which are
treated separately. Once the responses of binary problems are obtained one can
use some kind of committee strategy to obtain the final output. In this trend
one can find three main lines of research: flat strategies, hierarchical classifica-
tion, and Error Correcting Output Codes. Flat strategies like One vs. One and
One vs. All are those that use a predefined problem partition scheme followed
by some kind of committee strategy. On the other hand, hierarchical classifica-
tion relies on some similarity metric distance among classes to build a binary
tree which nodes correspond to different problem partitions. Finally, the ECOC
framework consists of two steps: In the coding step, a set of binary partitions of
the original problem are encoded in a matrix of codewords (univocally defined,
one code per class). At the decoding step a final decision is obtained by com-
paring the test codeword with every class code and choosing the class with the
code at minimum distance [1, 2]. In this sense, the ECOC approach can be con-
sidered as a generalization of the former strategies since it allows the inclusion
of both flat and hierarchical strategies as shown in [3, 4]. Moreover, [5] proved
that the use of ECOC reduces bias and variance errors produced by algorithms
that learn the binary problem. However, note that predefined ECOC strategies
need between N and

(
N
2

)
classifiers to deal with an N−class problem. Although

this is acceptable for a small number of categories, it becomes a great scalabil-
ity problem when the number of classes is arbitrarily large. This number has
been reduced in literature in the Dense and Sparse Random designs to a length
10 · log2N and 15 · log2N , respectively [3]. Nevertheless, predefined or random
problem partition approaches like One vs. One, One vs. All, Dense or Sparse
Random may not be suitable for a given problem since they clearly overlook
the underlying distribution of the data. However, in order to take into account
the data distribution, researchers have developed some problem-dependent tech-
niques. For example, the DECOC approach which defines N − 1 dichotomizers
[6]. In particular, [7] demonstrated that finding the optimum ECOC matrix
for a given problem (the optimal set of binary partitions) was an NP-Complete
problem. Thus, in order to obtain compact problem-dependent designs some
works have applied GA to the ECOC coding matrix. In [8] the authors defined
an ECOC code with log2N dichotomies and the approach in [9] defined a code
in the range [logN,N ] dichotomies. Finally, Pedrajas et. al [10] applied a GA
to obtain the ECOC coding matrix, though in the experimental setting they fix
the code to a length of 30, 50 or 200 dichotomies. Nevertheless, those works
lacked of a theoretical basis when taking into account certain crucial aspects of
ECOC matrices that have to be carefully revisited. Figure 2 shows the code
length yielded by each method in relationship with the number of classes.

Genetic Algorithms are a family of optimization processes based on Darwin’s
evolution theory. In these processes, points in the search space are seen as in-
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dividuals and evaluated by means of a fitness function. This function provides
the value of its adaptation to the environment, and thus, more adapted individ-
uals represent better solutions of the optimization problem. These optimization
processes converge to a population (set of individuals) which accomplish a cer-
tain optimization criteria. In order to achieve this goal, individuals are mapped
into binary vectors (in standard GAs), which suffer transformations due to ei-
ther random changes (also known as mutations) or exchanges of information
between individuals (also known as recombinations or crossovers) along gener-
ations. The application of GAs in the ECOC coding step has been the focus of
some recent works [8, 9, 10].

[...][8] proposed a standard GA to optimize an ECOC matrix, known as
Minimal ECOC matrix, which is the theoretical lower-bound in terms of the
number of classifiers dlog2Ne. In this work the evaluation of each individual
(ECOC matrix) is obtained by means of its classification error over the validation
set. In addition, [10] proposed the use of the CHC Genetic Algorithm [11] to
optimize a Sparse Random ECOC matrix. In this work, the code length is fixed
in the interval [30, 50] independently of the number of classes. Finally, [9] used a
Genetic Algorithm to optimize a Sparse Random coding matrix of length in the
interval [log2(N), N ]. The evaluation of each individual (ECOC coding matrix)
is performed as the classification error over a validation set.

The main trend of previous works was to map the ECOC matrix into a bi-
nary vector and then use standard genetic operators to optimize such matrix.
However, note that using standard GAs to optimize problems in which individu-
als have a certain degree of complexity in their representation or are constrained
to fulfil some properties (i.e ECOC matrices) raises certain issues. The first one
is the uncontrolled generation of non-valid individuals during the optimization
process. A clear example in the ECOC framework would be the situation in
which a matrix with two equivalent codes is constructed. The second issue is
how the optimization process is guided to portions of the search space that op-
timize the fitness of the individuals. Note that when using standard GAs no
heuristic of how binary vectors should recombine, and thus, convergence to a
population that performs accurately can be misguided.

With the previous issues in mind, we propose a novel Genetic framework
for treating the optimization process of an ECOC matrix. These ECOC matrix
is based on the Support Vector Machine (SVM) as the base classifier, since it
has shown powerful results in recent literature. In this framework the genetic
operators have been carefully redefined in order to avoid non-valid individual
generation, and thus, minimize the search space with relation to previous works
that used Genetic Algorithms to optimize an ECOC coding matrix. More-
over, special effort has been put in designing operators that smartly guide the
optimization process in order to converge in few generations. In addition, the
ECOC code length is reduced to be sub-linear in the number of categories, build-
ing both reduced and high-performance codes. This novel procedure is tested
on a wide set of publicly available datasets obtaining very promising results.
Summarizing, our contributions in this paper are the following:
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• The crossover and mutation operators are redefined taking into
account the ECOC properties in order to generate valid individuals.

• A new operator that is able to extend the ECOC code length taking
into account the idiosyncrasies of the data is developed.

• We introduce a novel regularization parameter that is able to control
the number of dichotomies produced by each individual, and as conse-
quence, the learning capacity of the ECOC matrix.

• A complexity and performance analysis taking into account the vari-
ous factors that affect the performance measures (number of SVs, number
of dichotomies, generations in the optimization procedure, etc.) is per-
formed.

The rest of the paper is organized as follows: Section 2 overviews the back-
ground of ECOC and GA applied in the ECOC framework. In Section 3, we
present the novel ECOC-Compliant Genetic Algorithm. Section 4 is devoted to
present the experimental results. Finally, Section 5 concludes the paper.

2. Background Research

In this section, we overview the background research on ECOC in terms
of coding and decoding designs, ECOC properties, ECOC code length and
problem-dependent designs, and the use of genetic algorithms within the ECOC
framework, motivating the basis for our ECOC-Compliant genetic algorithm
presented in next sections. The notation used in the paper is presented in Table
1.

2.1. The ECOC Framework

ECOC is a general multi-class framework built on the basis of the error-
correcting principles of communication theory [12]. This framework is composed
of two different steps: coding [12, 13] and decoding [1, 2]. At the coding step
an ECOC coding matrix MN×n ∈ {−1,+1} is constructed, where N denotes
the number of classes in the problem and n the number of bi-partitions defined
to discriminate the N classes. In this matrix, the rows (also known as code-
words) are univocally defined, since these are the identifiers of each category
in the multi-class categorization problem. On the other hand, the columns of
M denote the set of bi-partitions, dichotomies, or meta-classes to be learnt by
each base classifier hj (also known as dichotomizer) H = {h1, . . . , hn}. In this
sense, classifier hj is responsible of learning the bi-partition denoted on the
j−th column of M . Therefore, each dichotomizer learns the classes with value
+1 against the classes with value −1 in a certain column. Note that the ECOC
framework is independent of the base classifier applied. For notation purposes
in further sections we will refer to the entry of M at the i-th row and the j-th
column as Mi,j . Following this notation the i-th row (codeword of class ci) will
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Table 1: Paper notation
Abbreviation Meaning

AHD Attenuated Hamming Distance
CD Critical difference

DECOC Discriminant Error-Correcting Output Codes
ECOC Error-Correcting Output Codes

GA Genetic Algorithms
HD Hamming Distance

LWD Loss-Weighted Decoding
RBF Radial Basis Function
SVM Support Vector Machines
C Confusion matrix

ck k − th class
cp Current parent for the ECOC-Compliant crossover algorithm

dj j − th dichotomy, (j − th column of the coding matrix)

dji i− th bit of the j − th dichotomy, (entry of the coding matrix)
E Error rate
f Found flag for the ECOC-Compliant crossover algorithm
G Number of generations of the ECOC-Compliant GA
H Set of classifiers

hi i− th classifier
I Set of ECOC individuals of the ECOC-Compliant GA
L Loss function for the Loss-Weighted decoding
M ECOC coding matrix
mtc Mutation control value for the ECOC-Compliant mutation algorithm
Mw Matrix of weights for the Loss-Weighted decoding
N Number of classes
n Number of dichotomies
P Performance per classifier vector

pi Performance of the i− th classifier
Rt Set of repeated codewords in a matrix MN×t
rt Cardinality of Rt
s Testing sample
spc Sparsity control value for the Sparsity controlled extension algorithm
xs Predicted codeword for sample s

yi i− th code, (i− th row of the coding matrix)

yik k − th bit of the i− th code, (entry of the coding matrix)
Y Set of codewords
δ Decoding function
µ Set of selected position for mutation
τ Selection order for the ECOC-Compliant crossover algorithm
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be referred as yi and, the j-th column (j-th bi-partition or dichotomy) will be
referred as dj .

Originally, the coding matrix was binary valued (M ∈ {−1,+1}). However,
[13] introduced a third value, and thus, MN×n ∈ {−1,+1, 0}, defining ternary
valued coding matrices. In this case, for a given dichotomy categories can be
valued as +1 or −1 depending on the meta-class they belong to, or 0 if they are
ignored by the dichotomizer. This new value allows the inclusion of well-known
decomposition techniques into the ECOC framework, such has One vs. One [14]
or Sparse [3] decompositions.

At the decoding step a new sample s is classified among the N possible
categories. In order to perform the classification task, each dichotomizer in
H predicts a binary value for s whether it belongs to one of the bi-partitions
defined by the correspondent dichotomy. Once the set of predictions x(s) ∈ Rn
is obtained, it is compared to the codewords of M using a distance metric δ,
known as the decoding function. The usual decoding techniques are based on
well-known distance measures such as the Hamming or Euclidean distances.
This measures were proven to be effective in binary valued ECOC matrices
{+1,−1}. Nevertheless, it was not until the work of [1] that decoding functions
took into account the meaning of the 0 value at the decoding step. Generally,
the final prediction for s is given by the class ci, where argmin

i
δ(yi, x(s)),

i ∈ {1, . . . , N}. An example of coding and decoding steps for a 5-class toy
problem is shown in Figure 1.

 d5  d4  d3  d2  d1
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1×n
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  d5  d4  d3  d2  d1
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Figure 1: (a) Feature space and trained boundaries of dichotomizers. (b) Coding matrix M ,
where black and white cells correspond to {−1,+1}, denoting the two partitions to be learnt
by each base classifier (white cells vs. black cells) while grey cells correspond to 0 (ignored
classes). (c) Decoding step, where the predictions of classifiers, {h1, . . . , h5} for sample s are
compared to the codewords {y1, . . . , y5} and s is labelled as the class codeword at minimum
distance.

2.2. ECOC Coding Matrix Properties

[12] defined the properties of a valid ECOC coding matrix. These properties
concern the repetitions of rows in M . Since a repetition of rows will define
two different categories with the same codeword, an ambiguous coding matrix
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M will be constructed. Moreover, error-correcting principles are based on the
assumption that errors introduced by each dichotomizer are uncorrelated [12].
In this sense, similar dichotomies will output correlated outputs, and thus, this
situation has to be avoided. In the limit case, equivalent dichotomies will have
equivalent outputs, and thus, no correction capability will be added. However,
this is more a suggestion than a constraint of the ECOC coding matrix, since
breaking it does not drastically affect the generalization capability but intro-
duces redundant computation. Nevertheless, when aiming for sound designs all
these suggestions must be taken into account. Therefore, we define an ECOC
coding matrix MN×n ∈ {−1,+1, 0} to be constrained by:

min(δAHD(yi, yk)) ≥ 1, ∀i, k : i 6= k, i, k ∈ [1, . . . , N ], (1)

min(δHD(dj , dl)) ≥ 1, ∀j, l : j 6= l, j, l ∈ [1, . . . , n], (2)

min(δHD(dj ,−1 · dl)) ≥ 1, ∀j, l : j 6= l, j, l ∈ [1, . . . , n], (3)

where δAHD and δHD are the Attenuated Hamming Distance (AHD) and
the Hamming Distance (HD), respectively, defined as follows:

δAHD(yi, yj) =

n∑
k=1

|yjk||yik|I(yik, y
j
k), (4)

δHD(yi, yj) =

n∑
k=1

I(yjk, y
i
k), I(i, j)

{
1 if i 6= j
0 otherwise.

(5)

The motivation of using AHD to measure the distance between rows and HD
to measure distance between columns is motivated by the different influences
of the value 0 in columns and rows of M . Thus, a position valued as 0 in
a codeword means that a certain dichotomy is not taken into account in the
definition of the class code, while for a dichotomy a position dij valued as 0

means that class cj is ignored in the training step.
Equation 1 defines the minimum AHD between the codewords of M to be

greater or equal than one. In other words, there can not exist two identical
codewords. In addition, Equations 2 and 3 refer to the column suggestion. Note
that, when interchanging all values +1 and−1 of a column the same meta-classes
are defined. In addition, note that maximizing Equation 1 implies an increment
of the error correction capabilities of M . Analogously, the maximization of
Equations 2 and 3 implies an increment of dichotomy diversity, and thus, a
reduction of the bias and variance errors [5].

2.3. Towards Reducing the ECOC Code Length

The coding step of the ECOC framework has been widely studied in liter-
ature, obtaining either predefined [15, 14], random [13] or problem-dependent
[6, 16, 17, 18, 19] coding designs. The most well-known coding schemes are the
predefined ones, such as, One vs. One [14] and One vs. All [15] designs, in
which

(
N
2

)
and N dichotomies are defined, respectively. In the One vs. One

scheme all the possible pair-wise groups of the N categories are defined, while
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in the One vs. All scheme each dichotomy is responsible of discriminating one
class against the rest of the classes. In contra-position, some works in literature
have stated that random designs [3], with code length of {10, 15} · log2(N) can
perform as well as predefined codes. Note that, predefined or random designs
do not exploit the problem-domain information.

Some works in literature have proposed the use of problem-dependent ECOC
coding matrices. Problem-dependent coding designs lay on the assumption that
predefined and random codes may not be suitable to solve a given problem since
they do not take into account the underlying distribution of the classes in the
multi-class problem. In [6] the authors proposed the DECOC coding design of
length N−1 in which a tree structure is embedded in the ECOC coding matrix,
where nodes correspond to classes that maximize a split criterion. In the trend
of the previous works, [16] proposed the same tree embedding where the nodes
correspond to the most difficult meta-classes to be learnt. Other works aim to
treat the problem either by soft weight sharing methods [20] or by using EM
algorithm to find the optimal decomposition of the multi-class problem [21]. In
[15] Rifkin et. al stated that when using high capacity dichotomizers the code
length can be reduced with no loss of generalization, and test their hypothesis
in the One vs. All coding design of N dichotomies. Nevertheless, few are the
works that aim to reduce the code length by using problem-dependent designs
[6].

Recently, [8] proposed the use of a Minimal ECOC coding matrix of length
dlog2(N)e, where d·e rounds to the upper integer. This coding matrix M is
the theoretical lower-bound in terms of the numbers of classifiers. The authors
showed that if this coding matrix M is properly tuned and the dichotomizers are
high capacity classifiers, it can be used with no loss of generalization capability
when compared to most state-of-the-art approaches.

In general, classification performance has always been the core of all ECOC
evaluation, regardless of its length. Nevertheless, following the Occam’s razor
principle, in equal conditions, simpler models tend to be more suitable. In this
sense, we can consider that in the ECOC framework the number of classifiers has
a direct relationship to the complexity of the model. For instance, when using
SVM as the base classifier, the number of classifiers has a direct relationship to
the overall number of Support Vectors (SVs) of the ECOC matrix. At the same
time, the number of SVs is directly proportional to the complexity in the ECOC
decoding step. Thus, a trade off between generalization performance and code
length has to be taken into account in order to perform a fair analysis of ECOC
capabilities.

In Figure 2 we show the number of classifiers defined for some of the state-
of-the-art coding designs with respect to the number of classes of the multi-class
problem. The coding designs taken into account are the One vs. One, One vs.
All, Sparse and Dense Random, DECOC and Minimal ECOC [14, 15, 3, 6, 8].

Note the great difference between the number of dichotomies defined by
state-of-the-art strategies. In this case we can see that the Minimal ECOC
approach defines the most reduced code length in contra-position with the One
vs. All and One vs. One strategies, which have a linear and quadratic growth
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Figure 2: Number of classifiers per coding design and number of classes.

with the number of classes, respectively. This fact encourages the use of sub-
linear ECOC strategies (with respect to the number of classifiers used), since
the scalability problem that is present when using other strategies can be easier
to tackle.

2.4. Genetic Algorithms in the ECOC Framework

Genetic Algorithms are stochastic optimization processes based on Darwin’s
evolution theory. These processes start with a set of individuals which represent
a set of random points in the search space. Each individual has a fitness value,
which denotes the adaptation to the environment and in most cases it is the
value to optimize. Individuals are transformed through crossover and mutation
operators along generations, improving their adaptation to the environment.
Commonly, the crossover operator guides the optimization process to parts of a
search space which optimize the fitness value. On the other hand, the mutation
operator is responsible of not letting the algorithm converge to local minima.
Recent literature on applying GAs to the ECOC framework is summarized in
the following paragraphs.

• Minimal Design of Error-Correcting Output Codes [8]: In this
work the authors propose a standard GA to optimize an ECOC coding
matrix MN×n ∈ {−1,+1}, where n = dlog2(N)e. In addition, the evalua-
tion of each individual is obtained by means of its classification error over
the validation set. In this work, the scattered crossover operator is used.
Mutation is implemented using a Gaussian distortion over the selected
gene. The achieved results are comparable with most of the state-of-the-
art ECOC approaches with a reduced code length.

• Evolving Output Codes for Multiclass Problems [10]: In addi-
tion, [10] proposed the use of the Cross Generational Elitist election,
Heterogeneous Recombination and Cataclysmic Mutation (CHC) Genetic
Algorithm [11] to optimize a Sparse Random ECOC matrix [3] MN×n ∈
{−1,+1, 0} where n ∈ [30, 50]. In this case, the code length is fixed in
the interval [30, 50] independently of the number of classes, which seems
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to be a non well founded approach since it disagrees with a large body
of literature [14, 15, 3, 6, 8]. It is interesting to note that the evaluation
of individuals is the aggregation of different aspects of the ECOC cod-
ing matrix such as distance between rows and columns or dichotomizer
performances.

• Evolutionary Design of Multiclass Support Vector Machines [9]:
In this work the authors propose a Genetic Algorithm to optimize a Sparse
Random [3] coding matrix MN×n ∈ {−1,+1, 0}, where n ∈ [log2(N), N ].
The evaluation of each individual (ECOC coding matrix) is performed
using the classification error over the validation sets. The crossover op-
erator considered is the exchange of a set of k ∈ [1, nex < n] dichotomies
between individuals. The considered mutation operator has four variants
which depend on how values in the coding matrix are changed. The most
interesting point is that operator variants are chosen based on an historic
of its performance in previous generations.

Despite these works, the problem of optimizing an ECOC coding matrix M
present some issues that must be carefully revised.

The first one is the uncontrolled generation of non-valid individuals (see
Equations 1, 2, and 3). This issue has been treated in state-of-the-art works
either by automatically setting the fitness value of a non-valid individuals to be
lower than the worst valid individual value, and thus, letting the algorithm con-
verge to valid solutions, or by simply rejecting non-valid individuals. Definitely,
both are valid options used in most evolutionary frameworks. Nevertheless, it
is easy to see that when tackling the problem of minimizing the search space of
ECOC solutions, the mentioned approximation is inappropriate. The genera-
tion of new individuals along the optimization process is performed by crossover
and mutation operators. Therefore, one may argue that operators used by state-
of-the-art approaches are not suitable for the problem of optimizing an ECOC
coding matrix M , and thus, they have to be redefined.

The second issue is how the optimization process is guided to parts of the
search space that optimize the fitness of the individuals. In this sense, not only
the constraints of individuals have to be taken into account when designing
crossover and mutation operators but also how these individuals improve their
adaptation through those operators, allowing the process to converge in fewer
generations. On the other hand, designing operators that dramatically reduce
the stochastic search may imply premature convergence to local minima.

When making use of optimization processes in the ECOC framework the first
step to perform is the estimation of the ECOC search space cardinality. Assume
an N -class problem to be treated, then the ECOC framework will construct a
matrix MN×n in which N codewords will be chosen from the 3n codes available.
Following Newton’s binomial this could be expressed as

(
3n

N

)
. Nevertheless,

taking into account the constraints defined in Equations 2 and 3 a matrix M
and its opposite (swapping all 1 by −1 and vice-versa) are equivalent since
they define the exact same partitions of the data. In this sense, the number of
possible ECOC coding matrices is shown in Equation 6.
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#M =

(
3n

N

)
2

=
3n!

2 ·N ! · (3n −N)!
(6)

In addition to the huge cardinality of the search space, [7] showed that
the computation of an optimum ECOC matrix given the set of all possible
dichotomizers H is NP-Complete. Finally, this search space is non-continuous
since a change in a single position of the ECOC matrix M can break the ECOC
matrix constraints.

In the next section we describe the method which is able to deal with all these
issues by taking into account the properties of the ECOC framework within the
definition of the GA.

3. ECOC-Compliant Genetic Algorithm

In this section the novel ECOC-Compliant Genetic Optimization is pre-
sented. In order to provide a complete description of the method in Figure 3
we show a scheme of the procedure.

Creation of ECOC 
Matrices

Encoding ECOC 
individuals

ECOC-Compliant 
Crossover

ECOC-Compliant Mutation

ECOC-Compliant 
Extension

ECOC fitness evaluation Training ECOC matrices

Learning the dichotomizers

I =< I1, . . . , Iind >

H =< h1, . . . , hn >

Offspring ECOC 
individuals

Figure 3: Diagram of the ECOC-Compliant Genetic Algortihm.
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3.0.1. Problem Encoding

Since our proposal redefines the standard crossover and mutation operators
there is no need to be tied to standard encoding schemes. In this sense, our
individuals are encoded as structures IECOC =< M,C,H, P,E, δ >, where the
fields are defined as follows.

• The coding matrix, MN×n ∈ {−1,+1, 0} where n ≥ dlog2Ne. Note
that for the initial population n = dlog2Ne, where n can grow along
generations.

• The confusion matrix, CN×N , over the validation subset. Let ci and cj

be two classes of our problem, then the entry of C at the i-th row and the
j-th column, defined as Ci,j , contains the number of examples of class ci

classified as examples of class cj .

• The set of dichotomizers, H =< h1, . . . , hn >.

• The performance of each dichotomizer, P ∈ Rn. This vector contains
the proportion of correctly classified examples over the validation subset
for each dichotomizer in H. Note that this measure is not the performance
of the overall multi-class problem but the one of the dichotomizer over the
meta-classes defined by the correspondent dichotomy.

• The error rate, E, over the validation subset. This scalar is the pro-
portion of incorrectly classified examples in the multi-class problem over
the validation subset. Let the set of samples in the validation subset be
V =< (s1, l(s1)), . . . , (sv, l(sv)) >, then the calculus is shown in Equations
7 and 8.

E =

v∑
j=1

σ(∆(M,xsj ), l(sj))

v
, σ(i, j)

{
1 if i = j
0 otherwise,

(7)

∆(M,x) = argmin
i

δ(yi, x), i ∈ {1, . . . , N}. (8)

• The decoding function, δ. We use the Loss-Weighted decoding [1] of
Equation 9, where Mw is a matrix of weights and L is a loss function
(L(θ) = exp−θ in our case).

δLW (x(s), i) =

n∑
j=1

Mw(i, j)L(yij · I((x(s)), j)) (9)

3.0.2. Fitness Function

The fitness function measures the environmental adaptation of each indi-
vidual, and thus, is the one to be optimized. In this sense, the most common
approach in state-of-the-art literature has been to evaluate an ECOC individual
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as the performance it obtains on the validation subset. Nevertheless, following
Occam’s razor principles, in the hypothetical situation in which two individu-
als obtain the same performance on the field the one showing a simpler model
(which very often implies a smaller code length) tends to be the most suitable
choice.

This general assumption can be redefined and used in the fitness function
in order to penalize those individuals with a large code length. Let I =<
I1, . . . , Iind > be a a set of individuals and Ik a ECOC individual encoded as
shown in Section 3.0.1, then our fitness function is defined as shown in Equation
10.

Ff (Ik) = EIk + λnIk (10)

This expression (similar to the one showed by regularized classifiers), serve
us to control the learning capacity and avoid over-fitting.

There exists several ways of defining complexity in the ECOC framework.
Nevertheless, the code length has been always in the core of this definition.
Thus, we have adopted the term complexity as the number of dichotomies de-
fined in the coding matrix M , that is n.

3.0.3. ECOC-Compliant Crossover and Mutation Operators

In this section we introduce the novel ECOC-compliant crossover and mu-
tation operators. These operators do not only take into account the restrictions
of the ECOC framework (shown in Equations 1, 2 and 3) but also are carefully
designed in order to avoid a premature convergence to local minima without
generating non-valid individuals, and thus, converging to satisfying results in
fewer generations.

In our proposal, when performing the genetic optimization we have to take
into account the effect of the operators used. In many Genetic Algorithms a
trade-off between exploring a satisfying portion of the search space and converg-
ing quickly to a final population is desirable [22], thus avoiding the convergence
to local minima. To achieve this goal in our proposal two versions of each op-
erator where designed, the generic and the specific. On one hand, the generic
version of each operator builds valid individuals with a random seed, which
aims to accomplish the exploration of a satisfying portion of the search space.
On the other hand, the specific version takes into account certain factors (i.e
dichotomizer performances, confusion matrices, etc.) that imply the guidance
of the optimization procedure to promising regions of the search space, where
individuals may obtain a better fitness value.
• ECOC-Compliant Crossover Algorithm
In GAs one of the most important issues is how individuals are recombined

in order to produce a more adapted offspring. In this sense, one would like
to find a smart recombination method (known as crossover operator) that take
profit of problem domain information in order to allow a faster convergence.
These recombinations are completely defined for standard encodings schemes
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(such as binary encoding) and have been deeply studied in literature. Neverthe-
less, when facing problems in which individuals are constrained and standard
encoding designs have to be redefined, we consider also the redefinition of the
recombination procedure to be an unavoidable task. This consideration is given
by the fact that using standard GAs in problems where individuals are con-
strained can lead to situations where the search space is enlarged due to the
generation of non-valid individuals.

Picture a N -class problem and let IF and IM be two individuals encoded
as shown in Section 3.0.1. Then the crossover algorithm will generate a new
individual IS which coding matrix M IS

N×n, n = min(M IF
N×n,M

IM
N×n) contains

dichotomies of each parent. Therefore, the key aspect of this recombination
is the selection of which dichotomies of each parent are more suitable to be
combined. Taking into account the aim of avoiding the generation of non-valid
individuals, we introduce a dichotomy selection algorithm that chooses those n
dichotomies that fulfil the constraints shown in Equations 1, 2, and 3.

The dichotomy selection algorithm generates a dichotomy selection order
τ ∈ Rn for each parent, where τ I is the selection order of parent I and τ Ik is
the value at the k-th position. However, this selection order might lead to a
situation in which the n dichotomies chosen define an incongruence in the coding
matrix, such as defining two classes with the same codeword. In such case, the
dichotomy election algorithm checks if the separation between codewords is
congruent with the number of dichotomies left to add.

Theorem 3.1 describes the number of equivalent codes allowed to appear
on a matrix that is being built to fulfil the ECOC properties in terms of rows
(Equation 1). In this sense, when the final length of the ECOC matrix in terms
of columns is known, we can determine the maximum number of equivalent
codes allowed to appear when each extension dichotomy is appended to build
the ECOC matrix.

Theorem 3.1. Should MN×t ∈ {−1,+1, 0} be a randomly distributed matrix.
Then, the extension of MN×t to an ECOC coding matrix MN×(t+k) with N
unequivocally defined rows, will be possible if and only if when including the i-th
(0 ≤ i ≤ k) extension dichotomy in M , 2(k−i) repeated codewords of length t+ i
are obtained at most.

Proof Let a matrix MN×t define Rt repeated codes (two codes ya, yb are equiv-
alent if δAHD(ya, yb) = 0). Assume MN×t is to be extended to MN×(t+k) so

that it fulfils Equation 1: min(δAHD(yi, yk)) ≥ 1, ∀i, k : i 6= k, i, k ∈ [1, . . . , N ].
Then, from Information theory dlog2(Rt)e is known to be the minimal num-

ber of extension bits needed to unequivocally split Rt codes. Therefore, if MN×t
is extended with k dichotomies, then dlog2(Rt)e ≤ k dichotomies are needed to
assure that Equation 1 holds. When the first of the k dichotomies is added,
then k− 1 dichotomies will be used to split the remaining set of repeated codes
(Rt+1). As in the former case, dlog2(Rt+1)e ≤ k − 1 are needed. Accordingly,
when the second dichotomy is appended dlog2(Rt+2)e ≤ k − 2. Generalizing,
MN×t will only be extendible to a valid ECOC matrix MN×t+k if when adding
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the i-th dichotomy dlog2(Rt+i)e ≤ k − i. Thus, 2k−i repeated codewords are
obtained at most when adding the i-th extension dichotomy.

Following Theorem 3.1 the i-th dichotomy will be only added if it splits
the existing codewords to define Rt+i ≤ 2(k−i) different codes. However, in a
certain iteration it may happen that there are no existing dichotomies in both
parents that accomplish the split criteria. In this situation, a new dichotomy
is generated in order to ensure the ECOC properties. We define the ECOC-
compliant crossover algorithm as shown in Algorithm 1.

Data: IF ,IM
Result: IS
n := min(MIF ,MIM ) // Minimum code length among parents

τIF ∈ Rn = selorder(IF ) // Dichotomy selection order of IF

τIM ∈ Rn = selorder(IM );
cp := IF // Current parent to be used

MIS := ∅ // Coding matrix of the offspring
for i ∈ {1, . . . , n} do

for j ∈ {1, . . . , ncp} : τcpj 6= ∅ do

f := 0 // Valid dichotomy search flag

if calcRepetitions (MIS , d
τ
cp
j ) ≤ 2(k−i) then

di := d
τ
cp
j // Inheritance of dichotomies

hi := h
τ
cp
j // Inheritance of dichotomizer

pi := p
τ
cp
j // Inheritance of performance

τcpj := ∅ // Avoid using a dichotomy twice

f := 1 // Valid dichotomy found
break ;

end

end
if !f then

di := generateCol(MIS ) // If non ECOC matrix can be built

hi := ∅;
pi := ∅;

end
if cp = IF then

cp := IM // Dichotomy inheritance parent switch
else

cp := IF ;
end

end

Algorithm 1: ECOC Crossover Algorithm.

The ECOC crossover algorithm variants have an equal probability of being
executed. In the first one, which is the generic version, the dichotomy selection
order is randomly generated, and thus, it generates a random ECOC individual
that ensures to fulfil Equations 1,2, and 3. In the second one, the specific
version, the dichotomy selection order is based on dichotomizer performance,
and thus, dichotomizers that show a higher performance have more chances of
being selected. These two variants of crossover provide us a trade-off between
covering an enough portion of the search space and guiding the optimization
process to a population with minimal values of the fitness function. An example
of the ECOC-compliant crossover operator is shown in Figure 4.

In the crossover example shown in Figure 4 two individuals IM and IF are
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Figure 4: Crossover example for a 5-class toy problem. (a) Feature space and trained classifiers
for parent IM . (b) ECOC coding matrix of parent IM . (c) Feature representation and
boundaries for parent IF . (d) Coding matrix of IF . (e) ECOC coding matrix composition
steps for the offspring IS . (f) Feature space and inherited classifiers for IS .

combined to produce a new offspring IS
1. The crossover algorithm generates

a dichotomy selection order τ for each parent. The first parent from which a
dichotomy is taken is IM , and d3 is valid since r ≤ 2(3−1) = 4, and it only defines
three codes without separation (y1, y2, and y5). Once this step is performed, the
parent is changed, and the following dichotomy will be extracted from IF based
on its selection order τ IF . In this case, d4 is valid since r ≤ 2(3−2) = 2 and d3

of IM together with d4 of IF define only two equivalent codewords (y1 and y5).
In the following iteration, the parent is changed again, and thus, IM is used.
Following τ IM the dichotomy to use is d1, but if we apply Theorem 3.1 we find
that r ≤ 2(3−3) = 1, and thus, d1 is unuseful. Since δAHD(y1, y5) = 0, d1 can
not be considered as an extension dichotomy, and therefore, the next dichotomy
to use is d2, which satisfies Equation 1 defining a valid ECOC coding matrix.
• ECOC-Compliant Mutation Algorithm
Historically, mutation operators have been responsible of not letting the

algorithm converge to local minima. In literature, these operators have been
defined for standard encoding designs (such as binary encoding). Nevertheless,
when individuals are not encoded following standard schemes these operators
have to be redefined in order to completely fulfil their purpose.

Picture an individual I encoded as shown in Section 3.0.1 to be transformed
by means of the mutation operator. This operator will select a set of positions
µ =< Mi,j , . . . ,Mk,l >, i, k ∈ {1, . . . , N}, j, l ∈ {1, . . . , n} of M I to be mutated.

1Note that for applying Theorem 3.1 in this example we consider k = 3.
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The value of these positions is changed constrained to the set {−1,+1, 0}. Two
variants of this algorithm are implemented depending on how the positions in
µ are chosen and how the matrix is recoded. The first is defined as the Generic
ECOC mutation algorithm shown in Algorithm 2. In this version the set of
positions µ is randomly chosen. Once µ is defined, the positions are randomly
recoded to one of the three possible values in {−1,+1, 0}. However, note that
the mutation of values may lead to a situation in which the matrix M does not
fulfil the ECOC constraints. To avoid this effect, we check the ECOC matrix at
each bit mutation in order to ensure that a valid ECOC individual is generated,
if a certain bit mutation generates a non-valid individual this particular bit
mutation is obviated.

Data: IT ,mtc
// Individual and mutation control value
Result: IX
µ :=< Mi,j , . . . ,Mk,l >, i, k ∈ {1, . . . , N}, j, l ∈ {1, . . . , n} ;

µ = getRandomPositions(MIT ,mtc) // Select the position in the MIT for mutation
;
for Mi,j ∈ µ do

switch Mi,j do
// If the value selected for mutation is 0 it might turn +1 or −1
case Mi,j = 0

r =Random(0,1); if r > 0.5 then
Mi,j := +1;

else
Mi,j := −1;

end

endsw
case Mi,j = −1

r =Random(0,1)// Obtain a random value in [0, 1]
if r > 0.5 then

// Equiprobablity of selecting the remaning values
Mi,j := +1;

else
Mi,j := 0;

end

endsw
case Mi,j = +1

r =Random(0,1);
if r > 0.5 then

Mi,j := 0;
else

Mi,j := −1;
end

endsw

endsw

end

MIX = M
Algorithm 2: Generic ECOC-Compliant Mutation Algorithm.

In the second, defined as the Specific ECOC-Compliant mutation algorithm,
the set of positions µ is chosen taking into account the confusion matrix C. In
this sense, the mutation algorithm will iteratively look for the most confused
categories in the confusion matrix (ci, cj) = argmax

i,j
(Ci,j + Cj,i). Once these

classes are obtained, the algorithm will transform the bits valued 0 of those
classes codewords {yi, yj} in order to increment the distance δAHD(yi, yj), and
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thus, increasing their correction capability, while keeping a valid ECOC matrix.
The specific ECOC mutation algorithm is shown in Algorithm 3.

Data: IT ,mtc
// Individual and mutation control value
Result: IX
C
IT
N×N // Confusion matrix of IT

k := 0// Number of recoded bits of MIT

while k < mtc do
(ci, cj) := argmax

i,j
(Ci,j + Cj,i) ∀i, j : i 6= j;

for b ∈ {1, . . . , n} do

if |yib|+ |yjb | ≤ 1 and k < mtc then

if yib = 0 and yjb = 0 then

yib := +1 // Invert both bits valued 0

yjb := −1;

else
if yib = 0 then

yib := −yjb // Invert bit valued 0

else

yjb := −yib;
end

end
k := k + 1;

end

end

C
IT
i,j := 0, C

IT
j,i := 0;

end

Algorithm 3: Specific ECOC-Compliant Mutation Algorithm.

In Figure 5 an example of the specific mutation algorithm is shown. Let IT
be an individual encoded as shown in Section 3.0.1. The confusion matrix CIT
has its non-diagonal maximum at C4,3 + C3,4. Then codewords y4 and y3 are
going to be mutated. The 0 valued bits of this codewords are changed in order
to increment δAHD(y4, y3), and thus, incrementing also the correction capability
between them. At the following iteration C4,3 is not taken into consideration
and the procedure will be repeated with y5 and y4 which are the following classes
that show confusion in C.

3.0.4. Problem-Dependent Extension of ECOCs

In related works that used a GA to optimize the ECOC matrices the length
was fixed in a certain interval and the crossover operators where the ones re-
sponsible for obtaining reduced or large codes [9, 10]. Nevertheless, we consider
that from the ECOC point of view the length of the code is a crucial factor that
has to be separately addressed, since the length of the code matrix has a direct
relationship to its correction capability. In this sense, as stated in Section 3.0.1
our initial population is based on the coding scheme proposed by [8], that is,
the use of a Minimal ECOC coding matrix MN×dlog2(N)e. Nevertheless, when
analyzing the Minimal ECOC matrix a lost of correction capability is found.
Let M be a ECOC coding matrix, then:

ρ = min

(
δ(yi, yj)− 1

2

)
, ∀i, j ∈ {1, . . . , N}, i 6= j. (11)
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Figure 5: Mutation example for a 5-class toy problem. (a) Feature space and trained di-
chotomizers for and individual IT . (b) ECOC coding matrix of IT . (c) Confusion matrix of
IT . (d) Mutated coding matrix. (e) Mutated feature space with trained dichotomizers.

Therefore, we obtain a null correction capability ρ = 0 for the Minimal
ECOC design, since for this ECOC matrices:

min(δAHD(yi, yk)∀i,k:i 6=k) = 1, i, k ∈ [1, . . . , N ]. (12)

This means that in Minimal ECOC coding schemes, a sample s will be
misclassified if just a dichotomizer hi ∈ H misses its prediction. Although this
coding design has proved to be fairly effective when its properly tuned, we believe
that an extension of such is needed to properly benefit from Error-Correcting
principles. However, this extension is not only motivated by the null correction
capability issue. The confusion between categories is also a determinant factor
when extending ECOC designs [23], since one would like to focus dichotomies
in those categories which are more difficult to be learnt.

We propose a novel methodology to extend ECOC designs based on the
confusion matrix, aiming to focus the extension dichotomies in those categories
which are more difficult to be learnt, and thus, show a greater confusion. This
methodology defines to types of extensions, the One vs. One extension and the
Sparse extension, which have the same probability of being executed along the
optimization process. In the former, the ECOC coding matrix MN×n will be
extended with a dichotomy dn+1 which will have 0 values except for those two
positions di and dj which correspond to the categories ci, cj that maximize the
confusion (ci, cj) = argmax

i,j
(Ci,j + Cj,i). In the second, the Sparsity Controlled

Extension shown in Algorithm 4 follows the scheme in which two categories
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(ci, cj) that maximize the confusion are discriminated. Nevertheless, as high
effort to obtain both reduced and powerful codes is performed, one may want to
extend M controlling the sparsity of dn+1. Hence, generating a dichotomy that
is focused on certain categories but also increments the correction capabilities
of M . Picture the case in which a dichotomy dn+1

k = 0, ∀k ∈ {1, . . . , n}r{i, j}.
The Sparse extension algorithm will set dn+1

k to {−1,+1}, based the confusion
of class ck with ci and cj . In this case, a dn+1

k will be valued υ ∈ {−1,+1} if
the category of lowest confusion between {ci, cj} is valued υ. An example of
Sparsity extension procedure is shown in Figure 6.

Data: IT , spc
// Individual and sparsity control value
Result: IX
C
IT
N×N // Confusion matrix of IT

(ci, cj) := argmax
i,j

(Ci,j + Cj,i) ∀i, j : i 6= j;

k := 0 // Recoded bit counter of MIT

dn+1
i = ω // Where ω ∈ {+1,−1}
dn+1
j = −ω;

for b ∈ {1, . . . , NIT }r {i, j} : argmin
b

(Cb,i + Ci,b + Cb,j + Cj,b) and k < spc do

if Cb,i > Cb,j and dn+1
j = ω then

// Give an inverse value to the bit of the class which is most confused with

ci or cj

dn+1
b = ω;

else

dn+1
b = −ω;

end
k = k + 1;

end

Algorithm 4: Sparsity Controlled Extension Algorithm.

3.1. Implementation Details

[15] stated that if dichotomizers are high capacity classifiers and are properly
tuned, the code length can be reduced to obtain simpler models. Following this
idea, we adopted Support Vector Machines with a Gaussian RBF Kernel (SVM-
RBF) as our dichotomizer, since it proved to be a very powerful classifier in
literature. Typically, training a SVM implies the selection of certain data points
(Support Vectors) to build the boundaries. In the specific case of the SVM-
RBF two parameters have to be tuned in order to reach for good performances.
This parameters are the regularization parameter C and the kernel parameter
γ, which are closely related to the data distribution. In literature, the main
approach to choose these parameters is the use of cross-validation processes to
find the best {C, γ} pair over a discretization of the parameter space. However,
some works have shown that GA’s can be applied to this problem, since it can be
seen as an optimization process [8, 24]. In this sense, we use a GA to determine
the value of the {C, γ} pair for every dichotomizer in H.
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Figure 6: Sparsity extension example for a 5-class toy problem. (a) Feature space and trained
dichotomizers for IT . (b) ECOC coding matrix of IT . (c) Confusion matrix of IT . (d)
Extended coding matrix. (e) Extended feature space with trained dichotomizers.

4. Experimental Results

In order to present the experimental results, first, we introduce the data,
methods, and evaluation measurements of the experiments.

4.1. Data

The first data used for the experiments consists of nine multi-class datasets
from the UCI Machine Learning Repository database [25]. The number of train-
ing samples, features, and classes per dataset are shown in Table 2.

Moreover, we apply the classification methodology in four challenging com-
puter vision categorization problems. 2

• Traffic sign categorization: For this computer vision experiment, we
use the video sequences obtained from the Mobile Mapping System of [26]
to test the ECOC methodology on a real traffic sign categorization prob-
lem. In this system, the position and orientation of the different traffic
signs are measured with video cameras fixed on a moving vehicle. The sys-
tem has a stereo pair of calibrated cameras, which are synchronized with

2First, we use the video sequences obtained from a Mobile Mapping System [26] to test
the methods in a real traffic sign categorization problem consisting of 36 traffic sign classes.
Second, 20 classes from the ARFaces [27] dataset are classified using the present methodology.
Third, we classify seven symbols from old scanned music scores, and finally, we classify the 70
visual object categories from the public MPEG7 dataset [28]. These datasets are public upon
request to the authors.

21



Table 2: UCI repository datasets characteristics.
Problem #Training samples #Features #Classes
Vowel 990 10 11
Yeast 1484 8 10
Ecoli 336 8 8
Glass 214 9 7

Segmentation 2310 19 7
Dermathology 366 34 6

Shuttle 14500 9 7
Vehicle 846 18 3

Satimage 4435 36 6

a GPS/INS system. The result of the acquisition step is a set of stereo-
pairs of images with their position and orientation information. From this
system, a set of 36 circular and triangular traffic sign classes are obtained.
Some categories from this data set are shown in Figure 7. The dataset
contains a total of 3481 samples of size 32×32, filtered using the Weickert
anisotropic filter, masked to exclude the background pixels, and equalized
to prevent the effects of illumination changes. These feature vectors are
then projected into a 100 feature vector by means of PCA.

Figure 7: Traffic sign classes.

• ARFaces classification: The ARFace database [27] is composed of 26
face images for each one of the 126 different subjects (70 men and 56
women). The images have uniform white background. The database has
two sets of images from each person, acquired in two different sessions,
with the following structure: one sample of neutral frontal images, three
samples with strong changes in the illumination, two samples with oc-
clusions (scarf and glasses), four images combining occlusions and illumi-
nation changes, and three samples with gesture effects. One example of
each type is plotted in Figure 8. For this experiment, we selected all the
samples from 20 different categories (persons).

• Clefs and accidental dataset: The dataset of clefs and accidental is
obtained from a collection of modern and old musical scores (19th century)
of the Archive of the Seminar of Barcelona. The dataset contains a total
of 4098 samples among seven different types of clefs and accidental from
24 different authors. The images have been obtained from original image
documents using a semi-supervised segmentation approach [29]. The main
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Figure 8: ARFaces dataset classes. Examples from a category with neutral, smile, anger,
scream expressions, wearing sun glasses, wearing sunglasses and left light on, wearing sun
glasses and right light on, wearing scarf, wearing scarf and left light on, and wearing scarf and
right light on.

difficulty of this dataset is the lack of a clear class separability because of
the variation of writer styles and the absence of a standard notation. A
pair of segmented samples for each of the seven classes showing the high
variability of clefs and accidental appearance from different authors can
be observed in Figure 4.1 (a). An example of an old musical score used to
obtain the data samples are shown in Figure 4.1(b). The object images
are described using the Blurred Shape Model descriptor [30].

(a)

(b)

Figure 9: (a) Object samples, (b) Old music score.

• MPEG7 categorization: The MPEG7 dataset contains 70 classes with
20 instances per class, which represents a total of 1400 object images. All
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samples are described using the Blurred Shape Model descriptor [30]. A
couple of samples for some categories of this dataset are shown in Fig-
ure 10.

Figure 10: MPEG7 samples.

4.2. Methods

We compare the One vs. One [14] and One vs. All [15] ECOC, DECOC [6]
and Forest-ECOC [16] approaches with the novel ECOC-compliant genetic ap-
proach. Moreover, the approaches of [9] and [10] have been replicated in order
to obtain a fair comparison with state-of-the-art ECOC GA methods. The Loss-
Weighted decoding is applied at the decoding step [1]. The ECOC base classifier
is the libsvm implementation of SVM with Radial Basis Function kernel [31].

4.3. Experimental Settings

For all experiments the base classifier used is an SVM with an RBF kernel.
The optimization of its parameters is performed with a GA using a population of
60 individuals, using the operators defined by [8]. In addition for all evolutionary
methods ([10], [9] and our proposal), the number of ECOC individuals in the
initial population is set to 5N , where N is the number of classes of the problem.
The elite individuals is set to 10% of the population size. The stopping criteria
is a stall activity of performance results during five generations.

4.4. Evaluation Measurements

The classification performance is obtained by means of a stratified five-fold
cross-validation, and tested for the confidence interval with a two-tailed t-test.
We also apply the Friedman and Nemenyi tests [32] in order to look for statistical
significance among the obtained performances.

4.5. Experimental Classification Results

The classification results obtained for all the datasets considering the differ-
ent ECOC configurations are shown in Table 3. The main trend of experimental
results is that the One vs. One coding is the most successful coding in terms of
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performance, obtaining very good results in most of the datasets. Nevertheless,
in certain situations coding designs with far less number of dichotomizers can
achieve similar or even better results (i.e E.coli, Yeast, and CLEAFS results).
Moreover, taking into account the number of classifiers yielded per each coding
design we can see how those codings that were optimized with a GA are far
more efficient than the predefined ones. In addition, in order to compare the
performances provided for each strategy, the table also shows the mean rank
of each ECOC design considering the 26 different experiments (13 classification
accuracies and 13 coding lengths). The rankings are obtained estimating each
particular ranking rji for each problem i and each ECOC configuration j, and

computing the mean ranking R for each design as Rj = 1
N

∑
i r
j
i , where N is

the total number of datasets. We also show the mean number of classifiers (#)
required for each strategy. Furthermore, Table 4 shows the mean performance
ranking and the mean performance per classifier ranking, which is computed as

the rank of PC =
∑N
i=1 1−Ei∑N
i=1 n

i , where 1 − Ei is the performance obtained in the

i-th problem and ni is the length of the code in the i-th problem.
In order to reject the null hypothesis that the measured performance ranks

differ from the mean performance rank, and that the performance ranks are
affected by randomness in the results, we use the Friedman test. The Friedman
statistic value is computed as follows:

X2
F =

12N

k(k + 1)

∑
j

R2
j −

k(k + 1)2

4

 . (13)

In our case, with k = 8 ECOC designs to compare, X2
F = 11.26. Since this

value is undesirable conservative, Iman and Davenport proposed a corrected
statistic:

FF =
(N − 1)X2

F

N(k − 1)−X2
F

. (14)

Applying this correction we obtain FF = 1.1. With eight methods and
thirteen experiments, FF is distributed according to the F distribution with 7
and 175 degrees of freedom. The critical value of F (7, 175) for 0.05 is 0.31. As
the value of FF is higher than 0.31 we can reject the null hypothesis.

Furthermore, we perform a Nemenyi test in order to check if any of these
methods can be singled out [32], the Nemenyi statistic is obtained as follows:

CD = qα

√
k(k + 1)

6N
. (15)

In our case, for k = 8 ECOC designs to compare and N = 26 experiments the

critical value for a 90% of confidence is CD = 2.780 ·
√

56
156 = 1.8. In this case,

since our approach is the best in rank but it intersects with Minimal ECOC,
Pedrajas et. al, DECOC, and, Lorena et al. approaches, we can state that there
is no statistically significant difference among these five approaches. However,
since our approach uses less dichotomizers than any of the other approaches
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(except for the Minimal ECOC which obtains the lowest classification accuracy
ranking) it can be considered as the most suitable choice.

Moreover, we have to take into account that although Minimal ECOC, Pe-
drajas et. al, DECOC, and, Lorena et al. approaches intersect with our pro-
posal, the number of SVs defined by these approaches are generally bigger than
the number of SVs defined by our proposal. Therefore, their testing complex-
ity is larger than the one showed by our method (see Section 4.6.2 for further
details). As for the Minimal ECOC method, although it is close in rank to our
method we can see in Table 3 that the randomness of its optimization leads to
a much lower classification performance.

This results support the fact that using far less number of dichotomizers
than standard techniques our proposal is able to find ECOC matrices with a ex-
tremely high efficiency. In addition, the general trend of the experiments shows
that the proposed method improves the classification accuracy of methods at
the same complexity level and reduces the computational complexity of methods
with similar accuracy.

3 3.5 4 4.5 5 5.5 6

One vs. One

One vs. All

Forest ECOC

Lorena et. al.

DECOC

Pedrajas et. al

Minimal ECOC

ECOC−Compliant
GA

CD  90%

Figure 11: Critical difference for the Nemenyi test and the performance per classifier ranking
values.

4.6. Discussion

4.6.1. Regularization Analysis

In section 3.0.2 we defined the Fitness function of an ECOC individual as
follows:

Ff (Ik) = EIk + λnIk , (16)

where λ is a user defined value that plays a regularization role for the ECOC
matrix, similar to the control of learning capacity in regularized classifiers. In
our proposal the value of λ is estimated by a cross-validation procedure. In
Figure 12 a cross-validation procedure to determine the λ value is shown for
the Vowel dataset. In this procedure, the values of λ follow a logarithmic
progression (from 0.01 to 1). It can be seen how the number of classifiers
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Table 3: Classification results and number of classifiers per coding design.
ECOC-Compliant GA Minimal ECOC Lorena et al.

Dataset Perf. #Class. Perf. #Class. Perf. #Class.
Vowel 64.7±13.4 5.6 57.7±22.2 4.0 69.3±11.3 9.2
Yeast 55.6±12.2 5.0 50.2±17.3 4.0 46.9±15.3 6.4
E.coli 84.5±10.2 3.0 80.5±9.7 3.0 83.1±13.2 5.2
Glass 50.1±22.8 5.0 38.4±23.4 3.0 45.2±21.9 6.4

Segment 96.8±1.2 5.0 66.9±3.4 3.0 97.1±1.4 5.6
Dermatology 96.3±3.1 3.8 96.0±4.2 3.0 96.5±2.9 3.8

Shuttle 74.8±13.2 4.0 72.5±25.3 3.0 73.6±13.2 4.6
Vehicle 81.1±10.3 3.0 72.5±13.3 2.0 82.0±12.2 5.6

Satimage 84.3±3.1 4.0 79.2±4.2 3.0 54.7±6.5 6.6

MPEG 84.4±2.8 7.0 89.3±3.9 7.0 84.4±1.3 7.0
ARFACE 76.5±4.8 5.4 76.0±5.7 5.0 84.2±3.2 8.4
TRAFFIC 84.1±3.6 6.0 90.8±2.6 6.0 92.3±2.9 6.8
CLEAFS 96.3±6.9 3.0 81.2±8.7 3.0 96.3±7.8 7.0

Rank & #Class. 4.5 4.5 6.2 3.7 4.4 6.3

Pedrajas et al. One vs. All One vs. One

Dataset Perf. #Class. Perf. #Class. Perf. #Class.
Vowel 55.7±18.3 7.0 80.7±11.0 11.0 78.9±13.2 28.0
Yeast 53.5±18.2 5.0 51.1±16.7 10.0 52.4±12.3 45.0
E.coli 83.1±13.3 3.0 79.5±10.3 8.0 79.2±12.3 28.0
Glass 56.1±25.7 5.0 53.9±23.5 7.0 60.5±21.3 15.0

Segment 96.8±1.7 3.0 96.1±2.2 7.0 97.2±1.7 21.0
Dermatology 95.7±2.3 4.0 95.1±1.3 6.0 94.7±2.3 15.0

Shuttle 68.5±17.2 4.0 90.6±13.2 7.0 86.3±14.2 21.0
Vehicle 79.6±15.7 3.8 74.2±11.2 3.0 83.6±9.6 6.0

Satimage 83.5±5.2 3.0 83.9±5.6 6.0 85.2±7.9 15.0

MPEG 84.7±2.6 7.0 87.8±3.4 70.0 92.8±2.3 2415
ARFACE 77.7±6.7 5.8 84.0±3.9 20.0 96.0±2.8 190.0
TRAFFIC 93.8±3.2 6.0 91.8±3.4 36.0 90.6±4.2 630.0
CLEAFS 94.9±6.3 3.0 80.8±4.8 7.0 84.2±6.7 21.0

Rank & #Class. 4.8 4.6 4.7 15.2 3.2 265.3

DECOC Forest ECOC

Dataset Perf. #Class. Perf. #Class.
Vowel 66.8±12.8 8.2 70.2±10.3 30.0
Yeast 55.8±15.4 5.4 56.1±13.2 27.0
E.coli 69.5±9.7 4.2 75.2±8.9 21.0
Glass 55.0±21.3 5.4 46.9±21.8 15.0

Segment 97.0±2.3 4.6 97.1±1.3 18.0
Dermatology 97.1±4.3 2.8 96.0±2.1 15.0

Shuttle 77.1±13.2 3.6 84.4±12.1 18.0
Vehicle 84.1±10.3 4.6 81.7±13.3 9.0

Satimage 52.3±5.3 5.0 51.9±4.7 21.0

MPEG 83.4±2.5 69.0 88.9±4.3 207.0
ARFACE 82.7±4.3 19.0 85.6±4.2 147.0
TRAFFIC 86.2±2.9 35.0 96.7±2.5 105.0
CLEAFS 96.9±5.3 6.0 97.1±4.2 18.0

Rank & #Class. 4.3 14.2 3.4 50.0

yielded by the proposal diminishes when λ increases (particularly between 0.01
and 0.05). Finding its minimum at λ = 0.06 which corresponds to the Minimal
ECOC length [8].

In this sense, in our experimental settings the lambda value was set to be in
the middle point of the interval [λmin, λmax], where λmin is the smallest value
of λ that yielded the smallest ECOC code length, and respectively for λmax.
Therefore, by performing this cross-validation setting of λ our proposal is able
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Table 4: Mean rank per coding design.
ECOC-Compliant GA Minimal ECOC Lorena et al. Pedrajas et al.

Perf. rank 4.5 6.2 4.4 4.8
#Class. rank 2 1 5 3

PC rank 3.2 3.6 4.7 3.9

One vs.All ECOC One vs. One ECOC DECOC Forest ECOC

Perf. rank 4.7 3.2 4.3 3.4
#Class. rank 6 8 4 7

PC rank 5.3 5.6 4.1 5.2
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Figure 12: (a) Number of classifiers per λ value. (b) Number of SVs per coding design in the
Computer Vision problems.

to find accurate models without a extremely high complexity in terms of the
number of classifiers.
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4.6.2. Complexity Analysis

In order to provide a complete description of the method, in this section we
analyze its computational training and testing cost.

Let us consider the average computational cost for optimizing a dense di-
chotomizer (a dichotomizer in which all classes are taken into account) as a
constant value. Then we find that in the case of One vs. All coding, we have n
dichotomizers to be optimized, and thus, its computational cost is O(n). In the
case of evolutionary codings (Pedrajas et al., Lorena et al. and our proposal)
we have O(G · I · log2(n)), where I represents the number of individuals in the
genetic optimization (which is constant along generations) and G represents
the number of generations of the Genetic Algorithm. Undoubtedly, this cost
may be greater than the cost of the other non evolutionary techniques. Nev-
ertheless, with the introduction of an historic of optimized dichotomizers each
dichotomizer is optimized once and its parameters are stored for future usage.
In this sense, since the number of partitions of the classes is finite, as the al-
gorithm progresses, the number of dichotomizers to be optimized exponentially
decreases. Thus, with this approximation procedure the value of G tends to
one. In consequence, in an optimal case the computational complexity becomes
O(I · log2(n)).

In addition to the usual performance measures we also provide the number
of Support Vectors (SVs) per coding scheme. Since this number is proportional
to the complexity in the test step we can perform an analysis of what strategies
show less complexity while still obtaining high performance. Figure 12(b) shows
the number of SVs per coding design for the UCI data and Figure 12(b) shows
the number of SVs for the Computer Vision problems. We can see that, in
most cases, the four first columns of each dataset (corresponding to the Binary
Minimal and all the evolutionary strategies) yield a lower number of SVs per
model. Analyzing the empirical results shown in Figures 13 and 12(b), we
find that the number of SVs defined by all three evolutionary strategies and
the Binary Minimal approach are significantly smaller than the number of SVs
defined by other strategies. This is due to the fact that all initial populations
of evolutionary methods were set to follow a Minimal design [8], and thus, they
are all expected to yield a similar number of SVs. However, the new proposal
defines a more reduced number of SVs than other standard predefined or even
problem-dependent strategies. Defining a compact but yet discriminate enough
number of SVs, obtaining comparable or even better results than other coding
designs while dramatically reducing the testing time.

4.6.3. Convergence Analysis

This section is devoted to perform an analysis of convergence for the methods
that use a GA to optimize the ECOC matrix ([9, 10] and our proposal). To
properly perform this analysis we ran experiments for three UCI datasets (Glass,
Vowel and Yeast), fixing the initial population to avoid the random initialization
point issue (although equivalent ECOC matrices may yield different results due
to the Genetic tuning of the SVM parameters). The number of generations was
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Figure 13: Number of SVs per coding design in the UCI datasets.

set to 50 and the rest of the experimental settings were the same as the ones
described in Section 4.3.

In Figure 14 we show the evolution of the classification error, as well as
the evolution of the performance per classifier rate for three UCI datasets. In
Figures 14(a), 14(c) and 14(e) we can see how most of the times our proposal
converges faster to better results than the state-of-the-art GA approaches. This
fact is motivated by the redefinition of the operators that allows a fast explo-
ration of the search space, without generating non-valid individuals. In addition,
Figures 14(b), 14(d) and 14(f) show the evolution of the performance per clas-
sifier rate along generations. Figures 14(b) and 14(f) clearly show that our
proposal yields models that are more efficient since we get a higher performance
per classifier rate. Nevertheless, in Figure 14(d) the proposal of Pedrajas et al.
obtains a higher rate. This is motivated by the fact that in the calculus of such
rate both the classification error and the produced code length have the same
weight. However, Figure 14(c) clearly shows that our method obtains better
classification results.

Experimental results show that our proposal is able to converge faster to
better results. In addition, the models yielded by the novel proposal are more
efficient than the ones obtained by similar approaches. These results are ob-
tained because of the redefinition of the crossover and mutation operators taking
into account the theoretical properties of the ECOC framework. In this sense,
our operators have a higher probability of finding good ECOC matrices than
others since our search space is more reduced and the operators can guide the
optimization procedure to promising regions of the search space.

5. Conclusions

In this paper we presented a novel ECOC-Compliant Genetic Algorithm for
the coding step in the ECOC framework. The novel methodology redefines the
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Figure 14: (a) Classification error evolution for the Glass dataset. (b) Evolution of the
Performance per classifier rate for the Glass dataset. (c)Classification error evolution for
the Vowel dataset.(d) Evolution of the Performance per classifier rate for the Vowel dataset.
(e)Classification error evolution for the Yeast dataset. (f) Evolution of the Performance per
classifier rate for the Yeast dataset.

usual crossover and mutation operators taking into account the properties of
ECOC matrices. As a result, the search space is cropped, which causes the
optimization to converge faster. Furthermore, a new operator which is able to
increment the code length in a smart way was also introduced. The initial ECOC
population followed a Minimal coding scheme, in which only dlog2(N)e classifiers
are needed to discriminate N classes, and as consequence, the methodology is
able to find very efficient codes.

The proposal was tested on a wide set of datasets of the UCI Machine Learn-
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ing Repository and over four challenging Computer Vision problems. For com-
parison purposes state-of-the-art ECOC GA schemes were replicated, as well as
standard ECOC coding techniques. All the experiments were carried out using
Support Vector Machines with an RBF kernel. Experimental results showed
that the new proposal obtains significant improvements in comparison to state-
of-the-art techniques.

In particular, we analyzed the performance in terms of code length, and
training and testing complexity. Those analysis showed that our proposal is able
to find ECOC matrices with a high efficiency based on a trade-off optimization
between performance and complexity obtained along the GA ECOC-Compliant
optimization process.
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