

Citation for published version

Clarisó, R. & Cortadella Fortuny, J. (2007). The Octahedron Abstract
Domain (extended version). Science of Computer Programming, 64(1),
115-139.

DOI
https://doi.org/10.1016/j.scico.2006.03.009

Document Version

This is the Submitted Manuscript version.
The version in the Universitat Oberta de Catalunya institutional repository,
O2 may differ from the final published version.

Copyright and Reuse

This manuscript version is made available under the terms
of the Creative Commons Attribution Non Commercial No Derivatives
licence (CC-BY-NC-ND)
http://creativecommons.org/licenses/by-nc-nd/3.0/es/, which permits
others to download it and share it with others as long as they credit you,
but they can’t change it in any way or use them commercially.

Enquiries

If you believe this document infringes copyright, please contact the
Research Team at: repositori@uoc.edu

Universitat Oberta de Catalunya Research archive

https://doi.org/10.1016/j.scico.2006.03.009
http://creativecommons.org/licenses/by-nc-nd/3.0/es/

�

�

�

�

NOTICE: This is the author’s version of a work that was accepted for publication in Science of Computer
Programming. Changes resulting from the publishing process, such as peer review, editing, corrections, structural
formatting, and other quality control mechanisms may not be reflected in this document. A definitive version
was subsequently published in Science of Computer Programming, 64(2007):115-139.

DOI: http://dx.doi.org/10.1016/j.scico.2006.03.009

The Octahedron Abstract Domain

Robert Clarisó 1,2

Estudis d’Informàtica i Multimèdia
Universitat Oberta de Catalunya (UOC)

Barcelona, Spain

Jordi Cortadella 2,3

Departament de Llenguatges i Sistemes Informàtics
Universitat Politècnica de Catalunya (UPC)

Barcelona, Spain

Abstract

An interesting area in static analysis is the study of numerical properties. Complex
properties can be analyzed using abstract interpretation, provided that an adequate
abstract domain is defined. Each domain can represent and manipulate a family of
properties, providing a different trade-off between the precision and complexity of
the analysis. The contribution of this paper is a new numerical abstract domain
called octahedron that represents constraints of the form (

∑
xi −

∑
xj ≥ k). The

implementation of octahedra is based on a new kind of decision diagrams called
Octahedron Decision Diagrams (OhDD).

Key words: Abstract Interpretation; Numerical Abstract Domains; Relational
Abstract Domains; Convex Polyhedra

1 Part of this research was performed while this author was at the Departament de
Llenguatges i Sistemes Informàtics of UPC.
2 Supported by CICYT TIN 2004-07925 and the FPU grant AP2002-3862 from the
Spanish Ministry of Education, Culture and Sports.
3 Supported by a Distinction for the Promotion of Research by the Generalitat de
Catalunya.

Preprint submitted to Elsevier Science 24 November 2006

1 Introduction

Abstract interpretation [9] defines a generic framework for the static analysis
of dynamic properties of a system. This framework can be used, for instance,
to analyze termination or to discover invariants in programs automatically.
However, each analysis requires the framework to be parametrized for the
relevant domain of properties being studied, e.g. numerical properties.

There is a wide spectrum of numerical abstract domains that can be used to
represent and manipulate properties. Some examples are intervals, octagons
and convex polyhedra. Each domain provides a different trade-off between the
precision of the properties that can be represented and the efficiency of the
manipulation. An interesting problem in abstract interpretation is the study
of new abstract domains that are sufficiently expressive to analyze relevant
problems and allow an efficient implementation.

In this paper, a new numerical abstract domain called the octahedron abstract
domain is described. It can represent conjunctions of restricted linear inequal-
ities called unit inequalities, of the form (

∑
xi −

∑
xj ≥ k). A new kind

of decision diagram called Octahedron Decision Diagram (OhDD) has been
specifically designed to represent and manipulate this family of constraints ef-
ficiently. The implementation of the octahedron abstract domain allows some
degree of optimization when the variables under study are non-negative. Sev-
eral classes of interesting problems such as the study of the values of clocks
or counters, or the analysis of the length or size of an element (string, list,
. . .) contain non-negative variables, so this optimization can be applied. Some
examples of problems that can be solved using unit inequalities over non-
negative variables are the analysis of timed systems [1, 18], the analysis of
string length in C programs [12] and the discovery of bounds on the size of
asynchronous communication channels. In other problems where variables are
unconstrained, OhDD can still be used albeit with lower efficiency.

This paper is an extended version of the conference paper with the same title
published in the Static Analysis Symposium (SAS) 2004. In this extended
version, further details are provided about the following areas: the canonicity
of the representation, the implementation of the operations, the use of OhDD

with unrestricted variables and the potential benefits of dynamic reordering.

The remaining sections of the paper are organized as follows. Section 2 presents
related work in the definition of numerical domains for abstract interpreta-
tion, and previous decision diagram techniques used to represent numerical
constraints. Section 3 defines the numerical domain of octahedra, and Section
4 describes the data structure and its operations. This Section will also discuss
different implementations depending on the class of variables being studied:

2

Table 1
A comparison of numerical abstract domains based on inequality properties.

Abstraction Reference Constraints Example

Intervals [9] (k1 ≤ xi ≤ k2) k1, k2 ∈ Q 2 ≤ x ≤ 5

Difference Bound [11, 3] (k1 ≤ xi ≤ k2) k1, k2 ∈ Q 1 ≤ x ≤ 3

Matrices (DBMs) (xi − xj ≤ k) k ∈ Q x− y ≤ 5

Octagons [22] (± xi ± xj ≤ k) k ∈ Q 2 ≤ x + y ≤ 6

Two-variables [30] (c1 · x1 + c2 · x2 ≥ k) 3x− 2y ≥ 5

per-inequality c1, c2, k ∈ Q

Octahedra This paper (
∑

xi −
∑

xj ≥ k) x + z − y ≥ 5

k ∈ Q

Convex polyhedra [10, 17] (
∑

ci · xi ≥ k) x + 3y − z ≥ 1

ci, k ∈ Q

Templates [29] Like convex polyhedra, but the set of

possible coefficients ci is established a priori.

unconstrained variables or non-negative variables. In Section 5, some possi-
ble applications of the octahedron abstract domain are discussed, and some
experimental results are presented. Finally, Section 6 draws some conclusions
and suggests some future work.

2 Related Work

2.1 Numerical Abstract Domains

Abstract domain is a concept used to denote a computer representation for a
family of constraints, together with the algorithms to perform the abstract
operators such as union, intersection, widening or transfer functions. Sev-
eral abstract domains have been defined for interesting families of numerical
properties, such as inequality , equality or modulo properties. The octahedron
abstract domain belongs to the first category, inequalities. Other abstract do-
mains based on inequalities are intervals, difference bound matrices, octagons ,
two-variables-per-inequality , and convex polyhedra. An example of these ab-
stract domains and their relation to octahedra can be seen in Table 1.

Intervals are a representation for constraints on the upper or lower bound for
each variable, e.g. (k1 ≤ xi ≤ k2). Interval analysis is very popular due to its

3

simplicity and efficiency: an interval abstraction for n variables requires O(n)
space, and all operations require O(n) time in the worst case. Octagons are
an efficient representation for a system of inequalities on the sum or difference
of variable pairs, e.g. (±xi±xj ≤ k) and (xi ≤ k). The implementation of oc-
tagons is based on difference bound matrices (DBM), a data structure used to
represent constraints on differences of pairs of variables, as in (xi−xj ≤ k) and
(xi ≤ k). Efficiency is an advantage of this representation: the spatial cost for
representing constraints on n variables is O(n2), while the temporal cost is be-
tween O(n2) and O(n3), depending on the operation. Convex polyhedra are an
efficient representation for conjunctions of linear inequality constraints. This
abstraction is very popular due to its ability to express precise constraints.
However, this precision comes with a very high complexity overhead, which is
unbounded in theory but exponential in practice [10]. This complexity has mo-
tivated the definition of abstract domains such as two-variables-per-inequality ,
which try to retain the expressiveness of linear inequalities with a lower com-
plexity. However, currently there is no experimental data comparing the per-
formance or the precision of this abstract domain to that of convex polyhedra,
so it is unclear whether the lower theoretical complexity is noticeable from a
practical point of view.

The abstract domain presented in this paper, octahedra, also attempts to keep
some of the flexibility of convex polyhedra with a lower complexity. Instead of
limiting the number of variables per inequality, the coefficients of the variables
are restricted to {−1, 0, +1}. From this point of view, octahedra provide a
precision that is between octagons and convex polyhedra. The precision of
octahedra and the two-variables-per-inequality domain are not comparable.

The abstract domains presented so far are restricted to a specific subclass of
linear inequalities that is established in the definition of the domain. Instead,
the domain of template constraints [29] allows the user to define the structure
of the properties to be analyzed. This domain has a parameter: a ”template”
matrix T describing the potential invariants. This matrix has one column per
variable, and one row for each potential invariant. The value of a position Tij

in this matrix describes the coefficient of the variable xj in the i-th invariant.
Then, all the operations of the abstract domain are posed as linear program-
ming (LP) problems, using the template matrix to define the constraints of
the problems. The number of LP problems to be solved is polynomial in terms
of the size of the template, i.e. the number of potential invariants.

In some sense, template constraints subsume all the other abstract domains
described in this section. However, the more specialized domains may be more
efficient because they can exploit the structure of the constraints in the im-
plementation. Furthermore, the template matrix may be very large, e.g. a
(3n − 1)× n matrix for an octahedron with n variables, or even infinite, e.g.
in the two-variables-per-inequality domain.

4

2.2 Decision diagrams

One possible implementation of octahedra is based on decision diagrams. De-
cision diagram techniques have been applied successfully to several problems
in different application domains. Binary Decision Diagrams (BDD) [5] provide
an efficient mechanism to represent boolean functions. Zero Suppressed BDDs
(ZDD) [21] are specially tuned to represent sparse functions more efficiently.
Multi-Terminal Decision Diagrams (MTBDD) [15] represent functions from
boolean variables to reals, f : Bn → R.

The paradigm of decision diagrams has also been applied to the analysis of
numerical constraints. Most of these approaches compare the value of nu-
merical variables with constants or intervals, or compare the value of pairs
of variables. Some examples of these representations are Difference Decision
Diagrams (DDD) [23], Region Encoding Diagrams (RED) [35], Numerical De-
cision Diagrams (NDD) [13], and Clock Difference Diagrams (CDD) [4]. Al-
though the individual constraints involve a maximum of two variables, these
diagrams can encode conjunctions and disjunctions of these constraints. In
other representations, each node encodes one complex constraint like a linear
inequality. Some examples of these representations are Decision Diagrams with
Constraints (DDC) [19] and Hybrid-Restriction Diagrams (HRD) [36]. Again,
these diagrams can encode conjunctions and disjunctions of linear inequalities.
Nevertheless, there is no sistematic procedure to combine the different con-
straints in the diagram, detect redundancies and simplify the representation.
The Octahedron Decision Diagrams described in this paper use an innovative
approach to encode linear inequalities. This approach, presented in Section
4, includes a procedure called saturation that combines and simplifies the in-
equalities of the diagram. However, contrary to other decision diagrams, there
is a loss of precision when encoding the disjunction of constraints.

3 Octahedra

3.1 Definitions

The octahedron abstract domain is now introduced. In the same way as convex
polyhedra, an octahedron abstracts a set of vectors in Qn as a system of
linear inequalities satisfied by all these vectors. The difference between convex
polyhedra and octahedra is the family of constraints that are supported.

Definition 1 (Unit linear inequality) A linear inequality is a constraint
of the form (c1 ·x1 + . . .+cn ·xn ≥ k) where the coefficients ci are in Q and the

5

x x

y

y

y y

x

y

x

y

x

y

x

x

y

x

(b)

(a)

32
1 4

Fig. 1. Examples of (a) octahedra and (b) non-octahedra over two variables.

constant term k is in Q ∪ {−∞}, e.g. (3x+2y−z ≥ −7). A linear inequality
is called unit if all coefficients are in {−1, 0, +1}, such as (x + y − z ≥ −7).

Definition 2 (Octahedron) An octahedron O over Qn is the set of solutions
to the system of m unit inequalities O = {X | AX ≥ B }, with the vector
B ∈ (Q ∪ {−∞})m and the matrix A ∈ {−1, 0, +1}m×n. Octahedra satisfy the
following properties:

(1) Convexity: An octahedron is a convex set, i.e. any segment between two
points of the octahedron is fully within the octahedron.

(2) Closed for intersection: The intersection of two octahedra is also an oc-
tahedron.

(3) Non-closed for union: In general, the union of two octahedra might not be
an octahedron.

Figure 1(a) shows some examples of octahedra in a two-dimensional space. In
Fig. 1(b) there are several regions of space which are not octahedra, either
because they are not connected (1), they are not convex (2), they cannot be
represented by a finite system of linear inequalities (3), or because they can be
represented as a system of linear inequalities, but not unit linear inequalities
(4). Notice that in two-dimensional space all octahedra are octagons; octa-
hedra can only show a better precision than octagons in higher-dimensional
spaces.

During the remaining of this paper, we will use C to denote a vector in
{−1, 0, +1}n where n is the number of variables. Therefore, given a set of
variables X, the expression (CT X ≥ k) denotes the unit linear inequality
(c1 · x1 + . . . + cn · xn ≥ k).

Lemma 3 An octahedron over n variables can be represented by at most 3n−1
non-redundant inequalities.

6

PROOF. Each variable can have at most three different coefficients in a unit
linear inequality. For n variables, there are at most 3n possible combinations
of unit coefficients, where one of them is an irrelevant unit inequality with 0
in all coefficients. This means that if an octahedron has more than 3n−1 unit
inequalities, some of them will only differ in the constant term, e.g. (CT X ≥
k1) and (CT X ≥ k2). One of these inequalities is definitely redundant, namely,
the one with the smaller constant. 2

A problem when dealing with convex polyhedra and octahedra is the lack of
canonicity of the systems of linear inequalities: the same polyhedron/octahedron
can be represented with different systems of inequalities. For example, both
systems of inequalities (x = 3) ∧ (y ≥ 5) and (x = 3) ∧ (x + y ≥ 8) define the
same octahedron with different inequalities. Given a convex polyhedron, there
are algorithms to minimize the number of constraints in a system of inequal-
ities, i.e. removing all constraints that can be derived as linear combinations
of others. However, in the previous example both representations are minimal
and even then, they are different. Although it is possible to define a canonical
form for convex polyhedra [2], its complexity makes it impractical. Regard-
ing octahedra, a canonical form for octahedra can be defined using the result
of Lemma 3. Even though the number of inequalities of this canonical form
makes an explicit representation impractical, symbolic representations based
on decision diagrams can manipulate sets of unit inequalities efficiently.

Definition 4 (Canonical form of octahedra) The canonical form of an
octahedron O ⊆ Qn is either (i) the empty octahedron or (ii) a system of
3n − 1 unit linear inequalities, where in each inequality (CT X ≥ k), k is the
tightest bound satisfied by O. This bound k may be −∞, i.e. the inequality is
unbounded in the octahedron.

Theorem 5 Two octahedra O1 and O2 represent the same subset of Qn if and
only if they both have the same canonical form.

Proof We need to prove both directions of the if and only if. (→) Given a
constraint (CT X ≥ k), there is a single tightest bound to that constraint.
Therefore, if two octahedra are equal, they will have the same bound for each
possible linear constraint, and therefore, the same canonical form. 2

(←) From its definition, an octahedron is completely characterized by its
system of inequalities. If two octahedra O1 and O2 have the same canonical
form, then they satisfy exactly the same system of inequalities and therefore
are equal. 2

7

y

x
������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������

������
������
������
������
������
������A B

C

A = { (−∞ ≤ x ≤ +∞) ∧ (−∞ ≤ y ≤ +∞)

∧ (−∞ ≤ x− y ≤ +∞) ∧ (−∞ ≤ x + y ≤ 6) }

B = { (−∞ ≤ x ≤ +∞) ∧ (−∞ ≤ y ≤ +∞)

∧ (0 ≤ x− y ≤ +∞) ∧ (−∞ ≤ x + y ≤ +∞) }

A ∩B = { (−∞ ≤ x ≤ +∞) ∧ (−∞ ≤ y ≤ +∞)

∧ (0 ≤ x− y ≤ +∞) ∧ (−∞ ≤ x + y ≤ 6) }

canonical(A ∩B) = { (−∞ ≤ x ≤ +∞) ∧ (−∞ ≤ y ≤ 3)

∧ (0 ≤ x− y ≤ +∞) ∧ (−∞ ≤ x + y ≤ 6) }

Fig. 2. An example where A ∩B is not in canonical form.

Theorem 6 Let A and B be two non-empty octahedra represented by sys-
tems of inequalities of the form (CTX ≥ ka) and (CTX ≥ kb) for all C ∈
{−1, 0, +1}n, which may be non-canonical. The intersection A ∩ B is defined
by the system of inequalities (CT X ≥ max(ka, kb)), which might be in non-
canonical form even if the input systems were canonical.

PROOF. Any point P ∈ Qn that satisfies (CTP ≥ max(ka, kb)) will also
satisfy (CT P ≥ ka) and (CT P ≥ kb). Therefore, any point P satisfying the
new system of inequalities will also appear in both A and B. 2

Figure 2 shows an example where the intersection of two octahedra is not in
canonical form, even though the original octahedra were in canonical form.
The intersection of A = { (x + y ≤ 6) } and B = { (x ≥ y) } satisfies
the inequality (y ≤ 3). However, this constraint does not appear simply by
taking the maximum constant for all the constraints of A and B. Instead, this
implicit constraint is implied by the other constraints of the intersection, i.e.
it is computed as a linear combination of other constraints of A ∩ B.

Lemma 7 An octahedron B is an upper approximation of an octahedron A,
noted A ⊆ B, iff either (i) A is empty or (ii) for any constraint (CT X ≥ ka)
in the canonical form of A, the equivalent constraint (CT X ≥ kb) in B (which
may be in canonical form or not) has a constant term kb such that (ka ≥ kb).

PROOF. By definition, A ⊆ B iff A = A ∩ B. This lemma is a direct
consequence of this property and Theorem 6. 2

Definition 8 (Convex and octahedral hull) The convex hull (C-hull) of
two convex sets A and B is the intersection of all convex sets that include
both A and B. The octahedral hull (O-hull) of two octahedra A and B is the
intersection of all octahedra that include both A and B.

8

x

y

x

y

x

y

O−hull(A,B)C−hull(A,B)

A U B

B

A

B

A

A

B

A = {(2 ≤ x ≤ 4) ∧ (4 ≤ y ≤ 7)}

B = {(1 ≤ x ≤ 5) ∧ (1 ≤ y ≤ 3)}

C-hull = {(1 ≤ x ≤ 5) ∧ (1 ≤ y ≤ 7) ∧

(4x− y ≥ 1) ∧ (−4x− y ≥ −23)}

O-hull= {(1 ≤ x ≤ 5) ∧ (1 ≤ y ≤ 7) ∧

(x− y ≥ 5) ∧ (−x− y ≥ −11)}

Fig. 3. Overapproximations of the union: convex (C) and octahedral (O) hull.

Figure 3 shows an example of the convex and octahedral hulls of two octahedra
A and B. Notice that the convex hull is always an upper approximation of
the union, and the octahedral hull is always an upper approximation of the
convex hull, i.e. A ∪B ⊆ C-hull(A, B) ⊆ O-hull(A, B).

Theorem 9 Let A and B be two non-empty octahedra whose canonical form
are respectively (CT X ≥ ka) and (CTX ≥ kb) for all C ∈ {−1, 0, +1}n.
Then, the octahedral hull O-hull(A, B) is defined by the system of inequalities
(CT X ≥ min(ka, kb)).

PROOF. Given a bound k for one inequality (CT X ≥ k) of O-hull(A, B),
the proof can be split into two parts: proving that k ≤ min(ka, kb) and proving
that k ≥ min(ka, kb).

As the octahedral hull includes A and B, all points P ∈ A and P ∈ B should
also be in O-hull(A, B). Therefore, any point in A or B should satisfy the
constraints of O-hull(A, B). Given a constraint (CT X ≥ k), it is known that
points in A satisfy (CT X ≥ ka) and points in B satisfy (CTX ≥ kb). If both
sets of points must satisfy the constraint in O-hull(A, B), then k must satisfy
k ≤ min(ka, kb).

On the other side, the octahedral hull is the least octahedron that includes
A and B. Therefore, the bounds of each constraint should be as tight as
possible, i.e. as large as possible. If we know that k ≤ min(ka, kb) should hold
for a given unit inequality, the tightest bound for that inequality is precisely
k = min(ka, kb). As a corollary , the octahedral hull computed in this way is
in canonical form. 2

9

y

x

(3, 2)

(3, 3)

(1, 0)

(1, 1)

P

System of generators

P = {λ1 · (3, 3) + λ2 · (3, 2) + µ1 · (1, 1) + µ2 · (1, 0) |
λ1 ≥ 0, λ2 ≥ 0, µ1 ≥ 0, µ2 ≥ 0, λ1 + λ2 = 1}

System of constraints

P = {(x, y) | (y ≥ 2) ∧ (x ≥ 3) ∧ (x− y ≥ 0)}

Fig. 4. An example of a convex polyhedron (shaded area) and its double description.

3.2 Computing the Canonical Form

3.2.1 Preliminaries: Dual Representations of Polyhedra

Any convex polyhedron has two dual representations: the system of constraints
and the system of generators [6]. The system of constraints defines the poly-
hedron as a conjunction of linear inequalities. Meanwhile, the system of gen-
erators defines the polyhedron as the convex combination of a set of points
(vertices) and the positive linear combination of a set of rays (vectors). Both
representations are useful in the implementation of the abstract domain of
convex polyhedra, as operations like intersection are trivial in the constraint
representation, while the convex hull is naturally expressed in the generator
representation. Also, both representations can be minimized when the dual is
available. Figure 4 shows an example of a convex polyhedron and its double
description.

There is a procedure that translates from one representation into the other.
This procedure was described in [6], and further improved in [14, 34]. Given
a system of c constraints over Qd, the computation of the dual representation
requires O(c⌊

d

2
⌋) time [20]. Furthermore, even if we consider only minimized

representations, the size of a representation can grow exponentially with this
translation. For example, an hypercube in d-dimensions is defined by 2d con-
straints but it has 2d vertices. The worst case is achieved by cyclic polytopes
[20], which have up to O(c⌊

d

2
⌋) vertices with a system of inequalities with c

constraints.

3.2.2 The algorithm

The computation of the canonical form of octahedra will be based on the
generator representation of the octahedron. The pseudocode for a possible al-
gorithm is presented in Figure 6. The output of the algorithm should be either
the empty octahedron or the bounds for each of the 3d− 1 unit inequalities of
the canonical form.

The algorithm is based on the two following observations. First, a ray is a

10

y y

x x

P P

x≥ 3

y≥ 2

x + y≥ 5

x− y≥ 0

(a)

−x≥−∞

−y≥−∞

−x− y≥−∞

−x + y≥−∞

(b)

Fig. 5. (a) Bounded unit inequalities, (b) unbounded unit inequalities.

vector that represents a direction of unbounded growth in the octahedron,
i.e. no constraint can impose a bound that “crosses” the ray. Therefore, a
unit inequality will be unbounded in an octahedron O if it crosses one of the
rays of O. And second, if a unit inequality is bounded, its tightest bound will
occur in one of the vertices of the octahedron. Figure 5 shows an example
of these observations in the system of generators from Figure 4. All the unit
inequalities that cross the rays are unbounded as shown in Fig. 5(b). On the
other hand, all the bounded inequalities achieve the tightest bound in one of
the vertices of the octahedron, as shown in Fig. 5(a).

If a unit inequality is defined as (CT X ≥ k), it is possible to determine
whether it crosses a ray r using the scalar product: if (CT · r < 0), then the
unit inequality crosses the ray. For example, the ray (1, 0) is crossed by the
inequality (−x + y ≥ k) because (−1, 1)T · (1, 0) = (−1) · 1 + 1 · 0 = −1.
Also, given a vertex v, the tightest bound k achieved by a unit inequality
(CT X ≥ k) can be computed as k = CT · v. For instance, the bound of the
inequality (x−y ≥ k) in a vertex (3, 2) is (1,−1)T · (3, 2) = 1 ·3+(−1) ·2 = 1.

3.2.3 Complexity

For an octahedron over Qd with v vertices and r rays, the algorithm requires
O(d · (v + r) · 3d) time. The space requirement is O(d · (v + r + 3d)) in the
worst case. We can establish upper bounds for v and r in terms of d. For
example, we know that r ≤ 2d as further rays would be redundant in terms
of positive linear combinations. With respect to v, a possible upper bound is
v ≤ (3d − 1)⌊

d

2
⌋, as there are at most 3d − 1 non-redundant inequalities. It is

possible that a better bound can be established by taking into account that
all constraints are unit inequalities, but currently this is an open problem.

11

Function Canonical form(O)
Input: An octahedron O defined as a system of inequalities over d variables.
Output: The canonical form of O, which is either the empty octahedron (if O is
empty) or the canonical system of 3d − 1 unit inequalities for O.

Compute the system of generators of O: the set of vertices V and rays R

if V = ∅ then

return empty
endif

{ Compute the bound of each inequality in the canonical form }
for each unit inequality C ∈ {−1, 0,+1}d in O do

{ Evaluate the rays for this inequality }
unbounded := false
for each ray r ∈ R do

unbounded := (CT · r < 0)?
if unbounded then

break

endif

endfor

if unbounded then

tightest bound := −∞
else

{ Evaluate all the vertices for this inequality }
{ Keep the tightest bound satisfied by all vertices }
tightest bound := +∞
for each vertex v ∈ V do

new bound := CT · v
{ (CT ·X ≥ new bound) holds for this vertex }
tightest bound := min (new bound, tightest bound)
{ (CT ·X ≥ tightest bound) holds for all vertices visited so far }

endfor

endif

bounds[C] = tightest bound
{ bounds[C] = k means (CT ·X ≥ k) }

endfor

return bounds

Fig. 6. Pseudocode to compute the canonical form of an octahedron.

The complexity of these algorithms makes the computation of the canonical
form impractical. Even though the canonical form is useful to define the se-
mantics of the operations, it is not practical for the implementation. Instead of
the canonical form, we will define a relaxed version called the saturated form.
Operations performed using the saturated form may lose some precision, while

12

always yielding an upper approximation of the exact result.

3.2.4 Canonicity in other abstract domains

The problem of computing a canonical form appears in other abstract do-
mains as well. In domains based on inequality properties, it might be possible
to compute a tighter bound to a constraint by combining several other con-
straints. A possible way to compute the canonical form consists in calculating
all possible combinations of constraints.

In the case of DBMs and octagons, only pairwise combinations of constraints
should be considered. The algorithms that compute the canonical form in these
abstract domains require O(n3) time [11, 22] when variables are rational.

A canonical form for template constraints can also be computed. This com-
putation requires solving c linear programming (LP) problems, where c is the
number of linear inequalities in the template. Given a template for all pos-
sible unit constraints, it is also possible to use this method to compute the
canonical form of an octahedron. However, this method requires solving 3d−1
LP problems so, like the algorithm presented in this paper, it is impractical
except for small values of d.

Convex polyhedra also have a canonical form [2], but the complexity of its
computation is very high. For instance, it involves discovering all redundant
constraints in the system of inequalities, which can be posed as several LP
problems.

3.3 Abstractions of Octahedra

As it was shown in the previous section, the canonical form of an octahedron
provides a useful mechanism to define operations such as the test for inclu-
sion, the intersection or the octahedral hull. However, it is not convenient to
implement the operations using the canonical form.

On the other hand, octahedra are defined in the context of abstract interpre-
tation of numerical properties. In this context, the problem is the abstraction
of a set of values in Qn, and the main concern is ensuring that the abstraction
is an upper approximation of the concrete set of values. Thus, as long as an
upper approximation can be guaranteed, an exact representation of octahe-
dra is not required, as octahedra are already abstractions of more complex
sets. Keeping this fact in mind, efficient algorithms that operate with upper
approximations of the canonical form can be designed.

13

The first step is the definition of a relaxed version of the canonical form,
which is called saturated form 4 . While the canonical form has the tightest
bound in each of its inequalities, the bounds in the saturated form may be
more relaxed. A system of unit inequalities is in saturated form as long as the
bounds imposed by the sum of any pair of constraints in the system appear
explicitly. For example, a saturated form of the octahedron (a ≥ 3)∧ (b ≥ 0)∧
(c ≥ 0)∧ (b−c ≥ 7)∧ (a + b ≥ 8)∧ (a + c ≥ 6) can be defined by the following
system of inequalities:

(a ≥ 3) ∧ (b ≥ 7) ∧ (c ≥ 0) ∧ (a + b ≥ 10) ∧ (a + c ≥ 6) ∧ (b + c ≥ 7)

∧ (b− c ≥ 7) ∧ (a + b− c ≥ 10) ∧ (a + b + c ≥ 13)

where the constraints with a bound of −∞ have been removed for brevity.
In this example, saturation has exposed explicitly that (a + b ≥ 10). This
inequality is the sum of (a ≥ 3), (b− c ≥ 7) and (c ≥ 0).

A saturated form O∗ of an octahedron O = { X | AX ≥ B } can be computed
using an iterative procedure called saturation. At each step of this procedure,
a sum between two unit inequalities is computed. If this sum has a tighter
bound than the one already known, the bound is updated, and so on until a
fixpoint is reached. The formal description of saturation is the following:

(1) Initialize the system of 3n − 1 unit inequalities for all possible values
of the coefficients C ∈ {−1, 0, +1}n. The bound k of a given inequality
(CT X ≥ k) is chosen as:

k =

b if CT X ≥ b appears in AX ≥ B and C 6≥ 0n.

−∞ otherwise

(2) Select two inequalities CT
1 X ≥ k1 and CT

2 X ≥ k2 such that k1 > −∞
and k2 > −∞. Let us define C∗ = C1 + C2 and k∗ = k1 + k2.

(3) If C∗ 6∈ {−1, 0, +1}n return to step 2.
(4) If CT

∗ X ≥ k appears in the system of inequalities with k ≥ k∗, return to
step 2.

(5) Replace the inequality CT
∗ X ≥ k by CT

∗ X ≥ k∗.
(6) Repeat steps 2-5 until:
• A fixpoint is reached or
• An inequality CT

∗ X ≥ k with C = 0n and k > 0 is found. In this case,
the octahedron is empty.

4 In the context of a system of constraints, the term saturated is usually used with
a different meaning: to denote constraints which cannot become tighter without
changing the set of solutions. In this paper we will only use the term to refer to the
saturated form, even though some inequalities in this form may be non-saturated.

14

The implementation of the saturation algorithm will differ slightly from this
definition: in step 2, instead of choosing a pair of inequalities and computing
the sum, the implementation will select all possible pairs of unit inequalities
and compute the sum simultaneously. This operation can be performed effi-
ciently in the decision diagram. In any case, it does not affect the termination
of the algorithm.

Theorem 10 Let O = {X | AX ≥ B} be a non-empty octahedron. The
saturation algorithm applied to O terminates.

PROOF. Each step of the saturation algorithm defines a tighter bound for
an inequality of the octahedron. The new inequality (CT

3 X ≥ k′
3) is obtained

from two previously known inequalities (CT
1 X ≥ k1) and (CT

2 X ≥ k2), so that
C3 = C1 +C2 and k′

3 = k1 +k2, and k′
3 > k3, where k3 is the previously known

bound for the inequality. If inequalities 1 and 2 were computed in previous
rounds of the saturation algorithm, this dependency chain can be expanded,
e.g. if inequality 2 comes from inequalities 4 and 5, then C3 = C1+C4+C5 and
k′

3 = k1 + k4 + k5. Non-termination of the saturation algorithm implies that
there will be infinitely many sums of pairs of inequalities. Ignoring the bound k,
there are only finitely many inequalities over n variables. Therefore, it is always
possible to find a step that computes a bound k′

j that depends on a previously
known bound kj , i.e. Cj = Cj+

∑
Cl and k′

j = kj+
∑

kl. As Cj−Cj =
∑

Cl = 0n

and k′
j − kj =

∑
kl > 0, the linear combination ((

∑
Cl)

T X ≥ (
∑

kl)) is
equivalent to (0 > 0), which implies that O is empty. 2

The fixpoint in saturation may not be reached if the octahedron is empty.
For example, the octahedron in Fig. 7(a) is empty because the sum of the
last four inequalities is (0 ≥ 4). The saturation algorithm applied to this
octahedron does not terminate. Adding the constraints in top-down order
allows the saturation algorithm to produce (x2 − x4 ≥ 5), which can again be
used to produce (x2−x4 ≥ 9) and so on. Even then, the saturation algorithm
is used to perform the emptiness test because of three reasons:

• There are special kinds of octahedra for which termination is guaranteed.
For instance, if all inequalities describe constraints between symbols (all
constant terms are zero), saturation is guaranteed to terminate. This occurs
because any sum among unit constraints will either leave a constant as 0,
or replace a −∞ constant by a 0.
• The conditions required to build an octahedron for which the saturation al-

gorithm does not terminate are complex and artificial, and therefore we ex-
pect them to occur rarely in practical examples. Note that non-termination
may arise only for some systems of unit inequalities that define an empty
octahedron.

15

• Another reason is the good behavior of the saturation procedure in practi-
cal examples. If the input is an octahedron obtained by performing minor
changes to previously saturated octahedra, e.g. the intersection of two sat-
urated octahedra, typically very few iterations are required to reach the
fixpoint. This makes the prediction of non-termination possible in practice.

Even if the saturation algorithm terminates, in some cases it might fail to
discover the tightest bound for an inequality. For example, in the octahedron
in Fig. 7(b), saturation will fail to discover the constraint (x1−x2+x3+x4+x5+
x6 ≥ 6), as any sum of two inequalities will yield a non-unit linear inequality.
Therefore, given a constraint (CT X ≥ ks) in the saturated form, the bound kc

for the same inequality in the canonical form may be different, kc 6≤ ks. But
kc ≥ ks always holds, as kc is the tightest bound for that inequality. In this
sense, the result will always be an upper approximation of the exact canonical
result, as kc ≥ ks is the exact definition for upper approximation of octahedra
(Lemma 7)

Several operations which have been defined for the canonical form can also be
used in the saturated form. For instance, the definition of the intersection in
Theorem 6 did not require that the operands were in canonical form. Regarding
the union, we were able to prove in Theorem 9 that the octahedral hull is in
canonical form if the two initial octahedra are in canonical form. A similar
result holds for octahedra in saturated form.

Lemma 11 Given two octahedra A and B in saturated form, the union im-
plemented as (CT X ≥ min(ka, kb)) is also saturated.

PROOF. The result can only be non-saturated if we can find three inequal-
ities (CT

1 X ≥ k1), (CT
2 X ≥ k2) and (CT

3 X ≥ k3) such that the first two
can be combined to produce the third (C1 + C2 = C3) with a tighter bound
(k1 + k2 > k3). Considering the relationship between these bounds and the
bounds of A and B in the same inequalities C1, C2 and C3, we can define
k1 = min(ka

1 , k
b
1), k2 = min(ka

2 , k
b
2), k3 = min(ka

3 , k
b
3). As A is saturated, we

know that (ka
3 ≥ ka

1 + ka
2), and conversely for B, (kb

3 ≥ kb
1 + kb

2). Therefore, we
know that k3 = min(ka

3 , k
b
3) ≥ min(ka

1 +ka
2 , k

b
1 +kb

2). Proving that the result is
saturated is then reduced to checking that (k1 + k2 ≤ k3), which is equivalent
to: min(ka

1 , k
b
1) + min(ka

2 , k
b
2) ≤ min(ka

1 + ka
2 , k

b
1 + kb

2). This property can be
checked using a proof by cases. 2

16

+ x2 − x4 ≥ 1

−x1 − x2 + x3 + x4 + x5 − x6 ≥ 1

+x1 − x2 − x3 + x4 − x5 + x6 ≥ 1

+x1 + x2 + x3 − x4 − x5 − x6 ≥ 1

−x1 + x2 − x3 − x4 + x5 + x6 ≥ 1

+x1 − x2 − x3 + x4≥ 1

−x1 − x2 + x3 + x5≥ 2

+x1 + x2 + x3 + x6≥ 3

(a) (b)

Fig. 7. (a) Empty octahedron where the saturation algorithm does not terminate and
(b) Non-empty octahedron where the saturated and canonical form are different.

3.4 Abstract Semantics of the Operators

In order to characterize the octahedron abstract domain, the abstract seman-
tics of the abstract interpretation operators must be defined. Intuitively, this
abstract semantics is defined as simple manipulations of the saturated form
of octahedra. All operations are guaranteed to produce upper approximations
of the exact result, as it was justified in section 3.3. Some operations like
the intersection can deal with non-saturated forms without any loss of pre-
cision, while others like the union can only do so at the cost of additional
over-approximation.

In the definition of the semantics, A and B will denote octahedra, whose
saturated forms contain inequalities of the form (CT X ≥ ka) and (CT X ≥ kb),
respectively.

• Intersection A∩B is represented by a system of inequalities where (CT X ≥
max(ka, kb)), which might be in non-saturated form.
• Union A∪B is approximated by the saturated form (CTX ≥ min(ka, kb)).

Lemma 11 proves that the result is saturated.
• Inclusion Let A and B be two octahedra. If ka ≥ kb for all inequalities

in the saturated form of A and B (which may be in saturated form or
not), then A ⊆ B. Notice that the implication does not work in the other
direction, i.e. if ka 6≥ kb then we don’t know whether A ⊆ B or A 6⊆ B.
• Widening A∇B is defined as the octahedron with inequalities (CT X ≥ k)

such that k:

k =

−∞ if ka > kb

ka otherwise

As established in [22], the result should not be saturated in order to guar-
antee convergence in a finite number of steps.
• Extension An octahedron O can be extended with a new variable y by

modifying the constraints of its saturated form O∗. Let (c1 ·x1+. . .+cn ·xn ≥
k) be a constraint of O∗, the inequalities that will appear in the saturated

17

form of the extension are:

c1 · x1 + . . . + cn · xn − 1 · y ≥ −∞

c1 · x1 + . . . + cn · xn + 0 · y ≥ k

c1 · x1 + . . . + cn · xn + 1 · y ≥ −∞

If the new variable is known to be non-negative, the last constraint can be
changed to a more precise (c1 · x1 + . . . + cn · xn + 1 · y ≥ k) as the known
bound k cannot be decreased by adding a non-negative value.
• Projection A projection of an octahedron O removing a dimension xi can

be performed by removing from its saturated form O∗ all inequalities where
xi has a coefficient that is not zero.
• Unit linear assignment A unit linear assignment [xi :=

∑m
j=1 cj ·xj] with

coefficients ci ∈ {−1, 0, +1} can be defined using the following steps:
· Extend the octahedron with a new variable t.
· Intersect the octahedron with the octahedron (t =

∑m
j=1 cj · xj)

· Project the variable xi.
· Rename t as xi.

3.5 Impact of the conservative inclusion test

Several operations defined using the saturated form cause a loss of precision
because they do not use the tightest possible bound in each inequality. This
loss of precision is always an upper approximation: the most precise result is
included in the octahedron produced by the operators. In the context of ab-
stract interpretation, upper approximations are acceptable: instead of studying
the exact set of states of a system, an upper approximation of state space is
computed. A possible way to perform this computation is called increasing
chain: initially, our state space S0 only contains the initial states. Each it-
eration after the first attempts to discover new reachable states that can be
accessed from previously reached states. The new states are added to state
space, which grows after each iteration: (S0 ⊆ S1 ⊆ S2 ⊆ . . .). The analysis
terminates when a fixpoint is reached, i.e. when Si+1 ⊆ Si.

However, the inclusion operator defined for saturated forms is not accurate:
even if A ⊆ B, the answer may be inconclusive when the saturation procedure
fails to discover the tightest bound for an inequality. In this section, we discuss
whether this has any effect on the termination of an abstract interpretation
analysis. Our claim is that even with this inclusion operator, the analysis can
be guaranteed to terminate, even though there may be a loss of precision.

Let us consider the following scenario: after the iteration i+1 of an increasing
analysis, the fixpoint Si+1 ⊆ Si has been reached but the test of inclusion does
not give a conclusive answer. In this situation, there must be one constraint

18

(CT X ≥ k) in the solutions such that ki+1 < ki, where kj is the bound of the
inequality in Sj . The saturated form of Si+1 is unable to compute the tightest
bound ki for that inequality. However, after another iteration (i+2), the state
space Si+2 will satisfy Si+1 ⊆ Si+2, because the analysis is an increasing hain.
Therefore, the coefficient ki+2 will always be ki+2 ≤ ki+1. Hence, in Si+2 it
does not matter that the saturated form is unable to compute the tightest
bound for (CT X ≥ k). We can conclude that the analysis will terminate, even
though more iterations may be required. However, in practical examples, this
theoretical scenario does not seem to arise, as constraints tend to be generated
in a structured way that allows saturation to obtain good approximations of
the exact canonical form.

4 Octahedra Decision Diagrams

4.1 Overview

The constraints of an octahedron can be represented compactly using a spe-
cially devised decision diagram representation. This representation is called
Octahedron Decision Diagram (OhDD). Intuitively, it can be described as a
Multi-Terminal Zero-Suppressed Ternary Decision Diagram:

• Ternary : Each non-terminal node represents a variable xi and has three
output arcs, labelled as {−1, 0, +1}. Each arc represents a coefficient of xi

in a linear constraint.
• Multi-Terminal [15]: Terminal nodes can be constants in R ∪ {−∞}. The

semantics of a path σ from the root to a terminal node k is the linear
constraint (c1 · x1 + c2 · x2 + . . . + cn · xn ≥ k), where ci is the coefficient of
the arc taken from the variable xi in the path σ.
• Zero-Suppressed [21]: If a variable does not appear in any linear constraint,

it also does not appear in the OhDD. This is achieved by using special
reduction rules as it is done in Zero-Suppressed Decision Diagrams.

The reduction rules of decision diagrams have an essential role: ensuring that
the representation is canonical and efficient. In the context of octahedra,
canonicity means that saturated octahedra with the same system of inequali-
ties are encoded by the same OhDD. Furthermore, a careful choice of reduction
rules may decrease the size of the decision diagram, improving both memory
and CPU time for all operations. In the case of OhDD, two reduction rules are
defined: one for octahedra with unbounded variables and another specially
tuned for octahedra with non-negative variables. In both cases, the overall
manipulation of OhDD is the same, with only small changes in the implemen-
tation. These issues will be described in detail in the following section.

19

−3

z

0

−

−,0,+

+

x

y

0

−

−0+

0,+

z

2

x≥ 2

y≥ 0

z≥ 0

x + y≥ 3

x− z≥ 2

x + y − z≥ 2

x + y + z≥ 3

Fig. 8. An example of a OhDD. On the right, the constraints of the octahedron.

Figure 8 shows an example of an OhDD and the octahedron it represents on
the right, using reduction rules for non-negative variables. The shadowed path
highlights one constraint of the octahedron, (x + y − z ≥ 2). All constraints
that end in a terminal node with −∞ represent constraints with an unknown
bound, such as (x− y ≥ −∞). As the OhDD represents the saturated form of
the octahedron, some redundant constraints such as (x + y + z ≥ 3) appear
explicitly.

This representation based on decision diagrams provides three main advan-
tages. First, decision diagrams provide many opportunities for reuse. For ex-
ample, nodes in a OhDD can be shared. Furthermore, different OhDD can
share internal nodes, leading to a greater reduction in the memory usage.
Second, the reduction rules avoid representing the zero coefficients of the lin-
ear inequalities. Finally, symbolic algorithms on OhDD can deal with sets of
inequalities instead of one inequality at a time. All these factors combined
improve the efficiency of operations with octahedra.

4.2 Definitions

Definition 12 (Octahedron Decision Diagram - OhDD) An Octahedron
Decision Diagram is a tuple (V, G) where V is a finite set of positive real-valued
variables, and G = (N ∪ K, E) is a labeled single rooted directed acyclic graph
with the following properties. Each node in K, the set of terminal nodes, is
labeled with a constant in Q ∪ {−∞}, and has no outgoing arcs. Each node
n ∈ N is labeled with a variable v(n) ∈ V , and it has three outgoing arcs,
labeled −, 0 and +.

By establishing an order among the variables of the OhDD, the notion of or-
dered OhDD can be defined. The intuitive meaning of ordered is the same as
in BDDs, that is, in every path from the root to the terminal nodes, the vari-
ables of the decision diagram always appear in the same order. For example,
the OhDD in Fig. 8 is an ordered OhDD.

20

−

D

D

0,+ −

v

zero coefficient

reduction

−

A B C

0 +

v

X Y

− − 0 + +

A B C

v v

0

X Y

−

A B C

0 +

v

X Y

− − 0 + +

A B C

v v

0

X Y

−

D
isomorphic subgraph

reduction

isomorphic subgraph

reduction

D

v

zero coefficient

reduction
0 −,+(a)

(b)

Fig. 9. Reduction rules: (a) Unconstrained variables, (b) non-negative variables.

Definition 13 (Ordered OhDD) Let ≻ be a total order on the variables V

of a OhDD. The OhDD is ordered if, for any node n ∈ N , all of its descendants
d ∈ N satisfy v(d) ≻ v(n).

In the same way, the notion of a reduced OhDD can be introduced. However,
the reduction rules will be different in order to take advantage of the structure
of the constraints. In an octahedron, most variables will not appear in all
the constraints. Avoiding the representation of these variables with a zero
coefficient would improve the efficiency of OhDD. This can be achieved as in
ZDDs by using a special reduction rule.

Let us consider an octahedron like (x− y ≥ 4). Other variables, e.g. z, do not
affect the bound of the constraint. For example, as there is no information
about z, constraints that involve x, y and z will have a bound like −∞, like
(x − y + z ≥ −∞) or (x − y − z ≥ −∞). This scenario can be described as
follows: there is a node n in the OhDD with a variable z, where the outgoing
arcs − and + point towards −∞, and the 0 arc points to a node m. In this
case, the node n can be replaced by node m to avoid encoding the irrelevant
variable z. This reduction rule is displayed in Figure 9(a).

If the variables are known to be non-negative, the reduction rule can be refined.
For example, in the case of a constraint like (x − y ≥ 4) and an irrelevant
variable z, the constraints where the variable z appears are (x − y + z ≥ 4)
and (x−y−z ≥ −∞). Contrary to the previous case with arbitrary variables,
the constraint (x− y + z ≥ 4) has now a known bound as (z ≥ 0). Therefore,
the reduction rule should be rephrased to take into account this information:
there should be a node n in the OhDD with a variable z, where the outgoing
arc − points to −∞ and both the 0 and + arcs point to a node m. Then, the
node n can be replaced by m. Figure 9(b) depicts this alternative reduction
rule. Remarkably, using this reduction rule, the set of constraints stating that
“any sum of variables is greater or equal to zero” is represented as the single
terminal node 0.

Figure 9 shows an example of the two alternatives, together with the other
reduction rule, which merges isomorphic subgraphs of the decision diagram.

21

(x ≥ 0) ∧ (y ≥ 0) ∧ (z ≥ 0) ∧ (x + y ≥ 3) ∧ (x + z ≥ 3)

x

y

z

− 0

z

y

− 0 3 − 3

z

−

− −

0,+− − +

00,+

+− 0

0 0,+−

+− −

x

z

y

− 0 3

0

− 3

−

− +

0

0

+− 0

− +

x

y

−

z

y

z

− 0

z

y

− 0 3 − 3

z

−,0,+ 0,+− − +

0−0,+

+− 0

−

0 0,+−

+−,0,+

(a)

(b) (c)

Fig. 10. Comparison of reduction rules. On the top, the octahedron being encoded.
On the bottom, (a) OhDD with reduction rule 1 - isomorphic subgraphs, (b) OhDD

with reduction rule 2 - unconstrained variables and (c) OhDD with reduction rule
3 - non-negative variables.

Notice that contrary to BDDs, nodes where all arcs have the same target will
not be reduced (unless the three arcs point to −∞). It is possible to have
both types of variables in the same OhDD, using the suitable reduction rule
for each variable.

Definition 14 (Reduced OhDD) A reduced OhDD is an ordered OhDD where
none of the following rules can be applied:

(1) Reduction of isomorphic subgraphs: Let D1 and D2 be two isomorphic
subgraphs of the OhDD. Merge D1 and D2.

(2) Reduction of zero coefficients (with unconstrained variables): Let n ∈ N

be a node with the − and + arcs going to the terminal −∞, and with the
arc 0 pointing to a node m. Replace n by m. Or

(3) Reduction of zero coefficients (with non-negative variables): Let n ∈ N

be a node with the − arc going to the terminal −∞, and with the arcs 0
and + pointing to a node m. Replace n by m.

22

Figure 10 shows the effect of the different reduction rules on a OhDD. In
this case, the octahedron being represented is (x ≥ 0) ∧ (y ≥ 0) ∧ (z ≥ 0) ∧
(x + y ≥ 3)∧(x + z ≥ 3). The detection of isomorphic subgraphs is illustrated
in Figure 10(a). To improve the clarity of the Figure, terminal nodes with the
same constant value have not been collapsed into a single node. As all the
variables in this example are non-negative, the two alternative reduction rules
2 and 3 can be compared, as shown in Figures 10(b) and (c). Notice that
the reduction that assumes non-negative variables produces a more compact
representation. Therefore, whenever all the variables in a problem are known to
be non-negative, reduction rule number 3 should be used instead of reduction
rule number 2.

4.3 Implementation of the Operations

The octahedra abstract domain and its operations have been implemented as
OhDD on top of the CUDD decision diagram package [32]. Each operation on
octahedra performs simple manipulations such as computing the maximum
or the minimum between two systems of inequalities, where each inequality is
encoded as a path in a OhDD.

Two concepts from BDDs are used to present the implementation of the op-
erations. First, the top variable of a OhDD is the variable that appears in the
root of the OhDD. Two OhDD may have different top variables, because some
variables are not encoded when the reduction rules are applied. Given several
ordered OhDD, the top variable among all of them is the one which appears
before in the ordering. The other concept is the term cofactor from Boolean
algebra. The two cofactors of a Boolean formula f(x1, . . . , xn) : Bn → B are
the pair of formulas obtained by replacing variable xi by constants 0 and 1
respectively inside f . In a BDD, the cofactors of a node f with respect to
the top variable are the two children of f . In the context of OhDD, the term
cofactor is also used to denote the children of a node. Each node f of the
decision diagram has three cofactors f−, f 0 and f+ with respect to a variable
x. Each cofactor denotes the set of inequalities in f where the variable x has a
given coefficient, i.e. f 0 contains all the inequalities where x does not appear.
The cofactors of a OhDD f with respect to the top variable are the targets
of the three arcs −, 0 and +, while the cofactors for the other variables are
defined by the chosen reduction rule.

The operations on octahedra can be implemented as recursive procedures on a
OhDD. The algorithm may take as arguments one or more decision diagrams,
depending on the operation. All these recursive algorithms share the same
overall structure:

23

(1) Check if the call is a terminal case, e.g. all arguments are constant decision
diagrams. In that case, the result can be computed directly.

(2) Look up the cache to see if the result of this call was computed previously
and is available. In that case, return the precomputed result.

(3) Select the top variable t in all the arguments according to the ordering.
The algorithm will only consider this variable during this call, leaving the
rest of the variables to be handled by the subsequent recursive calls.

(4) Obtain the cofactors of t in each of the arguments of the call.
(5) Perform recursive calls on the cofactors of t.
(6) Combine the results of the different calls into the new top node for vari-

able t.
(7) Store the result of this recursive call in the cache. Future calls to this

method with the same arguments will use the cached result instead of
repeating the computation.

(8) Return the result to the caller.

The saturation algorithm is a special case: all sums of pairs of constraints
are computed by a single traversal; but if new inequalities have been discov-
ered, the traversal must be repeated. The process continues until a fixpoint is
reached. Even though this fixpoint might not be reached, as seen in Fig. 7, the
number of iterations required to saturate an octahedron tends to be very low
(1-4 iterations) if it is derived from saturated octahedra, e.g. the intersection
of two saturated octahedra.

These traversals might have to visit 3n inequalities/paths in the OhDD in the
worst case. However, as OhDD are directed graphs, many paths share nodes so
many recursive calls will have been computed previously, and the results will
be reused without the need to recompute. The efficiency of the operations on
decision diagrams depends upon two very important factors. The first one is
the order of the variables in the decision diagram. Intuitively, each call should
perform as much work as possible. Therefore, the variables that appear early
in the decision diagram should discriminate the result as much as possible. A
second factor in the performance of these algorithms is the effectivity of the
cache to reuse previously computed results.

4.3.1 Reduction rules

In order to implement the reduction rules, two basic operations should be
defined. First, how to obtain the OhDD for the three cofactors (coefficients)
of a given variable. And second, how to build a new OhDD from the three
cofactors of a given variable. Figure 11 shows the pseudocode for these two
procedures, called DD GetCofactors and DD CombineCofactors.

The only remarkable aspect of DD GetCofactors is how to compute the cofac-

24

Function DD GetCofactors(var, f)
Input: An OhDD f over non-negative variables and a variable var. If var appears
in the decision diagram f , it must appear as the top variable.
Output: The 3 cofactors of f for variable var, < f−, f0, f+ >.

if DD IsConstant(f) ∨ DD TopVariable(f) 6= var then

< f−, f0, f+ > := < −∞, f, f >

else

< f−, f0, f+ > := < DD NegArc(f), DD ZeroArc(f), DD PosArc(f) >

endif

return < f−, f0, f+ >

Function DD CombineCofactors(var, f−, f0, f+)
Input: The three cofactors of a OhDD for a given variable var. Any variable in
the cofactors must appear after var in the ordering.
Output: A OhDD where < f−, f0, f+ > are the three cofactors for variable var.

if f0 = f+ ∧ f− = −∞ then

return f0

else

return DD UniqueNode(var, f−, f0, f+)
endif

Fig. 11. Implementation of the reduction rules for non-negative variables.

tors of a variable that does not appear in a OhDD. If a variable is missing, it
means that it has been reduced. In a OhDD with non-negative variables, this
means that its negative cofactor is −∞ while its positive and zero cofactor are
equal to the OhDD. A similar implementation produces the reduction rules for
unconstrained variables.

Regarding DD CombineCofactors, its pseudocode assumes that there is a pro-
cedure called DD UniqueNode that detects isomorphic nodes in the decision
diagram, so if an isomorphic node already exists it is returned, otherwise a
new one is created instead. This operation is typically provided by all decision
diagram packages [5].

4.3.2 Saturation

The saturation procedure can be implemented symbolically. Instead of choos-
ing two constraints and computing its linear combination, the linear combi-
nation of a whole set of constraints is computed in one step. Figures 12 and
13 show the pseudocode that performs this saturation.

25

Function Saturate(f)
Input: A OhDD f .
Output: The saturation of the OhDD f .

do

old := f

res := SaturateRecur(f , f)
f := MaximumRecur(f , res)
{ Emptiness test - find a constraint (0 ≥ k) with (k > 0) }
aux := f

while ¬DD IsConstant(aux) do

aux := DD ZeroArc(aux)
endwhile

if aux > 0 then return +∞ endif

until f = old
return res

Fig. 12. Pseudocode of the saturation procedure and the emptiness test.

The recursive saturation algorithm SaturateRecur computes the linear combi-
nation of its two parameters. Intuitively, the computation is split according to
the top variable of the decision diagram. The only cases relevant to our compu-
tation are those where the top variable will have a coefficient in {−1, 0, +1} in
the result of the linear combination. For example, the linear combination has
a coefficient +1 if one of the arguments has coefficient 0 and the other has co-
efficient +1. The remaining variables of the linear combination are computed
recursively using the same algorithm.

Saturation is performed by computing these linear combinations and adding
them to the system of inequalities until a fixpoint is reached. This compu-
tation is described in the procedure Saturate in Figure 12. Notice that after
computing each set of linear combinations, they are added to the OhDD using
the maximum operator, which in OhDD corresponds to the intersection. If a
constraint of the form (0 ≥ k) with (k > 0) appears during the computation
of the fixpoint, then we know that the octahedron is empty.

In order to encode the empty octahedron, an additional terminal node is used
in our implementation: +∞. This terminal was not presented in Definition 12
to separate the concept of OhDD from implementation issues. Intuitively, any
constraint with a constant term of +∞, i.e. (±x1 ± . . .± xn ≥ +∞) is false,
so the semantics of the decision diagram is preserved. Moreover, choosing this
terminal node to encode empty octahedra is also natural in the following sense:

26

Function SaturateRecur(f , g)
Input: Two OhDD called f and g.
Output: The OhDD describing the pairwise linear combinations of f and g, ignoring
constraints with a coefficient outside {−1, 0,+1}.

{ Terminal cases }
if DD IsConstant(f) ∧ DD IsConstant(g) then

return DD Sum(f , g)
endif

if f = +∞ ∨ g = +∞ then return +∞ endif

if f = −∞ ∨ g = −∞ then return −∞ endif

{ Lookup the result in the cache }
res := DD CacheLookup(SaturateRecur, f , g)
if res 6= null then return res endif

top := DD TopVariable(f , g)
< f−, f0, f+ > := DD GetCofactors(top, f)
< g−, g0, g+ > := DD GetCofactors(top, g)

{ The shorthand MAX(a,b) is used instead of MaximumRecur(a,b) }

{ Recursive calls for top coefficient = −1 }
res− := MAX(SaturateRecur(f−, g0), SaturateRecur(f0, g−))

{ Recursive calls for top coefficient = 0 }
res0 := MAX(MAX(SaturateRecur(f0, g0), SaturateRecur(f+, g−)),

SaturateRecur(f−, g+))

{ Recursive calls for top coefficient = +1 }
res+ := MAX(SaturateRecur(f+, g0), SaturateRecur(f0, g+))

{ Combine the cofactors and update the cache }
res := DD CombineCofactors(top, res−, res0, res+)
DD CacheInsert(SaturateRecur, f , g, res)
return res

Fig. 13. Pseudocode of one iteration of the saturation procedure.

• Neutral element of the union: The union is implemented using the minimum
operator so +∞ is the neutral element.
• Absorbent element of the intersection: The intersection is implemented using

the maximum operator so +∞ is the absorbent element.

It would also have been possible to encode empty octahedra in a different

27

Function MaximumRecur(f , g)
Input: Two OhDD called f and g.
Output: An OhDD that has, at the bottom of each path from the root to the
terminal nodes, the maximum terminal found in the same path in f and g.

{ Terminal cases }
if f = g then return f endif

if f = +∞ ∨ g = −∞ then return f endif

if f = −∞ ∨ g = +∞ then return g endif

if DD IsConstant(f) ∧ DD IsConstant(g) then

return DD Max(f , g)
endif

{ Lookup the result in the cache }
res := DD CacheLookup(MaximumRecur, f , g)
if (res 6= null) then return res endif

{ Recursive calls for each cofactor }
top := DD TopVariable(f , g)
< f−, f0, f+ > := DD GetCofactors(top, f)
< g−, g0, g+ > := DD GetCofactors(top, g)

{ The shorthand MAX(a,b) is used instead of MaximumRecur(a,b) }
<res−, res0, res+ > := < MAX(f−, g−), MAX(f0, g0), MAX(f+, g+) >

{ Combine the cofactors and update the cache }
res := DD CombineCofactors(top, res−, res0, res+)
DD CacheInsert(MaximumRecur, f , g, res)
return res

Function Intersection(f , g)
Input: Two OhDD called f and g.
Output: The intersection of f and g.

res := MaximumRecur(f , g)
return Saturate(res)

Fig. 14. Pseudocode of the intersection procedure.

way, i.e. adding a boolean variable to OhDD stating whether the octahedron is
empty or not. Our approach was chosen for convenience in the implementation
of the operations.

28

Function ProjRecur(f , v)
Input: A OhDD called f and a variable v.
Output: An OhDD that is equal to f except in all nodes labeled with variable v.
If there is a node labeled with variable v inside f , it is replaced in the result by
one of its children, the one targeted by the arc labeled with coefficient 0.

{ Terminal cases }
if DD IsConstant(f) then return f endif

top := DD TopVariable(f);
< f−, f0, f+ > := DD GetCofactors(top, f)
{ Test if this is the variable to be projected }
if v = top then return f0 endif

{ Test if v precedes top in the top-down variable order. }
if v ≤ top then

{ Variable v does not appear inside f , it should have appeared before. }
return f

endif

{ Lookup the result in the cache }
res := DD CacheLookup(MaximumRecur, f , v)
if res 6= null then return res endif

{ Recursive calls for each cofactor }
< res−, res0, res+ > := < ProjRecur(f−, v), ProjRecur(f0, v), ProjRecur(f+, v) >

{ Combine the cofactors and update the cache }
res := DD CombineCofactors(top, res−, res0, res+)
DD CacheInsert(MaximumRecur, f , g, res)
return res

Function Projection(f , v)
Input: A OhDD called f and a variable v.
Output: The OhDD computed from f after projecting variable v. The projection of
this variables ”forgets” all the constraints where the variable has a coefficient other
than zero.

{ Assumption: f is in saturated form. Otherwise we should saturate it here. }
res := ProjectRecur(f , g)
return Saturate(res)

Fig. 15. Pseudocode of the projection procedure.

29

4.3.3 Other operations

The intersection of two octahedra has been defined as the union of the sets
of constraints of both octahedra, choosing the maximum constant for those
constraints that appear in both octahedra. In a OhDD, constraints that do
not appear in an octahedron are represented by the terminal −∞. Therefore,
the intersection of OhDD can be implemented by taking the maximum of the
two arguments for each path between the root and the terminal nodes. The
pseudocode that computes this maximum is shown in Fig. 14. The result of
this operation is not necessarily saturated.

The same concept can be applied to the union of octahedra. The union can be
computed as the minimum of the two arguments for each path between the
root and the terminal nodes.

The projection can also be implemented symbolically, as it is shown in Figure
15. The concept behind the implementation is the following: this operation
should remove all inequalities where a variable v has a non-zero coefficient.
Any inequality where v has a non-zero coefficient will appear in the OhDD

as a node labeled with that variable. These nodes have a child, the target of
the arc labeled with 0, that represents the inequalities where v appears with
a coefficient 0. Therefore, the implementation of projection can be summa-
rized as follows: traverse the OhDD until a node n labeled with variable v is
discovered; replace the reference to n with a reference to n0.

Extension, adding a new variable to a OhDD that does not participate in
any inequality, is a trivial operation due to the choice of the reduction rules.
Both the reduction rules for unconstrained and non-negative variables detect
variables which do not participate in an inequality and remove them from the
diagram. Therefore, extending a OhDD with a new variable does not change
the diagram in any way; we only need to decide the position of the new variable
in the top-down variable order.

Other operations can be defined similarly or be rewritten in terms of the
intersection and the union. For instance, an approximate inclusion test (f ⊆
g)? can be rewritten as (f = f∩g)?, using an intersection plus an equality test,
which compares whether the top nodes of the decision diagram are equal.

30

5 Applications of the Octahedron Abstract Domain

5.1 Motivating Application

Asynchronous circuits [24] are a class of circuits where there is no global
clock to synchronize its different components. Asynchronous circuits replace
the global clock by a local handshake between components, gaining several
advantages such as lower power consumption. However, the absence of a clock
makes the verification of asynchronous circuits more complex, since the cor-
rectness of the circuit is more dependent on timing constraints. This means
that the correctness of the circuit depends on the delays of its gates and wires.

In many asynchronous circuits implementing control logic, the timing con-
straints that arise are unit inequalities. Intuitively, they correspond to con-
straints of the type

(δ1 + · · ·+ δi
︸ ︷︷ ︸

delay(path1)

)− (δi+1 + · · ·+ δn
︸ ︷︷ ︸

delay(path2)

) ≥ k

indicating that certain paths in the circuit must be longer than other paths.
In very rare occasions, coefficients different from ±1 are necessary. A typical
counterexample would be a circuit where one path must be c times longer
than another one, e.g. a fast counter.

Figure 16(a) depicts a D flip-flop [27]. Briefly stated, a D flip-flop is a 1-bit
register. It stores the data value in signal D whenever there is a rising edge
in the clock signal CK. The output Q of the circuit is the value which was
stored in the last clock rising edge. We would like to characterize the behavior
of this circuit in terms of the internal gate delays. The flip-flop has to be
characterized with respect to three parameters (see Figure 16(b)):

• Setup time, noted as Tsetup, is the amount of time that D should remain
stable before a clock rising edge.
• Hold time, noted as Thold , is the amount of time that D should remain stable

after a clock rising edge.
• Delay or clock-to-output time, noted as TCK→Q , is the amount of time re-

quired by the latch to propagate a change in the input D to the output
Q.

The timing analysis algorithm is capable of deriving a set of sufficient linear
constraints that guarantee the correctness of the circuit’s behavior. This be-
havior will be correct if the output Q matches the value of D in the last clock
rising edge. Formally, this property can be stated as:

31

T setup T hold

T CK −> Q

HIT

T LO

(a) (b)

CK

D

Q
g1

g2
g3

g4

CK

Q

D
TCK→Q ≤ D2 + D3 + D4

Tsetup > D1 + D2 − d2

Thold > D2 + D3

THI > D2 + D3 + D4

THI > Thold

TLO > Tsetup

d1 > D2

(c)

Fig. 16. (a) Implementation of a D flip-flop [27], (b) description of variables that
characterize any D flip-flop and (c) sufficient constraints for correctness for any
delay of the gates.

The value of Q after a delay TCK→Q from CK ’s rising edge must be equal
to the value of D CK’s rising edge.

Any behavior not fulfilling this property is considered to be a failure. Fig. 16(c)
reports the set of sufficient timing constraints derived by the algorithm. Each
gate gi has a symbolic delay in the interval [di, Di]. Notice that the timing
constraints are unit inequalities.

Timing verification has been performed on several asynchronous circuits from
the literature. This verification can be seen as the analysis of a set of clock
variables, and the underlying timing behavior can be modeled as assignments
and guards on these variables [7]. The analysis of clock variables has been
performed using two different numerical abstractions: convex polyhedra and
octahedra. The implementation of polyhedra uses the New Polka polyhedra
library [26], while the library of OhDD is implemented on top of the CUDD
package [32]. Table 2 shows a comparison of the experimental results for some
examples. All these examples were verified successfully using both octahedra
and polyhedra, as all relevant constraints were unit linear inequalities. For all
these cases, the execution time of convex polyhedra and octahedra is com-
parable, while the memory usage for octahedra is lower. For each example,
we provide the number of different states (configurations) of the circuit, the
number of clock and delay variables of the abstractions and the execution time
required by the analysis with each abstraction.

The difference in memory usage is quantified in the next example, an asyn-
chronous pipeline with different number of stages and an environment running
at a fixed frequency. The processing time required by each stage i has a pro-
cessing time bounded by an interval, with unknown upper and lower bound
[di, Di]. Whenever a stage finishes its computation, it sends the result to the
next stage if it is empty. The safety property being verified in this case was “the
environment will never have to wait before sending new data to the pipeline”,
i.e. whenever the environment sends new data to the pipeline, the first stage

32

Table 2
Experimental results using convex polyhedra and octahedra.

of # of Polyhedra OhDD

Example States variables CPU Memory CPU Memory

nowick 60 30 0.5s 82Mb 0.1s 9Mb

sbuf-read-ctl 74 31 1.2s 83Mb 1.4s 10Mb

rcv-setup 72 27 2.1s 83Mb 8.3s 21Mb

alloc-outbound 82 39 1.3s 83Mb 0.2s 10Mb

ebergen 83 27 1.3s 83Mb 1.7s 11Mb

mp-forward-pkt 194 29 1.9s 85Mb 3.8s 20Mb

chu133 288 26 1.3s 85Mb 1.0s 13Mb

is empty. Fig.17 shows the pipeline, with an example of a correct and incor-
rect behavior. The tool discovers that correct behavior can be ensured if the
following holds:

dIN > D1 ∧ . . . ∧ dIN > DN ∧ dIN > DOUT

where Di is the delay of stage i, and dIN and DOUT refer to environment
delays. This property is equivalent to:

dIN > max(D1, . . . , DN , DOUT)

Therefore, the pipeline is correct if the environment is slower than the slowest
stage of the pipeline. Both the polyhedra and octahedra abstract domain are
able to discover this property. This example is interesting because it exhibits
a very high degree of concurrency. The verification times and memory usage
for different lengths of the pipeline can be found in Table 3. Notice that
the memory consumption of OhDD is lower than that of convex polyhedra.
This reduction in memory usage is sufficient to verify larger pipelines (n = 6
stages) not verifiable with our convex polyhedra implementation. Using convex
polyhedra, the verification tool runs out of memory. Memory usage remains
relatively low during the execution (about 450Mb) but reaches a peak of more
than 1.7Gb after 8 hours of CPU time; the peak in memory usage occurs
during one of the transformations between dual representations of polyhedra.
However, the reduction in memory usage achieved by octahedra comes at the
expense of an increase in the execution time, which is spent minimizing the
decision diagrams.

33

Table 3
Experimental results for the pipeline example.

of # of # of Polyhedra OhDD

stages States variables CPU Time Memory CPU Time Memory

2 36 20 0.6s 64Mb 1.0s 5Mb

3 108 24 2.0s 67Mb 17.0s 8Mb

4 324 28 13.5s 79Mb 4m 9.0s 39Mb

5 972 32 4m 19.2s 147Mb 1h 6m 14.0s 57Mb

6 2916 36 – – 39h 44m 18.0s 83Mb

ack

req

ack

reqIN

ack

req OUT

(b)

(c)

(a)

Fig. 17. (a) Asynchronous pipeline with N=3 stages, (b) correct behavior of the
pipeline and (c) incorrect behavior. Dots represent data elements.

5.2 Additional experiments

The experimental results presented so far have been computed with OhDD

using the reduction rules for non-negative variables (NNV). Also, a predefined
top-down variable order has been used. The order for variables has been chosen
manually, where the variables which are likely to appear in many constraints
are placed near the top of the diagram. In this section, we illustrate the per-
fomance of OhDD with different settings. The example used to perform the
comparison is the asynchronous pipeline depicted in Figure 17.

For the first comparison, we have implemented the reduction rules for uncon-
strained variables (UV) discussed in Section 4.2. This change affects a very
small part of the implementation, namely the methods GetCofactors and Com-
bineCofactors which have been presented in Figure 11. Intuitively, these reduc-
tion rules should have a worse performance in problems where variables may
be non-negative, as they cannot avoid representing constraints like (x1 ≥ 0)
or (x1 + x2 ≥ 0) explicitly. Table 4 shows the experimental results with these
alternative reduction rules. These results confirm the intuition: the decision
diagrams using the UV rules are larger, using more memory and requiring
more CPU time to be traversed. The difference becomes more noticeable as
the number of variables becomes larger, because the number of redundant in-
equalities grows exponentially with the number of variables. For instance, in a
system with three non-negative variables that satisfy (x1−x2 ≥ 3) the follow-

34

Table 4
Comparison between reduction rules for unconstrained and non-negative variables.

of # of # of Unconstrained (UV) Non-negative (NNV)

stages States variables CPU Time Memory CPU Time Memory

2 36 20 1.0s 9Mb 1.0s 5Mb

3 108 24 23.8s 15Mb 17.0s 8Mb

4 324 28 8m 35.4s 54Mb 4m 9.0s 39Mb

5 972 32 8h 48m 8.9s 87Mb 1h 6m 14.0s 57Mb

6 2916 36 >48h Time-out 39h 44m 18.0s 83Mb

ing inequalities cannot be simplified by the UV reduction rules even though
they are redundant: (x1 ≥ 3), (x2 ≥ 0), (x3 ≥ 0), (x1 +x2 ≥ 3), (x1 +x3 ≥ 3),
(x2 + x3 ≥ 0), (x1 − x2 + x3 ≥ 3) and (x1 + x2 + x3 ≥ 3.

Therefore, the conclusion is that whenever variables are known to be non-
negative, the NNV reduction rules should be preferred to the UV rules. Never-
theless, in some problems variables may have negative values; in those cases,
we can use the more general UV rules.

Another set of experiments has evaluated the gains that can be achieved by
performing dynamic reordering. Dynamic reordering [28] is a technique which
explores which top-down ordering of variables provides a smaller decision di-
agram. The chosen ordering may be altered dynamically depending on the
structure of the decision diagram, i.e. a good ordering at a given point in time
may be a bad ordering later. In this case, setting up the experiments has been
more difficult as the implementation of dynamic reordering is very complex.
In order to evaluate the potential effect of dynamic reordering in OhDD, we
have used the dynamic reordering methods and heuristics provided by the
CUDD package. The reduction rules of OhDD have been altered in order to
become compatible with the reordering procedures used by CUDD, i.e. using
reduction rules which are more similar to those of BDDs.

Table 5 summarizes the result of this prototype implementation. The columns
on the left describe the results with the BDD-like reduction rules and the
dynamic reordering turned off. On the right, we present the results with the
same reduction rules, but using a dynamic reordering procedure called sifting
[28]. Studying these results, it is clear that these reduction rules achieve results
which are far worse than those produced with the other reduction rules (UV
and NNV) presented in this paper. Dynamic reordering manages to reduce the
size of these diagrams, improving both the memory and CPU time. However,
even though the CPU time is lower, dynamic reordering does not provide a
drastic reduction in CPU time, something which would be required to make
the analysis more practical. The CPU time still grows exponentially, reaching

35

Table 5
Evaluation of dynamic reordering in OhDD using the CUDD package.

of # of # of No reordering Dynamic reordering

stages States variables CPU Time Memory CPU Time Memory

2 36 20 1.2s 6Mb 1.0s 5Mb

3 108 24 34.7s 16Mb 25.2s 8Mb

4 324 28 13m 19.4s 55Mb 7m 1.7s 39Mb

5 972 32 > 12h Time-out 7h 14m 14.0s 57Mb

unacceptable values very quickly. The reason behind the low gains achieved
with dynamic reordering seems to be that the initial order chosen for the
variables of the OhDD was good, due to our knowledge about the kind of
constraints likely to appear in the analysis of a timed system. Nevertheless,
the improvements achieved in other applications where a good ordering cannot
be established a priori may be relevant enough to make dynamic reordering
an essential feature of OhDD.

5.3 Other Applications

In general, the octahedron abstract domain may be interesting in any analysis
problem where convex polyhedra can be used. Many times, the precision ob-
tained with convex polyhedra is very good, but the efficiency of the analysis
limits the applicability. In these scenarios, using octahedra might be adequate
as long as unit linear inequalities provide sufficient information for the specific
problem. If the variables involved in the analysis are positive, the suitability
of octahedra becomes even more noticeable. Some examples of areas of appli-
cations are the following:

• Static discovery of bounds in the size of asynchronous communication chan-
nels : Many systems communicate using a non-blocking semantics, where
the sender does not wait until the receiver is ready to read the message. In
these systems, each channel requires a buffer to store the pending messages.
Allocating these buffers statically would improve performance but it is not
possible, as the amount of pending messages during execution is not known
in advance. Analysis with octahedra could discover these bounds statically.
The analysis of the bounds of these channels can be performed using octa-
hedra. Furthermore, the size of a channel is always positive, so the reduction
rule for non-negative variables can be used in the analysis. This problem is
related to the problem of structural boundedness of a Petri Net [25], where
an upper bound on the number of tokens that can be in each place of the
Petri Net must be found.

36

• Analysis of timed systems: Clocks and delays are restricted to positive values
in many types of models. Octahedra can be used to analyze these values
and discover complex properties such as timing constraints or worst-case
execution time (WCET).
• Analysis of string length in programs [12]: Checking the absence of buffer

overflows is important in many scenarios, specially in the applications where
security is critical, e.g. an operating system. C programs are prone to er-
rors related to the manipulation of strings. Several useful constraints on the
length of strings can be represented with octahedra. For instance, a con-
straint on the concatenation of two strings can be strlen(strcat(s1, s2)) =
strlen(s1) + strlen(s2).
• Analysis of term size in logic programs [33], which can be used among other

things to prove termination of logic programs [31].
• Proof of mutual exclusion and other synchronization properties among con-

current processes: many high-level synchronization constraints can be ex-
pressed easily as properties on counter (semaphore) variables [16]. For in-
stance, mutual exclusion among n processes can be represented with con-
straints like (x1 + . . . + xn ≤ 1), where xi = 1 if the process i is inside the
critical section, and xi = 0 otherwise.

6 Conclusions and future work

A new numerical abstract domain called octahedron has been presented. This
domain can represent and manipulate constraints on the sum or difference
of an arbitrary number of variables. In terms of precision, this abstraction is
between octagons and convex polyhedra. Regarding complexity, the worst case
complexity of octahedra operations over n variables is O(3n) in memory, and
O(3n) in execution time in addition to the cost of saturation. However, worst-
case performance is misleading due to the use of a decision diagram approach.
For instance, BDDs have a worst-case complexity of O(2n), but they have a
very good behavior in many real examples. Performance in this case depends
on factors such as the ordering of the variables in the decision diagram, the
effectiveness of the cache and the nature of the problem to be solved. In
the experimental results of OhDD, memory consumption was shown to be
smaller than that of our convex polyhedra implementation. Running time was
comparable to that of convex polyhedra in small and medium-sized examples,
while in more complex examples the execution time was worse. This shows
that OhDD trade speed for a reduction in memory usage. Dynamic reordering
can be used to improve both memory and time, but only by a small margin.

Future work in this area will try to improve the execution time of octahedra
operations. An area where there is room for improvement is the current bot-
tleneck of the representation, the saturation procedure. Another direction of

37

research is the design of alternative implementations of the octahedron ab-
stract domain. For instance, as the set of coefficients is limited and small,
each unit inequality can be stored efficiently using bit-vectors. Experimental
results using a bit-vector implementation have been reported in [8].

Acknowledgements

The authors would like to thank the referees for their insightful comments
which have enhanced the final version of this paper.

References

[1] R. Alur and D. L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

[2] D. Avis, K. Fukuda, and S. Picozzi. On canonical representations of
convex polyhedra. In Proc. Int. Conf on Mathematical Software, pages
350–360. World Scientific, 2002.

[3] R. Bagnara. Data-Flow Analysis for Constraint Logic-Based Languages.
PhD thesis, University of Pisa, 1997.

[4] G. Behrmann, K. G. Larsen, J. Pearson, C. Weise, and W. Yi. Efficient
timed reachability analysis using clock difference diagrams. In Proc. In-
ternational Conference on Computer Aided Verification, pages 341–353,
1999.

[5] R. E. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, C-35(8):677–691, 1986.

[6] N. Chernikova. Algoritm for discovering the set of all solutions of a
linear programming problem. U.S.S.R. Computational Mathematics and
Mathematical Physics, 6(8):282–293, 1964.

[7] R. Clarisó and J. Cortadella. Verification of timed circuits with symbolic
delays. In Proc. of Asia and South Pacific Design Automation Conference,
pages 628–633, 2004.

[8] R. Clarisó and J. Cortadella. Verification of concurrent systems with
parametric delays using octahedra. In Proc. International Conference
on Application of Concurrency to System Design, pages 122–131. IEEE
Computer Society Press, 2005.

[9] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In Proc. of the ACM Symposium on Principles of Programming
Languages, pages 238–252. ACM Press, 1977.

[10] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints

38

among variables of a program. In Proc. of the ACM Symposium on Prin-
ciples of Programming Languages, pages 84–97. ACM Press, 1978.

[11] D. L. Dill. Timing assumptions and verification of finite-state concurrent
systems. In Automatic Verification Methods for Finite State Systems,
LNCS 407, pages 197–212. Springer-Verlag, 1989.

[12] N. Dor, M. Rodeh, and M. Sagiv. CSSV: towards a realistic tool for stat-
ically detecting all buffer overflows in C. In Proc. of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages
155–167. ACM Press, 2003.

[13] E. Asarin, M. Bozga, A. Kerbrat, O. Maler, M. Pnueli, and A. Rasse. Data
structures for the verification of timed automata. In Hybrid and Real-
Time Systems, pages 346–360, Grenoble, France, 1997. Springer Verlag,
LNCS 1201.

[14] F. Fernández and P. Quinton. Extension of Chernikova’s algorithm for
solving general mixed linear programming problems. Technical Report
437, IRISA, 1988.

[15] M. Fujita, P. C. McGeer, and J. C.-Y. Yang. Multi-terminal binary de-
cision diagrams: An efficient data structure for matrix representation.
Formal Methods in System Design, 10(2/3):149–169, 1997.

[16] A. J. Gerber. Process synchronization by counter variables. SIGOPS
Operating Systems Review, 11(4):6–17, 1977.

[17] N. Halbwachs, Y.-E. Proy, and P. Roumanoff. Verification of real-time
systems using linear relation analysis. Formal Methods in System Design,
11(2):157–185, 1997.

[18] T. A. Henzinger. The Temporal Specification and Verification of Real-
Time Systems. PhD thesis, Stanford University, 1991.

[19] C. Mauras. Symbolic simulation of interpreted automata. In 3rd Work-
shop on Synchronous Programming, 1996.

[20] P. McMullen. The maximum number of faces of a convex polytope. Math-
ematica, (17):179–184, 1970.

[21] S. Minato. Zero-supressed BDDs for set manipulation in combinatorial
problems. In Proc. ACM/IEEE Design Automation Conference, pages
272–277. ACM Press, 1993.

[22] A. Miné. The octagon abstract domain. In Proc. of Analysis, Slicing and
Tranformation (in Working Conference on Reverse Engineering), pages
310–319. IEEE CS Press, 2001.

[23] J. Møller, J. Lichtenberg, H. R. Andersen, and H. Hulgaard. Difference
decision diagrams. In Computer Science Logic, The IT University of
Copenhagen, 1999.

[24] D. Muller and W. Bartky. A theory of asynchronous circuits. In Proc. In-
ternational Symposium on the Theory of Switching, pages 204–243. Hard-
ware University Press, 1959.

[25] T. Murata. State equation, controllability and maximal matchings of
Petri nets. IEEE Transactions on Automatic Control, AC-22(3):412–416,
1977.

39

[26] New Polka: Convex Polyhedra Library.
http://www.irisa.fr/prive/bjeannet/newpolka.html.

[27] C. Piguet et al. Memory element of the Master-Slave latch type, con-
structed by CMOS technology. US Patent 5,748,522, 1998.

[28] R. Rudell. Dynamic variable ordering for ordered binary decision dia-
grams. In Proc. International Conference on Computer-Aided Design,
pages 42–47. IEEE Computer Society Press, 1993.

[29] S. Sankaranarayanan, H. Sipma, and Z. Manna. Scalable analysis of
linear systems using mathematical programming. In Proc. of Interna-
tional Conference on Verification, Model Checking and Abstract Interpre-
tation, number 3385 in Lecture Notes in Computer Science, pages 21–47.
Springer-Verlag, 2005.

[30] A. Simon, A. King, and J. M. Howe. Two Variables per Linear Inequality
as an Abstract Domain. In Proc. of Logic Based Program Development
and Transformation, LNCS 2664, pages 71–89. Springer-Verlag, 2002.

[31] K. Sohn and A. Van Gelder. Termination detection in logic programs us-
ing argument sizes (extended abstract). In Proc. of the ACM Symposium
on Principles of Database Systems, pages 216–226. ACM Press, 1991.

[32] F. Somenzi. CUDD: Colorado university decision diagram package. Avail-
able online at http://vlsi.colorado.edu/~fabio/CUDD.

[33] A. van Gelder. Deriving constraints among argument sizes in logic pro-
grams (extended abstract). In Proc. of the ACM Symposium on Principles
of Database Systems, pages 47–60. ACM Press, 1990.

[34] H. L. Verge. A note on Chernikova’s algorithm. Technical Report 635,
IRISA, 1992.

[35] F. Wang. Efficient data structure for fully symbolic verification of real-
time software systems. In Proc. of Tools and Algorithms for Construction
and Analysis of Systems, pages 157–171. Springer-Verlag, 2000.

[36] F. Wang. Symbolic parametric safety analysis of linear hybrid systems
with BDD-like data-structures. In Proc. International Conference on
Computer Aided Verification. Springer-Verlag, 2004.

40

	Caratula_Article_Preprint_CC_BY-NC-ND_en(5)
	Clariso_SCP_2006_Octahedron

