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Constraints play a key role in the definition of conceptual schemas. In the UML,
constraints are usually specified by means of invariants written in the OCL. However, due
to the high expressiveness of the OCL, the designer has different syntactic alternatives
to express each constraint. The techniques presented in this paper assist the designer
during the definition of the constraints by means of generating equivalent alternatives
for the initially defined ones. Moreover, in the context of the MDA, transformations
between these different alternatives are required as part of the PIM-to-PIM, PIM-to-PSM
or PIM-to-code transformations of the original conceptual schema.

1. INTRODUCTION

Integrity constraints are a fundamental part in the definition of a conceptual schema
(CS) [9]. In general, many constraints cannot be expressed using only the predefined
constructs provided by the conceptual modeling language and require the use of a general-
purpose (textual) sublanguage [6]. In the UML this is usually done by means of invariants
written in the OCL [14]. Predefined (graphical) constraints can also be expressed in the
OCL [8].

Due to the high expressiveness of the OCL, the designer has different syntactic pos-
sibilities to define an integrity constraint. For instance, given the CS in Figure 1, the
constraint “the salary of an employee must be higher than the minimum salary of his/her
department” may be defined as (among some other options):

Figure 1. Example Conceptual Schema
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1. context Department inv: self.employee -> forAll (e| e.salary>self.minSalary)

2. context Employee inv: self.salary>self.employer.minSalary

3. context Department inv: self.employee -> select(e| e.salary<=self.minSalary)-
>size()=0

Obviously, designers may not be aware of all different alternatives, and thus, they may
just choose the one they care about at the moment of defining the constraint. Many
times, this implies that the designer does not define the constraint in the best way, where
the meaning of best may differ depending on the specific goal intended by the designer
(for instance understandability or efficiency).

The ability of transforming the initially defined constraints into alternative equivalent
representations is also important in the context of the MDA [16]. As an example, in
PIM-to-PIM transformations, replacing the constraints with alternative representations
is required as part of the refactoring operations at the model level [12]. In PIM-to-
PSM or PIM-to-code transformations, aimed at generating a final implementation of the
system directly derived from its specification, the generation of alternative representations
may be necessary as an intermediate step before producing the actual implementation
(for instance, when including the verification of the constraints as part of the operation
contracts) or to produce a more efficient implementation [1].

There exist two different ways to generate an alternative representation for a given
constraint: we can either replace the body of the constraint with an equivalent one (as it
happens between constraints 1 and 3 of the previous example) or rewrite the constraint
considering a different context type than the original one (as it happens with 1 and 2).

In this paper we propose several transformation techniques that allow to obtain a
set of alternative constraint representations that are semantically equivalent to a given
constraint. The replacement of the constraint body is handled by the definition of a set
of equivalence rules between the different elements and constructs that may appear in the
OCL expression defining the body of the constraint. On the other hand, the redefinition
of the constraint using an alternative context is formalized as a path problem over a
graph representing the CS. Using this graph we identify which entity types are candidates
for acting as a new context type for the constraint and, then, we obtain all the possible
redefinitions for each of them. Our proposal allows to generate all alternative redefinitions
of the given constraint when using a different entity type as a context type but not all
possible equivalent bodies for each alternative because of the huge number of equivalences
among the different OCL constructs.

In contrast with the amount of research devoted to model transformations, redefinition
of OCL expressions has received little attention in the past. In particular, [11] discusses
the advantages of changing the context of a constraint but does not define which are
the possible new contexts nor provides a method to generate such redefined constraints.
Similarly, [4] proposes the context change as one of the possible refactorings to improve
the specified OCL expressions but does not provide any method to automatically generate
this context change. [7] provides some rules with the purpose of simplifying the constraints
but the rules are not aimed at generating several alternative constraint definitions (and
again, context changes are not addressed). [12] mentions context changes but restricts



Transformation Techniques for OCL Constraints 3

them to associations with multiplicity 1 on both association ends. Hence, as far as we
know, ours is the first method able to deal fully with transformations of OCL constraints.

The structure of the paper is as follows. The next section defines several equivalences
between OCL expressions. Then, we propose transformation techniques to change the
context of a constraint to a particular entity type (section 3) and we extend them to any
type of the CS (section 4). Section 5 discusses some scenarios where the provided trans-
formations are especially helpful. Section 6 presents our tool implementation. Finally, we
give our conclusions and point out future work in Section 7.

2. EQUIVALENCES BETWEEN OCL EXPRESSIONS

As we said, one of the possible ways to generate an alternative representation for a
certain constraint is to replace its body with an equivalent one. We achieve it by means
of a set of equivalence rules between OCL expressions, which are described in this section.
Each expression on the one side of the equivalence may be replaced with the expression
on the other side to generate a new alternative body for the constraint. The set of rules is
not exhaustive but it contains those equivalences we believe to be the most usual and/or
useful ones according to our own experience.

As an example, assume we define an integrity constraint in the CS of Figure 1 to prevent
junior employees (those with an age lower than 25) to earn more than the maxJuniorSal
value defined for their department. This constraint could be defined in OCL as follows:

context Department inv MaxSalary : Department.allInstances()-> forAll(d|not
d.employee− > select(e|e.age < 25)-> exists(e|e.salary > d.maxJuniorSal))

Applying the set of equivalences we propose, we could transform the expression defining
the previous constraint into the equivalent one:

context Department inv MaxSalary′ : self.employee-> forAll(e|e.age >= 25 or
e.salary <= self.maxJuniorSal).

Note that the meaning of both constraints is exactly the same. However, in this case,
the second expression is clearly simpler since the expression is shorter and it uses less
operators.

Before applying the rules, we need to unfold the OCL expressions to maximize the
number of applicable rules. We say that an OCL expression is unfolded when all references
to derived elements, query operations and variables resulting from let expressions are
replaced with their definition. To guarantee termination, we restrict recursive derived
elements to be unfolded just once. Additionally, we assume that all implicit variables are
made explicit.

We have specified the equivalence rules such that when applied in the left-right direction,
the equivalences reduce the number of different operations that can appear in an OCL
expression. For instance, a left-right application of our rules would allow removing the
exists operation from any OCL expression. This facilitates the treatment of the OCL
expressions by automatic methods since those methods do not need to take into account
the full expressivity of the OCL.

On the other hand, when applying some of the rules in the right-left direction we may
obtain more understandable expressions since some of them replace a sequence of several
operations with a single operator. For instance, as shown in section 2.3, we may replace
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a combination of not and or operators with the implies operator.
In general, designers will choose which rules to apply and in which direction depending

on their intended goal.
Section 2.1 presents basic equivalence rules. Section 2.2 defines equivalences to remove

the allInstances operation. Finally, section 2.3 provides equivalences to transform an
OCL expression to conjunctive normal form (CNF). Equivalences in sections 2.1 and 2.3
may be applied to any OCL expression, including derivation rules and operation pre and
postconditions; section 2.2 is specific for integrity constraints.

2.1. Basic equivalences
Tables 1, 2 and 3 define a list of basic equivalence rules. Most of these rules are

based on the equivalences defined in the OCL standard itself [14]. We have grouped
the equivalences by the type of expressions they affect (boolean, collection or iterator
expressions). In the rules, the capital letters X, Y and Z represent arbitrary OCL
expressions of the appropriate type. The letter o represents an arbitrary object. The
expression r1. . . rn represents a (possibly empty) sequence of navigations.

Table 1
List of equivalences for boolean operators

X <> Y ↔ not X = Y X = true ↔X
X = false ↔ not X not false ↔ true
not true ↔ false X and false ↔ false
X and true ↔ X X or false ↔ X
X or true ↔ true X>Y and X<=Y ↔ false
X>Y or X<=Y ↔ true X>Y or X<Y ↔ X<>Y
not X>=Y ↔ X<Y not X<Y ↔ X>=Y
not X<=Y ↔ X>Y not X>Y ↔ X<=Y
not X=0 ↔ X>0
– when X evaluates to a natural value

X<=0 ↔ X=0
– when X evaluates to a natural value

X=Y ↔(X and Y) or (not X and not Y)
– when X and Y are boolean expressions

2.2. Removing the allInstances operation
AllInstances is a predefined feature on classes that gives as a result the set of all

instances of the type that exist at the specific time when the expression is evaluated [14].
As an example, a constraint like “all employees must be older than 16” can be expressed
as1:

context Employee inv ValidAge: Employee.allInstances()->forAll (e| e.age>16)
However, since constraints are assumed to be true for all instances of the context type

(i.e. for all possible values of the self variable that represents any instance of the context
type), the previous constraint could also have been specified as:

1Type.allInstances() can also be written as Type::allInstances()
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Table 2
Equivalences for collection operators

X->includes(o) ↔ X->count(o)>0 X->excludes(o) ↔ X->count(o)=0
X->includesAll(Y) ↔
Y->forAll(y1|X->includes(y1))

X->excludesAll(Y) ↔
Y->forAll(y1| X->excludes(y1))

X->isEmpty()↔ X->size()=0 X->notEmpty()↔ X->size()>0
not X->isEmpty()↔ X->notEmpty() not X->notEmpty()↔ X->isEmpty()
X->excluding(o)↔X->
−(Collection{o})

X->including(o) ↔
X->union(Collection{o})

X->union(Y).r1. . . rn->forAll(Z) ↔
X.r1. . . rn-> forAll(Z) and Y. r1. . . rn-
>forAll(Z)

X=Y ↔ X->includesAll(Y) and Y-
>includesAll(X)
– when X and Y are collections of objects

X->last()↔ X->at(X->size()) X->first()↔ X->at(1)

Table 3
Equivalences for iterator expressions

X->exists(Y) ↔ X->select(Y)->size()>0 not X->exists(Y)↔X->forAll(not Y)
not X->forAll(Y) ↔
X->exists(not Y)

X->one(Y)↔X->select(Y)->size()=1

X->reject(Y) ↔ X->select(not Y) X->select(Y)->size()=0 ↔
X->forAll(not Y)

X->select(Y)->forAll(Z) ↔
X->forAll(Y implies Z)

X->select(Y)->exists(Z) ↔
X->exists(Y and Z)

X->isUnique(Y) ↔ X->forAll(x1,x2 |
x1<>x2 implies x1.Y <> x2.Y)

X->any(Y) ↔
X->select(Y)->asSequence()->first()

X->select(Y)->size()=X->size() ↔
X->forAll(Y)

X.r1....rn.Y.attr.Z ↔
X.r1....rn.Y->collect(attr).Z
– where attr represents an attribute

X->forAll(Y) and X->forAll(Z) ↔
X->forAll(Y and Z)

X->forAll(v| Y [and|or] X->forAll(v2|Z))
↔ X->forAll(v,v2| Y [and|or] Z))
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context Employee inv ValidAge’: self.age>16
We propose two equivalences to include/remove the allInstances operation in the ex-

pressions that define the body of an integrity constraint definition. They are applicable
when the type over which allInstances is applied coincides with the context type (ct) of
the constraint. They may not be applied if the constraint already contains any explicit
or implicit reference to the self variable.

• ct.allInstances()->forAll(v|Y) ↔ Y’, where Y ′ is obtained by replacing all occur-
rences of v (the iterator variable) in Y with self. As an example, see the previous
ValidAge’ constraint.

• ct.allInstances()->forAll(v1,v2..vn| Y)↔ ct.allInstances()->forAll(v2..vn|Y’) where
Y ′ is obtained by means of replacing all the occurrences of v1 in Y with self.

2.3. Transforming to conjunctive normal form
A logical formula is in conjunctive normal form (CNF) if it is a conjunction (sequence

of ANDs) of several clauses, each of which is a disjunction (sequence of ORs) of one or
more literals, possibly negated. Any logical formula can be translated into a CNF by
applying a well-known set of rules.

We propose to apply that set of rules plus an additional rule to deal with the if-then-else
construct to (de)normalize any boolean OCL expression in order to generate additional
equivalent representations which may improve the results obtained by considering the rest
of the rules alone. The rules we propose are the following:

1. Eliminate the if-then-else construct and the implies and xor operators:

(a) X implies Y ↔ not X or Y

(b) if X then Y else Z ↔ (X implies Y) and (not X implies Z) ↔ (not X or Y)
and (X or Z)

(c) X xor Y ↔ (X or Y) and not (X and Y) ↔ (X or Y) and (not X or not Y)

2. Move not inwards until the negations be immediately before literals by repetitively
using the laws:

(a) not (not X) ↔ X

(b) DeMorgan’s laws: not (X or Y) ↔ not X and not Y
not (X and Y) ↔ not X or not Y

1. Repeatedly distribute or over and by means of:

(a) X or (Y and Z) ↔ (X or Y) and (X or Z)
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2.4. Rule application
The different alternative representations of a given OCL expression are obtained by

means of applying repetitively the previous equivalence rules. Beginning with an expres-
sion exp, the application of a rule r, transforms exp into an equivalent expression exp’.
Then, any rule r′ that can be applied over exp or over exp’ generates a new alternative
and so forth.

As an example, from the initial MaxSalary constraint definition we may obtain the
alternative MaxSalary’ representation by means of the following sequence of rules:

1. Initial representation:
context Department inv MaxSalary: Department.allInstances()->forAll(d| not
d.employee->select(e|e.age<25)->exists(e|e.salary>d.maxJuniorSal))

2. Removing the allInstances operation:
context Department inv MaxSalary: not self.employee->select( e |e.age < 25)-
>exists(e|e.salary>self.maxJuniorSal)

3. Removing the exists iterator (rule not X->exists(Y) → X->forAll(not Y)):
context Department inv MaxSalary: self.employee->select(e|e.age<25)->forAll(e|
not (e.salary>self.maxJuniorSal))

4. Removing the select iterator (rule X->select(Y)->forAll(Z) → X->forAll(Y implies
Z)):
context Department inv MaxSalary: self.employee->forAll(e| e.age<25 implies
not (e.salary>self.maxJuniorSal))

5. Transforming to CNF:
context Department inv MaxSalary: self.employee->forAll(e| not (e.age<25) or
not (e.salary>self.maxJuniorSal))

6. Removing the not operator (rules not X<Y→X >= Y and not X>Y→X <= Y ):
context Department inv MaxSalary: self.employee->forAll( e| e.age >=25 or
e.salary <= self.maxJuniorSal)

Termination and confluence of the transformation process depends on the set of rules
(and the direction in which they are applied) chosen by the designer. It is obvious that if
the designer allows applying the same rule in both directions, then the generation process
may enter into an infinite loop. To ensure termination we must avoid applying a rule
when the rule will generate an alternative that has been already generated before. To
ensure confluence we should define a total order regarding the selection of the rules to
apply over an expression when several rules are applicable.

3. CHANGING THE CONTEXT TYPE OF A CONSTRAINT

In general, the designer may choose among several entity types to define the context
of a particular constraint. Sometimes it is more useful to use a certain context, together
with a corresponding constraint definition, instead of a different one.
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Given two different context types ct1 and ct2 and a constraint c1 defined over ct1, we
show in this section how to automatically obtain a constraint c2 defined over ct2 which is
semantically equivalent to c1. A constraint defines a condition that must be satisfied in
all system states. More precisely, when defined in OCL, each constraint must be true for
all instances of the context type where it is defined. We can therefore guarantee that two
constraints c1 and c2 are semantically equivalent when the sets of instances taken into
account by both constraints coincide and the condition to be evaluated over them is also
the same.

In general, it may happen that several semantically equivalent constraints defined over
ct2 exist. Then, our transformation techniques generate all of them.

We assume in this section that the final context ct2 is given by the designer (or by an
external method). The next section generalizes the process by considering all possible
new context types.

Changing the context type of a constraint makes only sense when the constraint is
defined using a single instance of the context type (i.e. when the constraint body contains
the self variable). Otherwise, i.e. when the constraint is defined with the allInstances
operation, it is not worthy since its body will always be the same regardless the context
chosen. Apart from that, the full expressivity of the OCL is allowed in the definition of
the constraints.

In section 3.1, we assume that ct2 is any entity type of the CS related with ct1 through
a sequence of associations. Afterwards, in section 3.2, we allow ct2 to belong to the same
taxonomy as ct1. Both alternatives are not exclusive since ct2 may belong to the same
taxonomy as ct1 and be also related with it.

3.1. Changing the Context between Related Entity Types
This section focuses on the transformation of a constraint c1 with context ct1 to a

semantically equivalent constraint c2 with context ct2, where ct1 and ct2 are related
through one or more sequence of associations that allow navigating between them.

According to one of the requirements to guarantee the semantic equivalence of c2 and
c1, the context change from ct1 to ct2 is only possible when there exists at least one
sequence of associations seqas relating both types. Moreover, seqas has to verify that
setct1 = set’ct1; where setct1 is the population of ct1 (the set of instances that c1 restricts)
while set’ct1 is the set of instances of ct1 obtained when navigating from the instances of
ct2 to ct1 through seqas. Otherwise, it is not possible to obtain a semantically equivalent
constraint c2 since it would not be possible to verify it over the same set of instances as
c1. In particular, the set of instances setct1−set’ct1 would not be restricted by c2.

We can determine whether setct1 = set’ct1 by studying the multiplicity of the associations
included in seqas.

Intuitively, if two entity types A and B are related through an association AB with the
multiplicity 0..*:1..* (see Figure 2) it means that each instance of A is related at least
to an instance of B. Thus, if we navigate from all instances of B to the related instances
of A we necessarily obtain all A instances. Therefore, it is possible to change the context
of a constraint defined in A from A to B. However, this is not the case from B to A
because the minimum 0 multiplicity does not guarantee all instances of B to be related
with instances of A.
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For instance, the constraint “context A inv: self.a1 > 0” may be translated to:
“context B inv: self.a->forAll( a1>0 )”. On the contrary, the constraint “context B
inv: self.b1<5” when translated to A (context A inv: self.b->forAll(b1<5)) would not
prevent that instances of B which are not related to A have a value in b1 lower than 5.

Then, we can state that setct1 = set’ct1 if the value of all minimum multiplicities of the
roles used to navigate from ct1 to ct2 through the associations in seqas is at least one.
This guarantees that the navigation from ct2 to ct1 reaches all ct1 instances. Following
with the previous example, we can change the context of a constraint from A to B, A to
C, B to C and C to B, but not from B to A or C to A.

Figure 2. Example of an abstract conceptual schema

Depending on the specific body of the constraint we may be able to relax this multi-
plicity condition. When the body of c1 permits to deduce that the constraint only affects
those instances of ct1 related with some instance of ct2 we can use ct2 as context of
c1. Roughly, this may happen when each literal appearing in the body of c1 includes a
navigation to ct2. As an example, consider the MaxSalary constraint defined in section
2. Even though not all departments have employees assigned, the constraint only affects
departments with employees (the others always satisfy the constraint). Thus, we can use
Employee as an alternative context for the constraint.

Note that, for a given constraint, there may be several different sequences of associations
from ct1 to ct2 that verify the previous condition. Each different sequence results in a
different alternative representation of c1.

We formalize the problem of changing the context between two related entity types as
a path problem over a graph representing the CS. The next subsections explain how to
create the graph, how to find the alternative paths and, for each one of them, how to
obtain the new body of the constraint over the new context type.

3.1.1. Graph definition
The basic idea to represent the CS by means of a graph is to consider the entity

types in the CS as vertices of the graph and the associations as edges between those
vertices. Moreover, for our purposes, we want to obtain a graph that satisfies the following
condition: if the graph contains a path from a vertex v1 to a vertex v2 then constraints
defined over v1 can be redefined using v2 as a context type.

The graph must be a directed graph (digraph), since being able to change constraints
from ct1 to ct2 (i.e. from the vertex representing ct1 to the vertex representing ct2) does
not imply that we can also change constraints from ct2 to ct1, the context change is
transitive but not symmetric. For instance, consider the graph of Figure 3, which is the
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one obtained from the CS of Figure 2. The graph shows that constraints defined over A
can also be expressed over B or over C. Constraints defined over B can be expressed over
C but not over A. Constraints defined over Ccan be expressed over B.

Figure 3. Example graph

Sometimes the graph may also be a multigraph since it may contain two or more
edges with the same direction between a pair of vertices. This happens when the two
corresponding entity types are related through more than one association.

According to those ideas, we build the graph G by means of the following rules:

1. All entity types, including reified ones (i.e. association classes), are vertices of G.

2. For each binary association between two entity types A and B, the edge A→B is
included in G if the minimum multiplicity from A to B is at least one. The edge
B→A is included when the minimum multiplicity from B to A is at least one.

3. Given a n-ary association As among a set of entity types E1. . . En we add an
edge from Ei→E j if we can deduce, from the multiplicities of the roles in As,
that the minimum multiplicity from Ei to Ej is at least one. Although these binary
multiplicities are usually left unspecified in class diagrams, [13] shows that when
the multiplicity of the role next to Ej is at least one, all the multiplicities from any
Ei to Ej are at least one, and thus, the edge Ei→E j is included in the graph.

4. For each vertex representing an association class AC, we add the edges AC→E 1,
AC→E 2,. . . ,AC→En where E1...En are the participants of the association. We add
these edges since an instance of an association class is always related to an instance
of each participant type. We add the inverse edges depending on the multiplicities
of the association. If AC is the reification of a binary association, we add E1→AC
if E1→E 2 exists (and conversely with E2). Similarly, if the association is an n-ary
association, we add Ej→AC if exists an Ei that verifies Ej→E i

5. Since subtypes inherit all the associations of their supertypes, for each edge A→B
we add an edge Ai→B for each subtype Ai of A. Note that for edges of kind B→A
we do not add B→Ai since the fact that each instance of B is related with an
instance of A does not imply that it is also related with an instance of Ai.

The graph obtained with these rules is valid for any constraint. Then, if there is a path
from ct1 to ct2 all constraints defined over ct1 can be redefined using ct2 as a context
type.
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As we have seen before, a context change from ct1 to ct2 may also be possible when the
body of the original constraint only affects those instances of ct1 related with instances
of ct2. To deal with these particular cases, we need to add to G some edges that are
specific for certain constraints. For these reason, those edges are labelled with the name
of a constraint and paths including them are only valid for changing the context of that
particular constraint.

In Figure 4 we show the CS we will use as a running example in the rest of the paper. It
specifies information about departments, their projects and employees and it includes the
following six textual constraints. The first two are the constraints MaxSalary and ValidAge
shown in section 2. The others ensure that departments with more than five employees are
not managed by a freelance employee (NotBossFreelance), that all projects have at least
two project managers (AtLeastTwoProjectManagers), that each employee assigned to a
project finishes his contract after the due date of the project (PossibleEmployee) and that
the number of hours per week that freelances work lies between 5 and 30 (ValidNHours).

• context Department inv MaxSalary: self.employee->forAll( e | e.age >= 25 or
e.salary <= self.maxJuniorSal)

• context Employee inv ValidAge: self.age>16

• context Department inv NotBossFreelance: self.employee->size()>5 implies not
self.boss.oclIsTypeOf(Freelance)

• context Department inv AtLeastTwoProjectManagers: self.project->forAll( p |
p.employee->select( e|e.category.name=’PM’)->size()>=2)

• context Project inv PossibleEmployeee: self.employee->forAll( e |e.expirationDate<
self.dueDate)

• context Freelance inv ValidNHours: self.hoursWeek>=5 and self.hoursWeek<=30

Figure 4. Conceptual schema used as a running example
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Figure 5 shows the graph obtained from the previous CS. We can draw from it that
constraints over Project may be redefined over Employee, Department and Category ;
constraints over Employee can be redefined over Project, Department and Category ; con-
straints over Category can not be changed to any other context; etc.

The edge WorksIn from Department to Employee is labelled with the name of the
constraint MaxSalary because this is the unique constraint that can be changed from
Department to Employee using the association WorksIn.

Figure 5. Graph of the conceptual schema

3.1.2. Computing alternative paths
Each different path from ct1 to ct2 represents a different way to express the original

constraint c1 in terms of the new context ct2. To compute all alternative paths from ct1

to ct2 we have slightly adapted the depth-first graph searching procedure [10], using ct1

as initial vertex and terminating the search only after all alternative paths reaching ct2

have been generated. To avoid cycles, we do not consider as alternative paths those that
contain repeated edges.

For instance, alternative paths from Department to Employee are the following: Department-
Manages-Employee and Department-Develops-Project-AssignedTo-Employee. When look-
ing for alternatives for the constraint MaxSalary we can also use the edge WorksIn from
Department to Employee, and thus, there is an additional path: Department-WorksIn-
Employee.

An alternative path may have repeated vertices. However, to simplify our presentation,
we will not consider them in the rest of the paper.
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3.1.3. Redefining the constraint over the new context type
Given a constraint c1 with a body X defined over a context type ct1, a context type ct2

and a path p={e1, .., en} (where e1..en are the edges linking the vertices {ct1, v2, ..vn,ct2}),
the semantically equivalent constraint c2 defined over ct2 has the form:

context ct2 inv c2: self.r1.r2. . . rn->notEmpty() implies self.r1.r2. . . rn ->forAll(v|X)
where all occurrences of self in X have been replaced with v and r1..rn are the roles

that allow navigating from ct2 to ct1 using the associations appearing in p. Therefore, r1

represents the navigation from ct2 to vn using the association en, r2 the navigation from
vn to vn−1 using en−1, and, finally, rn represents the navigation from v2 to ct1.

Intuitively, it can be seen that c1 and c2 are equivalent since both apply the same
condition to the instances of ct1 (the condition X) and apply it over the same set of
instances (guaranteed by the graph definition process).

For instance, the constraint MaxSalary (context Department inv : self.employee->
forAll(e| e.age>=25 or e.salary<=self.maxJuniorSal)) may be redefined over Employee
because of the path p={WorksIn}. The redefined constraint MaxSalary’ is:

context Employee inv : self.employer->notEmpty() implies self.employer-> forAll( d|
d.employee->forAll( e.age>=25 or e.salary<= d.maxJuniorSal))

Since OCL does not define the navigation through n-ary associations, when ei repre-
sents an n-ary association between vi+1 and vi, we must navigate first from vi+1 to the
corresponding association class and then from the association class to vi.

Moreover, as ensured by the graph definition process, if an edge ei links vertices vi+1 and
vi, there exists the corresponding association between the entity types Ei+1 (represented
by vi+1) and Ei (represented by vi) or between Ei+1 and a supertype of Ei. In the latter
case when navigating from Ei+1 to Ei we need to add “select(oclIsKindOf(subtype(E i))”
(or “any(oclIsKindOf(subtype(E i))” when the result must be a single object) to the cor-
responding ri to ensure that only the instances of the subtype are retrieved by the nav-
igation. For instance, the constraint ValidNHours can be translated from Freelance to
Category. However, in the body of the resulting constraint, when navigating from Cate-
gory to Employee we need to select just those employees that are freelances, since these
are the only ones affected by the constraint. Then, the final body of ValidNHours when
redefined over Category is the following:
self.employee->select(e| e.oclIsKindOf(Freelance))->forAll(f| f .oclAsType(Freelance).
hoursWeek >= 5 and f.oclAsType(Freelance).hoursWeek <=30)

We provide some rules to simplify the body of the new constraint c2 (the variable X
stands for an arbitrary boolean OCL expression).

1. self.r 1. . . rn->notEmpty() → true, if the multiplicity of self.r 1. . . rn is at least one,
i.e. if all the minimum multiplicities of r1 . . . rn are at least one. In this case, it is
sure that the navigation will return a non-empty set and, thus, there is no need to
apply the notEmpty operation.

2. self.r 1 . . . rn->forAll(v|X) → X (where all the occurrences of v in X are replaced
with self.r 1. . . rn), if the multiplicity of self.r 1. . . rn is at most one, i.e. if all the
maximum multiplicities of r1. . . rn are at most one. Then, the forAll iterator is no
longer necessary.
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3. self.r 1. . . r i.rj. . . rn->forAll(X) → self.r 1. . . r i−1.rj+1. . . rn->forAll(X), when ri and
rj are the two roles of the same binary association (see Figure 6). When the max-
imum multiplicity of rj is one, the set of objects at rj are the same than those
at ri−1, and thus, the navigations ri and rj are redundant (in this case the rule is
applicable even if there is not a forAll iterator after rn). Otherwise, we may have
more objects at rj, and, in general, this entails that these additional objects are not
verified in the right hand expression of the rule. However, we can still apply the
rule if the minimum multiplicity of all opposite roles from r1 to ri−1 is at least one,
since then, those objects must be related with a (different) instance of the context
type, and thus, they will be checked when evaluating that instance. When ri may
have a zero minimum multiplicity, after the simplification we could be enforcing
some objects not affected in the original constraint. Note that in such a case, the
notEmpty clause of the general transformation rule will not be simplified by rule 1,
and thus, we ensure that those objects will never be evaluated.

4. self.r 1...rn->forAll(v1,v2| X) → self.r 1...rn->forAll(v2| X) (where all occurrences of
v1 in X are replaced with self ), if the type of the objects at rn coincides with the
type of the self variable and all the navigations from r1 to rn are redundant. This
rule is similar to the rule to simplify the allInstances operation presented in section
2.2. We cannot completely simplify the forAll iterator since the constraint requires
a comparison between an object of type t and a set of other objects of the same
type t.

5. self.r 1...ri->forAll(v| v.r j. . . rn->forAll(v 2|X))→ self.r 1. . . r i.rj. . . rn->forAll(v 2|X),
when X does not contain any reference to v. The two expressions are equivalent since
in both we apply the condition X over the objects obtained at rn. When X contains
references to v they must be replaced with the expression v2.rn’. . . r

′
j where r′n..r′j

represent the opposite roles of rn. . . r j (for instance, r′n is the opposite of rn). Note
that when, the multiplicity of some rk (where j>=k<=n) is greater than 1 then the
left hand side must be replaced by the expression self.r 1. . . .r i.rj. . . rn->forAll(v 2|
v 2.rn’. . . r j’->forAll(v 3| X)) where references to v in the original constraint are re-
placed with v3. This later case only makes sense when ri and rj are the two roles of
the same association, which implies that the new expression can be simplified with
rule 3 afterwards.

6. Given a reified entity type RET (see Figure 7): X.ret.b.Y → X.b.Y. According to
the OCL standard we can navigate to B either by accessing first the reified type or
directly using the role b of B. In both cases we obtain the same set of instances.

7. Given a reified entity type RET : context RET inv: self.a.b.r 1..rn->forAll(X) →
context RET inv: self.b.r 1..rn->forAll(X). Even though, given an instance i of the
RET type, the right hand side expression may verify less entities than the left hand
expression (since i.b may return less entities than i.a.b) those objects will be verified
when evaluating other instances of RET.

All rules can be applied regardless the other subexpressions forming the constraint body
except for rule 3 when the constraint body is a disjunction of literals following the pattern:
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self.r1...rn->forAll(X) or ... or self.r1...rn->forAll(Y) (where r1...rn represent exactly the
same sequence of navigations in the all disjunctions). In this case, only the literal/s
affected by the event for which the generated constraint is the appropriate alternative
may be simplified. Assuming that the event is included in the X condition, the simplified
constraint would be: X or self.r1...rn->forAll(Y). Note that the body ”X or Y” would
not be a correct solution since the original constraint does not state that all entities at rn

must satisfy X or Y, it states that either all entities at rn satisfy X or all entities satisfy
Y. Then, if an event over an entity e makes that e evaluates X to false, we need to verify
that at least all entities (and not just e) verify Y.

Figure 6. Abstract example schema for rule 3

Figure 7. Example of a reified entity type

With the previous transformations, we can simplify the initially obtained MaxSalary’
constraint as follows:

1. Initial representation after the context change:
context Employee inv : self.employer->notEmpty() implies self.employer->forAll(
d| d.employee->forAll( e.age>=25 or e.salary<= d.maxJuniorSal))

2. Removing the notEmpty operator (rule 1 plus the rules true implies X → not true
or X, not true or X → false or X and false or X → X ):
context Employee inv : self.employer-> forAll(d|d.employee->forAll(e.age>=25
or e.salary<= d.maxJuniorSal))

3. Removing the first forAll (rule 2):
context Employee inv :
self.employer.employee->forAll(e.age>=25 or e.salary<= self.employer.maxJuniorSal)
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4. Removing the redundant navigation (rule 3):
context Employee inv :
self->forAll( e.age>=25 or e.salary<= self.employer.maxJuniorSal)

5. Removing the forAll iterator (rule 2 again):
context Employee inv : self.age>=25 or self.salary<= self.employer.maxJuniorSal

3.2. Changing the context within a taxonomy
Given a constraint c1 defined over a context type ct1, we are now interested to redefine

c1 using ct2 as a context type, where ct1 and ct2 belong to the same taxonomy. This
implies that either ct1 is a subtype of ct2, a supertype or both have a common supertype
(ct1 and ct2 are sibling types).

When ct1 is subtype of ct2, the equivalent constraint c2 defined over ct2 has as a body:
self.oclIsTypeOf(ct1) implies X, where X is the body of c1. In this way we ensure that c2

is only applied over those instances that are instance of ct1.
As an example, consider the constraint ValidNHours. If we want to move the constraint

from Freelance to Employee, the new constraint would be:
context Employee inv ValidNHours: self.oclIsTypeOf(Freelance) implies

self.oclAsType(Freelance).hoursWeek>5 and self.oclAsType(Freelance).hoursWeek<30
Note that, when accessing an attribute of the subtype, we need to use the oclAsType

operator to do an explicit cast of the supertype variable.
If ct1 is a supertype of ct2, the new constraint c2 is defined in ct2 with exactly the

same body as c1. However, c2 cannot replace c1 since in general ct1 may contain instances
not appearing in ct2. Thus, both constraints are not semantically equivalent2. If the set
of generalization relationships between ct1 and its direct subtypes is covering [15] (also
called complete) c1 can be replaced as long as we add a new constraint to each direct
subtype of ct1 with the same body as c1. For instance, if we try to change the constraint
ValidAge from Employee to Freelance we need to add also ValidAge to Regular to ensure
that all employees have a valid age.

When ct1 and ct2 share a common supertype the new constraint c2 can never replace
c1 since not all instances of ct1 need to be instances of ct2. As in the subtype case, the
body of c2 would be self.oclIsTypeOf(ct1) implies X.

Before finalizing the context change to a new context entity type ct we can apply two
simplification rules especially useful for this kind of transformations:

1. self.oclIsTypeOf(ct) → true

2. self.oclAsType(ct).X → self.X

4. COMPUTING ALL ALTERNTIVE CONTEXT CHANGES FOR A CON-
STRAINT

To compute all possible context changes for constraint c1, defined over ct1, we need to
consider all possible paths between ct1 and every different type E appearing as a vertex
of the graph.

2Except for those constraints where the body is already defined to apply only over the instances of the
subtype ct2.
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In order to increase the number of possible alternatives, we may decide to reify some of
the associations appearing in the original CS (especially those with multiplicities greater
than one in all their roles). In this way, these reified types become vertices of the graph
and turn out to be new candidate context types for the constraint.

In our example, the reification of the AssignedTo association implies the inclusion of
a new vertex into the graph. Figure 8 shows the updated part of the graph of Figure 5,
where new edges for the new vertex AssignedTo have been added according to the rules
described in section 3.1.1.

Figure 8. Updated part of the graph

As an example, we obtain sixteen different alternative representations for the constraint
MaxSalary defined in Figure 4(one for every path between Department and the related
types in the graph: Employee, Project, Category and AssignedTo). Table 4 shows the list
of valid paths (column 2) for each possible final context (column 1).

Obviously, for each path we have a different alternative representation of the original
constraint. The body of these new alternatives is computed as explained in section 3.
Moreover, for each alternative we can apply the equivalences of section 2 to generate
additional alternatives by means of changing the body of the obtained constraints. For
paths including vertices representing entity types that participate in a taxonomy we must
also consider the possible context changes along the taxonomy.

Nevertheless, we may reduce the search space by just considering the paths including
only edges representing associations referred in the body of the original constraint. We
can discard the other paths since alternatives obtained with them are surely more complex
than the original one. Recall that any alternative constraint representation c2 for a con-
straint c1 obtained using the graph G initially presents a body consisting in a navigation
(extracted from the path) from the context ct2of c2 to the context ct1 of c1 followed by
the same body as c1. Therefore, if no simplifications can be applied, c2 is more complex
than c1 since its complexity may be regarded as that of c1 plus that of the navigation
from ct2 to ct1. Note that simplifications over c2 can only be applied when the edges that
form the path from ct2 to ct1 are also included in the body of c1.

Therefore, to obtain the relevant alternative representations for a constraint c1 it is
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Table 4
Valid paths for MaxSalary

Context Path

Employee

Department – Manages – Employee
Department - WorksIn –Employee
Department – Develops – Project – AssignedTo – Employee
Department – Develops – Project – AssignedProject – AssignedTo –
AssignedEmployee – Employee

Category

Department – Manages - Employee - BelongsTo – Category
Department - WorksIn -Employee -BelongsTo – Category
Department – Develops – Project – AssignedTo - Employee -BelongsTo
– Category
Department – Develops – Project – AssignedProject – AssignedTo –
AssignedEmployee – Employee - BelongsTo – Category

Project

Department – Develops – Project
Department – Manages – Employee – AssignedTo – Project
Department – Manages – Employee – AssignedEmployee – AssignedTo
– AssignedProject – Project
Department – WorksIn – Employee – AssignedTo – Project
Department – WorksIn – Employee – AssignedEmployee – AssignedTo
– AssignedProject – Project

AssignedTo

Department – Manages – Employee – AssignedEmployee – AssignedTo
Department - WorksIn –Employee– AssignedEmployee – AssignedTo
Department – Develops – Project - AssignedProject– AssignedTo
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enough to apply the previous algorithm over the graph G′, subgraph of G, that contains
the edges of G representing associations referenced in the body of c1 along with their
vertices and the vertices corresponding to the reified entity types of those edges (plus the
edges between the reified type and the other entity types in G′).

The subgraph G′ corresponding to the constraint MaxSalary is shown in Figure 9.
Using G′ we reduce the number of alternative representations from sixteen to only one.

Figure 9. Subgraph for the constraint MaxSalary

According to this optimization, Table 4 summarizes the alternative representations
(already simplified with the rules of section 3.1.3) for all constraints of our example. Note
that for some constraints (as ValidAge and ValidNHours) the original representation is
the only alternative. Notice also that NotBossFreelance can be defined over Freelance as a
subtype of Employee because the body of the constraint can only be violated by Freelance
instances.

For instance, the constraint PossibleEmployee over the reified type AssignedTo is first
defined as:

context AssignedTo inv: self.project->notEmpty() implies self.project->forAll(p|
p.employee->forAll(e|e.expirationDate<self.project.dueDate)
and then simplified by means of removing the notEmpty operator (self.project has

always a multiplicity value of 1), the first forAll (for the same reason) and, finally, applying
the specific rules proposed for reified types.

5. APPLICATION SCENARIOS FOR THE CONSTRAINT TRANSFOR-
MATION TECHNIQUES

The transformation techniques described in this paper are useful in several situations.
First of all, at design time, we can use them to assist the designer in the definition of
the constraints. With our proposal, designers may be aware of the different existing
possibilities when defining each constraint, and thus, they can select the one they prefer.
For students, the same transformation process could be useful to improve the learning of
the OCL by means of showing them different alternatives for the constraints they define.

Moreover, the techniques are specially useful in several of the transformation scenarios
defined in the context of the MDA [16]. In PIM-to-PIM transformations, several refactor-
ing operations (see, [19] or [12] for examples) have been proposed to improve the design
and structure of the models. OCL expressions may be affected by these refactorings and,
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Table 5
Alternative representations for the example constraints (MS stands for MaxSalary, NFB
stands for NotBossFreelance, ALTPM for AtLeastTwoProjectManagers, PE for Possi-
bleEmployee, VA for ValidAge and VNH for ValidNHours)

Constraint Alternative representations

MS
context Department inv: self.employee->forAll(e|e.age>=25 or
e.salary<=self.maxJuniorSal)
context Employee inv: self.age>=25 or
self.salary<=self.employer.maxJuniorSal

NBF

context Department inv: self.employee->size()>5 implies not
self.boss.oclIsTypeOf(Freelance)
context Employee inv: self.managed.employee->size()<=5 or not
self.oclIsTypeOf(Freelance)
context Freelance inv: self.managed.employee->size()<=5

ALTPM

context Department inv: self.project->forAll(p| p.employee->select(e|
e.category.name=’PM’)->size()>=2)
context Project inv: self.employee->select(e| e.category.name=’PM’)-
>size()>=2
context Employee inv: self.project->forAll(p| p.employee->select(e|
e.category.name=’PM’)->size()>=2)

PE

context Project inv: self.employee->forAll(e|
self.dueDate<e.expirationDate)
context Employee inv: self.project->forAll(p| p.dueDate>
self.expirationDate)
context AssignedTo inv:self.project.dueDate>self.employee.expirationDate

VA context Employee inv: self.age>16
VNH context Freelance inv: self.hoursWeek>=5 and self.hoursWeek<=30
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as a consequence, they need to be transformed to keep the consistency of the evolved
model.

As a simple example, when removing a supertype (and moving its properties to the
subtypes) we need to redefine the constraints having that type as a context type in terms
of its subtypes. That may happen, for instance, if we remove the Employee type and
move all its attributes and associations to Freelance and Regular. In this case we also
need to change the context of the constraint ValidAge from Employee to both Freelance
and Regular, and this can be done as explained in section 3.2.

Some other problems caused by refactoring operations are described in [12]. However,
to avoid problems with the OCL expressions, in that proposal the refactoring operations
are only allowed under certain strong restrictions which are not required in our approach.
Therefore, our techniques can complement that method. We can also regard our trans-
formation techniques as refactoring operations that improve comprensiveness of the OCL
expressions. In this sense, we provide more powerful refactorings than the ones proposed
in [4].

In PIM-to-PSM and PIM-to-code transformations, the goal is to derive (semi) auto-
matically the final implementation of the system from the initial PIM specification. In
this context, the simplicity of the defined constraints has a direct effect on the efficiency
of the implementation. Therefore, our techniques can be used to increase the efficiency of
the final system by generating equivalent but more efficient constraints than the original
ones written by the designer (see [1] for full details of the process).

Additionally, when the final technology platform does not offer a predefined mecha-
nism to implement the constraints (as it happens with object-oriented languages), the
constraints need to be implemented using alternative constructs. Typically, constraints
are included in the contracts of the system operations that may induce a constraint vio-
lation. For instance, in an operation RaiseSalary defined in the entity type Employee, we
need to check that the new salary does not violate the MaxSalary constraint. In order
to be able to easily include its verification in the contract of RaiseSalary, the constraint
needs to be defined in terms of the employee instances, and thus, we need, first, to trans-
form MaxSalary from its original version (using Department as a context type) to a new
version defined using Employee as a context type.

Our transformation techniques may be useful in schema validation as well, when com-
paring a set of constraints in search of redundancies among them. For instance, it could
help in the detection that two or more constraints are equivalent by means of redefining
them over the same context type, processing their body with the rules of section 2 in the
left-right direction and, finally, comparing the final resulting expressions. In some cases,
just by comparing the final body we could determine if both constraints are equivalent or
not (for instance, our techniques are able to detect that the three versions of MinSalary
shown in the introduction are redundant), but, in any case, our transformation may help
existing model checkers to provide better results.

As an additional benefit, preprocessing OCL expressions by means of the equivalence
rules of section 2 in the left-right direction facilitates the creation of methods and tools
to process OCL expressions (as, for instance, tools to implement transformations defined
using OCL or OCL-like languages as in the QVT standard [18]). Thanks to our prepro-
cessing, those methods do not need to address the full expressivity of the OCL, they just
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need to consider the simplified grammar resulting from our rules (for instance, they may
forget about the iterators one, isUnique, reject, . . . ). This reduces their complexity.

Similarly, our transformations are also helpful to extend the set of expressions handled
for already existing tools. As an example, current OCL-to-Java tools (i.e. tools that
translate OCL expressions to Java code, see [2] for a survey) cannot handle expressions
that include the allInstances operator. Some of those expressions could be simplified with
the rules of section 2.2, and thus, they could be processed by the tools. Moreover, some
of the tools require constraints to be defined over a type t in order to properly verify them
after the execution of operations defined in t. Here, our context change transformations
may be in charge of providing an adequate representation of the constraints using t as a
context type when possible.

6. TOOL IMPLEMENTATION

We have implemented a prototype tool [3] for the transformation techniques presented
in this paper. Given an XMI file [17] representing a CS and a set of OCL integrity
constraints in textual form (parsed using the Dresden OCL toolkit [5]), our tool generates
all possible context changes for those constraints. The generated constraints are shown
to the designer and may be stored, if required, in an output text file.

As a first step, the input constraints are preprocessed by means of applying the equiva-
lence rules of section 2 in the left to right direction. Since each rule has been implemented
in a separate Java class, our tool could be easily extended with the inclusion or the removal
of new equivalence rules according to the designers’ interest.

Then, and according to the input CS, the graph representing the CS is created and
all possible paths are computed. As an example, we show in Figure 10 the results of
processing our running example with the tool.

Finally, the user may select some (or all) the constraints in order to generate their
alternative representations following the previous paths and the taxonomic relationships.
The generated constraints are simplified (with the equivalences of section 3.1.3) and shown
to the user. Along with the final constraints, the tool also provides information about the
path and the rules applied to obtain them (see Figure 11).

7. CONCLUSIONS AND FURTHER WORK

We have proposed several transformation techniques that allow obtaining a set of se-
mantically equivalent representations for a given OCL constraint. The techniques consider
both changes in the body of the constraint as well as the possibility of redefining the con-
straint using as a context a different entity type of the conceptual schema. As far as we
know, ours is the first proposal able to generate all alternative representations of a given
integrity constraint in terms of different context types.

Although we have focused on integrity constraints, most of the equivalences of section
2 are useful for any kind of OCL expressions while the context changes of section 3 are
partially applicable to pre and postcondition expressions (which, in fact, are represented
as stereotyped constraints in the UML metamodel) as well.

The main part of our proposal is formalized as a path problem over a graph representing
the conceptual schema. The graph is created in such a way that every path between two
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Figure 10. Graph and paths computed by the tool

Figure 11. Constraints generated by the tool
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vertices corresponds to a different alternative to represent the set of constraints defined
over the first vertex (i.e. over the entity type represented by the vertex) by using the
second one as a context. Using this graph we are able to compute the different alternative
representations of a given OCL constraint.

Thanks to this generation, designers are aware of the different possibilities they have
when defining a constraint and may select the best one according to their particular
interest (for instance readability, understandability or efficiency). Our techniques are
also useful in several transformation scenarios, as, for instance, the implementation of
refactoring operations over the CS or the automatic code generation of the constraints in
the final technology platform.

Further research may involve looking for additional useful equivalences that may im-
prove further the results of our techniques (for instance, integrating some of the equiva-
lences presented in [7]). Moreover, in many situations, the designer is interested in finding
the best representation for a constraint among all alternative representations. We would
like to define a set of complexity models that, depending on the designers’ goal, allow
obtaining automatically the best representation of a given constraint.
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