

Fidel Bonet Vilela

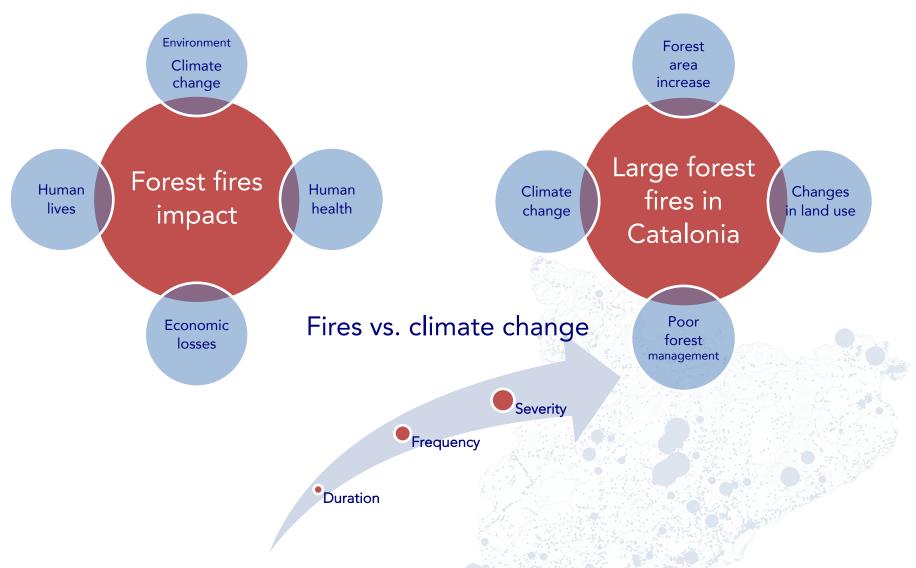
Area Artificial Intelligence Tutor Dr. Samir Kanaan Izquierdo Responsible teacher Dr. Carles Ventura Royo

INDEX

- 2. Method
- 3. Data. Previous analysis
- 4. Models
- 5. Evaluation and optimization
- 6. Implementation. Risk maps
- 7. Conclusions

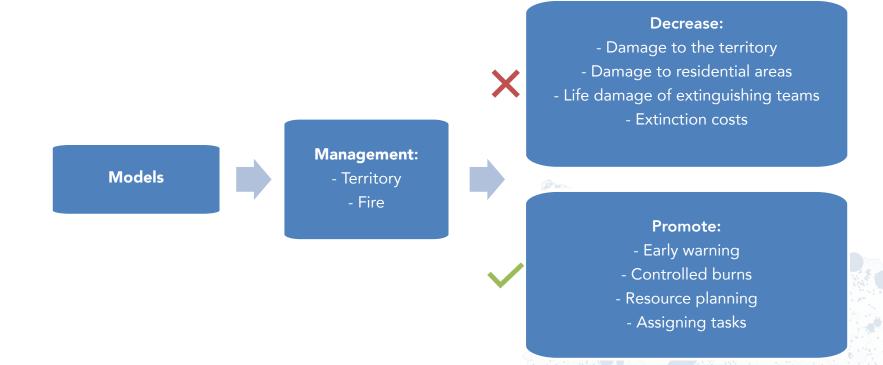
1. Motivation 2. Method 3. Data, previous analysis 4. Models 5. Evaluation, optimisation 6. Implementation. 7. Conclusions

Motivation

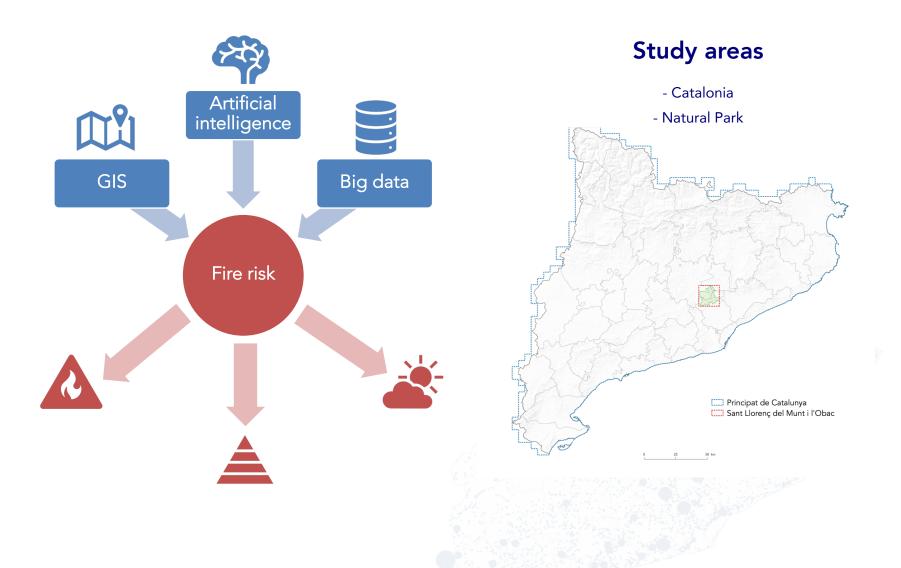


1. Motivation 2. Method 3. Data, previous analysis 4. Models 5. Evaluation, optimisation 6. Implementation. 7. Conclusions

Motivation

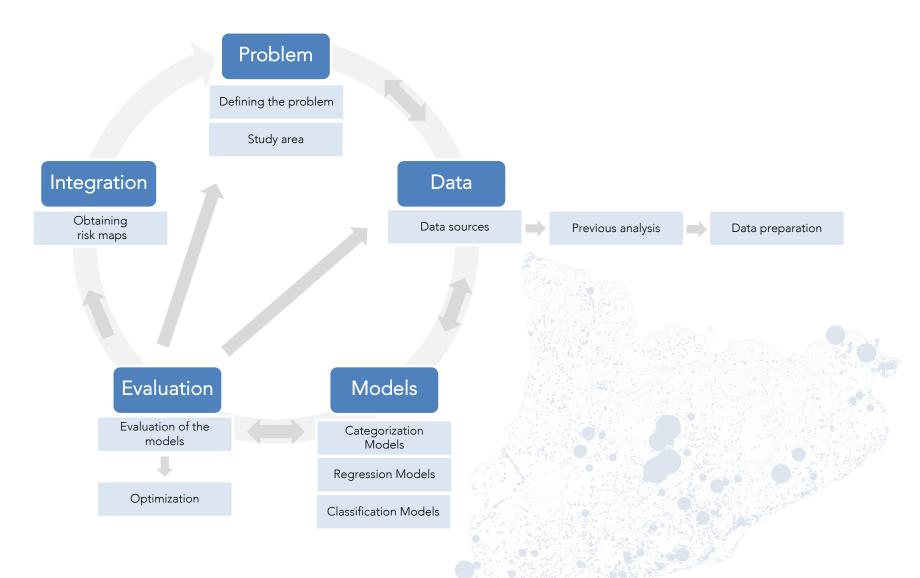


Method

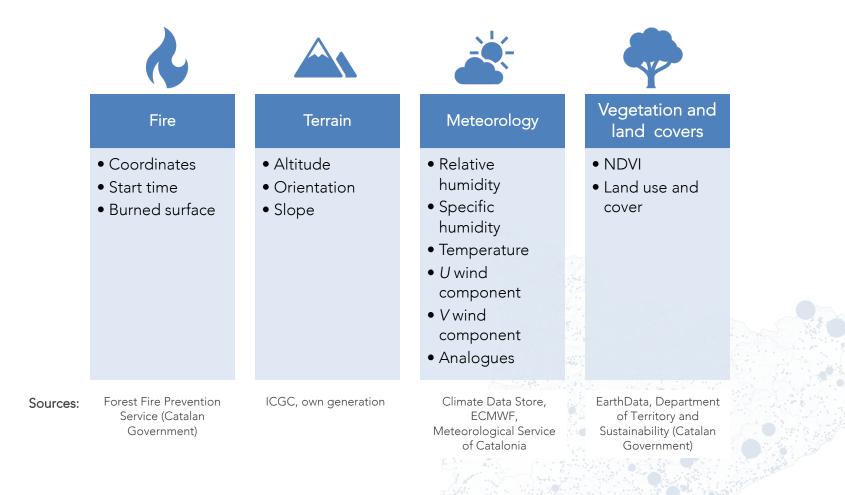


1. Motivation 2. Method 3. Data, previous analysis 4. Models 5. Evaluation, optimisation 6. Implementation. 2. Conclusions

Method

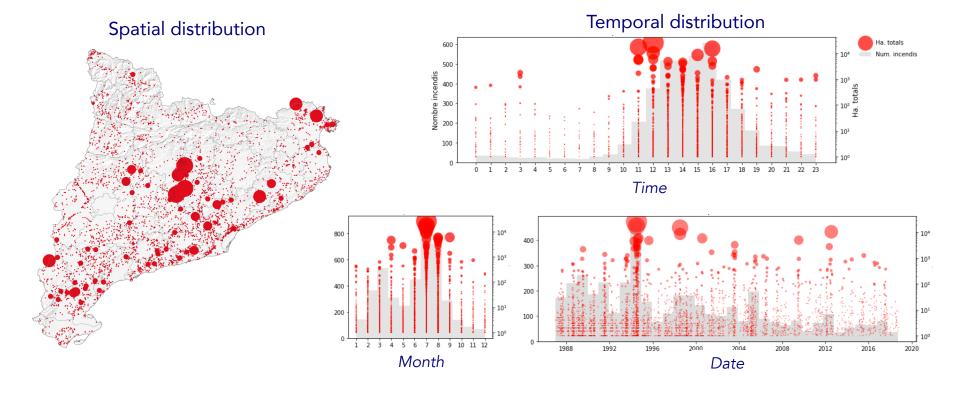


Data



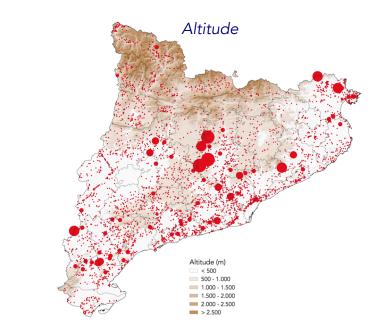
1. Motivation 2. Method 3. Data, previous analysis 4. Models 5. Evaluation, optimisation 6. Implementation. 7. Conclusions

Previous analysis **Fires**

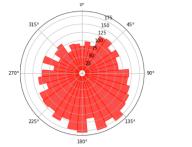


1. Motivation 2. Method 3. Data, previous analysis 4. Models 5. Evaluation, optimisation 6. Implementation. 7. Conclusions

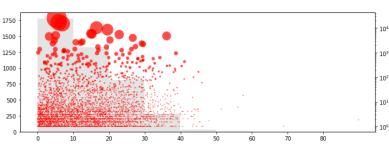
Previous analysis Terrain Vegetation

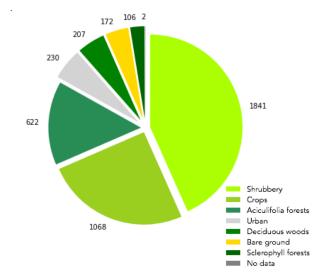


Slope



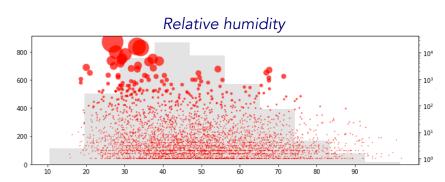
Orientation



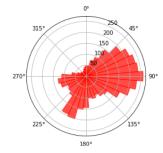


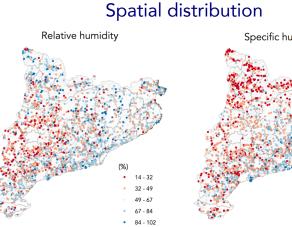
1. Motivation 2. Method 3. Data, previous analysis

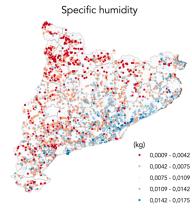
Previous analysis Meteorology



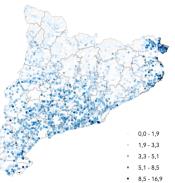
Wind direction

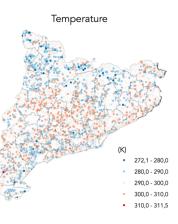






Wind speed





Classification

Models

Grouping of risk areas according to weather conditions

• Clustering algorithms

• Number of groups

- Reanalysis: 10 groups
- Analogues: 5 groups

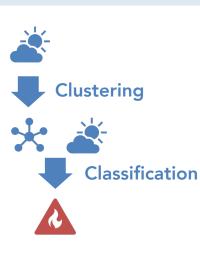
Predicting the size of fires at the time of ignition

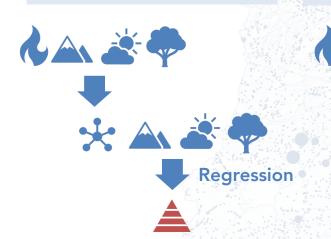
• Supervised regression algorithms

Risk of forest fire estimation

- Classification supervised algorithms
- Risk: probability of belonging to the fire class

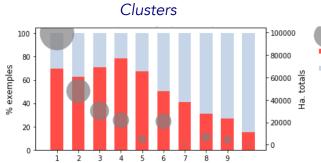
Calibration





Evaluation

Risk zone grouping algorithms according to weather conditions (reanalysis)

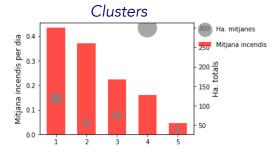


Accuracy 99%

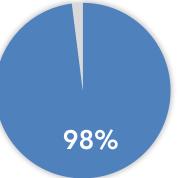
Cluster	1	2	3	4	5	6	7	8	9	10			
Meteorological characteristics													
Relative humidity (%, average)	34,4	48,3	47,6	55,7	42,2	57,5	64,8	77,5	70,2	78,0			
Temperature (average)	28,1	16,3	24,1	26,2	17,5	19,0	15,2	22,9	10,2	14,1			
U wind component (average)	2,09	4,85	-2,00	0,49	0,16	0,31	0,83	-0,47	0,81	-2,07			
V wind component (average)	0,95	-2,22	2,42	3,22	0,39	-4,92	2,86	0,06	-0,92	-0,19			
Fire characteristics													
Fire	518	636	509	911	363	249	177	354	433	97			
Non-fires	227	374	210	251	177	245	254	797	1172	543			
Forestal (Ha, mitjana)	145	62,6	44,2	20,8	12,6	71,5	3,9	17,5	10,1	4,6			
Non-forestry (Ha, average)	47,0	12,8	15,1	3,1	0,8	12,3	0,0	1,6	0,4	0,1			
Orientation (average)	181	179	178	178	177	175	171	172	165	175			
Slope (average)	13	12	11	13	21	13	13	15	17	13			
Altitude (average)	499	313	322	279	982	250	356	326	747	306			
NDVI (average)	0,45	0,44	0,44	0,43	0,41	0,48	0,46	0,45	0,43	0,48			
Land cover (predominant)	Crops												

Evaluation

Risk zone grouping algorithms according to weather conditions (analogues)



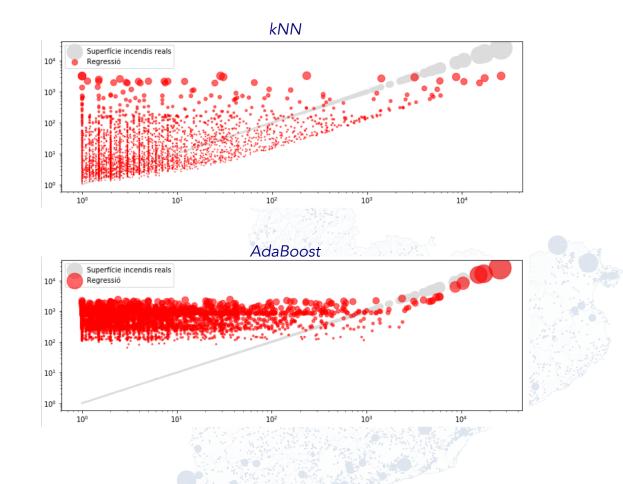
Accuracy



Cluster		1	2	3	4	5						
Cluster					4	3						
Characteristics of analogues												
No. Analogues		55	82	12	1	3						
Wind		0,014	0,0147	0,0184	0,0433	0,0048						
U wind component		6,98	6,6919	7,0445	6,2009	6,8667						
V wind component		7,813	8,0942	7,925	6,1852	6,7222						
Relative humidity	500 hPa	-0,827	-1,071	-1,946	-2,035	-1,522						
Relative numberry	850 hPa	-0,95	-1,079	-1,181	1,579	-0,008						
Temperature		10,825	14,372	11,54	19,881	18,511						
Precipitation		27,688	36,532	55,409	145,78	93,526						
Fire characteristics												
Fire		855	906	181	11	9						
Fires per day (average)		0,43	0,37	0,22	0,16	0,05						
Forest (Ha, average)		88,3	45,1	66,8	273,9	5,7						
Non-forestry (Ha, average)		30,2	10,5	8,5	26,5	34,1						
Month (predominant)		7	7	7	9	6						
Start time (average)		14:41	14:56	14:41	13:32	13:00						
Relative humidity (%, av.)	1000 hPa	48,9	50,3	43,9	49,2	37,8						
Temperature (average)		299,1	298,9	299,7	298,6	302,3						
U wind Component (average	2)	0,44	0,13	0,51	-0,38	-0,23						
V wind Component (average)	1,24	1,07	2,16	2,00	2,83						
Orientation (average)	•	172,8	179,3	181,9	168,4	235,5						
Slope (average)		13,5	13,5	13,3	17,1	17,6						
Altitude (average)		325,0	343,7	313,5	372,3	410,7						
NDVI (average)		0,44	0,44	0,45	0,47	0,42						
Land cover (predominant)		Crops	Crops	Crops	Aciculifolia forests	Crops						

Evaluation

Regression algorithms for prediction of the size of wildfires at the time of ignition

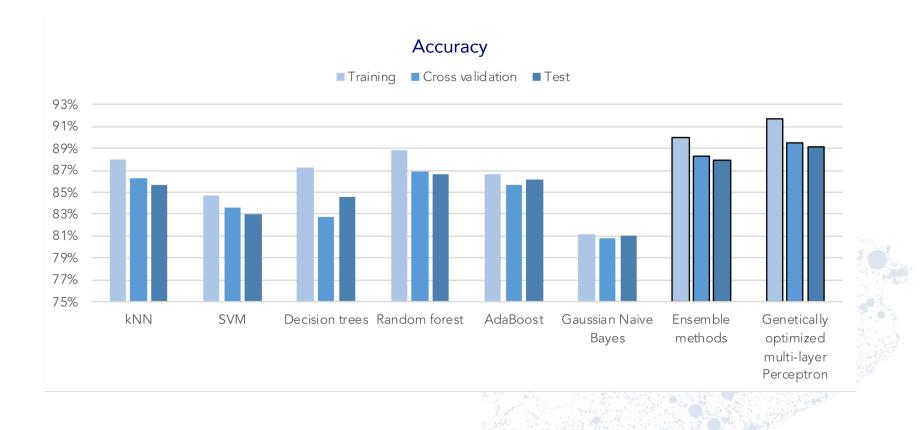


Methods kNN SVM Decision trees AdaBoost Decision trees + AdaBoost Logistic regression Kernel ridge Neural networks

1. Motivation
2. Method
3. Data, previous analysis
4. Models
5. Evaluation, optimisation
6. Implementation.
7. Conclusions

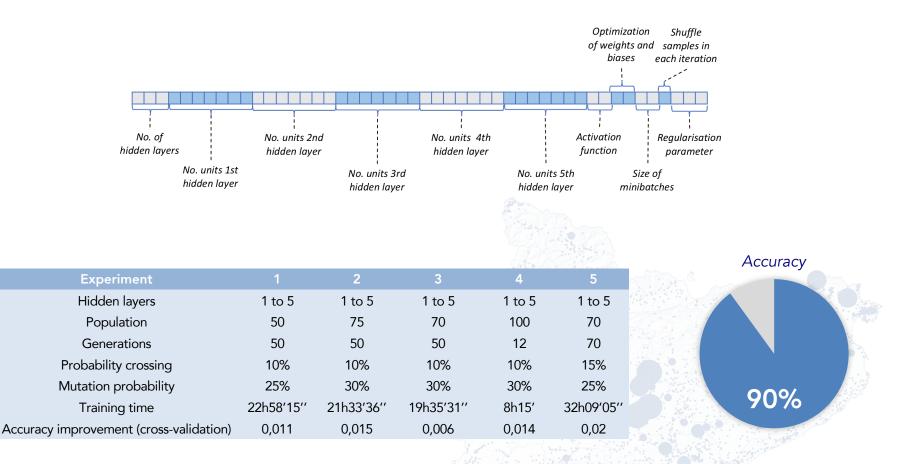
Evaluation

Classification algorithms for estimating forest fire risk



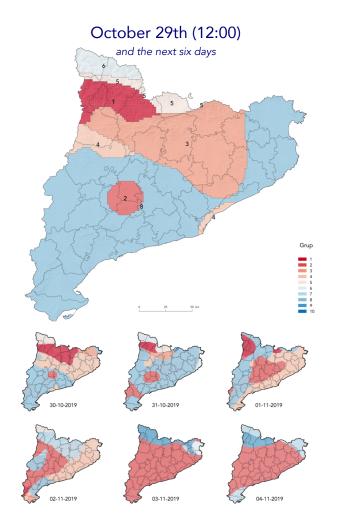
Optimization

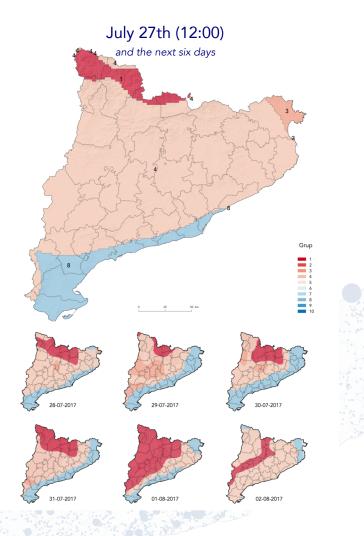
Multi-layer Perceptron optimization using genetic algorithms



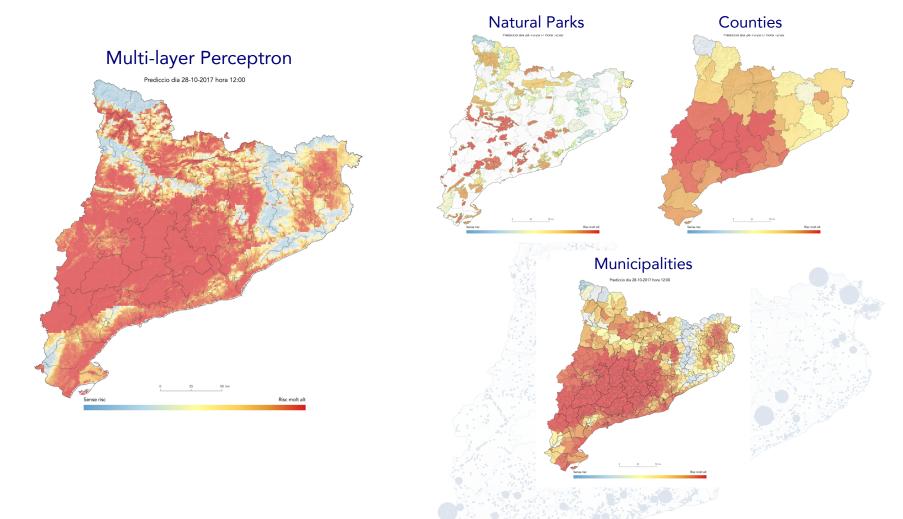
Implementation

Risk maps of forest fire according to weather conditions





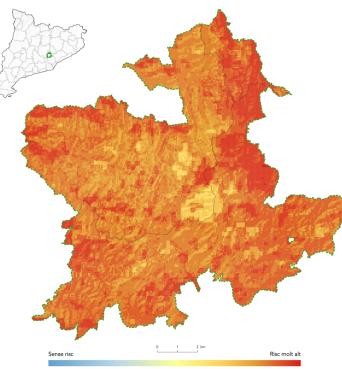
Implementation Forest fire risk estimation maps



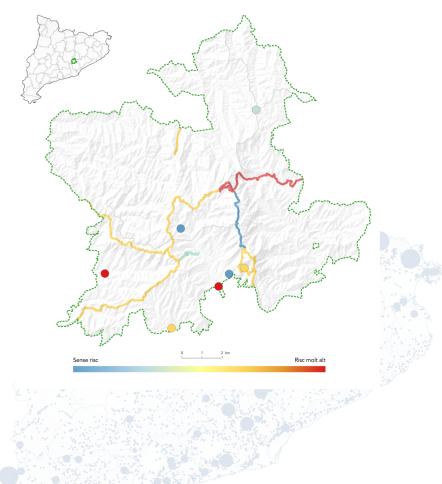
1. Motivation
2. Method
3. Data, previous analysis
4. Models
5. Evaluation, optimisation
6. Implementation.
7. Conclusions

Implementation Forest fire risk estimation maps

Natural Park



Main paths and parking areas



1. Motivation 2. Method 3. Data, previous analysis 4. Models 5. Evaluation, optimisation 6. Implementation. 7. Conclusions

Conclusions

- Suitability of machine learning to estimate the risk of forest fires.
- Fast method that does not require complex or difficult to obtain data.
- Need to use big data technology due to the large volume of data used.
- Good results with the two sets of meteorological data used:
 - the reanalyzes offer enough detail to obtain risk areas.
 - the usefulness of using weather data from the days before and after the fires has been confirmed.
- Importance of obtaining a valid set of negative examples for training. Use of Pearson's Similarity.
- Best results for fire risk estimation : genetically-optimized multi-layer perceptron with 90% accuracy.
- Best results for grouping risk zones based on weather conditions: accuracy between 98% and 99%.
- Good spatial resolution (60m) of the models obtained, even valid for specific areas as natural parks.
- Method developed reproducible in any area.

Fidel Bonet Vilela