
Projecte de recerca bàsica o aplicada
PAC3 — Tercera Prova d'avaluació
continuada

Cognoms: Sanchez Cañadas
Nom: Oscar

• Per a dubtes i aclariments sobre l’enunciat, adreceu-vos al
consultor responsable de la vostra aula.

• Cal lliurar la solució en un fitxer OpenDocument o PDF
fent servir una de les plantilles lliurades conjuntament
amb aquest enunciat. Adjunteu el fitxer a un missatge
adreçat a l'espai d'avaluació de l'aula virtual.

• El fitxer ha de tenir l’extensió .odt (OpenDocument) o .pdf
(PDF) segons el format en què feu el lliurament.

• La data límit de lliurament és el 19 de gener (a les 24 hores).

Respostes

 1 de 16

Anonymous Routing Protocol in decentralized networks
Universitat Oberta de Catalunya (UOC)
Author: Sanchez Cañadas, Oscar. Student at the UOC and Telecommunications Engineer
Tutors: Rifa, Helena & Marquès, Joan Manuel. Faculty of computer science and multimedia
January 2012, Barcelona, Catalonia, Spain

ABSTRACT

We propose an algorithm for performing routing anonymous within the networks peer-to-peer,
decentralized networks.

We have created a small application for sending a file from a user who connects to the
application to a server that is assigned to it, which is given to a Directory, which contains all the
addresses of these Entities.

We have also done a few tests to check the behavior of the algorithm within an application, such
as the degree of anonymity provides, or latency of this depending on the size of the file or the
performance of each Entity by package.

And finally we extract conclusions and propose improvements to the algorithm for future works.

1 INTRODUCTION

In the last decades the widespread use of
the Internet has increased the interest on
methods for the protection of privacy and
communications, both from the academic
community and the general public.

Several system designs have been
proposed in the academic field, some of
which have been implemented and are used
by various groups in order to protect your
identity on the Internet. Although encryption
can hide the contents of the information in
the network, it is not enough to hide the IP
address from other users.

The architecture of the decentralized
systems do not require a centralized server.
This design can prevent many attacks that
are made to a centralized server, as no
attack can break all nodes. Besides this type
of architecture is able to make the balance
of the load by itself.

Our goal is to design and implement a robust
system, high-availability with free storage
content, and Furthermore, it must guarantee
the reliability, privacy and anonymity.

 2 JUSTIFICATION

Currently, a large number of P2P platforms,
distributed systems and shared storage
mechanisms have adopted research-based
routing and distributed hash tables (DHT).
DHT provides a system of self-organization

with high routing performance, searching
precision, high scalability and automatic load
balance.

DHT can be built on a network of volunteer
teams comprised of end-users to supply their
own. The simplicity and flexibility to become a
member of volunteer network in these networks
gives a big potential computational and storage.
However, this kind of network also face a big
quantity of security problems. All peers of these
networks can transmit, receive and forward
data, so we become very vulnerable, because
any peer can receive the information from other
peers and may have malicious peers, infected
content, spy communications and many
problems related with security. Currently there
are many problems in such networks, which
could be mitigated with a protocol to provide
anonymity.

Therefore, in this project we focus on reliability
and privacy issues related to storage of data.
The research support is based on the design
and the creation of a protocol that allows us to
guarantee the anonymity of volunteers within a
distribution network based on DHT.

 3 OBJECTIVES OF RESEARCH

The aim of this project is the design and
implementation of a robust system, highly
scalable and content-free to resist the attempts
of powerful adversaries lock. All content can be
stored and searched publicly and is available in
the most convenient possible way.

 2 de 16

Anyone can publish any content stored on the
network, while avoiding the removal of the content or
the determination of the true identity of the people
involved by internal or external adversaries. In
addition, the peers members that contribute to the
storage ought not be an easy way to determine what
they are storing, ensuring a similar denial.

In summary, the primary concern of this design is the
creation of a proposed protocol for anonymity to
provide privacy to the content stored by volunteers,
ensuring their anonymity and confidentiality, avoiding
any impersonation.

 4 CURRENT OVERVIEW OF THE
ANONYMITY SYSTEMS

We analyze the algorithms based on low latency
because our research is based on these types of
systems.

 4.1 Onion Routing

Onion routing is design with a higher prevalence for
anonymous communications. Each onion router
maintains a private key and public. The public key
has to inform and to know the customers. To set the
anonymous connections initiator builds a multiple
encryption tunnel, or circuit, through the network. All
processed messages must be encrypted
asymmetrically.

Onion routing senders on a network using only the
public key to establish a circuit of encryption, and
then use the cryptography through symmetric key to
transfer faster the real data.

The initiator generates two symmetrical secret keys,
to re-send and another to answer. The initiator sends
the first onion router in the path, which eliminates the
outermost layer of the encryption with its private key.
Each server along the route will repeat the same
operation until the onion reaches the end of its route.
Once built the circuit, the initiator can retransmit
traffic using the symmetric key generated on each
hop. [1]

 4.2 PipeNet

The algorithm selects a random sequence of
PipeNet servers network, similar to the route
selection of onion routing. Customers then create
multiple encrypted tunnel via the establishment of a
symmetric key with the first hop, a tunnel through the
encrypted connection and the establishment of a
leap second, and so on. [1]

Although the design of PipeNet is impractical for real
networks like the Internet.

 4.3 Tarzan

Tarzan, AP3 and Crowd are very similar systems of
anonymity.[3.5]

The initiators in Tarzan build a network of routes
through this by generating symmetric keys for each
hop and encrypting them with public keys of servers
in the circuit.

As the Crowd system, all participants in the network
broadcast by other users.

Tarzan is a flexible, transparent, decentralized and
highly scalable system. Use tunnels between the
nodes and is transparent to both the client and to the
server. This system is able to provide anonymity to
existing applications without making any
modifications. [6]

Tarzan uses a peer-to-peer protocol gossip in order
to share information on all servers. Discover the
servers by selecting a random node in the residents
who already know , like AP3 and Crowd.[5]

The initiator of an anonymous tunnel creates a circuit
through the network Tarzan is grabbing randomly this
first. The second step is selected via the set chosen
by the first hop, and so on. Application traffic is sent
encrypted through the circuit with a layered, very
similar to what we have already discussed with the
onion routing. [1]

 4.4 MorphMix

MorphMix is also similar to Tarzan, is a system of
low-latency anonymous peer-to-peer where all
network nodes are of re-transmitter. This also uses
multiple layers in order to make the symmetric
encryption before transferring data along the circuit.

A node establishes a symmetric key by sending ab
half of the algorithm encryption with Diffie-Hellman
public key witness w. The node b transmits the
encryption to aw that removes the layer of encryption
and sends the result to a. This generates half of the
Diffie-Hellman algorithm and sends it through b. Both
parties are able to generate their shared symmetric
key. [1]

 4.5 Salsa

Salsa is a system based on anonymous DHT layer.
Each node has a specific ID to perform the
cryptographic hash function to obtain the IP address.
[3]

The recursive searches to receive a public key and
the keys of each re-transmitter are performed by
initiator’s request of r nodes including it himself. The

 3 de 16

circuit will spread randomly.

If a result of research is greater than a threshold
distance to the destination ID, it will be discarded.
The initiator uses a cryptographic hash function to
calculate the public ID of each IP address back. The
ID of the closest will be the destination key selected,
and the other results are discarded. [3]

The test limits will not be effective in case the
attacker can make the control key of the closest
node. [3]

 4.6 Cashmere

This system uses virtual re-transmitter made up by a
set of nodes for the resistance. [3]

Each group of re-transmitter must have a
public/private key pair, and each Member of the
group that has had a public/private group.

The group ID will be used as the key for sending
messages, using a prefix. The root of the group is
responsible for processing messages in number of
re-transmitter. To detect faults and malicious nodes
using end-to-end, Cashmere ACKs. [3]

 4.7 Tor

Tor is the second generation Onion Routing System
created by the limitations of the original design,
adding direct perfect confidentiality, congestion
control, directory servers, integrity check, Out-
effective set of policies, and a practical design for
localization services through meeting points. [4]

Tor provides confidentiality, as it now uses an
incremental design for the construction of the path,
where the initiator negotiates session keys in each
hop on the circuit.

4.7.1 Improvements with respect to Onion
Routing

Is more reliable, since the initiator knows when a hop
fails and you can try to extend a new node.

Improves efficiency and anonymity in the
multiplexing TCP flows in each circuit.

The initiator can send traffic to the nodes up to half
of the circuit, avoiding thus the attacks based on the
observation of the end of the circuit.

It incorporates a congestion control. End-to-end by
ACK can maintain anonymity while these nodes
allow to detect congestion and to control it.

Tor provides Directory servers signed to discover the

known nodes and their current States.

Incorporates an end-to-end integrity check, so that
any node can change the information content of the
cells.

Provides a point of rendezvous and hidden services.
Customers negotiate the rendezvous point to
connect to hidden services. [4]

4.7.2 Directory Servers

Directory servers are responsible for the aggregation
and distribution of the information registered in the
network of known routers. Information of signed
directory may also be reflected by the other routers
in the network in order to reduce the load on the
servers Directory. [1]

The use of these servers is simpler and more flexible
than using flooding. [4]

4.7.3 Establishment of the circuit

The circuit initiator negotiates session keys with each
router in the path of the circuit through the
negotiation of DH and RSA authentication. [1]

Face onion router keeps a key identity that is used to
sign certificates, TLS. The onion key is used to
decrypt requests from users for the performance of a
circuit and the negotiation of keys. [4]

4.7.4 Location hidden services

The location of hidden services allow offer to TCP
services, as a Web server, without the need to reveal
the IP address. This type of anonymity protects
against DoS attacks, since the IP is not known.

4.7.5 Solutions to the problems of current Tor

To solve the problems of scalability in the Tor
network, we propose two systems, NISAN and Torsk.
The designs including mechanisms in order to
mitigate the attacks leak of information. Nisan
proposes to incorporate anonymity in their own
research and instead of Torsk uses nodes buddy. [5]

 4.8 NISSAN

Nisan proposes a construction with 3 re-transmitter
random from a list that provides the router to build
the tunnel. This configuration could allow an attacker
to link the output of the last node to the initiator, as
the last node is in direct contact with the initiator, so
if this node is compromised, the attacker can break
the tunnel. [5]

To avoid this we can establish a partial circuit of the

 4 de 16

first node and after with a next search the second
node after the third, and so on. Unfortunately this
construction by itself is vulnerable to attacks public-
key modification and route capture attack. [5]

One way to mitigate the attacks of the first
construction is to use a longer route. Although this
construction could increase the latency of booting
system and makes the system more vulnerable to
DoS attacks. [5]

 4.9 Torks

Torsk requires the selection of a random number of
nodes across the all network to select privacy. An
attacker cannot associate the objective in order to
research the query. Therefore, the following hop-by-
hop may not be applied and the buddies are kept
secret. [5]

Torsk proposes to use a random path for the
selection of buddies. After the process buddy is
performed off-line. Then Torsk request which buddies
will be used one time.

Finally Torsk Finally, the veracity of the certificate
applies Torsk each hop of random path, preventing
further attacks that has random paths to increase the
chance of malicious nodes that are selected as
buddies.

 5 ANALYSIS of ANONYMOUS P2P
SYSTEMS

 5.1 System Structure

The decentralized architecture of P2P systems can
keep more peers of users and services than can
maintain a centralized architecture. Therefore, the
decentralized architecture is much more scalable
and the scalability of the network is a very important
element for any system.

If the radius of malicious peers is unchanged, the
degree of anonymity of the system increases with
increasing the scale of the network, because if the
number of malicious peers is unchanged, and the
network grows with honest peers, the proportion of
malicious peers will become increasingly small and
therefore the degree of anonymity will be greater.
Thus, if malicious peers increases, the degree of
anonymity will suffer a decrease. The P2P network is
ideal for building a large network.

The degree of anonymity seems relatively high even
if the network environment is very negative. This
means that if all the malicious peers can see only the
communication, but can not be part of it and all the
communication features of honest peers would look

like equal, the system can also maintain a high
degree of anonymity.

When a peer needs a service anonymous, the first
thing to do is looking for peers through DHT. This
may be a victim of the leakage information in
anonymous communications. If a user gets to
interfere in this process, user will be able to find the
transmitter, but can not identify the tunnel that
transmitter created. Also if the last peer are
malicious, the real target may be identified, as the
attacker can trace the real sender of this tunnel using
the timing attack or bridge attack.

The difference with the structured P2P systems is
that they use the gossip protocol to discover active
peers and select the re-transmitter. These systems
are less affected by malicious peers than
unstructured systems.

 5.2 Size of the tunnel

 In the process of routing, each peer only knows the
re-transmit its predecessor and its successor, so the
attacker needs at least control more than half of the
peers in the tunnel for its reconstruction.

At first, the degree of anonymity increases rapidly
with increasing size of the tunnel, but when the size
exceeds more than 10 hops, the degree of
anonymity begins to decrease slowly. This is why,
because a tunnel is very wide and it is very difficult to
control the attacker, the more we add hops, give the
attacker more chances to join our tunnel and find the
sender. [2]

The variable size of the tunnel can provide a higher
degree of anonymity that a fixed size.

 5.3 Selection of peers re-transmitter by
merging of cluster

With the Merger of cluster method, the degree of
anonymity increases when a cluster grows with the
scale of the network, but is still relatively small. The
main reason for this is because the cluster is much
smaller than the total number of network peers and
clusters do not cooperate with each other, so
anonymity is smaller. If we combine the clusters, and
if the opponent wants to break the tunnel, this will
have to join them. So the strategy is that only the
sender selects the next peer to be preferable in
design system.

 5.4 Relay Strategy

The relay strategy which is used the most in systems
is onion routing. When the message is relayed from
one peer to the next peer, that message is encrypted
with the symmetric key of the next peer, and the next

 5 de 16

peer decrypts the message and encrypt it again with
the key of the next peer and it is sending it to the
next peer, and is continuing the same process until
reaches the receiver peer. Therefore, if it is a
malicious peer, it must control the first and the last
peer if you want to analyze the messages inside the
tunnel.

If the first peer of the tunnel is malicious, it can
identify the relationship between you and the real
server. If the first honest peer, another peer in the
tunnel can not identify the sender directly and there
is only one real chance 1 / N (N total number of
peers) to determine the correct identity of the sender.
[2]

 6 ANONYMOUS ROUTING PROTOCOL

We built a decentralized application to communicate
us with a server, so that this communication is
anonymous and there is no central server to manage
information.

 6.1 Application to decentralized anonymous
communications

In this application we created an interface to the user
(User Application) so that this can send documents
to the server. This interface makes the transmission
through the anonymous routing protocol that we
created.

 6.2 Services Entity

We have created Entities, which are responsible to
retransmit packets and manage the documents that
users send. Each Entity is replicated in several
instances to ensure availability of information in case
of failures.

 6.3 Directory Servers

We have created a Server Directory, which is
responsible of launching the Entities and to assign it
to users.

 6.4 Certificate authority

Creating a certificate authority (CA) was required to
certify the identity of users and services involved in
the publication of the document.

It creates a self-signed certificate for both CA and for
the Entities and get within a PKCS#12 key
repository, where it save it also certificates of the
users and the Entities.

 6.5 Functionality

The user enters their work to the User Application. It
contacts with the Directory through a SSL connection
with mutual authentication to obtain the ID of the
Entity where they will work as shown in Figure 1.

The Directory assign a free Entity to the user, and
marked this Entity as "in progress", and will return a
list of Entities and their destiny Entity.

Then User Application execute the Anonymous
Routing Protocol by setting as destination the Entity
ID of the origin Entity that is taken at random from
the entire list of Entities.

The destiny Entity takes document and stored,
instead, although this does not send any
confirmation to the user, will be the origin Entity, after
the destiny Entity appears, the responsible of
communicate to user the result of that operation.
Therefore, the User Applications will display the
result to the user.

Finally, after do the operation and the User
Application receives the confirmation, the Directory
will mark the Entity as "free".

 6.6 Algorithm of Anonymous Routing
Protocol

The Anonymous Routing Protocol is based on Onion
routing where a message is encrypted in multiple
layers. Each layer contains the identity and a packet
encrypted for the next router on the network.

 6 de 16

Figure 1. Entity Authentication and assignment destination

 6.6.1 Tunnel Size

At start up the application the application in order to
upload a document to the server, the Directory
creates N random identifiers, with which the User
Application creates a chain of M Entities, which is the
size of the tunnel used in the protocol.

As the authors, Jia Zhang, Jianping Wu, Duan, Liu
Wu Haixin and indicate to their article [2] Anonymity
analysis of P2P anonymous communication system:

“At the beginning, the anonymity degree rises
rapidly with the tunnel length increasing, but
when the length exceeds 10, the anonymity
degree will not rise, but instead declines slowly.
This is because although a long tunnel is hard
for adversary to control, it also gives adversary
more chances to join in and guess the sender.
This phenomenon means frequent weak
attacks can also make the system fragile. So,
how to make tradeoffs to avoid frequent weak
at- tacks should be considered by developers.”

They analyzed different sizes and they saw that with
a small tunnel size, the system was giving easily to
the attacker to know who was the transmitter, and
although the tunnel was too large, the degree of
anonymity came to a point where I could not grow
further because when the tunnel increase, it increase
the chance that an attacker form part of the tunnel.

Therefore, after analyzing the situation, the author
proposes that the ideal size of the tunnel is 10,
although they also say that a variable size tunnel can
provide greater degree anonymity to the system than
a fixed size.

Therefore, in our protocol, we have created a
variable tunnel size, where it is determined by the
number of users.

N = (A1 * 2) + 10

Thus we improve the degree of anonymity by
ensuring that there are a minimum number of 10
Entities deployed, and that the ID's will not be finish
due to failures during the process of the publication
of documents, since there are at least 2 more
Entities for each user.

 6.6.2 Selecting the nodes of the tunnel

The Anonymous Routing Protocol creates a chain of
M Entities with the N Entities that created the
Directory.

M ≥ (N + 2)

The protocol builds the chain of M Entities sorted by

1 A: Number of users in system

random such that the destiny Entity is in the midst of
this chain, and ensuring that the origin Entity, the
Entity located in the first place, it becomes a repeat
at least once more.

The destiny Entity precedes the second appearance
of the origin Entity, in order to be the origin Entity
who responds to the user about the resolution of the
transmission. The position of the second origin Entity
is random, it only has to appear between destiny and
last Entity.

In order to prevent the origin Entity is the last Entity,
we create an instance of an Entity when the origin
Entity is in the last position.

Figure 2. Example of a chain

As we see in Figure 2, the origin Entity is at position
0 the first time, and the second time is at position 8,
which sends the result of the transmission to the
user.

 6.6.3 Creating packet to send

Once the user already has authorization by the
Directory, this builds the package to send the data to
the destiny Entity.

 1. User Application generates M symmetrical keys
associated with each of the Entities in the chain
(Figure 2).

 2. User Application builds the package to send the
message that will be sent beginning with last Entity
in the chain::

PacketM = Id_EntityM, Epbk_M(KM,0), padding

As you can see, the first package is composed by
the last Entity of chain ID (Id_EntityM), and the
symmetric key (KM) generated by the user, and
encrypted with the public key of the Entity, and finally
the optional padding.

 3. User Application starts to nest packages
depending on the corresponding Entity:

 7 de 16

 a) If next Entity is a relay Entity, the algorithm
will create the following package:

PacketX = Id_EntityX, Epbk_X(KX,len1),
EX(role,Id_EntityX+1, PacketX+1), padding

As we observe, the package which is created for
this Entity owns the package (PacketX+1) and the
ID (Id_EntityX+1) of the Entity that will go after. Also
in this case we have the role parameter that will
indicate the action of this Entity, in this case
"router", since it only is a Relay.

You can also see how inside the encrypted data
with public key of symmetric key is encrypted with
len1 that also serves to determine where exactly
the size of encrypted data, since during the
retransmission of messages, the Entities between
the tunnel can add padding to packets in order to
alter their appearance and increase anonymity.

 b) If the next Entity is an origin Entity, algorithm
will create the following package:

PacketX = Id_EntityX, Epbk_X(KX,len1),
EX(role,messageId, Id_EntityX+1, PacketX+1),

padding

This package to the origin Entity has the role as a
"origin", parameter which indicate to the Entity that
receive the message that this has been created by
itself, and it has internal ID as messageId.

 c) If the next Entity is the destiny Entity, the
algorithm will create the following package:

Packetz = Id_EntityX, Epbk_X(KX,len1),
EX(role,authz, op, len2, <data>, Id_EntityX+1,

PacketX+1)

When the package for destiny Entity is create, we
put the role as a "destiny", and also brings an
operation code op to determine the operation to
do, send or receive a document. It also is
composed of data and len2 parameter which is the
size of data. We also incorporated the term authz,
which is the authorization code of the operation.

 4. Finally, we send the following message:

Packet = Packet1, EC, padding

Where we see that the final package incorporates
the package of origin Entity, EC, that is an error code
of 1 byte, and the padding

 6.6.4 Relay Strategy

Once the origin Entity receives the package sent by
the User Application, this resend the package to the
next Entity and sets a timeout for if some error
occurs.

In the case of some error appears during the
retransmission and the origin Entity not received the
packet to retransmit again, or the messageId is
unknown, the origin Entity would shut down the
connection with the user informing him the
corresponding error code.

When a Entity receives a new packet, decrypts the
encrypted text message using the private key and
verify:

 a) If len1 = 0, is the last Entity, node of the end
of transmission and should not retransmit any
packet.

 b) If role = "origin", is the origin Entity, thus it
relays the package and starts the timeout. If the
timeout is finish, it will send to the user a package
with EC = 2. If however, is the second time it
appears, will be sent confirmation to the user with
the EC set for the destiny Entity.

 c) If role = “router”, is a relay Entity and thus be
retransmitted the following package.

 d) If role = “destiny”, is the destiny Entity, so this
checks that the user has permission to perform the
operation, and if that is not authorized, the error
code EC = 7 will be sent to the user. Then the
Entity will store the content of <data> if len2 ≠ 0. If
the operation went well is set EC = 1.

When User Application receives the confirmation
message closes the connection and transmission
and the message is displayed to the user.

 7 ANALYSIS OF ANONYMOUS ROUTING
PROTOCOL

To make the analysis we change the padding of the
packages of the Entities. Once we have defined the
padding we go variant the timeout of the connection
between the origin Entity and the user.

All the tests that will be showed below were made
through writing logs within the protocol, in order to
test it. And also all the tests were carried out on
localhost.

 7.1 Padding Test

To make an estimate of the padding most efficient to
our protocol we did several tests varying the size of
the padding. Fixed a timeout on the connection
between the origin Entity of the second time and the
user.

To begin we posted a padding to all Entities of 5 KB
size in order to see the resources that it consumes

 8 de 16

each Entity and check the size of the packages that
come from each of the Entities.

 7.1.1 Fixed padding to 5KB size

We tests of padding with a document of size 1 MB
and check processing time of total transfer, and the
processing time for each Entity according to the
variation of users, and thus the variation of the
number of Entities in the tunnel.

The first test is done simulating that there is only one
user on the system, therefore there is a minimum
number of 12 Entities.

With this system that is using a tunnel of 12 nodes at
least, an attacker that break a node, if it is not the
first node, it will not be able to know who is the
source of this package, and will not be able to know
if the sender was the previous node, since the
package is encrypted with the symmetric key that is
encrypted with a RSA public key.

If the malicious node is the first, could discover the
sender node although if the first node is honest, no
other node of the tunnel will be able to identify the
sender node directly.

The same applies to the role of the Entities, an
attacker breaking a node may not know who is the
source, origin, destiny or relay node.

Figure 3. Processing Time per Entity

After launch, we see that 12 Entities appears in the
system, and that the total transfer time of the
document was 15 seconds, an acceptable time to
transfer a file of 1 MB.

In Figure 4 are displayed various tests analyzing the
time of transmitting 1 MB variant the number of users
on the system, from 0 to 5, and therefore the number
of Entities.

Figure 4. Transfer Time

As we can see, as more Entities in the system, more
time for the transfer of the document, although it
depend on the position in which appears the destiny
Entity, since if it appears in the beginning, the
transmission will be faster, not all Entities have to
transmit the file, only those who are before of the
destiny Entity. And as we observe in Figure 4, in
tests where the quantity of Entities in the system
were 16 and 18, the transmissions were faster,
because the destiny Entity has appeared before in
that two tests, and less nodes have had to carry the
file.

In our test the destiny Entity appeared in the
antepenultimate position, it means that the 9
previous Entities have had to transmit a packet
larger than 1 MB, and thus have needed more time.

If we look at Figure 5, we see the size of the
packages in each Entity.

Figure 5. Packet Size per Entity

As we can see in the graph of the size of the
packages that arrive in each Entity, we see a clear
decrease in the size of packages after destiny Entity
download the document.

Therefore, even if an attacker breaking a node might

 9 de 16

 origen
 router

 router
 router

 router
 router

 router
 router

 router
 destiny

 origen
last

0

200

400

600

800

1000

1200

Packet Size per Entity
KB

Role

Size file = 1MB

 origen
 router

 router
 router

 router
 router

 router
 router

 router
 destiny

 origen
last

0

0,5

1

1,5

2

2,5

Processing Time per Entity

Role

Total transfer time = 15s

10 12 14 16 18 20

0

5

10

15

20

25

30

Transfer Time

Quantity of Entities

se
co

nd
s

not know who is the source of the packet, an
attacker who gets control the entire tunnel can
determine the trace followed by the package, since
we can see that the size of packets each time it pass
an Entity was decreasing, and an attacker can
assume that the destiny Entity is one that takes more
data of the package, observing the decrease in the
size of the package once after this.

If we look at the difference with the size of the
packages between Entities, as shown Figure 6, we
can see clearly which Entity is getting more data.

Figure 6. Variation in the size of the package with next Entity

To solve these problems, we propose to add a
padding to all Entities of the same size as the file,
this way an adversary can not find the destiny Entity.

 7.1.2 Padding equal to file size for all Entities

In that case we repeat the test with a 1MB file and
one user, that is, at least 12 Entities, but the padding
that use is as big as the file size to send to the
destiny.

In this way we prevent that an adversary can control
the entire tunnel to find out who is the destiny Entity.

Figure 7. Processing Time per Entity

If we look at Figure 7, we see that the processing
time needed for each Entity in system.

As we can see, this time have been appear 13
Entities, and we can observe the processing time of
Entities decreases every time you pass one of them,
since the package to process each is getting smaller.

Because of this, the time needed to transfer it by the
system was 2 minutes and 2 seconds, a latency
higher than in the previous case, but this system
gives us more anonymity in the system.

In Figure 8, we can see the differences between the
packages arrived at the Entities in this test, with the
padding equal to the size of the file.

This time an adversary can not guess who is the
destiny Entity, because all Entities are taking a
nearly identical package.

Figure 8. Variation in the size of the package with next Entity

But if we look at Figure 9, which shows the size of
the package that arrives at each Entity, we can see
how the packet size decreases.

Figure 9. Packet Size per Entity

In this note, an attacker could guess the package
trace and more could know who is the origin Entity, if
it controls all the nodes of the tunnel.

 10 de 16

 origen
 router

 router
 router

 router
 router

 router
 router

 router
 destiny

 router
 origen

last

0

2000

4000

6000

8000

10000

12000

14000

Packet Size per Entity
KB

Entity

Size file = 1MB

 origen
 router

 router
 router

 router
 router

 router
 router

 router
 destiny

 origen
last

0

200

400

600

800

1000

1200

Variation in the size of the package
with next Entity Dif. (KB)

Entity

Padding = 5KB

 origen
 router

 router
 router

 router
 router

 router
 router

 router
 destiny

 router
 origen

last

0

200

400

600

800

1000

1200

Variation in the size of the package
with next Entity Dif. (KB)

Entity

Padding = Size File

 origen
 router

 router
 router

 router
 router

 router
 router

 router
 destiny

 router
 origen

last

0

5

10

15

20

Processing Time per Entity

Entity

Total transfer time = 2min 2s

Seeing that we have reduced the likelihood that an
opponent can get to know the destiny Entity,
although we continue to leak information about the
possibility that an adversary manages to find the
package trace and therefore know the origin Entity .

We propose a method to solve this leakage of
information. The method is to set a little padding in
all the Entities, and send the file size, so that when
an Entity decrypts the packet can get the file size
and can add padding equal to the size of file from the
destiny Entity appears.

 7.1.3 Small padding increased in reception
protocol to a size equal to file size only in
Entities after destiny Entity appears

For this test we put a padding equal to 1KB, which is
relatively small, and add the file size as a parameter,
inside the package encrypted.

When receiving the packet, Entity decrypts the
packet and if the destiny Entity has appeared, add a
padding for the next Entity of a size equal to the file
size.

If we look at Figure 10, we see how the processing
time of each Entity, in this test with 1MB file and one
user in the system is now much more distributed, so
the performance is better.

Figure 10. Processing Time per Entity

In addition, the total transmission time was 18
seconds, so we have also improved the latency of
the system.

If we analyze the size of packets that arrive at each
Entity, would give a result as shown in Figure 11.

As can be seen in this test, an opponent who
controlled the entire tunnel of the system could not
find anything through the size of packages that arrive
in the Entities because they are practically identical in
size.

Figure 11. Packet Size per Entity

Therefore, this test does not show the leakage of
information about the size of packets that arrive at
the Entities, and so, it is increasing the degree of
anonymity in the system.

Figure 12 shows the result of variation of the size of
packages with the next Entity. Observing the packet
size input and output, an adversary can assume that
the bytes missed have been used for Entity.

Figure 12. Variation in the size of the package with next Entity

As we can see, the variation in all Entities, except the
last, is very small. An adversary could not determine
with the variation of the packet size which is the
destiny Entity or the origin Entity, can only see what
is the Entity that uses more bytes that will be the last
Entity of the chain and this is never the destiny or the
origin Entity.

Therefore, an opponent might think that the destiny
Entity is the last, cause the others looks do not take
enough information to be the destiny Entity.

With this setting of the Padding of Protocol provide a
better load balance, with a processing time per Entity
more shared between Entities of the chain, better
performance of system, total time of transfer

 11 de 16

 origen
 router

 router
 router

 router
 router

 destiny
 router

 router
 router

 origen
last

0

200

400

600

800

1000

1200

Variation in the size of the package
with next Entity

Dif. (KB)

Entity

Padding = File size inserted in receiving protocol
after Entity destiny appears

 origen
 router

 router
 router

 router
 router

 destiny
 router

 router
 router

 origen
last

0

200

400

600

800

1000

1200

Packet Size per Entity
KB

Entity

Size file = 1MB

 origen
 router

 router
 router

 router
 router

 destiny
 router

 router
 router

 origen
last

0

0,5

1

1,5

2

2,5

Processing Time per Entity

Entity

Total transfer time = 18s

decrease and also providing high degree of
anonymity, preventing that an adversary that controls
the entire tunnel can guess who is the destiny, origin
or relay Entity through the packet size or the
difference in size of packets that arrive at each of the
Entities.

 7.2 Timeout test

To calculate the most optimal timeout, we experiment
with one user on the system, that is, 12 Entities at
least, and calculate the total transfer time and
transfer time per KB sent.

In the next Table 1, we can observe the behavior of
the protocol for a file size ranging from very small
file, 258 KB, until 8 MB file.

As can be seen when we extract the seconds that the
system need for each KB, speed in all cases is
exactly the same, so use this data to calculate the
timeout.

Table 1. Timeout calculate

The seconds per KB in all cases is 0.02 sec / KB, so
we decided to add a timeout greater to:

Timeout > Size File · 0,02 sec/KB

As the timeout must be greater than this
multiplication, we propose the following timeout:

Timeout = (Size File · 0,02 sec/KB) + Tunnel length

Where we add one second more to the timeout for
each entity in the system, as you can see in Figure
13, in all cases, the transfer time is within the
threshold of the proposed timeout.

Now we test the timeout but this time changing the
number of users in system and leaving a fixed file
size to 1MB. In Table 2, we see the variation of users
from 1 to 10. This time we added the seconds that
needs every Entity according to total transfer time.

Figure 13. Timeout Threshold

Table 2. Timeout calculate

As is shown in Figure 14, the transfer time ever
closer to the threshold timeout, so if users increase
may be the time it takes to transfer is greater than
the timeout.

Figure 14. Timeout Threshold

We check it doing tests tests varying between 1 and
50 users, and comparing the transfer time to the
timeout.

Table 3 shows the results of the tests, which
effectively when users are over 10, the calculated
timeout is too small.

In Figure 15, we can observe the evolution of the
timeout on the growth of Entities in the system.
Therefore, the calculation of the timeout, not only
depends on the size of the file, it depends on the
number of Entities in the system.

 12 de 16

sec/Entity

258 1 12 5 0,02 17,16
516 1 12 9 0,02 22,32
778 1 12 14 0,02 27,56
1024 1 12 18 0,02 32,48
2048 1 12 33 0,02 52,96
3072 1 12 51 0,02 73,44
4096 1 12 72 0,02 93,92
5120 1 12 84 0,02 114,4
6144 1 12 103 0,02 134,88
7168 1 12 122 0,02 155,36
8192 1 12 137 0,02 175,84

Size File
(KB)

Users
Tunnel
Lenght

Transfer
Time (s)

Timeout
(s)

1 2 3 4 5 10

0

10

20

30

40

50

60

Timeout Threshold
Size File = 1 MB

Transfer
time(s)

Timeout (s)

Tunnel lenght

sec/Entity

1024 1 12 18 1,5 32,48
1024 2 15 24 1,6 35,48
1024 3 16 25 1,56 36,48
1024 4 18 29 1,61 38,48
1024 5 20 32 1,6 40,48
1024 10 30 47 1,57 50,48

Size File
(KB)

Users
Tunnel
lenght

Transfer
Time (s)

Timeout
(s)

51
6

77
8

10
2

4

20
4

8

30
7

2

40
9

6

51
20

61
4

4

71
6

8

81
9

2

0

50

100

150

200

Timeout Threshold
Tunnel lenght = 12

Transfer
time(s)

Timeout (s)

Size File

Table 3. Timeout calculation

Figure 15. Timeout Threshold

Therefore, we modify the way to calculate the
timeout, so it also depends on the number of Entities
in system. If you look at Table 3, we see that each
Entities need between 1,5 seconds and 1,9 seconds,
so we should make sure that never the timeout is
less than 2 seconds per Entity in system.

Timeout = (Size File · 0,02 sec/KB) + (2 * Tunnel lenght)

If we calculate the timeout for the same tests as in
the previous section, we will see if this calculation is
valid.

Table 4 shows the test results, and as can be
observed there is no transfer overcome the
calculated timeout.

Also if you look at Figure 16, we see how not only
the transfer time does not exceed the threshold of
the timeout, it is also clearly seen that the timeout
was increased in proportion to the Entities and also
grows in proportion to the size of the file.

Table 4. Timeout calculation

Figure 16. Timeout Threshold

Thus we get the most optimal timeout for our
protocol.

 7.3 Analysis of anonymity

Certificates of Directory, Entities and user signed by
a authority, it provide authenticity to the participants
of the system, which will be a very difficult for an
opponent to get into the circuit in impersonating
some of the nodes of the circuit .

Moreover it provide anonymity with the structure, the
size of the tunnel and the strategy of our
broadcasting system.

7.3.1 System Structure

Assuming that our system has 5 users and therefore
the size of the tunnel (N) of 20 hops in the system
and as many malicious nodes as M, and without
consider other strategies of attack, the entropy can
be calculated as:

H2(X3) = log2N

2 H: Entropy
3 X: Anonymous communication system

 13 de 16

1 2 3 4 5 10 15 20 25 30 35 40 45 50

0

50

100

150

200

250

Timeout Threshold
Size File = 1 MB

Transfer
time (s)

Timeout (s)

Tunnel lenght

sec/Entity

1024 1 12 18 1,5 44,48
1024 2 15 24 1,6 50,48
1024 3 16 25 1,56 52,48
1024 4 18 29 1,61 56,48
1024 5 20 32 1,6 60,48
1024 10 30 47 1,57 80,48
1024 15 40 63 1,58 100,48
1024 20 50 88 1,76 120,48
1024 25 60 110 1,83 140,48
1024 30 70 130 1,86 160,48
1024 35 81 151 1,86 182,48
1024 40 90 172 1,91 200,48
1024 45 100 179 1,79 220,48
1024 50 110 209 1,9 240,48

Size File
(KB)

Users
Tunnel
Lenght

Transfer
 time(s)

Timeout
(s)

sec/Entity

1024 1 12 18 1,5 32,48
1024 2 15 24 1,6 35,48
1024 3 16 25 1,56 36,48
1024 4 18 29 1,61 38,48
1024 5 20 32 1,6 40,48
1024 10 30 47 1,57 50,48
1024 15 40 63 1,58 60,48
1024 20 50 88 1,76 70,48
1024 25 60 110 1,83 80,48
1024 30 70 130 1,86 90,48
1024 35 81 151 1,86 101,48
1024 40 90 172 1,91 110,48
1024 45 100 179 1,79 120,48

Size File
(KB)

Users
Tunnel
Lenght

Transfer
Time (s)

Timeout
(s)

1 2 3 4 5 10 15 20 25 30 35 40 45 50

0

50

100

150

200

250

Timeout Threshold
Size File = 1 MB

Transfer
time(s)

Timeout (s)

Tunnel lenght

And the anonymity degree of the system with
malicious node M is:

D4(X) = log2(N-M) / log2N

In Figure 17, we can see how the degree of
anonymity decreases as we increase the malicious
nodes, as expected, but on the other hand can be
seen as the degree of anonymity goes down very
slowly, and even when 75% of the circuit nodes are
malicious, the level of anonymity is still relatively
high. This is because we are in a P2P system.

Figure 17. Anonymity degree when malicious nodes increase

7.3.2 Routing Strategy

Figure 18 shows the size of the tunnel variable with
users of a network.

As we can see the minimum size of our circuit is ten,
which is the size when there are no user and where
the degree of anonymity per tunnel size begins to
increase more slowly, since against greater is the
tunnel size more chances has an opponent to be
part of this.

As noted above, in Figure 16, against the greater
tunnel size, the transfer time of the document will be
higher. This means that against more anonymity we
provide through the tunnel size, the latency of the
system increase.

An attacker needs to know the IP address of the
node to control it [3]. The protocol implemented, an
attacker can not know the IP address of the nodes
participating in the circuit, because we use SSL
protocol, however, if the malicious node is the first,
this could have the IP node transmitter.

4 D: Anonymity degree

Figure 18. Increase of Tunnel Size

Analysis of the size of the tunnel Andrew Tran,
Nicholas Hopper i Yongdae Kim proposed a tunnel
size variable to increase the degree of anonymity in
the system [3]. Figure 19 shows the level of
anonymity in our system, with tunnel size variable.

As the relay strategy is based on onion routing, an
enemy has to control the first node and some other
nodes in the tunnel, to identify the initiator, and the it
need control at least more than half of the nodes in
the tunnel for its reconstruction.

The probability that adversary identifies the
transmitter node, in our system with variable size
tunnel [2]:

P S =∑ 1− f  l−1 f M /N l1 /2

The variable f is set by the probability that a relay
node retransmit the message of the initiator, which
are all nodes before the destiny Entity, since if an
adversary controls the nodes that are after the
destiny Entity, it can get nothing. Therefore the
degree of anonymity in the variable tunnel is:

D(X) = (1-P(S)) log2(N-M) / log2N

As we can see, the tunnel of variable size provide to
the system a high degree of anonymity, since even
when the fraction of compromised nodes in the
system is high, eg 70%, this continues to bring a
degree of anonymity in the system .

The value of f is 0.25, 0.75 or 0.5 when the destiny
Entity is in the first quarter, the middle, or last quarter
of the tunnel, respectively.

 14 de 16

10 20 30 40 50

0

20

40

60

80

100

120

Increase of Tunnel Size
Tunnel Size

Users

0
,0

5 0,
1

0
,1

5 0
,2

0
,2

5 0
,3

0
,3

5 0,
4

0
,4

5 0
,5

0
,5

5 0
,6

0
,6

5 0
,7

0,
75

0,
8

0
,8

5 0
,9

0
,9

5

0

0,2

0,4

0,6

0,8

1

Anonymity Degree
when malicious nodes increases

Tunnel lenght = 20

Fraction of malicious nodes (M/N)

Figure 19. Anonymity degree with variable tunnel lenght

The authors Jia Zhang, Haixin Duan, Wu Liu i
Jianping Wu shows an analysis of tunnel size
between the variable and fixed, which show that the
tunnels with a variable size provides a higher degree
of anonymity that the tunnels of a fixed size.

 8 COMPARATION WITH OTHER CURRENT
SYSTEMS

Our protocol performs iterative searches mode, as is
done in other systems such as SALSA, and also in
this system can only be broken if an opponent is the
first node.

In SALSA, are also customers who choose the
construction of the circuit, although each node only
meets the predecessor and successor, exactly like
our protocol.

However, the system only selects random 3 nodes to
build a circuit, and in our case the minimum number
of nodes in a circuit is 12, and is variable as it
increases the number of users in the system.

Our algorithm encrypts the symmetric key in an
encrypted public key of the node, while in other
systems such as MorphMix a node establishes a
symmetric key by sending a node b half of the
algorithm encryption with Diffie-Hellman public key
witness w. The node b transmits encryption to W, it
removes the layer of encryption and sends the result
to a. This generates half of the Diffie-Hellman
algorithm and sends through b. Thus, both parties
can generate the shared symmetric key.

The Cashmere system also uses virtual re-
transmitter, although made up by a set of nodes for
the resistance, has groups where each transmitter
has a public key and private individuals and other
public and private keys for the group.

In that form the system uses the Group ID as a key to
send messages. The root of group is responsible for
processing messages on behalf of the re-transmitter
group.

As we see there are other systems that uses features
similar to ours, but with our algorithm we managed to
raise the level of anonymity, since we do not just use
a circuit with a variable number of nodes and 10,
which is the strip where the degree of anonymity is
achieved, by a circuit node begins to stagnate, but in
addition we have managed to obtain more anonymity
on the possibility that an adversary that measure
packages are sent between nodes, as it will be very
difficult to find out who is the source or destination
node, observing the size of the packages, to have all
the same size and all seems to take virtually no info
to get padding after reading the package.

If we look at the table we can see other systems that
use the same strategies for both the structure and
size of the tunnel or the retransmission strategy.

Table 5. Strategies implemented protocol

According to the article [3], we can see how is done
a comparison of different systems, although we see
that none of the systems implemented provides a
high anonymity as our protocol both in structure and
in the size of the tunnel, such as in as retransmission
strategy.

And finally, we have managed to obtain an optimal
distribution of load among all the Entities, which
gives better performance in the protocol.

 9 CONCLUSIONS

We have achieved a reliable protocol, because the
User Application knows the mistakes that occur
during the circuit and it could try to create a new one.

Improved efficiency and anonymity to multiplex TCP
flows along with each circuit.

The User Application can send traffic to any node of
the circuit, is random, and the destination can never
be the last node, in this way decrease the chances
that an adversary can perform attacks based on the
final point of the circuit.

Our protocol provides a directory server signed by
CA server and provide certificates for each of the
Entities and users.

 15 de 16

Unstructured High - MorphMix
Variable length High AP3, Crowds
Onion routing High Mid Tarzan, MorphMix

Strategy Anonymity Performance Other systems

Low

0 0.15 0,3 0,5 0,7 0,9

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

Anonymity Degree
variable tunnel lenght

f = 0,25
f = 0,5
f = 0,75

Fraction of malicious nodes (M/N)

By using a symmetric key data encryption, and by
encrypting this with the public key of the node, and
sending it along a circuit of nodes chained and
encrypted consecutive, we have privacy into the
system.

We got to raise the degree of anonymity with a
method in the process of receiving where Entities set
a padding of the same size as the file we are
sending to all Entities that follow to destiny.

When the degree of anonymity increase on the
system cause of the size of the circuits, the latency
increases.

Therefore, the protocol provide us a high degree of
anonymity because will be very difficult for an
opponent to guess who is the transmitter or who is
the destiny, due to the method of use of padding and
variable size of the tunnel.

It has a built-in timeout optimal, that is, a timeout
proportional to the file size to send and the number
of entity that holds the system.

Distribute the load among all Entities, because it is
better to have more services that require fewer
resources than have less services but they need
more resources. This has improved the performance
of the protocol.

If the first node of the tunnel is malicious, it could
identify the actual user, but not really know if the
sender or just a relay, but may not know the real
server. If however, the first node is honest, another
node of the tunnel can not identify the sender directly
and there is only one real chance 1 / N (N number of
nodes in the tunnel) to determine the correct identity
of the sender.

The initiator sends traffic to the destiny node of the
circuit, which is never the last, thus is avoiding
attacks based on the observation of the end of the
circuit.

It is very difficult to determine whether the outcome of
the request is correct [3]. In the protocol has been
implemented an algorithm where the user will get a
response of the transfer, as if it is correct as if it has
failed. In section 7.2, we have been calculating the
timeout to give a respond as if an error has appeared
in transfer as if the package has been lost along the
way.

 10 FUTURE WORKS

Algorithm created in localhost, therefore they could
do tests by implementing it within protocol in a
decentralized network system such as CoDeS,

system provided by the UOC University, which allow
services to deploy on the computers voluntarily
contributed to a community.

It could optimize the operations of the protocol, when
we create the circuit, if we put a random parameter
between 0 and 1, all Entities that precede the Entity
destination, so that only some of them appear in the
circuit.

It can give meaning to the algorithm if we implement
it in a context where there are a teacher and student
roles, each having different permissions. In addition,
we can implement in protocol the method of
obtaining or modifying a document server. So we
could get a complete decentralized application to do
peer-reviews anonymously.

 11 REFERENCES

[1] Edman, Matthew and Yener, Buelent: On
Anonymity in an Electronic Society: A Survey of
Anonymous Communication Systems. Review. NY-
USA, 2009.

[2] Jia Zhang, Haixin Duan, Wu Liu and Jianping Wu:
Anonymity analysis of P2P anonymous
communication systems. Article. Tsinghua
University, 2011.

[3] Andrew Tran, Nicholas Hopper and Yongdae Kim:
Hashing it Out in Public. Article. Chicago-USA,
2009

[4] Roger Dingledine, Nick Mathewson and Paul
Syverson: The Second-Generation Onion Router.
Article. San Diego-CA, 2004.

[5] Qiyan Wang, Prateek Mittal and Nikita Borisov: In
Search of an Anonymous and Secure Lookup.
Article. Chicago-USA, 2010

[6] Michael J. Freedman, Emil Sit, Josh Cates and
Robert Morris: Introducing Tarzan, a Peer-to-Peer
Anonymizing Network Layer. Berlin-Germany, 2002.

 16 de 16

	Projecte de recerca bàsica o aplicada PAC3 — Tercera Prova d'avaluació continuada
	Respostes

