
PAPER Special Section on Trust, Security and Privacy in Computing and Communication Systems

JXTAnonym: An anonymity layer for JXTA services

messaging∗

Marc DOMINGO-PRIETO†a), Nonmember and Joan ARNEDO-MORENO†b), Member

SUMMARY
With the evolution of the P2P research field, new problems,

such as those related with information security, have arisen. It is
important to provide security mechanisms to P2P systems, since
it has already become one of the key issues when evaluating them.
However, even though many P2P systems have been adapted
to provide a security baseline to their underlying applications,
more advanced capabilities are becoming necessary. Specifically,
privacy preservation and anonymity are deemed essential to make
the information society sustainable. Unfortunately, sometimes, it
may be difficult to attain anonymity unless it is included into the
system’s initial design. The JXTA open protocols specification
is a good example of this kind of scenario. This work studies
how to provide anonymity to JXTA’s architecture in a feasible
manner and proposes an extension which allows deployed services
to process two-way messaging without disclosing the endpoints’
identities to third parties.
key words: peer-to-peer, security, anonymity, JXTA, Java,
onion routing.

1. Introduction

Just as the popularity of P2P applications has risen, so
have concerns regarding their security. As P2P applica-
tions move from simple data sharing, for example Bit-
Torrent [1], to a broader spectrum, such as e-learning
environments [2], they become more and more sensitive
to security threats. Therefore it becomes very impor-
tant to design P2P frameworks which not only can be
easily adapted to a broad set of application scopes, but
also take into account an acceptable security baseline.
Under today’s standards, it is expected that it is possi-
ble to deploy some degree of privacy, ensuring that the
contents of a message exchange are not revealed to an
eavesdropper, and authentication, guaranteeing which
is the identity of each endpoint during any message ex-
change.

Manuscript received January 1, 2010.
Manuscript revised January 1, 2010.
†The author is with the Estudis d’Informàtica, Mul-

timèdia i Telecomunicació. Universitat Oberta de
Catalunya. Rambla del Poblenou 156, 08018, Barcelona,
Spain
∗This work was partially supported by the Spanish

MCYT and the FEDER funds under grant TSI2007-
65406-C03-03 E-AEGIS and CONSOLIDER CSD2007-
00004 ”ARES”, funded by the Spanish Ministry of Science
and Education.

a) E-mail: mdomingopr@uoc.edu
b) E-mail: jarnedo@uoc.edu

DOI: 10.1587/trans.E0.??.1

As P2P systems evolve and become widespread
in new scenarios, more advanced security capabilities
should be considered. An example of them is message
anonymity [3], allowing a peer to send requests to an
arbitrary service in such a manner that nobody can
determine the endpoints’ identities. The need for this
feature ranges from everyday situations such as a corpo-
rate suggestion box, a peer evaluation form or personal
data sharing [4], to those related to much serious topics,
such as freedom of speech or whistleblowing. Unfor-
tunately, because of its architecture, P2P systems are
specially weak to anonymity attacks unless this capa-
bility is included in the system’s initial design. Even
when providing the aforementioned basic security ca-
pabilities, it may be easy for other peers to acquire in-
formation by monitoring message flows or intercepting
queries routed through them [5]. Consequently, mes-
sage sources and final services are completely exposed
to neighboring peers and super-peers.

JXTA (or ”juxtapose”) [6] is an example of a P2P
system which already considers some basic security ca-
pabilities, but not anonymity. Consisting in a set of
open protocols that enable the creation and deployment
of P2P networks, it provides applications with the ca-
pability to easily discover and observe peers, exchange
messages and publish resources. Even though in its suc-
cessive revisions security mechanisms have slowly crept
in, up to an acceptable degree [7], in its latest version
(2.7RC1), available on January the 12th 2011, no previ-
sions are made about being able to provide any degree
of anonymity some day.

In this paper we extend our previous work in [8]
and present JXTAnonym, an anonymity layer which
allows peers to exchange messages with JXTA services
without disclosing the identity of the participating par-
ties to neighboring peers or super-peers. Thus, anony-
mous two-way messaging is made possible in JXTA.
The proposed layer is based on a popular approach
within the context of P2P applications, onion rout-
ing [9]. However, it is specifically adapted to the id-
iosyncrasies of JXTA, taking advantage of service ac-
cess mechanisms already provided by the platform, in-
stead of defining additional protocols. In addition, the
amount of required changes on an existing system in or-
der to integrate anonymous messaging is minimized. In
that manner, peers which support anonymity may co-
exist with those who don’t, without incompatibilities.



2
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

The paper is structured as follows. In Section
2 we provide a brief summary of the current mecha-
nisms based on onion routing, focusing on those meth-
ods which provide bidirectional messaging capabilities
in P2P networks. Section 3 describes how our base
system has been extended to encompass bidirectional
messaging, suiting to the idiosyncrasies of JXTA ser-
vices. The outcome of our experimental results in or-
der to evaluate its performance is provided in Section 4.
Section 5 provides a security discussion of JXTAnonym.
Finally, Section 6 concludes this paper and outlines fur-
ther work.

2. Related work on onion routing

Anonymity in P2P networks can be achieved using
three different approaches: Unimessage-based, Split
message-based and Replicated message-based. Our work
focuses on the first one, since it is the most popular and
efficient, while maintaining a high degree of anonymity.
Also it assumes that nodes are completely autonomous
[10]. These characteristics mesh with the structure of
JXTA and allows anonymous bidirectional communica-
tions.

A unimessage-based approach, also known as
Onion Routing [9], provides anonymity by sending the
message through a random sequence of proxies before
it reaches the destination. Those proxies are labeled
OnionRouters. Generally, the path of OnionRouters
is pre-constructed by the sender before the message is
sent. The message is repeatedly encrypted in a manner
that, during transit towards the destination, a single
encryption layer can be taken out, one at a time, at
each OnionRouter. Each time a layer is peeled off, the
identity of the next hop is obtained. Thus, at each
hop, an OnionRouter does not know whether the mes-
sage is being sent to another proxy or to the actual
final destination. In the same manner, the destination
peer cannot know whether the received message comes
directly from the source or it has been relayed through
a set of OnionRouters.

The onion routing approach is also able to provide
anonymous two-way communications in two ways:

• Constructing both a query (source to destination)
and response (backwards, destination to source)
onion at the source peer and including it inside
the onion message together with the data to be
sent. Therefore the destination peer, after replying
the query, can forward its reply data to the source
using the response onion path.

• Including a session ID within the onion route,
which is stored on transit, thus creating a kind
of return path virtual circuit [11]. When the des-
tination peer responds the query, the message is
routed back following the established path, but in
the opposite direction.

Onion Routing is used as the core of many
anonymity protocols to achieve providing mutual
anonymity, being APFS (Anonymous P2P File Shar-
ing) [11] and Tor [12] the ones that share more features
when constructing of the anonymous path.

As its name suggests, the APFS protocol is used
for P2P file sharing, providing mutual anonymity of the
initiator and the responder in a connection. In APFS,
each peer has to choose a proxy peer and create a Onion
Route to it. This proxy peer will be the entry point to
the anonymous network for that peer. Additionally,
exists a well known bootstrapping peer called coordi-
nator which maintains a list of all the peers connected
to the network and which are acting as a servers. How-
ever, instead of peers address, their proxy address are
stored.

Tor is a circuit-based anonymous communication
service. The sender’s anonymity is maintained by con-
structing a circuit from the source to an exit node, who
will communicate with the destination. The construc-
tion of this route is performed by incrementally extend-
ing the circuit, hop by hop, and negotiating a different
symmetric key with each intermediate node. This cir-
cuit is periodically recalculated and can be used at its
entire length, or shortened to modify the exit node.
Answers to queries are transmitted through the same
circuit.

Mutual anonymity can be achieved on Tor by us-
ing hidden services. The basic idea of hidden services is
that the service provider is hidden behind some peers
who act as his Introduction Points (IP) while the ser-
vice consumer is behind a Rendezvous Point (RP). The
communication between these points is done by follow-
ing circuits. The steps required to use a hidden service
are:

• The service consumer contacts with one of the IPs,
announcing his RP.
• The IP forwards the message to the service

provider, who will create a circuit to the RP
• At this point, mutual anonymity communication

between both can be established through the RP.

3. A proposal for JXTA anonymous messaging

JXTA provides mechanisms to share services. Such
services are commonly consumed by exchanging bidi-
rectional messages. In order to provide anonymity in
services consumption, is important to inspect the JXTA
messaging architecture. From this review, it is possible
to identify the elements that can be taken advantage
of in order to define an anonymity layer for which is
transparent and finely integrated to JXTA architecture,
without the need of defining additional protocols.



DOMINGO-PRIETO and ARNEDO-MORENO: JXTANONYM: AN ANONYMITY LAYER FOR JXTA SERVICES MESSAGING
3

3.1 JXTA Messaging architecture

In this subsection, we provide an overview of those of
JXTA’s main architectural elements related to our pro-
posal. A detailed explanation can be found in [13].

The main idiosyncrasy in JXTA’s design, which
sets it apart from other P2P frameworks, is introduc-
ing the concept of Peer Group, a segmentation of the
global JXTA network. All peers publish and consume
services within the context of a group, interacting with
each other by using some JXTA core services, the most
important ones being the Discovery Service and the
Pipe Service.

Every resource in a JXTA group is described by
an Advertisement, a metadata document. A resource
cannot be accessed unless its Advertisement is previ-
ously retrieved. Advertisements must be periodically
published, since they expire and are flushed from the
network after some time (by default, 2 hours). The
Discovery Service’s responsibility is managing adver-
tisements, allowing peers to publish and find available
resources. The most important types of Advertisements
are:

• Peer Advertisement : Describes a peer and the re-
sources and services it provides. Each peer is re-
sponsible for the publication of its own Peer Ad-
vertisement, and is considered online only while it
continues to do so.

• Pipe Advertisement : Describes a JXTA Pipe, the
main mechanism in JXTA to exchange data be-
tween two applications or services.

The Pipe Service is responsible for managing mes-
sage exchanges using JXTA Pipes. The simplest pipe in
JXTA, the JxtaUnicast, provides an asynchronous, uni-
directional message transfer mechanism which can be
easily established and managed. Nevertheless, there is
a higher-level communication abstraction provided by
the JxtaBiDiPipe which provides a bidirectional com-
munication channel. The latter is usually preferred by
services, since it allows the direct use of a straight-
forward query-response exchange. The description of
JXTA’s standard service model based on this proce-
dure follows:

1. Each service provider starts a JXTAServerPipe us-
ing the Pipe Service, which exposes and listens to
an input pipe in order to process communication
requests. This input pipe is defined using a Pipe
Advertisement.

2. This Pipe Advertisement is made public by the
service provider using the Discovery Service.

3. The Advertisement is propagated within the group
by Rendezvous Peers, special super-peers who effi-
ciently distribute Advertisements.

4. To consume a service, a peer must retrieve the

Pipe Advertisement (via the Discovery Service)
and then a bidirectional connection must be estab-
lished via the Pipe Service, creating a JxtaBiDiP-
ipe.

5. Once a communication request is received at the
server side, an independent JxtaBiDiPipe is cre-
ated and bound with the request. A message ex-
changes may begin from now on.

Message exchanges can be secured in JXTA by us-
ing a group based on the PSE (Personal Security Envi-
ronment) Membership Service. Under this kind of peer
group, each peer is provided with a credential based
on PKIX [14] certificates. This guarantees that each
peer has initialized a valid pair of public-private keys
and that the public key of each peer is automatically
distributed inside its Peer Advertisement, in a special
service parameter entry.

3.2 Anonymizing procedure

We propose an anonymity layer that causes the min-
imum interferences on the JXTA messaging architec-
ture, according to the review done in Section 3.1. JX-
TAnonym, an anonymizing service, is deployed in those
peer group members which want to anonymously ex-
change messages, creating an anonymous subnetwork
within the context of a peer group. Group members
may freely join and leave this network.

The proposed service is tailored to JXTA’s core
services features, such as invisible publication, discov-
ery and access to services (via the Discovery Service),
message management via the Pipe Service and usage
of the PSE secure environment for cryptographic data
generation and distribution. Therefore, the deployment
procedure follows the same steps as for any other peer
service, making use of JXTA’s service model without
the need of modifying JXTA’s initial design.

The service’s anonymity mechanism is based on an
onion routing approach, examined in detail in Section 2,
protecting the identity of end clients (consumers) and
services (providers) from the rest of the group mem-
bers. In addition, the end service is also unable to es-
tablish the end client’s identity. Its general architecture
is summarized in Figure 1.

The execution of JXTAnonym in any peer encom-
passes three different steps: JXTAnonym Service Pub-
lication, Message Setup and Message Processing.

3.2.1 JXTAnonym Service Publication

Just like any other JXTA service, an instance of the
JXTAnonym service in a peer group member listens
to incoming queries using an input pipe. This pipe is
made available to other peer group members by period-
ically publishing its Pipe Advertisement, via the Dis-
covery Service. However, we propose that Pipe Adver-
tisements are not published as standalone documents.



4
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

Fig. 1 JXTAnonym service operation in the context of JXTA’s
architectural design.

They are piggybacked inside the service parameters sec-
tion of the Peer Advertisement, identified by a hard-
coded well-known JXTAnonym service ID. The inclu-
sion of service related-data in this section is also used by
some other JXTA services, such as the PSE Member-
ship Service. The main advantage of this approach is
that it is guaranteed that the service’s Pipe Advertise-
ment is always being published while the peer is online,
thus being always available and up to date. In addi-
tion, each peer’s Peer Advertisement contains all the
information required by JXTAnonym: the local service
Pipe Advertisement and the peer’s cryptographic data.

Once a peer decides to stop participating in the
anonymous network, the service parameter entry is
removed from the Peer Advertisement, continuing its
publication as normal. Due to the JXTA’s architecture,
this new Advertisement will be propagated across the
Peer Group, replacing the old one. If a peer becomes
unreachable, its Peer Advertisement is not going to be
updated any longer, being flushed after the expiration
time is reached. Once this happens, the JXTAnonym
Pipe Advertisement will stop being available too, guar-
anteeing that at any time only active instances of the
service are published.

3.2.2 Message Setup

This step initiates the onion routing process and is per-
formed by the peer who wants to anonymously access
an end service deployed at a remote peer within the
same group.

First of all, we will describe the onion layering
procedure in JXTAnonym, since it is used at several
steps in the message setup process. The layering pro-
cedure accepts two parameters: OnionCore, which is
a JXTA Message structure which may contain any ar-
bitrary data, and PeerAdvList = Adv1, · · · , Advn, an
ordered sequence of Peer Advertisements.

For each Peer Advertisement Advi, from n . . . 1,
the following process is iteratively executed. Onioni is
considered the result of each iteration, being Onion1

the final result:

1. This iteration’s input, inputData, is chosen.

a. For the first iteration (i = n) the OnionCore
structure is considered inputData.

b. For the rest of iterations (i = n − 1, . . . , 1),
the result of previous iteration, Onioni+1 is
considered inputData.

2. The public key PKi is retrieved from Advi’s Mem-
bership Service definition entry. Under the context
of a peer group which implements the PSE Mem-
bership Service, it is guaranteed that PKi actually
exists.

3. inputData is encrypted using PKi under a
wrapped key scheme [15], generating EncInput-
Data.

4. Advi’s PID field (the peer’s unique identifier) is
retrieved.

5. A new OnionLayer structure is generated by cre-
ating a JXTA Message with the following fields:

• NextHop = PID
• OnionRoute = EncInputData

6. The OnionLayer structure becomes this iteration’s
result (Onioni).

Once the layering procedure has been established,
the message setup process description follows:

1. A peer S decides to use a service (EndService)
executing on peer D.

2. S’s corresponding client (EndClient) creates a
query message (JXTAQueryMessage), specifying
which is the destination peer (peer D), and a call-
back structure (PipeListener). Such structure is
used by JXTA applications to allow asynchronous
processing of the incoming response, so they do not
need to block until the reply is received.

3. EndClient locates the EndService’s JXTABidiP-
ipe Pipe Advertisement, from now on EndServi-
cePipe, using the Discovery Service.

4. So far, steps 1-3 describe the required steps
to access a generic JXTA service. At this
point, EndClient would open a connection us-
ing EndServiceP ipe and use it to directly send
JXTAQueryMessage. Instead, it decides to use
the anonymity service, JXTAnonymSvc.

5. If an instance of JXTAnonymSvc is being exe-
cuted at S, an anonymous client (JXTAnonymClient)
is also available. Such client is invoked, receiving
EndServiceP ipe, D’s identity, JXTAQueryMes-
sage and PipeListener as parameters. From now
on, JXTAnonymClient will manage the rest of
the message setup process. EndClient considers
message processing completed as far as it is con-
cerned.

6. A random symmetric key (FinalSymmetricKey)
is generated and used to encrypt both JXTA-
QueryMessage and EndServiceP ipe, obtaining
QueryEncryptedMessage.



DOMINGO-PRIETO and ARNEDO-MORENO: JXTANONYM: AN ANONYMITY LAYER FOR JXTA SERVICES MESSAGING
5

7. A new record is created in a local table Pend-
ingQueries, containing FinalSymmetricKey and
PipeListener, the former being the primary key.

8. A set of random data (RndData) is generated. The
length of this data should be between 2411 and
4614 bytes. The reasons will be explained in detail
in Section 5.

9. S generates a ResponseCore structure. This struc-
ture is a JXTA message composed of the following
name-value pairs:

• RandomData = RndData
• SymmetricKey = FinalSymmetricKey

10. At this point, a number of OnionRouter peers
must be chosen in order to create a response
path. It is considered that 3 hops is good
enough [12]. This is done by using the Dis-
covery Service to get a set of Peer Advertise-
ments RP = Adv1, Adv2, Adv3, Adv4 where is it
true that ∀Advi, (i < 4), Advi 6= AdvS&Advi 6=
AdvD and Adv4 = AdvS , and in all of them
the JXTAnonymSvc service parameter field ex-
ists (all of them deploy JXTAnonym). It is worth
remarking that, since S holds the end client wait-
ing for the response, thats the reason why it must
be the last peer in the response path.

11. Once the response path is established, an onion
structure ResponseOnion is created using the lay-
ering procedure previously described. The input
parameters are ResponseCore and RP .

12. From ResponseOnion the NextHop (Response-
FirstHop) and the OnionRoute (ResponseRoute)
fields are extracted.

13. A QueryCore structure is created. This struc-
ture is a JXTA Message composed of the following
name-value pairs:

• NextHop = ResponseF irstHop
• OnionRoute = ResponseRoute
• SymmetricKey = FinalSymmetricKey

14. Now the query path, QP must be generated. This
process is identical to step 10, but in this case,
Adv4 = AdvD instead of AdvS . Ideally, RP 6= QP .

15. Once the query path is established, an onion struc-
ture QueryOnion is created using the layering pro-
cedure previously described. The input parameters
are QueryCore and QP .

16. From QueryOnion the NextHop (QueryFirstHop)
and the OnionRoute (QueryRoute) fields are ex-
tracted.

17. An OnionMessage structure is generated. This
structure is a JXTA Message composed of the fol-
lowing name-value pairs:

• OnionRoute = QueryRoute
• EncryptedMessage =QueryEncryptedMessage

18. The Peer Advertisement of QueryF irstHop is

obtained via the DiscoveryService, and its JX-
TAnonymSvc Pipe Advertisement extracted. A
new connection to this pipe is created and Onion-
Message sent through it.

3.2.3 Message Processing

This step is performed when an anonymous mes-
sage is received at any peer that has deployed
JXTAnonymSvc. The process starts when a run-
ning instance of JXTAnonymSvc receives an in-
coming message (OnionMessage), which contains a
EncryptedMessage and OnionRoute fields. Then, the
value in the OnionRoute field is extracted and de-
crypted using the peer’s local private key, accessible
using JXTA’s PSE Membership service. At this point,
three things may happen:

1. The extracted data becomes an OnionLayer (see
Figure 2). Thus, the message must be routed to
another peer.

a. The values stored in the NextHop and
OnionRoute fields, respectively PID and
nextRoute, are extracted.

b. A new OnionMessage structure is generated,
where:

• OnionRoute = nextRoute
• EncryptedMessage =EncryptedMessage

c. Using the Discovery Service, PID’s Peer Ad-
vertisement is located. From this advertise-
ment, the JXTAnonymSvc service Pipe Ad-
vertisement is extracted.

d. A new connection to the next hop is
established using the previously recovered
Pipe Advertisement. The newly generated
OnionMessage is sent through it.

Fig. 2 Processing of OnionMessage at an Onion Peer

2. The extracted data becomes a QueryCore (see
Figure 3). Thus, the current peer is the desti-
nation, D, and holds EndService. The query
must be processed by this service. In this sce-
nario, the EncryptedMessage field holds the value
QueryEncryptedMessage.

a. The values stored in the NextHop, Onion-
Route and SymmetricKey fields, Response-
FirstHop, ResponseRoute and FinalSymmet-
ricKey respectively, are extracted.



6
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

b. QueryEncryptedMessage is decrypted using
FinalSymmetricKey, obtaining the original
JXTAQueryMessage and EndServiceP ipe.

c. A bidirectional connection is established to
the EndService using EndServiceP ipe and
the client’s query, JXTAQueryMessage, is
sent through it. As far as the EndService is
concerned, a normal connection has been es-
tablished. It is oblivious to the anonymity
layer.

d. The process waits until a response, JXTARe-
sponseMessage, is received.

e. The response is encrypted using Final-
SymmetricKey, generating ResponseEncrypt-
edMessage.

f. A new OnionMessage structure is generated,
where:

• OnionRoute = ResponseRoute
• EncryptedMessage =ResponseEncrypted-
Message

g. OnionMessage is sent to the JXTAnonym’s
pipe of ResponseF irstHop.

Fig. 3 Processing of OnionMessage at Peer D

3. The extracted data becomes in a ResponseCore
(see Figure 4). Thus, the current peer is the source,
S. The query-response has completed its round-
trip. In this scenario, the EncryptedMessage field
holds the value ResponseEncryptedMessage.

a. The value stored in the SymmetricKey field
is extracted (FinalSymmetricKey). The
RandomData field is ignored.

b. ResponseEncryptedMessage is decrypted us-
ing FinalSymmetricKey, obtaining the orig-
inal JXTAResponseMessage.

c. The PendingQueries local table is searched
for the record which uses FinalSymmetricKey
as its primary key.

d. Using the PipeListener structure, the mes-
sage is provided to the original EndClient. As
far as the end client is concerned, JXTA has
acted just like during any standard service ac-
cess. The anonymity layer is invisible.

Fig. 4 Processing of OnionMessage at Peer S

e. The record is deleted from the Pending-
Queries table.

4. Experimental result evaluation

As a proof-of-concept, we have implemented our pro-
posal and deployed it on a private PlanetLab-based net-
work. We report the key features of our implementation
and its performance in order to assess the feasibility of
deploying anonymous messaging in a JXTA network.

The testbed deployed a JXTA peer group consist-
ing in a single node operating as a Rendezvous Peer
and 32 nodes as a Edge Peers. This is considered a
typical group [16]. This peer group was based on the
PSE Membership Service and all Edge Peers deployed
the JXTAnonym service, as well as an additional test
end service called EchoService, which was anonymized.
This service basically replies with the same content as
the query.

At this point, some tests were conducted in or-
der to test the performance of using JXTA services
with and without anonymity. The goal of these tests is
not finding a performance improvement when using JX-
TAnonym, since applying security is expected to always
result in a performance overhead. The goal is to deter-
mine if whether an onion routing approach is feasible
in a JXTA network, a peer-to-peer framework devel-
oped without considering anonymity in its design and
architecture. With feasible we refer that the produced
overhead is acceptable compared with the benefits it
provides.

Our set of tests measure the average time it takes
to consume a service, from the moment the query is
sent until the response is received, and the percentage
of lost queries during transit. This test was executed
in three different scenarios and with two different mes-
sages loads. The two different message loads consist
in sending messages at maximum speed from just one
peer or from all peers at once, evaluating the network
behavior when it is very saturated. In both tests up to
250 messages are sent.

The first scenario consists in directly consuming
the EchoService through a JXTABiDiPipe, as it is
usually done in JXTA. This measure is the expected
time during JXTA’s normal operation. The second
scenario sends the queries and the responses to the
EchoServices through three intermediates nodes, as JX-



DOMINGO-PRIETO and ARNEDO-MORENO: JXTANONYM: AN ANONYMITY LAYER FOR JXTA SERVICES MESSAGING
7

TAnonym would do, but without using any kind of se-
curity. This scenario is called 8 hops. Using this test,
we can discern which part of the overhead produced by
anonymity is due to multiple hops and which is pro-
duced by additional computing and transmission costs
at each onion peer. The third one evaluates the cost of
anonymizing EchoService using JXTAnonym, also us-
ing three intermediates nodes.

The average time it took to consume the EchoSer-
vice in the previously mentioned scenarios is shown in
Figure 5. It can be seen that when only one peer con-
sumes the EchoService, the performance is better in
all cases, as expected. Consuming the service directly
through a BiDiPipe took 1.6 seconds, while consuming
it after 8 hops took around 6 seconds. This is a good
result, since the difference (4.4s) is less than 6.4 sec-
onds, the better time one can expect considering using
4 extra BiDiPipes to perform 8 hops. This is because
instead of using 4 BiDiPipes, 8 simple unidirectional
pipes were used. Also, the usage of encryption and the
higher message length in JXTAnonym compared with
8 hops produces a really low overhead, just 200ms.

However, when all peers consume the EchoService
at the same time, the time required to use it increases
significantly when extra hops are performed. This is
because when the 32 nodes send messages at the same
time, each connection to the EchoService produces 8
extra messages, which is 256 extra messages for each of
the 250 messages sent. Consuming the service directly
through a BiDiPipe, 8 hops and JXTAnonym took 1.8,
12 and 16.9 seconds respectively. Although there is an
important overhead in this scenario when using extra
hops, it has to be pointed out that this is the worst case,
where each peer sends messages at maximum speed. A
real scenario will be between this and the previous sce-
nario. The difference between 8 hops and JXTAnonym
(4.9s) is produced due to the use of encryption and
higher message length in a saturated network.

Fig. 5 Average time it takes to use EchoService

Figure 6 shows the amount of lost messages in
previous scenarios. Only when BiDiPipe was used no
packet loss was produced. This is because BiDiPipes
are a higher level implementation of communication
than unidirectional pipes, and perform extra commu-
nications to set up connections. BiDiPipe was set as

no reliable but with a timeout of 1 minute. This de-
creases the lost packets but increases the communica-
tion time, as has been seen previously. When extra hops
are performed using unidirectional pipes some packets
are lost. In 8 hops scenario the percentage of lost mes-
sages ranges from 6 to 20 % while in JXTAnonym it
ranges from 10 to 21 %, depending the congestion of the
network. These results show that the increase of lost
messages in JXTAnonym compared with 8 hops is very
low. In conclusion, using unidirectional pipes produce
better exchange time but increase the lost messages.
Furthermore, modify the expiration time of Advertise-
ments can change these results. A high expiration time
(as default) increases the lost messages. In opposite,
a lower expiration time minimizes the number of lost
messages but increases the congestion of the network,
since advertisements should be updated more often.

Fig. 6 Percentage of lost petitions when using the EchoService

5. Security discussion

JXTAnonym achieves anonymity by using Onion Rout-
ing, whose security has been analyzed in deep [17]. Its
main vulnerable is due to traffic analysis attacks, such
as packet size analysis. For this reason, as mentioned
in Section 3.2.2, the ResponseCore structure contains
some random data. This is used to protect the scheme
against packet size analysis and make it difficult for an
attacker to predict, just for its size, whether a message
is the last hop, an intermediate hop, a query message
or a response message. The size of each OnionCore is
around 208 bytes whereas creating a new OnionLayer
adds 399 bytes. From this data extra hops and extra
paths are calculated, obtaining that the size of the ran-
dom data has to be between 2411 and 4614 bytes.

6. Conclusions

In this paper, we have presented JXTAnonym, an
anonymity layer that uses the onion routing approach
to allow bidirectional message exchanges when access-
ing services using the JXTA protocols. JXTAnonym
provides consumer and provider anonymity in any
JXTA service access. The anonymity service has been
implemented as a standard JXTA service, and any



8
IEICE TRANS. ??, VOL.Exx–??, NO.xx XXXX 200x

JXTA Peer which belongs to a PSE Peer Group can
use it. This restriction is necessary because a valid pair
of public-private keys are necessary for implementing
onion routing, and with this assumption is guaranteed.

Apart from the fact that JXTA currently does not
provide anonymous messaging by itself, the main con-
tributions of the chosen approach are twofold. First,
the tests performed over JXTAnonym support that
anonymity is feasible in JXTA. Although the time
used to consume a service increases when using JX-
TAnonym, this amount is not so high if we take into
consideration the amount of connections which are per-
formed and the fact that encryption is employed. Sec-
ond, JXTAnonym is completely invisible to end ser-
vices and clients in terms of processing the received
data. Their internal operation stays the same whether
anonymity is used or not.

These contributions are mainly founded in the fact
that JXTAnonym is built over simple JXTA elements,
such as Pipe Service, Discovery Service or Advertise-
ments. This allows using JXTAnonym without mod-
ifying the JXTA binary release, since no new JXTA
protocols are defined. Moreover, Peer Group members
can freely choose whether they want to belong or not
to the anonymity set within the peer group. Obviously,
the higher the number of peers who decide to use JX-
TAnonym, the higher the anonymity degree obtained.

Further research goes toward extending the
anonymity layer to the publication and retrieval of Ad-
vertisements, as well as providing anonymous multicast
communications. Finally, it is also worth studying how
to apply mechanisms that thwart global attackers.

References

[1] B. Cohen, “Incentives build robustness in bittorrent,” 1st
Workshop on the Economics of Peer-2-Peer Systems, 2003.

[2] K. Matsuo, L. Barolli, F. Xhafa, A. Koyama, and A. Dur-
resi, “Implementation of a JXTA-based P2P e-learning sys-
tem and its performance evaluation,” International Journal
of Web Information Systems, vol.4, no.3, pp.352–371, 2008.

[3] A. Pfitzmann and M. Hansen, “Anonymity, unlinkability,
undetectability, unobservability, pseudonymity, and iden-
tity management – a consolidated proposal for terminol-
ogy.” http://dud.inf.tu-dresden.de/Anon Terminology.shtml,
Feb. 2008. v0.31.

[4] M. Iguchi and S. Goto, “Anonymous P2P Web Browse
History Sharing for Web Page Recommendation,” IEICE
TRANSACTIONS on Information and Systems, vol.E90-
D, no.9, pp.1343–1353, 2007.

[5] J. Gu, J. Nah, H. Kwon, J. Jang, and S. Park, “Ran-
dom Visitor: Defense against Identity Attacks in P2P Net-
works,” IEICE TRANSACTIONS on Information and Sys-
tems, vol.E91-D, no.4, pp.1058–1073, 2008.

[6] L. Gong, “JXTA: A Network Programming Environment,”
Internet Computing, IEEE, vol.5, no.3, pp.88–95, 2008.

[7] J. Arnedo-Moreno and J. Herrera-Joancomart, “A survey
on security in JXTA applications,” Journal of Systems and
Software, vol.82, no.9, pp.1513–1525, 2009.

[8] J. Arnedo-Moreno and M. Domingo-Prieto, “An anonymity
layer for JXTA services,” 2011 Workshops of International

Conference on Advanced Information Networking and Ap-
plications, pp.102–107, IEEE Press, 2011.

[9] P. Syverson, D. Goldsclag, and M. Reed, “Anonymous
connections and onion routing,” Proceeding of the IEEE
18th Annual Symposium on Security and Privacy, pp.44–
54, 1997.

[10] X. Ren-Yi, “Survey on anonymity in unstructured peer-to-
peer systems,” Journal of Computer Science and Technol-
ogy, vol.23, no.4, pp.660–671, July 2008.

[11] V. Scarlata, B. Levine, and C. Shields, “Responder
anonymity and anonymous peer-to-peer file sharing,” Pro-
ceeding of the ACM CCS, pp.17–26, 2001.

[12] R. Dingledine, N. Mathewson, and P. Syverson, “Tor: The
second generation onion router,” Proceeding of the 13th
USENIX Security Symposium, pp.303–320, 1998.

[13] Sun Microsystems Inc., “JXTA v2.0 protocols specifica-
tion,” 2007. http://java.net/projects/jxta-spec.

[14] CCITT, “The directory authentication framework. recom-
mendation,” 1988.

[15] B. Kaliski and J. Staddon, “PKCS1: RSA Cryptography
Specifications. Version 2.0,” 1998. http://www.ietf.org/

rfc/rfc2437.txt.
[16] E. Halepovic and R. Deters, “The JXTA performance

model and evaluation,” Future Generation Computer Sys-
tems, vol.21, no.3, pp.377–390, 2005.

[17] P. Syverson, G. Tsudik, M. Reed, and C. Landwehr, “To-
wards an analysis of onion routing security,” in Designing
Privacy Enhancing Technologies, Lecture Notes in Com-
puter Science, vol.2009, pp.96–114, 2001.

Marc Domingo-Prieto holds the de-
gree of Computer Systems and the mas-
ter in Computer Architecture, Networks
and Systems from Universitat Politècnica
de Catalunya (UPC). He is a research as-
sistant in the K-ryptography and Infor-
mation Security for Open Networks (KI-
SON) research group in the Open Univer-
sity of Catalonia (UOC). His research in-
terests include scalable distributed algo-
rithms and applications, energy efficient

and security in mobile and peer-to-peer applications.

Joan Arnedo-Moreno is a lecturer
at Estudis d’Informàtica, Multimimèdia
i Telecomuncicació in the Open Univer-
sity of Catalonia (UOC) and works as
a part-time assistant at the Universitat
Politècnica de Catalunya (UPC). From
the latter, he earned his degree in Com-
puter Science in 2002 and his PhD. degree
in 2009. He has published several papers
in international conferences and journals
and has been invited as keynote speaker

at several conferences. Both his teaching and research interests
are related to the fields of networking and security, more specifi-
cally in peer-to-peer systems.


