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Abstract

Technological limitations and power constraints are resulting in high-performance parallel com-
puting architectures that are based on large numbers of high-core-count processors. Commercially
available processors are now at 8 and 16 cores and experimental platforms, such as the many-core
Intel Single-chip Cloud Computer (SCC) platform, provide much higher core counts. These trends
are presenting new sets of challenges to HPC applications including programming complexity and
the need for extreme energy efficiency.

In this study, we first investigate the power behavior of scientific PGAS application kernels
on the SCC platform, and explore opportunities and challenges for power management within
the PGAS framework. Results obtained via empirical evaluation of Unified Parallel C (UPC)
applications on the SCC platform under different constraints, show that, for specific operations,
the potential for energy savings in PGAS is large; and power/performance trade-offs can be ef-
fectively managed using a cross-layer approach. We investigate cross-layer power management
using PGAS language extensions and runtime mechanisms that manipulate power/performance
tradeoffs. Specifically, we present the design, implementation and evaluation of such a middleware
for application-aware cross-layer power management of UPC applications on the SCC platform.
Finally, based on our observations, we provide a set of recommendations and insights that can be
used to support similar power management for PGAS applications on other many-core platforms.

1



Chapter 1

Introduction

1.1 Motivation

Technological limitations and overall power constraints are resulting in high-performance parallel
computing architectures based on large numbers of high-core-count processors. Commercially avail-
able processors are now at 8 and 16 cores and experimental platforms, such as the many-core Intel
Single-chip Cloud Computer (SCC) platform, provide much higher core counts. This architectural
trend is a source of significant programming challenges for HPC application developers, as they
have to manage extreme levels of concurrency and complex processor and memory structures [4].

Partitioned Global Address Space (PGAS) is emerging as a promising programming model
for such large-scale systems and can help address some of these programming challenges, and recent
research has focused on its performance and scalability. For example, existing PGAS research
includes improvement of UPC collective operations [36], hybrid models to improve performance
limitations [11] and the implementation of X10 for the Intel SCC [7] and UPC for Tilera’s many
core [37].

Another equally significant and immediate challenge is energy efficiency. The power demand
of high-end HPC systems is increasing eight-fold every year [1]. Current HPC systems consume
several megawatts of power, and power costs for these high-end systems routinely run into millions
of dollars per year. Furthermore, increasing power consumption also impacts the overall reliability
of these systems.

In fact, the trend towards many core architectures employing large numbers of simpler cores
[5] is motivated by the fact that simpler cores are smaller in terms of their die-area, as per Pollack’s
Rule1 have more attractive power/performance ratios. However, as we move towards sustained
multi-petaflop and exaflop systems, processor/system level energy efficiency alone is no longer
sufficient and energy efficiency must be addressed in a cross-layer and application-aware manner.
While application-aware power management has been addressed in prior work, for example, for
distributed memory parallel applications using message passing in previous work by exploiting CPU
low power modes when a task is not in the critical path (i.e., it can be slowed without incurring
overall execution delay) or is blocked in an communication call (i.e., slack) [35], these approaches
do not directly translate to PGAS applications on many-core processors where, for example, such
communication and coordination operations are implicit.

1See chapter 2
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1.2 Objectives

This work explores application-aware cross-layer power management for PGAS applications on
many-core platforms. To do so, we show the design, implementation and experimental evaluation
of language level extensions and a runtime middleware framework for application-aware cross-layer
power management of UPC applications on the SCC platform. Specifically,

• We first experimentally investigate the power behavior of scientific PGAS application kernels
(i.e., the NAS Parallel Benchmarks) implemented in Unified Parallel C (UPC) on the exper-
imental SCC platform under various constraints, and explore opportunities and challenges
for power management within the PGAS framework.

• We then investigate application driven cross-layer power management specified using PGAS
language extensions and supported by runtime mechanism that explore power/performance
tradeoffs. These extensions are a set of user levels functions (e.g., PM_PERFORMANCE()) that
provide hints to the runtime system (e.g., threshold values). Hints can define tradeoffs and
constraints. Analogous to CPU governors for OS-level power management, we define a set of
application level policies for maximizing application performance, maximizing power savings,
or balancing power/performance tradeoffs. The runtime mechanisms effectively exploit dy-
namic frequency and voltage scaling of SCC frequency and voltage domains in regions of the
program where cores are blocked due to either thread synchronization or a (remote) memory
access. This is achieved using adaptations that adjust the power configuration based on a
combination of static and dynamic thresholds at multiple power levels, and use asynchronous
voltage and frequency (i.e., DVFS) or only frequency (i.e., DFS) scaling.

1.3 Contributions

Results obtained from experiments conducted on the SCC platform hosted by Intel2 show that only
certain PGAS operations need to be considered for power management, and our runtime power
management approach results in energy savings of 7% with less than 3% increase in execution
time. Furthermore, by using application level hints about acceptable power/performance tradeoffs,
specified using the proposed language extensions, the energy savings can be significantly improved.
In this case a 20% reduction of the energy delay product can be achieved.

The experiments also show that in the case of applications where application level power
management does not provide any significant energy saving, a cross-layer approach can be used
to achieve a wide range of energy and performance behaviors, and appropriate tradeoffs can be
selected. These tradeoffs and the effectiveness of this approach are demonstrated using the Sobel
edge detector application [27].

We also use a synthetic application (that generates different levels of load imbalance) to
demonstrate that the adaptive runtime power management mechanism can handle different load
imbalance scenarios and can provide significant energy savings. For example, when load imbalances
are high, we can achieve up to 50% of available energy savings using DVFS and up to 25% using
DFS without incurring a significant execution time penalty.

Our evaluation also reveals several power management limitations of the SCC platform that
must be addressed in future architectures; for example, voltage scaling can be performed only on

2http://communities.intel.com/community/marc
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domains of 8 cores. Finally, based on our observations, we provide a set of recommendations and
insights that can be used to support similar power management for PGAS applications on other
many-core platforms.

1.4 Planning

Figure 1.1 shows the gantt diagram that represents the planning done at the beginning of the work.

Jobs are distributed as described below:

• The first unavoidable phase is needed to study how the experimental SCC platform works,
and the basis of UPC Runtime. There is also a need to prepare the environment and search
the existing related work.

• A second phase is needed to approach application’s behavior. In order to achieve this target
we need to look for several UPC benchmarks which can run on the constrained SCC envi-
ronment, and profile its behavior. Therefore, we need to port existing profiling tools to SCC
or prepare a lightweight instrumentation platform.

• While extracting conclusions from the profiling phase, we can work on the power manager:
a middleware which can take energy-efficiency related decisions.

• Finally, we will need to evaluate the designed and implemented algorithm by executing a big
set of tests.

Note that, during the whole process (specially during periods in which the SCC is running
tests), we will need to document the work, in order to avoid the final-term increased workload.

1.5 Organization

The rest of this report is organized as follows. Chapter 2 presents the architecture of the SCC pro-
cessor and specific SCC platform used in our experiment, with special focus on power management
aspects that are important for our evaluation. Chapter 3 introduces PGAS parallel programming
model and focus on one of its incarnations: UPC language. Chapter 4 discusses relevant related
work. Chapter 5 contains a study of power behaviors of PGAS applications based on application
profiling, with the goal of identifying opportunities for power management. Chapter 6 presents
the proposed programming extensions and power management system for UPC PGAS applications
on SCC, while chapter 7 presents their evaluation. Finally, chapter 8 concludes the report and
outlines directions for future work.

4
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Figure 1.1: Planning: Gantt diagram.
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Chapter 2

Single-chip Cloud Computer
background

2.1 Many-core motivation

In the recent years, as discussed by Borkar [5], processors has been shifted towards multi-core
architectures: the idea is to include in a processor more simpler cores, than less complex ones.

Note that the multi-core processor definition (a system with two or more independent pro-
cessors packed together) can be applied to many-core systems too. We can find the main difference,
however, in the number1 and complexity of these cores. While a multi-core processor have got sev-
eral complex cores, a many-core processor have got a large number of cores that are much simpler
than multi-core ones.

Complex cores are faster, but simpler cores are smaller, in terms of die-area. If we apply
Pollack’s Rule (performance increase is roughly proportional to square root of increase in complex-
ity) inversely, performance of a smaller core reduces as square-root of the size, but power reduction
is linear, resulting in smaller performance degradation with much larger power reduction.

Overall, the compute throughput of the system, on the other hand, increases linearly with
the larger number of small cores. That is why we can suppose that future processors will be based,
in some way, in many-core processors.

2.2 Intel SCC’s architecture overview

Intel Labs has created an experimental many-core processor, inside the Intel’s Tera-scale Com-
puting Research Program, aimed to help accelerate many-core research and development. It is
Single-chip Cloud Computer (SCC), and, as we can see in figure 2.1a, it consists of 48 x86 Pentium
P54C cores, with increased L1 cache to 16 KB for data and another 16 KB for instructions and 256
KB of L2 cache per core. It is fabricated in a 45 nm process, and it’s cache is non-coherent: libraries
like RCCE (studied below), however, offers software-based cache coherence implementation. It’s
cores are grouped 2 by 2 in so-called tiles.

1Usually, many-core means 32 or more cores, while multi-core means fewer.

6
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(0,5)(0,0)

(3,0) (3,5)

(a) Architecture overview (b) Packed chip

Figure 2.1: Single-chip Cloud Computer

SCC features a fast (256 GB/s bisection bandwidth) 24-router on-die mesh network, with
hardware support for message-passing, that communicates all tiles between them. This hardware
message-passing support is helped by special per-tile 16 KB fast-r/w buffer, called message passing
buffer (MPB). Therefore, every tile also includes a traffic generator (TG) used for ensure network
reliability.

Note that the on-chip network also provides tile access to four dual-channel DDR3 memory
controllers (MC) with typically 32 GB or maximum 64 GB of main memory for the entire chip.
The memory controllers are attached to the routers of the tiles at coordinates (0,0), (0,5), (2,0)
and (2,5).

As Single-chip Cloud Computer’s (SCC) name reflects, it implements an on-die scalable
cluster of computers such as you would find in a cloud datacenter. The network topology and
the message-passing implementation is proven to scale to thousands of processors in existing cloud
datacenters. Moreover, each core can run a separate OS (typically Linux) and software stack
and act like an individual compute node that communicates with other compute nodes over a
packet-based network.

SCC is intended to offer fine-grained power management, allowing to dynamically scale per-
tile frequency, and dynamically scale group-of-eight-core’s voltage. The power consumption can
oscillate from 125 W to as low as 25W. This feature is what we are trying to exploit.

2.3 Other existing many-cores

As mentioned in [16], SCC has been influenced by previous architectures and research. Beginning
on the Cell processor, which wasn’t homogeneous and included 8 small SPE cores, SCC have been
influenced by Polaris, a Intel 80-core experimental processor, which cores was simpler than x86’s
SCC cores.

On the other hand, there are other many-core architectures intended to be graphic proces-

7



Cross-layer power management for PGAS on SCC Marc Gamell

sors. An example of this are the well known GPU architectures which must be programmed with
special frameworks such as CUDA or OpenCL, as they are not x86. Another example is Intel’s
Larrabee, which, like SCC, features x86 cores, with added support to vector processing.

2.4 Memory

As mentioned above, SCC cores are regular x86 P54C cores. That means that it uses 32 bits to
address the main memory. However, to access a main memory position we need to address one
of four memory controllers, and a concrete position inside the 16 GB associated to that memory
controller. As a result, we need 8 bits to point to the position of the MC in the mesh and 34
bits to address 16 GB. The difference between both addresses length is solved using a per-core
lookup table (LUT), that translates a 32 bit core address to the corresponding system address.
It is implemented as an area in the configuration block, and contains 256 22-bit positions. The 8
higher bits of a core address are used to point to a position of the LUT, which returns the 22 extra
positions to fit the system address. This process is shown in figure 2.2, in which subdestination
field points to a position inside a tile (i.e. core0, core1, MPB, east port, west port...) and a bit for
MIU bypass.

core address (32b)

8b 24b

10b 24b

MC's memory address (34b)

3b

subdest

8b

dest

1b

bypass

MC address

Figure 2.2: SCC LUT translation process

An SCC advantage is that LUT can be changed in run-time, meaning that we can redimen-
sion the core memory and/or the shared memory in order to adequate it to workload requirements.

The cores of the SCC are grouped into four memory domains, depending on which memory
controller (MC) holds the core main memory. As we have seen talking about LUT, this table
determines which MC is responsible for which core. That is why memory domains are not fixed.
However, the standard configuration is to assign each core to the nearest MC. This results on a
vertical and horizontal division exactly in the middle of SCC, leaving 6 tiles per memory controller
and a maximum hop number of 3 to reach the corresponding memory controller’s router.
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2.5 Mesh

Each tile is provisioned with a four-port router, in charge of the tile-to-tile connections, and with
a Mesh Interface Unit (MIU), in charge of pack, unpack and address decode, among other related
functions. These routers, the MIUs, and their corresponding connections forms the so-called mesh,
a 6x4 two-dimensional squared grid that connects each tile with surrounding tiles and other entities
like memory controllers, voltage regulator or system interface.

This packet-switched network is governed by a simple deterministic (x,y) routing scheme.
This means that data packets are routed first horizontally and finally vertically.

2.6 SCC’s message passing library

SCC tools includes RCCE, a library that implements message passing functions specifically opti-
mized to the SCC architecture. It takes profit of tile MPB’s and the fast mesh. The library also
supports high level abstractions that handles voltage or frequency scaling operations or simplifies
shared memory allocation.

2.7 Rocky-Lake (SCC board) architecture

The experimental SCC chip needs a concrete environment to properly run, as it is not directly
bootable. That is why a standard PC is used to control and manage SCC status, called management
console PC (MCPC). The complete system’s architecture used for the work in this study (rocky
lake board) is shown in figure 2.3a. As we can see, the SCC chip is connected directly to 8
memory dimms, totaling 32 GB. On the other hand, an ARM processor called Board Management
Controller (BMC) is connected to the SCC and can handle commands like platform initialization
or power data collecting. Furthermore, it is connected, via the system interface, to a FPGA that
controls it’s external communications. Specifically, in addition to general purpose ports (22 I/O
signals, SATA and PCIe interfaces) and a connection to the BMC, FPGA includes several ports
(PCIe and Gigabit Ethernet) for connecting to the management PC.

2.8 Power management capabilities

As mentioned above, RCCE provides tools that abstracts power management details in SCC. In
this section, however, we are trying to explain which are SCC power management capabilities and
which limitations have it got.

Microprocessor’s power management can be done over the whole processor, or in specific
areas (for example, cores). SCC, compared to existing processors, allows fine-grained power man-
agement. SCC have got three components that works with different clock and power source: mesh,
memory controllers and tiles. On the one hand, the frequency of the entire mesh can operate from
800 MHz to 1.6 GHz. On the other hand, memory controllers operates from 800 to 1066 MHz.
However, as soon as mesh and memory frequency and voltage changes cannot be performed during
run-time, in this study we are focusing only on tile and voltage-domain power management.

9



Cross-layer power management for PGAS on SCC Marc Gamell
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(a) Rocky Lake System architecture (b) Rocky Lake Board

Figure 2.3: Rocky Lake Board

SCC cores are grouped 8 by 8 in six voltage domains, as shown in figure 2.4a, and voltage
can only be changed in the scope of a whole voltage domain. Similarly, as shown in figure 2.4b,
so-called frequency domains corresponds to tiles, and, therefore, frequency can only be changed
tile by tile.
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(a) Voltage domains

33
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15
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(b) Frequency domains

Figure 2.4: Domains in the SCC

The part of the processor involved in the voltage is called the VRC (Voltage Regulator
Controller), that works in a command-based strategy: cores sends messages with VRC destination,
including the command. There is no limit in the source core of a command, which means that
a core in a voltage domain can change the voltage of another domain, which can be very useful
for sophisticated power management. The VRC is not distributed in every voltage domain, but
it is a standalone part, reachable via the mesh by all cores. Therefore, the VRC only accepts
one command at a time and, theoretically, the state is not defined if two cores sends respectively
commands simultaneously. That is why a core can send a command three times in order to be sure
the command have been finished. The first command will result in the actual change while the
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last two ones would assure the change process have been finished. As described in [2], VRC allows
voltage requests with a granularity of 6.25 mV, between 0 and 1.3 V. However, we found that
the lower subrange of this voltages cannot be used in practice, as cores both crashes or become
unstable. To remain safe, the lowest voltage used (with their corresponding lowest frequency)
was 0.65625 V. We experimentally determined that this process takes an average of 40.2 ms to
complete, regardless the originating-tile frequency or voltage and the desired voltage.

Frequency scaling involved part, however, is distributed among tiles. Each tile contains a
configuration register that is used to change the frequency divider, which can be any integer value
between 2 and 16. As soon as global clock frequency is 1.6 GHz, resulting frequency oscillate
between 800 to 100 MHz. When the process of writing the desired value in the register have been
finished, the processor takes as little as 20 clock cycles to complete the actual frequency change.

Before changing the voltage, however, the frequency must be changed accordingly to the
desired voltage level. Similarly, when changing frequency we must take care the current voltage in
the corresponding voltage domain. In the RCCE source code and in the SCC Programmers Guide
there is a table showing the maximum frequency allowed for a voltage level (see table 2.1). As SCC
cores maximum frequency is 800 MHz, the useful part of the table, however, are the voltage levels
0, 1 and 4. Experimentally we found that the first two voltage levels seems not to be safe, as many
times the voltage domain became unstable, as described in [16]. The frequencies that worked, in
our case, are shown in table 2.2.

Voltage Level Voltage (volts) Max freq. (MHz)

0 0.7 460
1 0.8 598
2 0.9 644
3 1.0 748
4 1.1 875
5 1.2 1024
6 1.3 1198

Table 2.1: SCCProgrammersGuide, version 0.75, Table 9: Voltage and Frequency values

Voltage Level Voltage Max freq.(MHz) Tested freq. (MHz)

0 0.75 460 400
1 0.85 598 533
4 1.1 875 800

Table 2.2: Safer Voltage and Frequency values, experimentally determined.

To sum up, despite dynamic voltage scaling is difficult to exploit due to large voltage do-
mains, its energy reduction is far better than frequency scaling which, unlike happens with voltage,
a change in frequency only has a linear impact on the energy consumption. However, this technique
is far faster than voltage scaling, and more flexible due to the smaller domain size, and, therefore,
it can be applied in more variety of scenarios.
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2.8.1 Power monitoring

SCC chip does not provides monitoring tools itself. In order to collect the measured voltage and
current consumption we can send, from the management PC, a query command to the BMC (see
figure 2.3a). Thanks to this features we can automatically collect the measured power consumption,
obtaining a sampling frequency of about 6,5 measures per second.

Figure 2.5 shows us the SCC’s consumed power, according to the workload and the technique
used. Note that DVFS allows exponential power reduction regardless the workload, and DFS
technique only allows linear power reduction. Note too that 400 MHz (which corresponds to
lowest voltage allowed (0.75 V) is a good DVFS target in order to save energy, as lower levels
provide only little-saving with huge frequency reduction.
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Figure 2.5: Consumed power by SCC according to the workload and the technique (DFS / DVFS).
The data have been collected in the 15 possible frequencies available.
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Chapter 3

Unified Parallel C background

3.1 PGAS

In order to help the development stage of parallel and distributed applications, in the last few
decades there have been a lot of research about parallel design languages and techniques. Parti-
tioned global address space (PGAS) paradigm is a relatively new model that proposes a easy-of-use
solution to the parallelization problem. It assumes a global, shared memory space that is logically
partitioned among all threads and, therefore, each portion of the memory is local to one of the
processors.

As each thread is aware of which data is local, the application can improve performance by
exploiting data locality. The performance, however, is not the only PGAS focus. Another important
goal is to enhance user productivity significantly by abstract details like thread synchronization or
implement implicitly the message passing.

The PGAS model is the basis of Unified Parallel C (UPC), Co-array Fortran (CAF), Tita-
nium, Chapel and X10.

3.2 UPC overview

Unified Parallel C is an ISO C 99 extension that supports explicit parallelization and the PGAS
model. It tries to get the best points of several previous C parallel extensions (like PCP, AC or
Split-C), hence the name.

It uses a Single Program Multiple Data (SPMD) model of computation in which the same
code runs independently on different threads, in parallel.

Apart from the private variables (which can only be seen inside the process), the user can
define shared variables, usually vectors, which UPC distributes following a default pattern or a
specified one. All threads can read or write a defined shared variable, but each memory position is
physically assigned to one processor. In case the R/W operation is local, the UPC implementation
should write it directly. If it is not local, however, the implementation is the responsible of mapping
the operation to the corresponding R/W message and send it to the processor with affinity to that
memory position.
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Aside from the easy-of-use of PGAS paradigm, UPC offers a high level control over data
distribution among cores. Furthermore, it extends the standard C pointers allowing it to point
to an arbitrary position of the shared space, regardless it have local affinity or not. Shared space
allows both static and dynamic memory allocations, as standard C does for the corresponding
private addresses.

Moreover, we should pay attention to the ability of incremental performance improvements
that UPC paradigm offers. The programmer can begin by designing the application as plain se-
quential C code, converting it, later, to a simple shared-memory implementation, sharing some
vectors. The programmer can then improve the performance by tuning data locality layout. Fi-
nally, for critical applications, the programmer can go deeply and tune it by making the memory
management and one-sided communications explicit.

The UPC extensions to C are as simple as an explicitly parallel execution model (global
constants THREADS and MYTHREAD), shared variables and pointers (shared token), synchronization
primitives (such as barrier or lock) and memory management primitives (such as bulk memory
copy memget operation).

As C is a well-known language inside the HPC user community (as for example scientists),
the learning curve for UPC is easy to achieve.

3.3 Berkeley UPC

In our study we have been using Berkeley UPC, which is an open-source UPC implementation.
It is composed basically of:

• The Berkeley UPC Translator. This module compiles the UPC source code to ANSI-
compliant C code which can be linked with the abstract-machine described by the UPC
Runtime.

• The Berkeley UPC Runtime, which includes platform-independent job/thread control, shared
memory access (put/get operations and bulk transfer operations), shared pointer manipula-
tion and arithmetic, shared memory management, UPC barriers and UPC locks.

• GASNET is the layer below UPC Runtime, which is a portable high-performance low-level
networking layer and, among other things, is the responsible of implementing communication
algorithms such as remote memory access. It runs over a wide variety of high-performance
networks such as well-known MPI, Infiniband, Myrinet GM, Cray Gemini, or even UDP.
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Chapter 4

Related work

Our work is mainly centered in three topics: layered power management, many-core power man-
agement and PGAS power management. In the following sections we are describing the existing
and ongoing research on these three topics.

4.1 Layered power management research

Existing and ongoing research in power efficiency and power management has addressed the prob-
lem at different levels such as processor and other subsystems level, runtime/OS level and appli-
cation level.

Processor level
Since processors dominate the system power consumption in HPC systems [25], processor level
power management is the most addressed aspect at server level. The most commonly used tech-
nique for CPU power management is Dynamic Voltage and Frequency Scaling (DVFS), which is a
technique to reduce power dissipation by lowering processor clock speed and supply voltage [17,18].

Operating system level
OS-level CPU power management involves controlling the sleep states or the C-states [28] and the
P-states of the processor when the processor is idle [29] [30]. The Advanced Configuration and
Power Interface (ACPI) specification provides the policies and mechanisms to control the C-states
and P-states of the processor when they are idle [38].

Workload level
Some of the most successful approaches for workload-level CPU power management were based
on overlapping computation with communication in MPI programs, using historical data and
heuristics [14, 15, 20, 22, 34], based on application profiles [6, 32], scheduling mechanisms [8] or
exploiting low power modes when a task is not in the critical path [35].
Another result is that we can take profit of slack CPU periods slowing it down, and, therefore,
saving energy. The problem have been to determine which periods are the appropriate. Here, the
policies varies in complexity. Scheduled communication techniques take profit of the big difference
between network and CPU speeds, and, while the application asks for a barrier, a synchronous
send, or a synchronous receive and the processor is waiting for the transmission to finish, the
runtime slow it down (by applying DVFS techniques) to save energy. Examples of this techniques
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can be found in work by Liu et al. [24] or work by Lim et al. [23].

Compiler level
Another targeted layer for power management have been the compiler. Wu et al. [42] introduced
a dynamic-compiler-driven control for energy efficiency. A dynamic compiler (HP Dynamo, IBM
DAISY or Intel IA32EL) is a runtime software system that compiles, modifies or optimizes a
program as it runs.

Application level
Aforementioned techniques are transparent to the application. This means that the programmer
does not need to modify its application. However, existing work has also addressed power efficiency
and power management at the application level. For example, Eon [39] is a coordination language
for power-aware computing that enables developers to adapt their algorithms to different energy
contexts.

Overall, however, any of the existing research have been addressed the power management
in a cross-layer approach.

4.2 Many-core research

Power management
Existing power management research has also addressed many-core systems. For example, Ma-
jzoub et al. [26] introduced a chip-design approach to voltage-island formation, for the energy
optimization of many core architectures. Alonso et al. [3] proposed extending the power-aware
techniques of Dense Linear Algebra algorithms to SCC.

Performance improvements
Other approaches have considered the SCC platform but mainly from the performance perspective.
For example, Rotta [33] discussed how to efficiently design and implement the different strategies
for message passing on SCC. Pankratius [31] introduced an application-level automatic performance
tuning approach on the SCC. Urena et al. [40] implemented an MPI runtime optimized for the SCC
message passing capabilities, RCKMPI. Clauss et al. [9,10] improved message passing performance
on SCC by adding a non-blocking communication extension to RCCE library. Van Tol et al. [41]
introduced an efficient memcpy implementation.

4.3 PGAS research

Existing PGAS research has focused mainly on its performance and scalability. Salama et al. [36]
proposed a potential improvement of collective operations in UPC. Dinan et al. [11] proposed an
hybrid programming paradigm based upon MPI and UPC models that try to improve performance
limitations. Chen et al. [19] compare the performance of benchmarks compiled with their own
optimizations in BUPC with that of HP UPC compiler. Tarek et al. [12,13] benchmarks UPC and
propose compiler optimizations. Kuchera et al. [21] study the UPC memory model and memory
consistency issues.

Existing PGAS research on many-core systems is not very large. Chapman et al. [7] imple-
mented the X10 programming language on the Intel SCC (using RCCE library) and performed a
comparative study versus MPI using different benchmark applications. Serres et al. [37] ported
Berkeley UPC to Tilera’s many-core Tile64.
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Overall, these approaches do not directly translate to PGAS applications on many-core
processors and, to the best of our knowledge, power management in the PGAS framework has not
been addressed yet.

17



Chapter 5

Profiling of UPC applications

In this chapter we are trying to show the behavior of some UPC applications suitable to work
on SCC processor. We show an analysis of some applications from the UPC implementation of
the NAS Parallel Benchmarks specification (FT, MG and EP kernels), a matmul-based synthetic
imbalanced application and an application for edge detection (Sobel) from the UPC official test
suite.

5.1 Methodology

In order to profile the UPC applications we need to have got some instrumentation that tells us
which UPC runtime operations an application uses. Existing profiling tools are designed to be
executed in traditional clusters with big amounts of memory. If we use it in the SCC constrained
environment, our profiling would be biased due to the overhead of the profile process.

For this reason we decided to implement a low-footprint instrumentation system (that we
called pmi, for Power Management Instrumentation), currently working on UPC, but extensible
to other PGAS runtimes. Our design tries to minimize the runtime part, and do the main work
as a post data processing. This is represented in the figure 5.1 flow. As seen, we achieve low
overhead by writing lightweight intermediate files containing data in raw binary format. Then, the
application parses the stored data (timestamps of the corresponding begin and end for each call)
and, automatically, generates logfiles and relevant plots.

Runtime
Data

processing

Data

collecting

UPC

application

UPC

runtime

Data

extraction

Graphics

generation

Flow

Figure 5.1: Global architecture of the profiling platform.
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5.2 NAS Parallel Benchmarks

NPB are a well-known benchmark collection for parallel computing, standardized by the NASA
Advanced Supercomputing. The suite comprises a set of kernels and pseudoapplications that
reflect different kinds of relevant computation and communication patterns used by a wide range
of applications.

Each kernel can be configured with several different versions. These versions, called classes,
does not differ in the problem nature, the difference is mainly in the size of the data.

Apart from the MPI version of NPB, distributed and maintained by the NASA, there are
several more implementations in different languages. One of these is NPB in UPC language,
that have been developed and distributed by the George Washington University. Note that this
distribution does not implement the whole set of tests, only a part. Kernels have been manually
optimized through techniques that mature UPC compilers should handle in the future. Therefore,
researchers can choose the level of optimization they wants to run.

As mentioned above, the evaluated kernels are FT (Fast Fourier Transforms), EP (embar-
rassingly parallel cpu-intensive code) and MG (Multi Grid). We executed each benchmark on the
whole SCC (involving all 48 available cores) because we want to stress the whole platform to obtain
the most real potential of power management in many-core environments.

BT and SP benchmarks, which require the number of processors be a perfect square, doesn’t
use all the SCC platform potential. Other NAS benchmarks, like CG, that needs powers of two
number of threads, does not stress the whole 48-core SCC platform neither. That is why we
discarded these algorithms.
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5.2.1 NAS FT kernel

FT is a kernel that calculates three 1D Fast Fourier Transforms, one for each dimension of a 3D
partial differential equation. It is floating-point computation intensive and requires long range
communications.

We can run several versions of the same NPB kernel. For our experiments, we have been
using FT class C, optimization O1, that is the largest problem that runs on the SCC platform
and, therefore, it is the one that takes more time to finish.

After instrumentation phase, we have collected data and processed it as mentioned in the
section above, obtaining results in a set of graphics. The most representatives are shown here.
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Figure 5.2: Length of FT calls.

If we take attention to figure 5.2a, we can see that it represents the length of each UPC
call. Note that the candles shows the maximum, minimum and average duration (in seconds) of
the corresponding call. As we can see in the mentioned figure (and the more detailed logarithmic
version, figure 5.2b), FT uses only 11 UPC runtime operations, but only memget and wait seems
to be long enough for being the focus of energy savings strategies. There have been 1056 memgets
and 136 barriers per core, so we can analyze how many of these are short and how many are long.
In figures 5.3a and 5.3c (and the corresponding figures 5.3b and 5.3d, in logarithmic scale) we
analyze the number of calls per delay that FT performed for wait and memget, respectively. The
figures corresponding wait, shows us that, apart from the 2500 calls of almost-null slack periods,
there are lots of calls that needs 1-4 seconds, 6-7 seconds and more than 10 seconds to finish.
memget, however, only uses operations of almost-zero and around 3 seconds delay.

The main conclusion of these tests is that FT have a communication-bound profile.
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Figure 5.3: Number of calls per delay.
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Figure 5.4: Average delay of the call, per core.
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Note that in all these graphics we have been looking at the behavior of all cores together.
In addition, the per-core behavior is notable. As we can see in figure 5.5a for waits, and figure
5.5b for memgets, each core have a different profile. Figure 5.6 shows the execution point in which
each wait or memget call have been done, and their corresponding delays (in seconds). In these
figures we can suspect that the average length is linearly dependent to the number of the core. If
we look at the average of each call (figures 5.4a and 5.4b), per core, we will see that this suspect
is not unfounded: there is a trend.
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Figure 5.5: Number of operation calls per length (in ms). Each subplot represents a power domain
controller.
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Figure 5.6: Operation calls and corresponding delays (in seconds) according to execution point (in
seconds). Each subplot represents a power domain controller.

The conclusion of this part is that, although FT is well-balanced, some cores suffer from big
slack periods. Therefore, FT can be a good candidate in order to study UPC power management
techniques.
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5.2.2 NAS MG kernel

MG, that stands for Multi Grid, is a benchmark that solves a 3D scalar Poisson equation. It
performs both structured short and long range communications.

In our profiling process we have been using MG class C, optimization O3, because it is the
maximum that supports SCC constrains.

As we can see in figure 5.7, MG features mainly wait and two types of get_pshared calls.
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Figure 5.7: Length of MG calls.

Let’s analyze first wait behavior. In figures 5.8a and 5.8b we can observe that MG performs
lots of barriers (about 1200 per core), and, on average, the corresponding waits are short (about 5
to 30 ms). However, figure 5.8c shows that only a little quantity of calls are very long (10 seconds
or more), while the bast majority are less than 0.25 seconds. Finally, with the help of figure 5.8d we
can figure out this behavior: there is only one imbalanced barrier at the beginning of the execution
(in the initialization phase), and the rest of the MG execution is well-balanced.

The conclusions obtained from the wait analysis can be applied to get_pshared (figure
5.9): there are lots of small calls (25000 calls per core, 0.5 ms on average), and only one huge
call, on the initialization phase. The same conclusions can be drawn for get_pshared_doubleval
operation (see figure 5.10).

With all this conclusions in mind, we see why MG does not show energy saving opportunities.
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(d) Calls and corresponding delays (in seconds) according
to execution point (in seconds).

Figure 5.8: MG wait behavior.

25



Cross-layer power management for PGAS on SCC Marc Gamell

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  10  20  30  40  50

M
ea

n 
de

la
y 

(m
s)

Core ID

regression line

(a) Mean delay per core

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0  5  10  15  20  25  30  35  40  45  50

N
um

be
r 

of
 c

al
ls

Core ID

(b) Total calls per core

 0

 5000

 10000

 15000

 20000

 25000

 30000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 >10000

C
or

e 
00

 c
al

ls

 0

 5000

 10000

 15000

 20000

 25000

 30000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 >10000

C
or

e 
04

 c
al

ls

 0

 5000

 10000

 15000

 20000

 25000

 30000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 >10000

C
or

e 
08

 c
al

ls

 0

 5000

 10000

 15000

 20000

 25000

 30000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 >10000

C
or

e 
24

 c
al

ls

 0

 5000

 10000

 15000

 20000

 25000

 30000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 >10000

C
or

e 
28

 c
al

ls

 0

 5000

 10000

 15000

 20000

 25000

 30000

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 >10000

C
or

e 
32

 c
al

ls

(c) Number of operation calls per length (in ms).

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08

 0  50  100  150  200  250

C
or

e 
00

 d
el

ay
 (

s)

 0

 1

 2

 3

 4

 5

 6

 7

 0  50  100  150  200  250

C
or

e 
04

 d
el

ay
 (

s)

 0

 1

 2

 3

 4

 5

 6

 7

 0  50  100  150  200  250

C
or

e 
08

 d
el

ay
 (

s)

 0

 1

 2

 3

 4

 5

 6

 7

 0  50  100  150  200  250

C
or

e 
24

 d
el

ay
 (

s)

 0

 1

 2

 3

 4

 5

 6

 7

 0  50  100  150  200  250

C
or

e 
28

 d
el

ay
 (

s)

 0

 1

 2

 3

 4

 5

 6

 7

 0  50  100  150  200  250

C
or

e 
32

 d
el

ay
 (

s)

(d) Calls and corresponding delays (in seconds) according
to execution point (in seconds).

Figure 5.9: MG get pshared behavior.
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(d) Calls and corresponding delays (in seconds) according
to execution point (in seconds).

Figure 5.10: MG get pshared doubleval behavior.

27



Cross-layer power management for PGAS on SCC Marc Gamell

5.2.3 NAS EP kernel

EP, the last NAS benchmark that we will use, is an embarrassingly parallel application that
performs floating point operations with almost no-communication.

In our study we have been running EP class D, without optimization, because it is the
maximum configuration that supports SCC constrains.

Beginning with figure 5.11, we can see that the long operations that EP uses are wait,
upcr_lock, upcri_lock and get_pshared_doubleval. Note that both lock operations are equiv-
alent, because one always calls the other in UPC Runtime implementation.
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Figure 5.11: Length of EP calls.

As in the previous analysis, we begin studying wait operation profile on EP kernel. The first
conclusion drawn from figure 5.12 is that there are only 9 calls per core and 8 have got insignificant
delays. The ninth one corresponds to the barrier at the end of execution, and is large (18 seconds)
because it accumulates the short imbalance through all the execution.

In figure 5.13b we can observe that there is only one lock call in the whole execution. This
makes lock a bad candidate for energy savings opportunities.

Finally, as we can see in the set of figures 5.14, get_pshared_doubleval operation, that
initially seemed interesting, is not interesting from energy savings point of view, because there are
only few and short calls in 47 cores, and only in the first core the delay is, sometimes, large.

Although common sense tells us that CPU-intensive applications are not suitable for energy
savings, this study shows us that EP does not give many energy savings opportunities, because
EP’s profile is not communication-bound nor memory-bound.
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(d) Calls and corresponding delays (in seconds) according
to execution point (in seconds).

Figure 5.12: EP wait behavior.
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(d) Calls and corresponding delays (in seconds) according
to execution point (in seconds).

Figure 5.13: EP lock behavior.
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(d) Calls and corresponding delays (in seconds) according
to execution point (in seconds).

Figure 5.14: EP get pshared doubleval behavior.
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5.3 Sobel

Sobel is an edge detection application, a kind of applications useful in several fields such as computer
vision. The parallelized version of this algorithm partitions the image among the cores, performs
calculations locally and, when it needs to shift the data through the last row of a thread data, it
access to the elements of the next row (allocated in the next contiguous core).

The first step to analyze the Sobel application is to determine which UPC Runtime opera-
tions it uses. In figure 5.15 we can see that it uses wait and global_alloc. Note that during the
instrumentation phase we disabled the upcr_get_pshared operation logging, because we observed
that each core called it about 90 millions of times (89786623 calls); this huge amount of calls
produced the execution time during instrumentation increase a lot, and that is why we decided to
disable it to run the execution more realistic.
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Figure 5.15: Length of Sobel calls.

Like NAS benchmarks studied above, the next step is to observe the behavior of the main
calls; in this case, only wait. We don’t show the results of upcr_get_pshared because all the calls
are negligible.

As we observe in figure 5.16, we should distinguish the behavior of the core 0 and the rest
of the cores. One reason for this is due to the initialization phase, made only by core 0. Note that
there is a barrier in the beginning of the execution, that delays the non-0 cores about 500 seconds,
and this barrier is finished only when core 0 finishes the init phase and calls the corresponding
barrier operation (see the lonely 0-delay point around position x = 480, in figure 5.16d).

Once the initialization is done, the benchmark repeats N = 100 times the Sobel algorithm,
synchronizing with a barrier at the end of each iteration. As we can see in figure 5.16c, the slack
period corresponding to the wait operation is about 0.5 seconds on all cores except cores 0 and 47
(core 47 log is not shown in the figure because of a space matter), which are about 2 seconds long.

Although this application does not seems very interesting from the point of view of the
iterations phase (due to little imbalance), it can be useful to study the core-0 driven initialization
phase.
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(d) Calls and corresponding delays (in seconds) according
to execution point (in seconds).

Figure 5.16: Sobel wait behavior.
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5.4 Matmul-based synthetic imbalanced application

In the profile of the UPC version of the NAS applications we have seen that wait is an usual
operation. We know that this UPC Runtime instruction is used to implement barriers. That’s
why we can suppose that the more imbalanced an application is, the more energy savings we will
achieve. A parallel or distributed application is balanced if the slack period during a barrier is
almost null. It is imbalanced if there are threads that spend lots of time waiting, in barriers (big
slack periods), compared to other threads, which slack periods are almost null.

The main goal of using the synthetic matmul is to study the potential of voltage scaling for
different levels of load imbalance caused by barriers (wait operation).

5.4.1 Algorithm

Basically, the main algorithm is:

for (i=0 ; i<N ; i++) {

perform A matrix multiplications, distributed in 48 cores;

if(MYTHREAD is in Voltage Domain X)

perform B matrix multiplications;

upc_barrier;

}

5.4.2 Parameters

The parameters to control the behavior of the aforementioned algorithm are:

N The number of overall iterations

A The number of all 6 voltage domain distributed matrix multiplications

B The number of only one voltage domain matrix multiplications

The first set of tests performed with this benchmark was the regular execution (i.e. no
power management), called in this document original tests or base tests. The parameters used in
this set of tests are shown in the table 5.1, which relates the level of imbalanced produced by the
parameters, and that is calculated experimentally, with the data collected during the execution.

Another significant results from the collected data are the execution time, that was about
20 minutes per test and the consumed energy, about 105 KJ.
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N A B Imbalance %

36 29 500 3%
36 28 1000 7 %
36 25 2500 17 %
36 22 4000 27 %
36 20 5000 33 %
36 18 6000 42 %
36 15 7500 51 %
36 13 8500 58 %
36 10 10000 67 %
36 7 11500 76 %
36 5 12500 84 %
36 2 14000 93 %
36 1 14500 97 %

Table 5.1: Parameters used in the matmul original (or base) test.

5.4.3 Conclusions

We ran matmul with load imbalances ranging from 3% to 97%. Figure 5.17 shows that wait calls
are the largest ones (i.e. most energy-savings capable). The histograms and the mean delay per
core plots of the wait calls are shown by figures 5.18 and 5.19, respectively.

Note that in tests with very imbalanced applications (Figures 5.18b, 5.18e,5.18c and 5.18f)
many calls are longer than 10 seconds.

Comparing parameter B in table 5.1 and resulting wait calls in figure 5.20, we can see that
the number of calls is directly proportional to the B parameter.

Figure 5.21 shows the histogram of the wait operation length, while figure 5.22 shows the
execution point in which each wait call have been done, and their corresponding delays (in seconds).

The results show very different behaviors depending of the percentage of load imbalance.
Specifically, longer wait calls correspond to larger load imbalance percentages.
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Figure 5.17: Matmul per-core length of calls in linear and logarithmic scales.
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Figure 5.18: Matmul per-core num of calls in linear and logarithmic scales.
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Figure 5.19: Matmul mean delay per core.
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Figure 5.20: Matmul total calls per core.
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Figure 5.21: Matmul number of wait operations per call length (in ms).
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Figure 5.22: Matmul calls and their corresponding delays (in seconds) according to execution point
(in seconds).
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5.5 Conclusions

With NAS profiling we concluded that memget and wait are the most energy-saving-capable op-
erations:

• wait: this operation, executed when user application requests a barrier, stops the application
execution until the other cores reaches the barrier too. That’s why during this period of time
we can slow down the processor (i.e. drop the frequency or voltage down): there is a slack
period while running this wait operation. In this sense, imbalanced applications (distributed
applications with nodes that must wait for long periods) seems more suitable to be power
managed.

• memget: this operation, that is called frequently and is relatively long, is intended to copy
bulk data from the local memory of one node to the local memory of another node. In
usual systems, where the CPU is far faster than the network connecting nodes, during the
execution of the operation we can save energy by decreasing the processor power. In the
SCC, however, the speed of transference is related to the speed (i.e. frequency) of the core
(because the origin or destination of the data is the L2 cache). Therefore, at first sight, a
decrease in the power of a core during memget call would end up to a repercussion on the
data transfer delay.

Another conclusion is that we may use Sobel in order to study the power and flexibility of
cross-layer application-level tools.

Finally, the main goal of the synthetic matmul application is studying the potential energy
savings and delay penalty (upper bounds) of both runtime and application-aware power manage-
ment techniques for different levels of load imbalance.
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Chapter 6

Power management middleware

6.1 Motivation

Our aim is very clear:

• We want to reduce the energy consumption by taking profit of the slack periods of an ap-
plication. As we have found thanks to the profiling of several applications on the studied
platform, the main operation that makes the processor relax is wait and, sometimes, memget.

• This process should be independent of the PGAS implementation (UPC, CAF...).

• Additionally, we want to provide the tools to check which periods are critical and which are
more flexible, in order to allow the programmer the possibility of easy-tune their application’s
energy performance. This goal can be achieved by allowing the programmer include some
‘hints’ in its code.

We have been developing a middleware dedicated to facilitate power management (PM) with
the aforementioned features. This middleware is based upon requests, regardless they come both
from the user or the PGAS run-time. We consider a request or a notification a message addressed
to the middleware, dedicated to help it decide when the processing unit can be slowed down, when
it may run at maximum performance... Usually notifications can be of three types: indicating the
beginning of a call, notifying the corresponding end or pointing out a user hint. We have designed
it as generic as possible, in order to allow all kinds of requests. Despite this, after the results of
the profiling phase with SCC and UPC, we decided to allow by default only wait and memget
operations.

6.2 Architecture overview

The Application column of figure 6.1 represents a standard execution model of a UPC application on
the SCC. As we can see, there are several layers in the application column, each one communicating
to their surrounding layers, vertically. Note that, in order to improve communication, we have been
using RCKMPI, the MPI implementation for SCC (see [40]) that uses the SCC’s on-die message
passing buffers and mesh as a physical resource.
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Figure 6.1: External architecture overview of the power manager.

Our middleware can be considered as the left column of figure 6.1, as it adds extra capabilities
and the corresponding intra-layer communication between both columns.

The internal architecture of the power manager middleware is shown in the figure 6.2.
As we can see, the main input of our middleware is the communications subsystem, which is
responsible for receiving the requests and redirect it to the requests handler subsystem. This
module will distinguish which notifications needs to be filtered, which requests are critical enough
to be redirected directly to the power adjuster, or which changes the middleware state (application
hints). Moreover, we give the programmer the capability of tune some power manager parameters,
in order to adequate the power manager to each concrete application. Thereby, the power manager
loads the configuration from a specific configuration file.
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Figure 6.2: Internal architecture overview of the power manager.

The power manager have been implemented using the C programming language, as it allows,
among several other advantages, easy and efficient methods to access to processor registers. Note
that all modules have been designed to be thread safe, protecting critical parts with mutexes.

In the following sections we will describe the main features of each of this modules. Let’s
take a look first, however, on how the cross-layer power management is implemented.
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6.3 Cross layer

We mentioned that both application layer and runtime layer are able to send requests to the power
manager. As stated before, application notifications will only appear when the programmer wants
to tune the application performance. For this reason, the power manager must process this requests
with higher priority in front of runtime layer requests.

This means that an application layer hint will determine the behavior of the power manager
in front of the rest of notifications received from runtime layer. There are several hints, which one
with its own effect:

• The PERFORMANCE hint indicates the power manager to discard all notifications (until the
next hint) and to work on full voltage and frequency, ensuring full performance.

• Regarding CONSERVATIVE hint, power manager will work in order to find optimal situations
in which energy savings can be profitable (although reduced) with little or no time penalty.
This situations are usually the slack period produced by a long memget or wait call.

• Contrary to what happens to PERFORMANCE, SAVE_ENERGY hint tries to save energy without
taking into account the possible time-penalty. This hint is mapped to a continuous voltage
reduction, regardless the slack periods of the application. This voltage reduction tries to
balance the time penalty and energy savings (i.e. tries to decrease energy delay product,
regardless the time-penalty).

• Finally, power manager have the same behavior with the AGGRESSIVE_SAVE_ENERGY hint.
In this case, however, the voltage reduction is maximum, which can be useful on some
applications. We should be careful, however, because potentially it can produce the opposite
effect: because of the big frequency reduction, the execution time will increase that much
that the energy consumed would overpass the non-power managed consumed energy.

6.4 Communication subsystem

The designed system can work in two modes: integrated in the PGAS runtime, or as a standalone
application. Both modes are possible due to the fact that the power manager have been imple-
mented as a standard C library and to the modularity of the design. In case of having the power
manager code integrated in the PGAS runtime, communication subsystem does not make sense,
as this is done via function calls. Actually, both logical applications (PGAS runtime and power
manager) would run in separated execution threads and requests are sent through a queue buffer
in order to reduce the footprint in the main thread.

However, to ensure the independence of the power manager to the PGAS runtime imple-
mentation (UPC, CAF...), we added a communication subsystem that allowed us to isolate the
power management modules from UPC Runtime. In addition to this isolation, we try to reduce
the intrusiveness in the PGAS (UPC) runtime (i.e. the application stack have been modified as
few as possible). Therefore, all the modifications required to allow power management are simple
calls to a C function, which will notify the power management system that a certain condition
happened (a barrier’s wait that just begins -in the runtime layer-, a critical zone is about to begin
-in the app layer-...). This application-sided C function lazy connects to the power manager (on
the first call of each execution) and is implemented in a separated header file.

42



Cross-layer power management for PGAS on SCC Marc Gamell

The requests arrives to the power manager by standard unix sockets. Therefore, this module
acts as a server. A brief outline of the process is:

• It listens to a socket file.

• For each connection established, it creates a new thread that handles the power management
notifications.

• For each request received, the communication module redirects it to the requests handler
subsystem, in order to do an efficient pre-processing.

With both system implementations (integrated PM, or as a standalone application) we could
test the footprint introduced by the extra communication module. With the help of several tests
we determined that this module introduces about 1 % of penalty in both time and energy.

We decided to use it, however, to increase the usability, portability and maintainability of
the system, and keeping in mind that it is used as an experimentation platform, not designed for
production.

6.5 Request handler subsystem

The request handler subsystem is the next module in the information flow. It receives the requests
both redirected from the communications module (if in stand-alone mode) or directly from the
PGAS runtime (if in integrated mode) and pre-process them. This preprocessing carries out
several tasks:

• Distinguish operation notifications in front of programmer hints.

• Implement the established layer priorities: application layer requests may have more priority
in front of runtime layer ones, because we must give more control over power decisions to the
programmer.

• Distinguish begin and end notifications and check their coherence. This can be easily under-
stood with an example, if a OPERATION_1_BEGIN was received from the runtime layer, the
corresponding OPERATION_1_END must be the next command from the runtime layer (as it
cannot be nested calls).

This module is in charge of controlling the filter module, disabling it if necessary, depending
on the request received. For example, due to priorities, if a runtime layer request arrives while an
application layer’s AGGRESSIVE_SAVE_ENERGY hint is active, the request handler subsystem may
want to discard the runtime request, regardless its intention.

We decided to allow all requests come from any layer, allowing application layer the full
control and, therefore, giving the programmer the possibility of more fine-grained tuning than only
hints, if desired. Therefore we don’t control this situation.

To sum up, this module is the responsible of storing the state of the power manager, and
act differently depending on it. It can discard requests, it can send it to the filter module or even
it can transform it to a direct frequency or voltage change.
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6.6 Filter module

The power manager will be notified when an external request is received. Then, it is pre-filtered
by the request handler module. Finally, it may redirect the notification to the filter module. This
module, as the name indicates, is the responsible of determining or predicting which redirected
requests are susceptible to be profitable from an energy-savings point of view, and which aren’t.

The input of this subsystem is, therefore, a begin or end request, and the corresponding
desired frequency or voltage level. The first thing the module does is to check the desired level
against the current level. In case both levels match, the request is discarded and, otherwise, the
actual filtering process begin.

Ideally, the filtering process would have to know the length of notified situation and directly
discard the requests that may have short delay. Predicting this, however, is not algorithmic nor
computationally easy. After studying several filtering approaches and other prediction models, we
decided to design a simple one, as it must run in a performance-constrained environment, like a
SCC core is. The prediction algorithm must have, therefore, low footprint (i.e. small memory and
processor requirements) to avoid performance loose.

As we know from the profiling phase, among the potential useful operations (basically, wait
and memget), only the longest ones are susceptible to allow energy savings. The shorter a call is,
the less benefit we will achieve, since changing the frequency, and even more the voltage, consumes
time and energy. This ends up to a threshold delay, in which, from the energy savings point of
view, shorter operations are adverse

The methods that our system currently supports follow the aforementioned simplistic ap-
proach, and all three are based on the same principle: discard the shortest calls by waiting a given
amount of time before accepting requests:

• Fixed time threshold. When a begin request is received, the filter waits a specified time
indicated by the threshold ’s value. If this delay is reached and no end notification have been
received, then the request subsists and, therefore, is traduced to a corresponding frequency or
voltage change (i.e. the request is redirected to the power adjuster subsystem). Otherwise, if
in this period the corresponding end notification reaches the filter, the original request will be
discarded, i.e. filtered. This technique tries to exploit the fact that we have seen during the
profiling phase: if we look at the delay distribution of the calls, we would be able to create
call clusters. In other words, a big percentage of calls are very short, while the remainder
are generally spread through bigger time-bands (i.e. are longer). To sum up, this technique
tries to eliminate the shortest calls (i.e. the zero-length cluster).

• Variable time threshold. This approach is based upon the previous one. The only difference
is that, in order to obtain the threshold, we calculate the product of the call length moving
average and a given constant (for example, 10 %), customizable as a fixed parameter. The
average is recalculated on each request, based on the history of a call.

• Mixed solution. This policy is based upon the fixed and variable threshold and is aimed to
accommodate the variations according to the execution region. The second algorithm have
got the drawback that is very influenced by individual calls (for example, a lonely big call
would increase the moving average a lot). This motivates the creation of this mixed solution:
within a fixed range, regulate the threshold using the moving average of the recent history.

Note that all three solutions can be designed to have a linear processing cost, depending only
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on the number of processed requests (O(n) cost) and that, even on the moving average approach,
it still guarantees the same computational cost.

There are applications which call’s length is homogeneously spread among time spectrum
(i.e. the length of the call follows a random pattern), and therefore, calls cannot be clustered.
In this cases, the aforementioned approach is not ideal. Remember that the initial purpose of
the filter was to eliminate short slack periods to avoid performance reduction problems due to the
DFS/DVFS technique overhead. Therefore, calls with a length similar to threshold+a, a → 0, will
end up causing the same problem. In other words, although the smallest calls have been filtered,
the remainder medium calls would cause the same effect as the smallest calls used to cause, as
immediately after passing through the filter, the corresponding end would be received. Therefore,
the penalty induced by the power change would be bigger.

To minimize these situations, a prominent feature in the filtering algorithm has been imple-
mented. This new feature is the capability of including a medium level of frequency or voltage.
It allows, in certain circumstances, to distinguish between short, medium and long calls. Shorter
calls are discarded by waiting a short amount of time before accepting the request. When this
point of time is reached, the algorithm can slow down the frequency or voltage1 to a middle step,
in order to reduce the penalty of DFS or DVFS method.

With this approach, smallest calls are discarded, medium calls doesn’t cause a big time
penalty, and long calls are most profitable, because in the beginning of the slack period they run
in medium frequency, and for the remaining slack period, the processor is in low frequency.

The policy and its parameters can be individually tuned according to the call profile. To
set an example, memget’s have got different profile than wait’s and, therefore, they should be
predicted using different parameters and/or policies.

6.7 Power adjuster subsystem

The main target of this module is to apply the frequency or voltage+frequency scaling to achieve
a reduction of the energy footprint. This is done at the end of the power manager path: when
a request have been considered critical or longer enough to allow a profitable energy reduction,
the filter or request handler subsystems may send a request to the power adjuster indicating the
desired frequency or voltage to set. This module will adjust the system power level to the desired,
if this condition is not being fulfilled.

In a typical cluster, this module would be the simplest, as we could use the tools that the
operating system offers (i.e. the cpu-freq module in Linux systems). To guarantee the middleware
portability, we have implemented the cpu-freq based power adjuster. In order to work, however,
the userspace governor must be enabled.

The experimental Linux ported to the SCC does not support SCC-specific power manage-
ment tools yet. That is why the cpu-freq module is not useful on the SCC, and, therefore, we
implemented this feature directly managing the hardware. However, SCC library (RCCE) of-
fers power management functions, which allows to change the voltage or the frequency in the
scope of so-called power domains (at practical effects, a power domain corresponds to a voltage
domain). Apart from not allowing fine-grained frequency management, RCCE library uses the
Message Passing Buffer in order to synchronize all cores on a power domain. This is a problem, as

1Although middle scaling of voltage have been implemented, the really useful case is frequency, because the cost
of changing voltage is very high.
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RCKMPI, which uses RCCE too, needs MPB to work. As we want to take profit of fine-grained
power management capabilities with minimal performance penalty, we decided to re-design power
management, accessing directly to the hardware.

As described in the SCC power management tools, we can apply two techniques to save
energy: frequency or voltage scaling. As stated before, frequency can be changed as a per-tile
basis, and voltage must be changed in the voltage domain scope.

Taking this into account, the power adjustments can be done in several ways, each one have
been implemented on a separated submodule:

• If we want to change the frequency in a core, we must take in consideration the fact that it
will slow down not only the involved core, but the other core in the tile.

– If the user decides to change the frequency regardless this situation, the time perfor-
mance may decrease, as the other core may be using the CPU intensively. The Direct
DFS submodule implements this case.

– The other option, however, is to synchronize both cores in a tile and apply the frequency
reduction only when both agree: when they are in a slack period at the same time. The
DFS Intra-tile covers this assumption and, therefore, this option may prevent the loss
of performance.

• We may want to adjust the voltage. In this case, the eight cores included in a voltage domain
(vDom) must be synchronized in order to avoid a performance loose that would end in an
energy increment. Note, however, that to guarantee stability is imperative to adjust the
frequency of all tiles in a voltage domain before adjusting voltage. This feature have been
implemented by the DVFS intra-vDom submodule.

• As stated before, a module that uses the cpu-freq interface have been implemented too in
the Linux cpu-freq submodule, to guarantee the aforementioned portability.

In the following sections we are detailing some aspects of each SCC-related power adjuster
submodule.

6.7.1 Direct DFS

The main goal of this module is to implement frequency adjusting tools. As we explained in the
SCC’s Power management capabilities section (see 2.8), the mechanism to change the frequency is
simply writing a concrete value (corresponding in a register). This value corresponds to the desired
frequency divider level, which must be in the 2 to 16 range.

An application of this method may be using only one core per tile (totaling 24 cores in
SCC), and, thus, not introducing time penalty due to non-slack-synchronization periods. This
allows working at the maximum fine-grained power control, although cannot be used in production
environments, because of the obvious power resources loss.

46



Cross-layer power management for PGAS on SCC Marc Gamell

6.7.2 DFS intra-tile synchronization

To achieve this core-to-core synchronization we need some kind of communication mechanisms.
The SCC mechanism to send messages between cores, is, as we stated before, the Message Pass-
ing Buffer. As said, this buffer is being used for the MPI SCC implementation, so the power
manager can’t use it without a reduction on performance. On the other hand, another possibility
communication is via external memory. This method, however, would be not as fast as we desire.

Therefore, we have been studying extra communication methods that does not require to
use external SCC resources. The result of this study is that we can implement the synchronization
using an unused bit in the hardware-implemented L2CFG configuration register. This register is
present twice in a tile, so we can use 1 bit per core to communicate each other.

The intratile synchronization algorithm to communicates cores have been designed to be
distributed, fast, and to waste very few resources.

This algorithm can work in two modes: using only high and low frequencies, or introducing
a third component, the medium frequency.

• In case of two frequencies, when a core wants to drop the frequency, it checks their mate bit.
If it is set, the frequency is dropped. If it is unset, the core sets to 1 it’s own bit. When one
core wants to rise the frequency, it simply does it and unset both bits. Note that to change
the frequency we use the functionality implemented in the direct DFS module.

• On the other hand, we can use a third component: the medium frequency. In such a case,
the algorithm is completely different. One bit is dedicated to encode the lower frequency
desire, while the other encodes the medium frequency desire. In the initial state, both bits
are low (0) and the highest frequency is set. When a core wants to change to medium or low
frequency, it checks if the corresponding bit is set (1). If it is set, it indicates that the mate
core changed it, so it wanted to adjust the frequency. On this occasion, the core will change
the frequency to the desired level. On the other hand, if the corresponding bit is not set (0),
the core will set it up in order to inform the mate core the desire to change the frequency
level. A different thing happens when some core needs the frequency to be high. In this case,
the core immediately rises it and unsets both bits (0).

Note that this module allows power management in applications that uses the whole SCC
(48 cores) avoiding non-synchronization penalties.

We had been thinking on several more techniques in order to implement this synchronization
like using MPI or UPC gasnet layer. However, although this techniques would guarantee portability
(a property that, by the way, we don’t need, as this module is only useful on SCC), this would
limit performance and would be restricted to UPC PGAS implementation.
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6.7.3 DVFS intra-vDom synchronization

To coordinate all eight cores in a voltage domain, we have used the same mechanism as in inter-tile
communication case: the unused bit in the L2CFG register.

In this case, however, the algorithm is more complex, and is centralized. There is a core called
the controller, and the other seven are considered clients. The controller core is the responsible
of running the synchronization algorithm (in a separate thread, for performance purposes) and,
when it detects that the different cores in a power domain wants to adjust the voltage, it does it,
after adjusting the frequency level accordingly to the table 2.2 shown previously. To maintain the
voltage domain safe and stable, the controller must decrease the frequency before decreasing the
voltage, and must increase the frequency after increasing the voltage, depending on whether the
adjust is aimed to rise or lower the power.

The algorithm determines on run-time which core is the controller and which the clients, in
a fixed way.

The client’s L2CFG bit is only modified by itself, and it indicates, all the time, it’s state:
waiting for low power (1), or waiting for high power (0). When a client modifies it’s own bit, it
sets the controller’s bit too. This action lets the controller know that something happened in the
network. On the other hand note that, the notification of the desire of the own controller is trivial
and can be implemented by using a global variable or an awakening call. When the controller
detects that its own L2CFG bit is set (1), it checks the client’s bits in order to know if all are set
(in this case, the controller may drop the voltage) or some are unset (in this case, the controller
may rise the voltage). Note that this construct minimize the network traffic, as polling packets are
only sent when a core’s state changes.

Note that the synchronization algorithm only allows to submit the desire to change only
at two voltage levels (high or low). However, we can also tune it in order to implement a third
level: medium voltage. This third level is indicated by the clients by setting (1) their bits, exactly
the same way as if they wanted low frequency/voltage. In case the controller detects all bits are
set (1), identifies which is the globally desired level (low or medium) by looking at its own state,
which, as it is local, it can be more expressive and encode one of the three states. The controller
then adjust the level of what its own ‘state’ indicates low or medium frequency and voltage.

At this point, when the controller determines that the voltage (and, therefore, frequency)
must be adjusted, it will send a command to the Voltage Regulator Controller, as explained in the
SCC’s Power management capabilities section (see 2.8).

For testing purposes, the power manager can be configured to change only the frequency,
but synchronizing a whole power domain.
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6.8 Configuration module

The configuration module loads a configuration file which contains parameters dedicated to tune the
power manager components. It can be used to accommodate the power manager to the particular
characteristics of each application. Specifically, the user can choose:

• Which method to filter the requests. For the moment, only three options are available:

– Fixed time threshold.

– Variable time threshold.

– Mixed solution.

• Which method the system should apply to reduce the energy?

– Direct DFS.

– DFS with intratile synchronization.

– DVFS (or DFS, for testing) with voltage domain synchronization.

– Linux cpu-freq interface.

6.9 Statistics

In order to study the behavior of the system, the different modules of this experimental power
manager collects statistical data. This data can be treated or plotted later, when the execution is
done.
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Chapter 7

Experimental results

In this section, we will try to show how the policies described above can be parametrized correctly
in order to achieve energy savings.

As mentioned, the experimental environment have been done on a SCC prototype given by
Intel Labs, configured with the Berkeley UPC runtime and RCKMPI.

7.1 Test suite

On the one hand, we used the previously studied NAS benchmarks in order to study the perfor-
mance of our approach. In figure 7.1 we can see the execution time and the consumed energy of
several classes of the studied NAS: FT, EP and MG. In our tests we are using the highest working
class of each of them: FT class C, EP class D and MG class C.

On the other hand, we used the matmul synthetic application in order to show the effect in
the energy savings of the application’s imbalance.

Finally, we analyzed how application-layer hint’s can help improve the energy savings poli-
cies.
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Figure 7.1: Measured execution time and energy of several benchmarks in the NAS test suite.

7.2 FT

Figure 7.2 shows several tests aimed to compare the application layer-hints with the practical
maximum energy savings. Note that each column shows, with different color tonality, the minimum,
the average and the maximum of several samples with the same parameters. In the first three
columns of figure 7.2 we can see the results of a several base tests, performed, manually, at different
frequency and voltage levels.

The first test represents the base test, which was executed at maximum SCC performance
(800Mhx-1.1V), and, therefore, needing maximum power resources (this test corresponds to a use
of the PM PERFORMANCE application-layer hint). The next two shows the time and energy
results that corresponds to the same execution, but reducing, previously, the performance of the
platform (SCC) to 533MHz-0.85V and 400MHz-0.75V, respectively.

The following two tests were performed by adding only the PM SAVE ENERGY in the
beginning of the FT’s main function (or PM AGGRESSIVE SAVE ENERGY, respectively). As
we can see, there is a correlation between tests base-533MHz and Save energy, and between test
base-400MHz and Aggressive save energy.

The last two ones follows a similar idea, but with PM CONSERVATIVE hint instead of save
energy (this is the default behavior, if no hint is specified, while the power manager is enabled). The
conservative test is a good example of a little energy savings with almost-no time penalty. These
tests are done using DVFS technique enabling only wait and memget requests and filtering these
requests with thresholds policy (20-20 for wait and 300-1000 for memget). The main difference
in both tests are that in the second one the medium voltage level is disabled. Although this
difference is negligible, it have got an explanation: the main goal of medium frequency was to
avoid unclusterized call lengths (i.e. applications that have got calls with almost all length) and,
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Figure 7.2: Delay penalty and energy savings in several FT class C executions with hints.

as we observed in the profiling phase, FT’s calls can be perfectly clusterized and, therefore, the
medium frequency is not convenient in this case.

In table 7.1 we can see the same results previously analyzed in figure 7.2. In this table,
however, the results are numerically detailed, showing more clearly only the detailed average results
(in absolute values and in percentage). Note that the application reduced the energy to a 55 %
(with a time degradation of 145 %) when the user asks for an aggressive approach. A moderated
case can be configured with the non-aggressive save energy hint, which decreases the energy to 65
% but with a much smaller time penalty (120 %).

Test description Delay s (%) Energy J (%)

Base 800Mhz 1.1v 1331.53 (100.0) 107426.70 (100.0)
Base 533Mhz 0.85v 1629.54 (122.3) 67166.95 (62.5)
Base 400Mhz 0.75v 1925.59 (144.6) 59579.00 (55.4)
Save energy 1640.67 (123.2) 69116.97 (64.3)
Aggressive save energy 1932.16 (145.1) 61111.82 (56.8)
Conservative 1385.39 (104.0) 100567.05 (93.6)
Conservative - no med. freq. 1372.91 (103.1) 100339.04 (93.4)

Table 7.1: Delay penalty and energy savings in several FT class C executions with hints. Average
of 50 samples.

As stated before, the last two executions have been done with the most important hint:
conservative. It is the most important in the automation sense, as in this state, the power manager
is the responsible of decision making, instead of the programmer. The power manager will try to
decrease the energy with no- or little- performance penalty by adjusting the frequency and/or the
voltage to the better level for each situation. With FT, this technique allows a reduction of almost
7 % in energy, with as little as 3 % time penalty.
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Note that although this reduction seems useless, the aim of this technique is to automatically
reduce the energy with low time penalty. Furthermore, we should take in mind that this benchmark
is very well-balanced and, therefore, it’s energy saving opportunities decrease, as stated in the
profiling phase.

Note that the hints in the aforementioned tests have been included in the beginning of the
application and non changed during the execution in order to allow a logical comparison needed in
this experimentation part. Remember, however, that the hint’s main goal is to be flexible, robust
and highly powerful for the user, allowing the user to indicate which region of a program is more
suitable to save energy. A better use case will be described later, when talking about Sobel.
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(a) SAVE ENERGY hint.

 0

 20

 40

 60

 80

 100

 0  200  400  600  800  1000  1200  1400  1600  1800

S
C

C
 P

ow
er

 (
W

)

0.75

0.85

1.1

 0  200  400  600  800  1000

C
or

e 
00

 v
ol

ta
ge

 (
V

)

0.75

0.85

1.1

 0  200  400  600  800  1000

C
or

e 
04

 v
ol

ta
ge

 (
V

)

0.75

0.85

1.1

 0  200  400  600  800  1000

C
or

e 
08

 v
ol

ta
ge

 (
V

)

0.75

0.85

1.1

 0  200  400  600  800  1000

C
or

e 
24

 v
ol

ta
ge

 (
V

)

0.75

0.85

1.1

 0  200  400  600  800  1000

C
or

e 
28

 v
ol

ta
ge

 (
V

)

0.75

0.85

1.1

 0  200  400  600  800  1000

C
or

e 
32

 v
ol

ta
ge

 (
V

)

(b) AGGRESSIVE SAVE ENERGY hint.
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(c) CONSERVATIVE hint.

Figure 7.3: Measured power and PM decisions in NAS FT class C benchmark. Controller core
decisions are shown in voltage levels. Note that this levels have a direct correspondence with a
frequency: 1.1V-800MHz, 0.85V-533MHz and 0.75V-400MHz.

In order to show a fine-grained experimental result, we have collected some runtime data
of the application-layer FT hint’s tests. Specifically, the measured real power and the power
management controller’s decisions through a complete execution have been collected, and are shown
in figure 7.3. Note that the save energy hint produces a decrease of the voltage and frequency levels
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to 0.85 V and 533 MHz and the aggressive version produces a larger decrease, achieving 0.75 V
and 400 MHz. Conservative version, as we know, changes the frequency or voltage level only in
the non-filtered waits and memgets. In the corresponding measured power plot we can see the real
effect of this technique.
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Figure 7.4: Delay penalty and energy savings in several base FT executions.

Figure 7.4 shows three executions of the same base test done in the same conditions, which
achieved different variability. This shows that SCC platform exhibits a little instability in the
execution time of several tests. Due to this instability, all tests have been performed several times,
collecting lots of samples (for example, 173 in the case of base test) and showing the average of
them, expecting it to be the most adjusted to the reality.

Until this point, we have described only the most representative tests regarding the cross-
layer power management part of our research. We performed, however, a large test suite with great
variety of configuration parameters and input values, which we are about to introduce.

Figure 7.5 shows several FT class C execution sets using DVFS technique and thresholds
filtering policy. On the one hand, we can remark that the great majority of executions achieves a
energy reduction with little time penalty. On the other hand, note that disabling memget operation
allows better stability: lower energy savings, but minor time penalty. Enabling both memget and
wait operation filtering, and tuning the threshold to 1000-2000, we can obtain the best time penalty
tests: only 0.4 % of delay penalty. However, thresholds of 300-1000 offers the best energy savings
in respect to the base execution: 93.75 % with a 400 MHz low and medium frequencies, 93.61 %
with 533MHz and 400MHz frequencies and 93.40 % with medium frequency disabled and lower
frequency set to 400 MHz.
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(b) Energy savings.

Figure 7.5: Delay penalty and energy savings in several FT class C executions (DVFS and thresh-
olds filtering policy). By default, memget and wait operations are enabled, medium and low
frequency both at 400MHz and wait threshold 20-20. Changes to this default values are indicated
in the X-axis of the figure.
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Continuing with DVFS technique, at figure 7.6 we can see some results obtained with the
moving average filtering policy. The main conclusion is: the the lower the filtering parameter is, the
greater the energy savings is and the more time penalty requires. An experimentally determined
balance point is the corresponding of values 100-300 and 300-300, which corresponds to the 97 %
of energy and 101 % of time and 98 % of energy and 102 % of time, respectively.
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(b) Energy savings.

Figure 7.6: Delay penalty and energy savings in several FT executions with DVFS and moving
average filtering policy. Other default values are the same as in figure 7.5.

Although DFS technique offers less energy reduction in the same amount of time (as de-
scribed in the SCC introductory section), we will show it’s results using intra-tile communication.

Figure 7.7 shows a great variety of experiments that obtained very different range of results
in time penalty and energy savings. Note that there are several tests with big time penalties,
achieving 110-115 % and up to 150 %. On the other hand, fine-tunning the input parameters
having in mind the results of the profiling phase, we can achieve far better results. For example,
disabling memget we achieve 96,4 % of energy with a 2.5 % of time penalty; enabling it and
configuring the threshold to 800-2000 we obtain an average of 93.06 % of energy and a 3.9 time
penalty. The best test case using this configuration, however, achieved 91% of energy savings with
no time penalty.
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Continuing with the same technique, DFSi, we have performed tests with the moving average
filtering policy, which can be seen in figure 7.8. If we are interested in energy savings, in this case,
we can apply a filtering parameter of 100-300 achieving a 95.8 % of energy, while if we are interested
in no-time penalty we can filter requests with a 1000-1000 parameter achieving, however, minor
energy savings.
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(b) Energy savings.

Figure 7.8: Delay penalty and energy savings in several FT executions with DFSi and moving
average filtering policy. Other default values are the same as in figure 7.5.
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7.3 EP and MG

Figures 7.9 and 7.10 shows the results obtained with NAS EP class D and NAS MG class C. The
results show that automatic runtime power management (i.e., PM_CONSERVATIVE policy) does not
provide significant energy savings. However, application level policies allows the programmer to
manage energy/performance tradeoff within a wide range of energy saving and time penalty.
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Figure 7.9: Delay penalty and energy savings in several EP class D executions with hints.
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Figure 7.10: Delay penalty and energy savings in several MG class C executions with hints.
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7.4 Sobel

Sobel is an edge detection application, useful in computer vision, as we described in the profiling
phase. As stated in the corresponding chapter, the most important PGAS call subject to energy
savings is wait (see figure 5.15), and there are two well distinguished phases: shared matrix
initialization and the actual edge detection (see figure 5.16).

In order to do an in-depth analysis of the Sobel behavior we should study listing 7.1. This
listing shows the pseudocode abstracted from the actual Sobel UPC application, without any mod-
ification (this test is considered the base test in this dissertation), in which both phases have been
marked. Note that the initialization phase is performed only by thread 0 (MYTHREAD==0),
which is the responsible of assigning random values to each position of the shared matrix repre-
senting the image, while all the other cores wait for it to finish in the first upc barrier. About the
execution phase, which is performed by all threads in parallel, it is composed of 100 iterations of
the edge detection algorithm.

1 int main(void)

{

// Initialization phase!

if (MYTHREAD ==0) {

6 for(i=0; i<N; i++) {

for (j=0; j<N; j++) {

orig[i].r[j]=rand();

}

}

11 }

// Execution phase!

upc_barrier;

16 for (i=0; i<100; i++) {

Sobel ();

upc_barrier;

}

upc_barrier;

21 }

Listing 7.1: Sobel
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int main(void)

{

PM_CONSERVATIVE ();

4 // PM_SAVE_ENERGY ();

// PM_AGGRESSIVE_SAVE_ENERGY ();

// PM_PERFORMANCE ();

// Initialization phase!

9

if (MYTHREAD ==0) {

for(i=0; i<N; i++) {

for (j=0; j<N; j++) {

orig[i].r[j]=rand();

14 }

}

}

// Execution phase!

19

upc_barrier;

for (i=0; i<100; i++) {

Sobel ();

upc_barrier;

24 }

upc_barrier;

PM_CLOSE ();

}

Listing 7.2: Sobel with hints

Let’s analyze now the influence of the several existing hints, executed in the beginning of the
program (remember that, although this is not useful in real applications, will help us determine
the energy savings potential, as done in studied NAS benchmarks). The execution of the code
showed in listing 7.2 is reflected in figures 7.11 and 7.12, depending on the hint used:

• Figure 7.11a shows the behavior of the performance hint (which can be compared to base
execution, as it maintains 800 MHz and 1.1V during all the execution). In the associated
measured power plot we can see that it maintains around 90W along the execution.

• Figure 7.11b is the equivalent, corresponding to the use of save energy hint, which uses
533MHz and 0.85v. With these values, the power plot measures approximately 45W along
the execution.

• Figure 7.12a corresponds to the aggressive save energy hint, which associates 400MHz and
0.75V and decreases power consumption to 35W, approximately.

• Finally, the usage of the conservative hint is shown in figure 7.12b. In this case, the power
manager adjusts the power levels according to every need.
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(a) Sobel, with PERFORMANCE hint.
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(b) Sobel, with SAVE ENERGY hint

Figure 7.11: Measured power and PM decisions in Sobel application, part I.
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(a) Sobel, with AGGRESSIVE SAVE ENERGY hint
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(b) Sobel, with CONSERVATIVE hint

Figure 7.12: Measured power and PM decisions in Sobel application, part II.
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Figure 7.13: Delay penalty and energy savings in several Sobel executions with hints.

On the other hand, this results are summarized in figure 7.13 and detailed in table 7.2, which
shows the energy savings and the time penalty compared to base test. Note that performance test
have got the same results, due to the same resource allocation. With aggressive and non-aggressive
save energy hint we reduce the energy to 72 and 75 %, respectively, and increases the time up to 193
and 147 %. In this case, the non-aggressive version is much better, as it’s performance footprint
is far lower. The best policy, however, is the automatically determined, i.e. the conservative hint.
It saves 25% of the energy, but with a non-desired 18 % of time penalty. The next step shall be
the analysis of this problem.

Test description Delay s (%) Energy J (%)

Base 800Mhz 1.1v 839.91 (100.0) 73740.44 (100.0)
Performance 846.04 (100.7) 73809.76 (100.0)
Save energy 1240.31 (147.6) 55306.68 (75.0)
Aggressive save energy 1627.46 (193.7) 53696.45 (72.8)
Conservative 991.73 (118.0) 55882.11 (75.7)

Table 7.2: Delay penalty and energy savings in several Sobel executions with hints. Average of 50
samples.
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If we look at figure 7.12b, we will verify that the power manager behavior is correct: during
init phase (from time t=40 to t=340) core 0 (which is the responsible of the initialization) is running
in high frequency and voltage while the other cores are in lowest frequency and voltage. This,
however, doesn’t consider the fact that core 0 initializes each position by sending a write message
to the core that maps that shared memory position. Due to the destination lower frequency, the
message will take much more time to be treated, and hence the higher time penalty. To solve this
situation, the user may use the application-layer hint tools.

In listing 7.3 we show a possible modification in the sobel’s initialization phase that handles
this situation and allows the future inclusion of hints, which let to a similar energy reduction. The
alteration aim is to be aware of which thread is the destination of each init message, i.e. which is
the thread mapping each shared matrix position.

int main(void)

2 {

// Initialization phase!

numLines=N/THREADS;

for(k=0; k<THREADS; k++) {

7 for(k2=0; k2 <numLines; k2++) {

i = (k*numLines)+k2;

if(MYTHREAD ==0) {

for (j=0; j<N; j++) {

orig[i].r[j]=rand();

12 }

}

}

upc_barrier;

}

17

// Execution phase!

upc_barrier;

for (i=0; i<100; i++) {

22 Sobel ();

upc_barrier;

}

upc_barrier;

}

Listing 7.3: Modified sobel
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int main(void)

{

PM_CONSERVATIVE ();

4

// Initialization phase!

numLines=N/THREADS;

for(k=0; k<THREADS; k++) {

9

if(( MYTHREAD ==k)||( MYTHREAD ==0))

PM_PERFORMANCE ();

else

PM_CONSERVATIVE ();

14 // PM_SAVE_ENERGY ();

// PM_AGGRESSIVE_SAVE_ENERGY ();

for(k2=0; k2 <numLines; k2++) {

i = (k*numLines)+k2;

19 if(MYTHREAD ==0) {

for (j=0; j<N; j++) {

orig[i].r[j]=rand();

}

}

24 }

upc_barrier;

}

PM_CONSERVATIVE ();

29

// Execution phase!

upc_barrier;

for (i=0; i<100; i++) {

34 Sobel ();

upc_barrier;

}

upc_barrier;

39 PM_CLOSE ();

}

Listing 7.4: Modified sobel with hints

In listing 7.4 we can see how these hints have been included in the modified version, in order
to allow a better power management. Note that, apart from an initial PM CONSERVATIVE hint,
inside the initialization loop we have included the convenient power manager hint:
PM PERFORMANCE for the worker thread and PM CONSERVATIVE, PM SAVE ENERGY or
PM AGGRESSIVE SAVE ENERGY for the rest. The behavior of the several configurations is
shown in figures 7.14 and 7.15:

• Figure 7.14a corresponds to the base execution and is exactly the same as non-modified
version (see figure 7.11a). This means that this modification does not produce any time
penalty.

• Figure 7.14b shows the behavior of the save energy hint. Unlike figure 7.11b (the correspond-
ing to the unmodified sobel), we can see how during initialization phase core’s frequency and
voltage is adjusting dynamically, distinguishing when a core’s shared memory is accessed. In
the measured power plot this difference are noted too.
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(a) Sobel, with PERFORMANCE hint.
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(b) Sobel, with SAVE ENERGY hint

Figure 7.14: Measured power and PM decisions in modified-Sobel application, part I. This mod-
ification places the hint strategically in order to maximize energy savings without penalize the
delay.
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(a) Sobel, with AGGRESSIVE SAVE ENERGY hint
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(b) Sobel, with CONSERVATIVE hint

Figure 7.15: Measured power and PM decisions in modified-Sobel application, part II
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• The same happens with the aggressive hint, as seen in figure 7.15a. The lowest level in this
case is, however, 400MHz and 0.75V.

• Finally, figure 7.15b shows the application of conservative hint, which automatically slows
down the core frequency when allowed.

As this figures shows the behavior of the controller cores, the high performance adjustments
are not only requested by their corresponding power manager, but by each core of the power
domain.

As a result of the new hint-policy, in figure 7.16 and table 7.3 we can see that delay penalty
have decreased a lot in respect of the unmodified Sobel, achieving at the same time, an even better
energy savings.
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Figure 7.16: Delay penalty and energy savings in several modified-Sobel executions with hints.

Test description Delay s (%) Energy J (%)

Base 800Mhz 1.1v 842.21 (100.0) 73912.96 (100.0)
Save energy 857.83 (101.8) 58691.08 (79.4)
Aggressive save energy 858.87 (101.9) 54535.76 (73.7)
Conservative 854.99 (101.5) 54542.00 (73.7)

Table 7.3: Delay penalty and energy savings in several modified-Sobel executions with hints.
Average of 50 samples.

Remember that with the default configuration power management techniques impact the
execution time very significantly (e.g., in the best case, the energy savings are around 25% with time
penalty of 18%). However, with the programming extensions the time delay is reduced drastically.
With all the three evaluated policies the energy savings are 21–26% with less than 2% of time
penalty.
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7.5 Synthetic imbalanced benchmark: matmul

The main goal of the synthetic matmul application evaluation is showing the potential energy sav-
ings and delay penalty (upper bounds) of both runtime and application-aware power management
techniques for different levels of load imbalance.

Figures 7.17 and 7.18 shows the relative energy savings and time penalty of matmul, ranging
from 3% to 97% of load imbalance, for different power management strategies. Note that the
figure shows the results of different runs. The results show that energy savings are proportional
to the load imbalance: the more imbalanced the application, the more the energy savings. They
also, show that our power management middleware can save up to 50% of energy with little time
penalty, which is very significant since power requirements of the SCC are not very large (up to
125W).

In the following subsections we analyze this results step by step.

7.5.1 Power Management, Runtime layer

The results using only the runtime layer in the power manager (i.e. using default power manager
behavior, which corresponds to PM CONSERVATIVE hint) are described in the following subsec-
tions. Note that in all tests we have been using the same frequencies and voltages (800 MHz,
1.1 V for high power profile, and 400 MHz, 0.75 V for low power profile), in order to help
comparison between results.

Without request filtering

Let’s take a look first at the simplest algorithm: no request filtering (i.e. no threshold, thresh-
old=0). If we consider all the power management requests as suitable, and always apply voltage or
frequency scaling, we will see a big time penalty (7-15 %). This penalty is due to the fact that
most of the requests (if we look at logs, about 200-1200, depending on the specified imbalance)
are very short, and only 36 (remember, each test iterate 36 times) are really long. The results
are shown in figure 7.17a for DVFS, figure 7.17c for DFS with power domain synchronization and
figure 7.17e for DFS with only tile synchronization.

With request filtering

If we try to limit the requests to the 36 significant ones, and discard all others, we will improve the
delay penalty and push it almost to the lowest value (100 %). To achieve this result we discarded
all the requests that took less than 500 ms to finish (i.e. threshold=0.5s). This is shown in figure
7.17b for DVFS, figure 7.17d for DFS with power domain synchronization and figure 7.17f for
DFS with only tile synchronization. Power behavior of executions with the described configuration
can be seen in figures 7.19 for the whole execution and in figure 7.20 for a detailed part of only
4 iterations. Both figures shows the whole SCC power dissipation (top subplots) due to power
management decisions, for three levels of imbalance: 3%, 51% and 97%.
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(a) PM no filter, DVFS
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(b) PM filter, DVFS
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(c) PM no filter, DFS, vDom sync
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(d) PM filter, DFS, vDom sync

R
el

at
io

n 
w

ith
 b

as
e 

te
st

 (
%

)

Imbalance (%)

Base test

Time penalty

Energy benefit
 50

 60

 70

 80

 90

 100

 110

 120

 0  50  100

(e) PM no filter, DFS, tile sync
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(f) PM filter, DFS, tile sync

Figure 7.17: Energy savings and time penalty of matmul with different policies and load imbalance
levels. Executed with default power manager behavior (corresponding to PM CONSERVATIVE
hint).
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7.5.2 Power Management, Application Layer

The matmul benchmark may be modified in order to allow the usage of application-layer policies.
The modified pseudo-code is the following, in which we have strategically placed
PM AGGRESSIVE SAVE ENERGY hint in order to exploit imbalance:

-> PM_PERFORMANCE();

for (i=0 ; i<N ; i++) {

perform A matrix multiplications, distributed in 48 cores;

if(MYTHREAD is in Voltage Domain X)

perform B matrix multiplications;

else

-> PM_AGGRESSIVE_SAVE_ENERGY();

upc_barrier;

-> PM_PERFORMANCE();

}

Figures 7.18a and 7.18b show the results obtained taking the power management decisions
via programming extensions, using DVFS and only DFS, respectively. The time penalty is similar
using both techniques; however, the energy savings with DVFS are higher (about twice) than
the savings with only DFS. This is possible because the synthetic load imbalance is homogeneous
among all the voltage domains.
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(a) PM hint, DVFS
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(b) PM hint, DFS, vDom sync

Figure 7.18: Energy savings and time penalty of matmul with different policies and load imbalance
levels. Executed with strategically placed PM AGGRESSIVE SAVE ENERGY hint.

It is worth noting that results obtained using runtime power management and using program-
ming extensions are very similar, which means that runtime power management works efficiently
with the proposed filtering mechanisms.
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(a) Matmul, with 3 % imbalance.
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(b) Matmul, with 51 % imbalance.
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(c) Matmul, with 97 % imbalance.

Figure 7.19: Measured power and PM decisions in Matmul application. Whole execution with 36
iterations.
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(a) Matmul, with 3 % imbalance.
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(b) Matmul, with 51 % imbalance.
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(c) Matmul, with 97 % imbalance.

Figure 7.20: Measured power and PM decisions in Matmul application. Detailed reduced execution
with only 4 iterations.
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7.5.3 Algorithm impact

We can execute all the program logic (allowing initializations, external requests, filtering, core syn-
chronization), but if we disable (thanks to a configuration parameter) the code that actually sends
the voltage or frequency scaling command, we would see the impact of the algorithm, compared
to the mean of the base executions.

As shown in figure 7.21, the impact is null (points, all surrounding the base test line, are
not exactly 100 % due to noise).
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Figure 7.21: Impact of the power manager on delay and energy.
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Chapter 8

Conclusion

In this work we have explored application-aware cross-layer power management for PGAS ap-
plications on many-core platforms, and presented the design, implementation and experimental
evaluation of language-level extensions and a runtime middleware framework for application-aware
cross-layer power management of UPC applications on the SCC platform.

Results obtained from our experiments conducted on the SCC platform showed that certain
PGAS operations (e.g., wait and memget) need to be considered for power management. Perform-
ing power management during long calls of these operations can provide large energy savings, while
during short calls can penalize both execution time and energy consumption. Furthermore, PGAS
operation calls may cluster by length, which facilitates the identification of long and short calls. If
they do not cluster, using an intermediate power mode results in better energy savings.

Power management during memory accesses provides surprisingly significant energy savings
even though memory is shared among all the cores. We expect larger energy saving in distributed
memory systems.

We also have observed that large energy savings can be obtained with imbalanced applica-
tions; however, blocking times in the barriers are not usually homogeneous over all cores.

Our experiments also show that in the case of applications where application-level power
management does not provide any significant energy savings, a cross-layer approach can be used
to achieve a wide range of energy and performance behaviors, and appropriate trade off can be
selected.

Our evaluation also reveals several power management limitations of the SCC platform. For
example, frequency scaling is fast (20 clock cycles) and only needs to synchronize 2 cores, but the
energy savings are not very large; rather, voltage scaling provides larger energy savings, but the
latency is longer (40 ms) and needs to synchronize 8 cores. An ideal power management would scale
voltage and frequency per core; however, this level of granularity would require a large amount of
the die, increasing at the same time the per-core power requirements [5].
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8.1 Future work

Our ongoing and future work include:

• Exploring other PGAS models (e.g., Co-Array Fortran).

• Using the implemented power manager middleware in other hardware platforms like regular
power-aware multi-core cluster or a pseudo-cluster with several SCC’s via an external net-
work. The framework has been designed to be modular, where the only platform-dependent
module is the implementation of the power adjuster. A module that connects to cpu-freq
(the standard Linux way to change frequency) have been already developed.

• Studying other possibilities that SCC can provide us, for example study which power man-
agement possibilities the cache memory can give us.

• Using per-core performance counters in order to detect application profiles and adjust fre-
quency and/or voltage accordingly.

• Exploring distributed memory systems based on multi- and many-cores architectures. The
latest might require extending runtime libraries (e.g., GASNET) to bypass memory accesses
to external memory (i.e. exploit the hardware-implemented shared memory).

• Improving the core request filtering, by extending the prediction algorithm.

• Completing the cross-layer power management by implementing a compiler layer able to
determine which are the main loops, more important barriers or simply adding some notifi-
cations to the runtime power manager.

• Adding an extra prediction/post-compiler layer : after the first compilation of a given user ap-
plication, automatically execute some tests and collect data that may help power-management
decision-making or request filtering, at runtime.

8.2 Personal opinion

As shown in related work, I discovered how competitive is the world of research. Maybe thanks to
this competition, the technology progresses so fast.

Apart from improving my technical skills, this project allowed me the opportunity to ex-
plore amazing topics and being involved in an actual cutting-edge research project, working with
an extremely experimental platform (Intel’s SCC), and a novel language paradigm (PGAS) and
runtime (Berkeley UPC). It also let me learning important insights of the research methodology
during my internship at the Center for Autonomic Computing (CAC) at Rutgers University.

Although this document gives a complete view of the work done, the large amount of taken-
decisions and generated-information across the research period make very hard to show the number
of blind alleys that we explored before arriving to a dead end and all the engineering decisions.
An important lesson from this research is that obtaining novel and significant results is hard but
most important, that negative results can be meaningful and very useful.

To sum up, the overall balance is very good, and all the conclusions and solutions drawn
compensate by far the invested effort.
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