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  Abstract 

The Domain Name Service (DNS) is a prevalent protocol used in computer 

communications, used to translate domain names to addresses that can be routed to via 

de Internet Protocol (IP). One of the main characteristics of DNS is the use of plaintext 

requests and responses, leaking information even in traditional secure communications; 

a client might resolve a server's IP address using plaintext messages, and then 

cryptographically protect its exchange with the server itself. 

DNS over HTTPS (DoH) is a protocol specification introduced in the IETF RFC 8484 

(2018), which provides a mapping of regular DNS requests and responses over TLS-

encapsulated HTTP messages. TLS (Transport Layer Protocol) and HTTP (HyperText 

Transfer Protocol), known in conjunction as HTTPS, are the two most common 

methods of communication with web servers, each providing security and structure 

respectively. DoH, then, provides not only the cryptographic benefits of TLS, but also 

the masquerading of DoH communications as regular web traffic. 

Although recent work has aimed to identify the content of DoH communications by 

using different fingerprinting techniques, distinguishing regular TLS-encapsulated 

HTTP traffic from DoH remains an unsolved challenge. 

In this thesis, passive analysis of DoH traffic is presented, as well as a method and 

implementation for its detection. 
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1. Introduction 
 

1.1. Context 
 

The Domain Name Service (DNS) is a predominant protocol in computer 

communications. In the current landscape, mostly every connection between two 

endpoints is preceded by a domain resolution query and response to translate a known, 

text-based domain name, to a numerical Internet Protocol (IP) address. 

 

In the recent years, the privacy of this protocol has become a topic of interest in the 

field of information security research, as it can potentially leak data about an user's 

activity on the World Wide Web, among other Internet services [1], [2]. 

 

The reason for these issues is that, traditionally, all exchanges using the DNS protocol 

are done without any form of encryption or authentication. To further illustrate the 

workings of DNS, a usual sequence of events for a domain name resolution is explained 

below. In a DNS resolution procedure there are three types of endpoints: a client, a 

recursive resolver, and several iterative resolvers. Iterative resolvers consist of the root, 

TLD and authoritative resolvers. 

 

 
Figure 1 

 

To follow the usual sequence of events, let us suppose that a client wants to access the 

domain www.example.com through a web browser. To establish the connection over 

which the web data will be transmitted, the client needs to translate said domain to an IP 

address. The process to perform this translation is illustrated in Figure 1
1
. 

                                                 

 
1
 QNAME minimization [81] is used in the figure for simplicity. 
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First, the client sends its request to the recursive resolver, which in turn will perform 

requests against several iterative resolvers. It must send a query to the root resolver for 

the .com TLD resolver. The same process is repeated against the TLD resolver, asking 

for the example.com authoritative resolver. Finally the recursive resolver can ask for the 

for the www subdomain within the example.com domain and return the IP address to the 

client. 

 

The description above matches the workings of the DNS protocol for over the last 30 

years [3], [4]. As previously mentioned, the exchange between the client and the 

recursive resolver is performed in plaintext (UDP port 53), which can serve malicious 

actors for several purposes. 

 

1.2. DNS threats 
 

The lack of protection mechanisms inherent to the DNS protocol incur in several 

threats, from the traffic analysis perspective, related to authenticity, integrity and 

privacy. For these threats to be valid, we assume an attacker situated in the path 

between the client and the recursive resolver, either locally (for example, an adversary 

connected to the same Wi-Fi network) or on the path through the public network an (an 

ISP). Figure 2 displays the described threat model. 

 

 
Figure 2 

 

Firstly, the data sent over the network has no integrity mechanisms, meaning that it 

might be altered on the fly by a third party, and the client would have no way of 

noticing. Additionally, due to the lack of authenticity, an attacker can masquerade as the 

original DNS resolver, by means of what is known as a man-in-the-middle attack 

(MITM) [5]. If an adversary is able to deploy such an attack, it can serve selected IP 

addresses to the client, redirecting its traffic to malicious servers. 
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Additionally, attackers can exploit the lack of privacy in the protocol. If an adversary 

controls the DNS traffic's pathway, it can selectively choose to block said traffic to 

perform certain types of censorship. Another more passive technique would be to 

capture and analyze DNS traffic to collect data about the user's activity. Given the 

pervasiveness of DNS traffic, this could result in a total loss of privacy for a World 

Wide Web user. 

 

As a remainder, note that there are other threats related to DNS, such as the privacy of 

the data collected by a resolver about its users, that are not taken into account from a 

purely traffic analysis-based perspective. 

 

1.3. DNS security mechanisms 
 

To solve DNS's security problems, a standard for several security extensions, was 

proposed as far back as 1999 [6]. DNSSEC, the name given to this proposal, addresses 

data integrity and endpoint authenticity, but does not aim to solve problems with 

privacy. These additions to the protocol allow for responses indicating the IP address 

for a certain domain (or even the non-existence of it [7]) to have cryptographic integrity. 

Therefore, it aims to solve issues with resolver impersonation and traffic manipulation, 

either with censorship or traffic redirection purposes. However, as stated, DNSSEC 

leaves privacy concerns untouched, and moreover, it has seen low adoption rates [8]. 

 

HTTP (HyperText Transfer Protocol) is a protocol that has faced similar challenges in 

the past. It is the predominant protocol for web communications since the 1990s [9], but 

as DNS, lacks the adequate security mechanisms. Thus, the kind of concerns described 

above used to be present for this protocol too, before the introduction and widespread 

adoption of SSL (Secure Sockets Layer) [10] and then TLS (Transport Layer Security) 

[11], its successor. The mapping of HTTP over one of these two protocols is referred to 

as HTTPS (HTTP Secure) [12]. TLS, and previously SSL, act as an intermediate layer, 

providing encryption, integrity and authenticity. 

 

It follows, then, the use of TLS as an intermediate security layer for the Domain Name 

System protocol: DNS over HTTPS (DoT) [13]. Much like in HTTPS, DNS queries are 

encapsulated using the TLS protocol, which provides a straightforward specification to 

introduce the encryption and authentication properties of TLS to DNS with a minimal 

amount of modification to the original protocol; other than the switch from UDP port 53 

to TCP port 853, and the TLS encapsulation, DNS remains mostly the same. 

 

However, adoption has not been unified, as DNS over HTTPS (DoH) has also been 

proposed as an alternative for DNS security [14] in 2018. Although the explicit 

cryptographic properties remain the same as in DoT, DoH is sent to TCP port 443, the 

default port also for HTTPS, which helps the masquerading of DoH as regular HTTPS 

traffic. The main goal, however, is to provide a simpler interface for web applications 

(i.e. browsers). 
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Briefly, DoT and DoH propose the network stacks illustrated in Figure 3 for 

transmitting DNS queries. 

 
Figure 3 

 

Unlike DoT, DoH introduces several alternatives when it comes to sending DNS data. 

The first way, known as wire format, consists on simply encapsulating a regular DNS 

query in an HTTP message, either a GET or POST request, meaning that the resolver 

must be able to parse and understand the HTTP protocol. A GET request will usually 

take the following form: 

 

https://dns-resolver.com/?dns=<base64-encoded-query> 

 

While in a POST request, the query will be sent in the body of the HTTP message. 

Additionally, a second format which uses JSON structures was introduced by Google 

and later standardized [15] adopted by other providers [16]. This second way of DoH 

communications, although not included in the official IETF RFC, allows for more 

simplicity, avoiding the need for a DNS format parser and allowing requests and 

responses to be text-based. Several major browsers introduce the option of using the 

JSON format [17], [16], despite the fact that it is not enabled by default. Figure 4 shows 

a sample response for a type AAAA query for the example.com domain [16]. 
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Figure 4 

 

DNS over HTTPS introduces several other differences from DNS over TLS, such as the 

use of HTTP/2 mechanisms (server push, header compression, stream parallelism, etc.), 

the use of TLS 1.2 or higher as a consequence, and the integration with the overall 

HTTP ecosystem, such as caches, proxying and authentication. The key difference, 

however, is that, although both alternatives have seen adoption in different areas, it is 

DoH that has been selected as the security mechanism for DNS in web browsers [18], 

[19], [20], [21], [22], mainly due to the easier interoperability browsers have with HTTP 

APIs. This fact alone, along with the integration already in place, puts this protocol in 

the spotlight for network security research. 

 

Although research on both DoT and DoH fingerprinting is available [23], [24], [25], the 

problem of detection remains poorly researched. While DoT traffic can be identified 

due to the use of a specific TCP port, DoH shows no apparent distinction to regular 

HTTPS traffic. Therefore, the goal of this work is centered around DoH identification. 

 

1.3. Motivation and objectives 
 

From an adversary's perspective, it is of interest to detect DoH traffic. The intents might 

include user monitoring, analytics or censorship. In the simplest scenario, an attacker 

might just be interested in detecting DoH traffic to block it, preventing a client 

accessing a certain domain, or forcing the client to fall back to plaintext DNS. In more 

elaborate attacks, the adversary might want to fingerprint encrypted DNS requests to 

monitor the user's activity, as exposed in the research mentioned previously. The kind of 

attacks and techniques described above, such as censorship or advanced traffic analysis, 

are not only used by individuals, but also state-sponsored agencies and ISPs [26], [27], 

[28], [29]. 
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Therefore, the goal of this work is to demonstrate DNS over HTTPS detection, 

independently of per-case variables such as destination IP addresses, with the intent of 

offering a general overview of the protocol's weaknesses, rather than proposing a 

solution specific to one certain situation. The proposal is to do so through the 

obtainment of a traffic capture dataset, extraction of macroscopic features on a per-

connection basis, and using machine learning classifier algorithms to perform detection. 

 

By exposing the characteristics of a DNS over HTTPS connection from the network 

analysis perspective, the final objective is to provide a reference for privacy 

enhancement in DNS security.
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2. State of the art 

 

This section is structured as follows: first, a basic overview of the relationship between 

traffic analysis and machine learning is given. Then, general research on DNS over TLS 

and DNS over HTTPS is reviewed in order to establish a relationship to our analysis. 

Finally, existing solutions to the problem of DoH detection are reviewed. 

 

2.1. Traffic analysis and machine learning 
 

Traffic classification is a common problem in the field of information technology and 

computer science. The application of machine learning to this task is no longer a new 

field of research, with studies on this subject dating back as far as 2005 [30]. 

 

In the field of machine learning, there are two main methods to train an algorithm: 

supervised and unsupervised. In both types, an algorithm's task is to classify a set of 

input samples into a set of output classes based on the samples' features. In a supervised 

model, these classes are already appended to the input samples, meaning that the 

algorithm will need to adapt to match each sample with its output class. On the other 

hand, in an unsupervised model there are no predefined class, and thus the algorithm 

will classify the samples into new classes (also known as clusters) autonomously. 

Additionally, other hybrid methods that combine supervised and unsupervised training 

exist. Although unsupervised traffic classification is a field with existing research [31], 

[32], [33], we focus on supervised learning, as, for our current problem in hand, the 

output classes are already known: HTTP and DoH. 

 

In an early study [34], several classic classifier algorithms (Naïve Bayes Tree, C4.5 

Decision Tree, Random Forest and KNN) are compared in a task of traffic classification 

for very different types of applications (DNS, HTTP, POP3, FTP, several P2P 

applications, etc.), with good results for Random Forest C4.5 and KNN. This research 

serves as an early reference, but the types of traffic differ widely in purpose and 

characteristics. 

 

Another early reference can be found in [30], where a survey on different machine 

learning techniques for traffic classification is carried out. This paper does not focus on 

a specific methodology to classify data, but rather offers an overview on the different 

methods to accomplish it (supervised/unsupervised, packet-level/connection-

level/multi-flow level samples, common metrics and other techniques). An important 

element mentioned in this survey is the use of correlation-based feature selection 

techniques; an example of this type of selection is the Pearson's correlation coefficient 

method, which is explained in section 3.2. The authors also provide a general high level 

schema for supervised traffic classification experiments, shown in Figure 5. 
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Figure 5 

 

A final conclusion to draw from this survey is that up until that point in time, most 

classification efforts were centered around the identification of traffic coming from very 

different applications (web, Telnet, FTP, mail services, P2P, etc.). Additionally, the lack 

of ensemble algorithms (machine learning techniques that encompass a number of other 

known algorithms to yield a more accurate prediction) such as AdaBoost and Random 

Forest is a highlight. 

 

In [35], the authors set out to detect different HTTPS-encapsulated services through the 

use of traffic fingerprinting, where traffic for these different services is generated, and 

then the data extracted is use to detect said services in the wild. This paper does not aim 

to detect the behavior of different protocols per se, but rather the differences in several 

web services such as Google Maps, Google Drive or several Dropbox applications. This 

problem, by design, is more open, and the classification tags (extracted from the TLS 

SNI extension, explained in section 2.3) can be arbitrarily big, depending on the number 

of services one aims to detect. They use the Naïve Bayes Classifier, Random Tree, C4.5 

Decision Tree and Random Forest. 

 

In [36], the authors face a very similar problem to the one in hand: binary classification 

of encrypted HTTP streams. In their case, however, their goal is to characterize HTTP/1 

and HTTP/2 flows. Each sample (a TCP connection) is labeled according to the TLS 

APLN extension (explained below in section 3.2). As in previous studies, they employ 

Random Forest, C4.5 and Naïve Bayes Tree, as well as a Bayesian network, being 

Random Forest the one with the best results across all metrics. This study serves as a 

methodology reference for dataset treatment (separating each network connection as a 

sample), as well as algorithm evaluation. 

 

On top of the mentioned research, it is necessary to mention other, more advanced 

approaches. In [37] the authors employ correlation between flows to identify webmail 

access from other types of traffic. In [38], a Fast Fourier Transform (FFT) is applied to 

a compiled sequence of packet sizes, ignoring flow-level statistical characteristics, and 

obtaining very high accuracy results with a Random Forest classifier. Finally, several 

approaches make use of deep learning networks to classify streams[39], [40], [41]. The 



9 

 

deep-learning approach does not have a significant difference in methodology, as a set 

of features needs to be generated to feed into the network; however, deep learning 

techniques can allow the detection of more non-linear relationships, and even variable-

length inputs in the case of recursive neural networks. 

 

Overall, although research on traffic classification using machine learning has been 

present for over 15 years, few studies focus on a similar case as the one in hand, 

especially taking into account that DNS over HTTPS is not a completely separate 

protocol from HTTPS, but rather the addition of a different payload to HTTPS in order 

to transport different data. However, these studies provide a solid reference for metrics 

(such as confusion matrixes, accuracy or F-measure, explained in section 3.3) and the 

selection of proven algorithms such as K-Nearest Neighbors and different decision 

trees. Additionally, these studies can provide an idea towards the kind of features to 

extract from a network flow, but it is also assumed that this selection is problem-

specific, i.e., relevant features for solving one problem might not apply directly to other 

types of classification. 

 

2.2. DoT and DoH fingerprinting 
 

Research on DNS over TLS and DNS over HTTPS is scarce, and even then, efforts 

mainly focus on traffic fingerprinting. 

 

One of the main sources for research on DoH is found in [25]. They focus their efforts 

on fingerprinting the traffic patterns triggered when visiting a set of known websites. 

They characterize this pattern with a series of packet sizes, grouping them in n-sized 

groups, which they call n-grams; part of their research focuses on comparing this 

technique to other fingerprinting methods such as k-Fingerprinting [42] , CUMUL [43] 

and DF [44]. They perform tests on only-DoH, only-HTTPS and mixed traffic to 

recognize fingerprints, although they filter DoH traffic by destination IP address. Their 

results score over 91% precision with the Random Forests algorithm. As a 

countermeasure, they propose the elimination of packet size information by padding to 

constant-size messages. 

 

In [45], authors take a similar approach to the previous study, in that they take a 

sequence of packet sizes to analyze and fingerprint, this time working with the security 

padding proposed for DoH in 2018 [46]. There are two additional differences in their 

approach: they examine only downstream packets (from resolver to client), and they 

take into account the gaps between messages, meaning that their sequences consist of 

interleaved message sizes and time gaps, not just the first. However, the goal is the 

same: to accurately identify a client visiting certain websites. 

 

Through the use of the k-Nearest Neighbors algorithm, they achieve high accuracy 

results in several scenarios, up to a maximum of 95%. They conclude that the addition 

of padding does not completely solve the issue of DoH and DoT fingerprinting. As they 
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express it, packets can be analyzed in the dimensions of counts (number packets), sizes 

and time - padding only addresses sizes. This is not sufficient because sequences can be 

unique enough for different websites despite of message padding. They propose 

constant-rate sending as a countermeasure. 

 

The final study we look at is found in [23]. Here, the authors focus on DoT rather than 

on DoH, but it is still deemed relevant. Again, requests and responses are treated as a 

sequence of packets with three main characteristics: timestamp, size and direction. From 

here, several statistics are compiled for each website (mean, median, cumulative values, 

time intervals between packets), as well as other metrics such as time elapsed until the 

reception of N bytes and total transmission time. They compare a variety of classifiers 

(Simple Logistic, Naïve Bayes, Random Forest, AdaBoost and other less known 

algorithms as SMO and J48 Decision Tree). They find that both Random Forest and 

AdaBoost yield high accuracy scores (false negative rates below 7% and false positive 

rates below 5%). They also measure the loss of accuracy with the introduction of 

padding. 

 

While DNS query deanonymization is an important issue, traffic identification is a 

preceding step which these studies take for granted. However, these studies display 

several characteristics particular to DoT and, more interestingly, to DoH, such as its 

burst-like size nature, and the importance of packet sizes and inter-arrival times. 

 

2.3. DoH detection 
 

For DNS over HTTPS detection, very little research is available. This is attributed to the 

fact that it is a young protocol, and that solutions do not seem trivial enough to 

implement with basic heuristics. 

 

The main resource for DoH detection is found in [47]. In this study, several methods for 

DoH detection are proposed, and their feasibility is discussed below. 

 

TLS inspection is the first method mentioned. This is, evidently, the most invasive 

technique for detection, as it requires complete traffic decryption and inspection to find 

out which network flows carry DNS data. A basic setup would consist in the installation 

of a middlebox that would decipher and inspect traffic to perform detection. Figure 6 

illustrates this configuration in a very basic manner. 
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Figure 6 

 

TLS decryption requires both technical and bureaucratic control over the network, since 

all traffic is going to be inspected. It most likely requires control over the involved 

clients inside the network too: as a TLS middlebox is installed, clients need to accept it 

as a valid endpoint, as its hostname will not match the one the clients are trying to 

access. 

 

Either clients are forced to accept the middlebox's TLS certificate manually (usually 

through an option given by web browsers), or the new certificate needs to be added as 

trusted on the client machine. Even then, this will not solve issues when dealing with 

pinned certificates [48]. Using this mechanism, the client application is bundled with 

certain trusted authority certificates, and it expects to find these authorities in the 

verification chain. If pinned certificates are in use, the connection will fail, since, even 

if the middlebox's certificate is trusted, it will not match what the application is 

expecting. 

 

Overall, this technique is only feasible under certain conditions such as complete 

control of the network, and clients being willing to have their traffic completely 

decrypted and inspected. 

 

The next solution proposed is application logging. Mozilla Firefox, for example, offers 

the option to log every DNS request (whether encrypted or not) [49]. As with the 

previous alternative, it requires administrative control over the client performing the 

requests, which might not be possible; personal mobile devices and laptops are harder 

or impossible to monitor this way, and even then, every single client inside the network 

needs to run an application that can log DNS queries, and each one needs to be 

configured. Overall, this technique requires a great amount of administrative work to 

establish and maintain. 

 

Finally, two open source tools are proposed. The first one is Zeek [50], an open source 

network analysis and security monitoring tool. The approach here is to analyze Zeek's 

logs to detect sites visited for which there have been no regular DNS requests. This 

presents two problems: the difficulty of identifying visited sites when encryption 
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(HTTPS) is in use, and the fact that the actual DoH connections are still not identified, 

even if its presence can be confirmed. To supply this, the use of JA3 fingerprints [51] is 

suggested. The way this kind of fingerprint works is through the computation of a hash 

string, employing parameters observed during the TLS handshake. 

 

This approach is useful when dealing with malware campaigns; the main idea here is to 

block fingerprinted command and control servers so that malware cannot connect to 

them an receive instructions. These servers are usually kept static, as malware needs to 

find them autonomously, but DoH servers may not be kept the same by the client. An 

user might switch to a new DoH resolver, or might simply employ an HTTPS proxy. 

 

The second tool suggested is RITA (Real Intelligence Threat Analytics) [52]. This tool 

makes use of Zeek logs to perform detection on beaconing activity amongst other 

suspicious traffic activities. While the author shows that RITA is able to mark DoH 

connections as beaconing activity, no quantitative metrics are given regarding accuracy 

or false positives. 

 

It is mentioned in the original document that the tests consist on a web browsing session 

with a duration of 5 minutes, which is lower than what is expected from a regular 

user[53]. As we explain below, beaconing activity is defined by constant times between 

packets over time and constant packet sizes over time. Therefore, the question of 

whether DoH connections still present beacon-like characteristics over longer periods of 

time can be asked. 

 

The result given for RITA is interesting nonetheless, as it yields a hints towards the 

characteristics of DoH traffic, at least at the time scale of the experiment presented in 

this study. By analyzing the tool's source code
2
, the characteristics deemed beacon-like 

by RITA are, among others: 

 

 Small packet sizes. 

 Low skewness on packet sizes. 

 Low skewness on time between packets (constant throughput). 

 

Finally, on top of the proposed methods proposed in the aforementioned research, there 

are two other approaches that could be taken to detect DNS over HTTPS traffic. Both of 

these consist on keeping updated blacklists of both IP addresses and SNI (Server Name 

Indication) values [54]. 

 

For IP addresses, it would be trivial to compile a list of known DoH resolvers and 

monitor connections towards it. While this could be a very simple to implement 

approach, right now there are over 40 known resolvers [55], and it is reasonable to 

                                                 

 
2
 https://github.com/activecm/rita/blob/master/pkg/beacon/analyzer.go 
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expect this number to increase over time, given how young the protocol is and the 

recent adoption by major browsers, so this solution might not scale over time. 

Moreover, a simple HTTPS proxy would completely defeat this approach. 

 

As for the SNI value, it is a TLS extension which indicates the hostname the client is 

trying to connect to, so when it is sent unencrypted, it leaks information about the 

communication; the string sent could be used to blacklist DoH resolvers. On top of 

having the same issue as with IP addresses, where an updated database needs to be 

maintained, other problems arise, such as the possible absence of this field, or it being 

encrypted, as it has been recently proposed [56]. Even in its presence, the modification 

of this field for mischievous purposes is already a state of the art technique [57]. 

 

Overall, none of the previous solutions seem to be viable, complete or clarifying 

enough. The first two approaches, TLS inspection and application logging, involve a 

violation of user privacy and excessive administrative control, which might not be 

possible due to technical or bureaucratic reasons. On the other hand, server 

fingerprinting, IP address collection and SNI monitoring are reactive solutions to a 

young and evolving problem, and do not seem to scale on the long run. Moreover, these 

can be circumvented easily with the use of HTTPS proxies, which conveniently work 

with DoH traffic. Finally, a more pure traffic analysis solution is proposed through the 

use of Zeek and RITA, but no quantifiable metrics are given. 
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3. Methodology 
 

DNS over HTTPS is a mechanism intended for use in web browsers, given their easier 

interoperability with web APIs, allowing for a self-contained domain name lookup 

mechanism, as opposed to relying on the underlying operating system. Therefore, using 

a web browser to generate DNS over HTTPS traffic not only the easiest, but the most 

adequate technique to obtain this kind of traffic. The characteristics of both HTTPS and 

DoH connections generated this way will match that of a regular user. 

 

Web browsers employ TCP (Transmission Control Protocol) to open connections to 

web servers, with the intent of sending and receiving HTTP requests and responses. 

These requests are cryptographically protected by TLS. When using DoH, some of 

these connections will transport HTTP traffic to and from regular web servers, whereas 

others will transport HTTP-encapsulated DNS data. 

 

The proposed methodology is to automate a web browser to visit a sequence of 

websites, generating in the process both HTTPS and DoH traffic. From this traffic, each 

connection is analyzed, and several macroscopic features will be extracted, hoping that 

they will be of use to characterize the difference between DoH and regular HTTPS. This 

is, therefore, a binary classification problem. 

 

Section 3.1. Experiment design explains the tools and techniques used to generate 

encrypted traffic through the use of web browsers. Section 3.2. Feature extraction and 

selection offers an overview of the selected traffic features and the reasoning behind 

their selection. Section 3.3. Classification algorithms and evaluation methodology gives 

an explanation of the selected machine learning classification algorithms, as well as the 

metrics used for their evaluation. 

 

3.1. Experiment design 
 

As previously explained, the most accessible and adequate method to obtain user-like 

web traffic is by using a browser. We make use of the Selenium library [58] to automate 

a DNS over HTTPS-supporting web browser, Mozilla Firefox version 68.8.0esr. During 

the experiment, the browser will visit 1500 randomly selected web sites from the first 

10.000 sites 
3
 in the Alexa Top ranking [59] as of March 29th, 2020. 

 

Selenium is a popular library available in several programming languages that allows 

control and automation over web browsers. It acts as an interface between the user and a 

binary executable which called WebDriver [60], hiding the internal workings of the 

specific browser implementation through a standardized interface. Figure 7 shows the 

                                                 

 
3
 https://gist.github.com/chilts/7229605 
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aforementioned schema. Several browser developers provide a WebDriver binary along 

with their product, like Chromium [61], Mozilla Firefox [62], Opera [63] and Internet 

Explorer [64]. We use Selenium 3.141.0 with geckodriver (Firefox) version 0.26.0. 

 

 
Figure 7 

 

To activate the use of DNS over HTTPS, Mozilla Firefox has several configuration 

options under the network.trr section [65] (TRR stands for Trusted Recursive 

Resolver). Of those options, two need to be specifically configured: 

 

network.trr.mode = 2 

network.trr.uri = https://mozilla.cloudflare-dns.com/dns-

query 

 

The mode option specifies to use DoH whenever possible, which is the default value 

when a user enables DoH through the graphical interface. The URI parameter allows us 

to select the specific recursive resolver; in this case Cloudflare is selected as it was the 

first one to be added to Firefox [18]. 

 

During the initial experiments, it became apparent that web browsers actually keep DoH 

connections open for longer periods of time than usual HTTPS connections. This is 

presumably done to avoid closing and reopening a TLS session and the underlying TCP 

connection, which incur in a time overhead due to protocol handshakes. Web browsers 

then try to maintain these connections active for long periods of time, so that when a 

DNS request needs to be sent, the channel is immediately ready. While this behavior is 

characteristic of DoH connections, it hinders our ability to obtain a significant amount 

of samples to characterize them. If the experiment consisted on visiting sequentially a 

number of web sites, the number of DoH connections would be substantially low, 

especially when compared to the number of regular HTTPS samples. 

 

To avoid this effect during our experiments, but without limiting the duration of these 

connections substantially, a waiting mechanism was introduced. After visiting a web 

site, the browser will halt for a period of time, selected from a discrete uniform 

distribution between 0 and 150 seconds before visiting the next site. This will cause 
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DoH connections to be closed at random times due to inactivity, and therefore 

increasing the number of final samples. 

 

To reduce the time taken to perform the experiment, two browsers were launched in 

parallel, dividing the workload between them. Each of them is independent, and 

therefore will not share any DoH connections to perform queries; this would not be true 

if tabs within the same browser were employed. 

 

Note that this waiting mechanism does not intend to be a realistic behavior model. 

While a user might display a similar load-then-browse pattern, the waiting parameter is 

chosen only as a means to increase the number of DoH connection samples, while at the 

same time allowing them to have their usual above average time durations. 

 

Once the browser is ready to be launched, traffic needs to be captured. To do this, the 

Tcpdump [66] utility is used with a capture filter, as we focus on traffic directed to port 

443. Note that, since traffic can be filtered with a simple capture filter, even in a real 

world scenario, there is no need to introduce interfering traffic as suggested in [30]. The 

output file has a PCAP format that can be analyzed by other tools. Specifically, for 

traffic processing, a closed-source tool internal to the Telecommunications Networks 

and Services research group at the Public University of Navarre is used. This tool reads 

the network trace file, reconstructs TCP streams and outputs information in text format. 

 

 
Figure 8 

 

Figure 8 shows a high level schema for the proposed experiment. As explained, two 

browsers are driven in parallel to request a total of 1500 sites between both, pausing for 

random periods of time. At the same time, Tcpdump will capture all of the traffic 

generated to be processed afterwards. 
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After processing the network trace, each connection is taken as a sample, and labeled 

according to its destination IP address. Each sample can have one of two labels: DNS 

over HTTPS (the Cloudflare resolver's destination IP address) or HTTP (any other 

destination address). 

 

3.2. Feature extraction and selection 
 

In total, 29 features are extracted for each sample in the dataset, listed below: 

 

 Number of requests 

 Number of responses 

 Mean, standard deviation (STD) and skewness of request sizes 

 Mean, STD and skewness of response sizes 

 Mean, STD and skewness of request durations 

 Mean, STD and skewness of response durations 

 Request time delta (time between requests), skewness 

 Response time delta (time between responses), skewness 

 Number of concurrent connections to the same host at the time of start 

 Connection duration (seconds) 

 Number of data packets from client to server 

 Number of data packets from server to client 

 Average number of data packets per second from client to server 

 Average number of data packets per second from server to client 

 Average number of bytes per second from client to server 

 Average number of bytes per second from server to client 

 Client to server channel occupation percentage 

 Server to client channel occupation percentage 

 Average number of bytes per packet from client to server 

 Average number of bytes per packet from server to client 

 Negotiated ALPN 

 

As an approximation, it is assumed that every uninterrupted burst of packets from client 

to server is a request, and that every burst from server to client is a response, as seen in 

[67]. Figure 9 illustrates this concept. With each line representing a data packet, a burst 

is comprised of an uninterrupted sequence of packets in each direction. For each burst, 

its size (the sum of the sizes of all of its packets) and duration is collected; then, the 

mean, standard deviation and skewness for each of these values are computed. 

 

Using this very same approximation for requests and responses, a time delta (time 

between messages) for requests and responses can also be extracted, as shown in Figure 

9. By calculating the skewness of these values we expect to distinguish beacon-like 

patterns as seen in section 2.3. 
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Figure 9 

 

Each sample has an associated start and end timestamp, corresponding to the first and 

last packet seen. For any given sample, the number of connections open to the same 

server at the time of start can be calculated. This value is expected to be relevant, as it 

makes sense for browsers to keep one or two DoH connections open at maximum to 

send requests over; this number usually grows bigger for HTTP traffic, as a browser 

needs to request a number of resources in the parsed HTML document for the web page 

it is visiting. 

 

An schema for the channel occupation metric is given in Figure 10. For both connection 

endpoints, the time spent sending data is calculated. This is done by taking the first and 

last timestamp of each packet burst seen in each direction. Then, the total time spent 

sending by each endpoint is summed and normalized to the connection duration. 

Therefore, channel occupation is given as a percentage. 
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Figure 10 

 

Note also that, since measurements are done at the client machine, the occupation for 

the response channel is not perfectly estimated, as effects along the network pathway 

could alter the time and order of the data packets. 

 

Finally, the last characteristic extracted for each sample is the negotiated ALPN 

(Application-Layer Protocol Negotiation Extension)[68]. This extension is announced 

by both the client and the server during the TLS handshake (Figure 11) to establish the 

application protocol to be used over TLS; in web environments, this means that either 

HTTP/1.0, HTTP/1.1 or HTTP/2 will be announced, if anything at all. This parameter is 

relevant since, per DoH's specification, HTTP/2 is the minimum recommended version 

to be used, as to use its benefits such as parallelism, header compression and server 

push. 

  

 
Figure 11 

 

Once the feature list above is extracted for each sample, feature selection needs to be 

performed as to filter out less representative features and improve the classification 

algorithms' performance. One of the most proven methods to do so is through the use of 

Pearson's correlation coefficient [69] [70]. This metric evaluates the linear association 

of two variables, given samples for both. The use of this tool is double: first, to find out 

which features have a low correlation to the output, this filtering the ones that are not 
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relevant to the current problem, and second, to detect which extracted features are 

highly correlated between them, so as to not feed redundant data to the classification 

algorithm. 

 

Pearson's correlation coefficient for two variables, when applied to a population of n 

samples takes the following form: 

 

𝑟𝑥𝑦 =  
  𝑥𝑖 − 𝑥  (𝑦𝑖 − 𝑦 )𝑛

𝑖=1

   𝑥𝑖 − 𝑥  2𝑛
𝑖=1    𝑦𝑖 − 𝑦  2𝑛

𝑖=1

 

 

Where: 

 rxy represents the correlation between variables X and Y. 

 n is the sample size. 

 𝑥  and 𝑦  are the values for the sample mean for variables X and Y. 

 xi and yi are the i-th samples for variables X and Y. 

 

The final result, for m variables, is an m×m matrix that holds the correlation values 

between each possible pair of variables. This matrix is symmetric, with the diagonal 

having always a value of 1, as it represents the comparison of a variable to itself. Given 

that the value ri,j is the correlation between variables i and j, r will have a value of 1 if i 

= j. 

 

Based on this matrix, we can filter out features that have a high correlation with others, 

as well as features that have a low relationship with the output. 

 

3.3. Classification algorithms and evaluation methodology 
 

The selection of machine learning algorithms is varied across existing literature, as seen 

in sections 2.12.1. Traffic analysis and machine learning and 2.2. Some of the most 

common algorithms in the field of traffic analysis are Naïve Bayes, k-Nearest 

Neighbors and Random Forest [71] and are chosen for this experiment for that reason. 

Additionally, the AdaBoost classifier [72] is also included in the tests, as it is an 

ensemble classifier, like Random Forest. We proceed now to give an overview of the 

characteristics of these algorithms, keeping in mind that we are dealing with a binary 

classification problem. Multiclass classification (more than two output labels) is not 

discussed.  

 

The first two algorithms mentioned are arguably the less complex. Naïve Bayes 

classifier specifically is one of the most simple algorithms in machine learning. It makes 

use of Bayes's theorem: 

 

𝑃 𝐴 𝐵 =  
𝑃 𝐵 𝐴 𝑃(𝐴)

𝑃(𝐵)
 



21 

 

 

Where P(H|E) is the probability of H (hypothesis), given E (evidence). Given a set X of 

n features, the probability for output label y can we expressed as: 

  

𝑃 𝑦 𝑥1, … , 𝑥𝑛 =  
𝑃 𝑥1|𝑦 …  𝑃(𝑥𝑛 |𝑦)

𝑃 𝑥1 …𝑃(𝑥𝑛)
 

 

With the previous expression, a probability can be calculated for each possible output, 

for each sample, by substituting y and x1...xn respectively. 

 

K-nearest neighbors, on the other hand, works by calculating distances in an n-

dimensional space, where n is the number of input features. For example, for n=1, the 

output label of a sample is assigned by voting between the k closest points along that 

single dimension (a straight line). The weight of each neighbor's vote is 1/k, meaning 

that the closest neighbor has a weight of 1, the second closest a weight of 0.5, etc. k, of 

course, is a configurable parameter for the algorithm. 

 

A different type of algorithm that appears all along machine learning literature, 

including the one related to traffic analysis, is decision trees, and in particular, 

classification trees. There are several types of decision trees, and we will not go into 

their differences, but some common variants are ID3, C4.5 and CART [73]. 

 

Decision trees are formed by a root node, a series of branches and other nodes, and a 

series of outputs or leafs. Each node splits into a n branches based on a feature, and tries 

to form n groups, both as homogenous as possible. Figure 12 shows a sample decision 

tree of two levels. 

 

 
Figure 12 
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The homogeneity of the new n groups after a split is measured with one of two criteria, 

either the Gini impurity or the entropy coefficient. For j output labels, the Gini impurity 

of a sample group is determined by: 

 

𝑔 = 1 −  𝑝𝑗
𝑗

  

 

The entropy coefficient, on the other hand, is obtained with the following expression: 

 

𝑒 =  𝑝𝑗  log2 𝑝𝑗
𝑗

  

 

pj represents the probability of randomly selecting a sample with label j. For example, in 

an evenly distributed dataset with two labels, the probability of choosing a sample of 

each label is 0.5. If, after a node split, one of the resulting groups is formed only by 

samples with the same label, that group becomes a leaf with perfect purity (a value of 0 

with both Gini and entropy criteria). This obviously means that future prediction 

attempts that end up at this leaf should be always correctly classified, based on training 

data. On the other hand, low purity branches are likely to split again to increase purity. 

 

Despite their ease for interpretation, the use of decision trees as single classifiers does 

not seem to yield the best results, as seen in the literature reviewed in sections 2.1 and 

2.2. However, their use in ensemble classifiers is very common, as explained below. 

 

Ensemble classifiers aggregate a number of base classifiers and provide predictions by 

performing some calculation with the results from the base classifiers. The goal of 

grouping base classifiers is to add flexibility and at the same time increase robustness 

towards bias. Despite this similarity, both ensembles use a different strategy; Random 

Forest uses what is known as bagging, while AdaBoost uses boosting. 

 

Bagging is the simpler approach: each base classifier is trained in parallel, 

independently of the others. During the prediction stage, the output of the algorithm is 

decided by choosing the most common answer among all estimators, that is to say, an 

unweighted vote is carried out. 

 

In boosting, however, each base estimator is trained taking into account the error rate of 

the previous trained classifier, in hopes to learn from past mistakes by other estimators. 

This is done in an adaptive way: initially, all training samples have the same associated 

weight. For each base estimator trained, the weights of wrongly classified samples are 

summed and normalized to the total number of samples (also known as weighted error 

rate, or e). Then, the weight of the current base classifier, cweight, is computed as 

follows: 
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𝑐𝑤𝑒𝑖𝑔𝑕𝑡 =  𝑙𝑟𝑎𝑡𝑒 ∗ log  
1 − 𝑒

𝑒
  

 

Where lrate is the learning rate parameter for the algorithm. A high classifier weight 

implies more decision power when predicting the output of new samples. Next, each 

wrongly classified sample has their weight, sweight, increased according to the 

following expression: 

 

𝑠𝑤𝑒𝑖𝑔𝑕𝑡 = 𝑠𝑤𝑒𝑖𝑔𝑕𝑡𝑐𝑤𝑒𝑖𝑔 𝑕𝑡  

 

This, of course, implies that wrongly classified samples will increase in weight, in turn 

increasing the error rate of subsequent classifiers that wrongly classify it as well. During 

the final prediction stage, the output of each classifier is multiplied by its weight to 

obtain a final answer (weighted vote). 

 

Another key difference is that, in Random Forest, the base classifiers are decision trees 

trained with a random subset of the input features. In AdaBoost, these can be any 

generic estimator, although usually it is formed also by decision trees. The decision 

trees used for AdaBoost are normally very shallow, with likely two or even one layer of 

depth (also known as stumps). 

 

Once the algorithms are chosen, evaluation methods need to be selected. In the existing 

research, the prevalent metrics for evaluation revolve around the confusion matrix [74], 

and metrics calculated from it: precision, recall and F-measure [75].  

 

A confusion matrix takes the following shape: 

 

 
𝑇𝑃 𝐹𝑁
𝐹𝑃 𝑇𝑁

  

 

After an algorithm classifies N samples from a verification set, these outputs can be 

verified against their actual label. If the label given by the algorithm matches the 

original one, the sample is correctly classified. In binary classification problems, one of 

the output labels is called "positive" and the other "negative". With this in mind, TP 

stands for True Positives, FP for False Positives, TN for True Negatives and FN for 

False Negatives. Given the previous explanation, these values measure the number of 

correctly and incorrectly classified samples for each of the two classes. 

 

By normalizing the confusion matrix values to the total number of samples in the 

verification set for each label, the following values can be computed: 

𝑇𝑃𝑅 =
𝑇𝑃

𝑁𝑝
;  𝐹𝑁𝑅 =

𝐹𝑁

𝑁𝑝
;  𝑇𝑁𝑅 =

𝑇𝑁

𝑁𝑛
;  𝐹𝑃𝑅 =

𝐹𝑃

𝑁𝑛
; 
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Where Np and Nn are the number of positive and negative samples in the set. TPR 

stands for True Positive Rate, FPR for False Positive Rate, and so on. 

 

The precision, recall and F-measure metrics are based on these previous values as well: 

 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑃
 

 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
  

 

𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒 =
(1 + 𝛽2) × 𝑟𝑒𝑐𝑎𝑙𝑙 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

𝑟𝑒𝑐𝑎𝑙𝑙 + 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛
  

 

The precision metric offers a quantifiable measure of the classifier's ability to discern 

false positives from true ones. A low precision metric indicates that the algorithm is 

identifying a great amount of negative samples as positive. Recall, on the other hand, 

measures the classifier's ability to find positive samples. A low recall indicates that a 

great amount of positive samples are being overlooked. 

 

Finally, the f-measure can vary depending on beta (β). It gives a weighted harmonic 

mean of recall and precision, weighing recall more than precision by a factor of beta. In 

our case, we set beta to 1, meaning that both recall and precision are equally important.  

 

As a visual aid, an additional metric is the Receiver Operating Characteristic (ROC) 

curve, mainly used to measure the quality of a classifier. However, this type of curve 

does not seem to be representative enough with binary classification problems where 

the output labels are unbalanced [76]. Our output classes are DoH (1, or positive) and 

HTTPS (0, or negative), and, as will be later shown, the number of negatives outweigh 

the number of positives. 

 

As an alternative, the literature suggests the use of the precision-recall (PR) curve, 

which plots pairs of these two metrics for different probability thresholds. When a 

classifier algorithm takes a sample, it assigns a probability for each of the output labels. 

A probability of 1 for a label indicates that the current sample can definitely be mapped 

to that label. By default, the threshold to separate between both output classes is 0.5 

(probabilities below 0.5 are assigned to one class, and above 0.5 to the other). However, 

for highly imbalanced datasets, where one class outweighs the other in number, this 

threshold might not be beneficial. The precision-recall curve plots points with 

coordinates for different threshold values, with precision and recall as their coordinates 

[77]. 

 

An unskilled classifier will be plotted as a straight line, with a Y-coordinate 

proportional to the number of positive samples in the dataset (as the precision is plotted 
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on the Y axis). A perfect classifier, on the other hand will be plotted as a straight line at 

Y=1. 

 

For each curve, a metric known as average precision (AP) [78] can be calculated as a 

weighted mean of precisions as each decision threshold. The weight for each precision 

value can be obtained from the increase in recall since the previous threshold: 

 

𝐴𝑃 =    𝑅𝑛 − 𝑅𝑛−1 𝑃𝑛
𝑛

 

 

Where Ri and Pi are the recall and precision values for the i-th decision threshold. 

 

In order to get an accurate measurement of the skill of a machine learning model 

without falling into biases, a technique known as k-fold cross validation is used [79]. 

Using this technique, the initial dataset is divided into k groups (or folds) of the same 

size. Then, k-1 folds are used for training, and the remaining one is used for verification. 

This is done k times until every fold has been used as the testing set. For each iteration, 

the metrics described above (precision, recall, f-measure, AP) are calculated and 

averaged, and one PR curve can be plotted. Using this technique, the selected classifiers 

can be compared so the best one can be selected to use in a hypothetical real world 

scenario.  

 

On top of quantifying the quality of each of the proposed classifiers, speed benchmarks 

are taken for each algorithm, measuring the time taken to classify a number of samples, 

in order to evaluate feasibility for real-time classification.  
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4. Results 
 

In this section, the result of the exposed experiment is presented. First, general statistics 

about the obtained traffic capture are given. Then the results for feature selection are 

presented, as well as a list of the resulting features used for stream classification. Next, 

an analysis on the selected features is shown, and finally classification algorithms are 

evaluated over the exposed data through the use of metrics described in section 3.3. 

 

4.1. Dataset analysis and feature selection 
 

After executing the experiment presented in the previous section, a traffic trace of 

approximately 5.98 GB is obtained, amounting to a total of 54955 TCP connections 

transporting data. 198 of them are identified as DoH (0.36%), and 54757 are regular 

HTTP (99.64%). Note that, even with the addition of the browser halt mechanism 

introduced in the previous chapter, the number of DoH samples is low. However, as will 

be shown later, the sample size is enough to analyze and perform detection. 

 

As mentioned in section 3, Pearson's correlation coefficient is used to perform feature 

selection, both by examining feature-to-feature correlation and feature-to-output 

correlation. To do so, we examine the correlation matrix presented in a color-coded 

manner in Figure 13. Note that the absolute value of the correlation coefficient is used 

for simplicity, as values closer to |1| indicate stronger correlation, independently of sign. 

 

 
Figure 13 

 

First, we aim to reduce the number of features by examining the correlation of each 

variable to the output. Once a list of the most significant variables is acquired, the 

objective is to filter out redundant variables. 
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The correlation of each variable to the output (the last column in Figure 13) is shown in 

Figure 14. 

 

 
Figure 14 

 

Clearly the variables related to the length of the connection stand out: number of 

requests and responses, connection duration, number of data packets from client to 

server and server to client, etc. Additionally, other variables less related to total 

duration, as request and response duration skewness seem relevant. 

 

Of these first 29 features, the best 15 are selected, reducing the number of features to 

roughly half of the original ones. These 15 features are listed below, ordered by their 

correlation to the output in absolute value: 

 

1. Number of responses 

2. Number of requests 

3. Data packets, client to server 

4. Request duration, skewness 

5. Data packets, server to client 

6. Connection duration 

7. Response time delta, skewness 

8. Response duration skewness 

9. Request time delta, skewness 
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10. Request size, skewness 

11. Average packets/second, client to server 

12. Response size, skewness 

13. ALPN 

14. Average bytes/packet, server to client 

15. Average bytes/packet, client to server 

 

With the filtered set of features, the correlation matrix results in the one shown in 

Figure 15. 

 

 
Figure 15 

 

An obvious pair of correlated variables are the number of requests and responses, which 

share a correlation coefficient of 1. This is due to the methodology estimating requests 

and responses, explained in chapter 3. However, since both DNS and HTTP are request-

response protocols, this is an expected result even in the absence of the mentioned 

approximation. 

 

Another pair of highly correlated features are the number of requests and data packets, 

with a value of 0.85. The first one is computed from the second one, so this result is also 

expected. 

 

Finally, the time delta skewness of requests and responses are highly correlated as well. 

Given that the reception of a response usually triggers the next request in the client, and 

that the round trip time (RTT) of the connection should remain mostly stable, the time 

between the reception of responses and sending of requests should be highly similar, as 

the first triggers the second; a delay in the reception of a response incurs in a delay in 

the transmission of a request, and thus, both becoming correlated. 
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After filtering these three features with high correlation values with others (number of 

responses, number of data packets from client to server, response delta skewness), the 

final set of selected features is, ordered by output correlation: 

 

1. Number of requests 

2. Request duration skewness 

3. Data packets, server to client 

4. Connection duration 

5. Response duration skewness 

6. Request time delta skewness 

7. Request size skewness 

8. Average packets/second, client to server 

9. Response size skewness 

10. ALPN 

11. Average bytes/packet, server to client 

12. Average bytes/packet, client to server 

 

4.2. Feature analysis 
 

As explained in previous sections, lengthy connections are characteristic to DoH. To 

investigate this fact, we plot a histogram of for connection duration in Figure 16. 

 

 
Figure 16 

 

Note that the Y-axis is shown in a logarithmic scale, as there are much more HTTP 

connections, especially around the first values of the X-axis. Therefore, to be able to 
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show both distributions in the same graph, this scale is used. However, the key piece of 

information is the distribution of DoH connections to the right of the graph. To more 

accurately display the distribution of connection lengths, the cumulative distribution 

function (CDF) is shown for the same variable in Figure 17. 

 

 
Figure 17 

 

The CDF shows that over 90% of the HTTP connections last less than 200 seconds, 

while only around 58% of the DoH samples meet this boundary. On average, an HTTP 

connection lasts for 94 seconds, while a DoH stream lasts for 644 seconds. As a TCP 

stream containing TLS data is kept for longer and longer periods of time, it will be more 

likely that it transports DoH data. 

 

The next most prominent feature is the request duration skewness. On average, a DoH 

stream has a request duration skewness of 8.70, while this value drops to 0.69 for 

HTTP. In fact, 43.43% (86) of DoH samples have their request duration skewness 

above 5, while only 0.289% (158) of the HTTP samples match this criterion. The 

difference regarding this feature becomes clear when plotted against the connection 

duration (Figure 18). 

 



31 

 

 
Figure 18 

 

The request time delta (time between packet bursts from client to server) seems to be 

relevant as well. When plotted against the number of requests (Figure 19), a tendency 

becomes clear: as new requests appear in the connection, the skewness grows and then 

stabilizes. This is most likely because the first packets are TLS control messages, which 

are smaller than the transmitted data, and therefore the distribution skews to the right of 

the median. On average, a DoH connection displays a 3.416 request time delta 

skewness, while an HTTP connection only averages to 0.189. 
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Figure 19 

 

Another interesting feature is the ALPN extension. This value is encoded as 2 

(HTTP/2), 1 (HTTP/1) or 0 (not seen). The browser automatically uses HTTP/2 to 

connect to Cloudflare's resolver, so the ALPN extension is never seen in DoH 

connections. This can clearly be distinguished if plotted against the number of requests, 

as Figure 20 shows. 

 

 
Figure 20 
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A common issue when dealing with a high number if features is obtaining a complete 

representation of all of them. A common technique to bypass this problem is the use of 

Principal Component Analysis (PCA) [80] to reduce the dimensionality of the original 

data. The details of the algorithm are technical and not relevant at the moment. The key 

piece of information is that PCA allows the representation of n-dimensional variables in 

a lower number of dimensions, usually 2 for easier representation. The new dimensions 

represented in such plots are components that hold enough information about the 

original variables. 

 

When PCA is applied to a n-dimensional dataset, it can allow a more clear identification 

of output classes, in order to verify that they are actually distinct. Figure 21 shows the 

PCA representation for our current features. 

 
Figure 21 

 

In a scenario where bad feature selection is made, or the output does not properly 

correlate with the input, visual identification of the output labels is not possible. 

However, in our PCA plot both classes are clearly identifiable, as HTTP forms a dense 

cluster and DoH spreads to the right of the plot. 

 

4.3. Algorithm evaluation 
 

As explained in section 3.3, a set of classifiers will be tested using k-fold validation. 

Since there are a total of 198 DoH samples, using 5 folds (k=5) seems appropriate, as 



34 

 

every fold will have, on average 39.6 DoH samples. For these tests, we consider DoH a 

positive sample, and HTTPS a negative one. 

 

In total, the list of classifiers to be tested is listed below. For the AdaBoost ensemble, 

classic decision trees of depth one are chosen as base estimators. 

 

 Naïve Bayes Classifier 

 K-Nearest Neighbors (k=3, 5, 15) 

 AdaBoost (100, 200, 400, 600 estimators, entropy criterion) 

 AdaBoost (100, 200, 400, 600 estimators, Gini criterion) 

 RandomForest (100, 200, 400, 600 estimators, entropy criterion) 

 RandomForest (100, 200, 400, 600 estimators, Gini criterion) 

 

Gini and entropy criteria are explained in section 3.3. For each test, (taking 4 folds as 

training and 1 as testing data), a confusion matrix is generated. Instead of displaying the 

5 confusion matrixes, the values for each one are summed, as each holds the results of 

classifying 1/5th of the total data: 

 

𝑀 = 𝑀0 + 𝑀1  + 𝑀2 + 𝑀3 + 𝑀4 

 

Where Mi is the confusion matrix for the fold i. Each member of the resulting matrix is 

normalized to the number of samples of that class, giving a percentage or rate; true 

positives and false negatives are divided by the number of total DoH samples (198), 

giving the true positive rate (TPR) and the false negative rate (FNR); the same is done 

with the true negatives, false positives and total HTTPS samples (54757). 

 

For the precision, recall and f-measure metrics, an average over the five tests is shown. 

 

Classifier TPR FNR TNR FPR Precision Recall F-measure 

Naïve Bayes 56.061 43.939 99.836 0.164 0.5568 0.5604 0.5572 

KNN (k=3) 92.929 7.0710 99.991 0.009 0.9742 0.9294 0.9508 

KNN (k=5) 92.929 7.0710 99.991 0.009 0.9742 0.9294 0.9508 

KNN (k=15) 88.384 11.616 99.991 0.009 0.9725 0.8841 0.9257 

AB (n=100, entropy) 95.455 4.545 99.991 0.009 0.9758 0.9546 0.9642 

AB (n=200, entropy) 95.455 4.545 99.985 0.015 0.9628 0.9546 0.9572 

AB (n=400, entropy) 94.949 5.051 99.973 0.027 0.9316 0.9495 0.9384 

AB (n=600, entropy) 95.455 4.545 99.978 0.022 0.9456 0.9545 0.9482 

AB (n=100, Gini) 94.949 5.051 99.989 0.011 0.9703 0.9495 0.9588 

AB (n=200, Gini) 95.455 4.545 99.976 0.024 0.9407 0.9545 0.9457 

AB (n=400, Gini) 95.455 4.545 99.98 0.020 0.9466 0.9545 0.9499 

AB (n=600, Gini) 95.960 4.040 99.982 0.018 0.9511 0.9595 0.9547 

RF (n=100, entropy) 91.919 8.081 99.998 0.002 0.9944 0.9191 0.9550 

RF (n=200, entropy) 92.929 7.071 99.996 0.004 0.9895 0.9292 0.9580 

RF (n=400, entropy) 92.424 7.576 99.996 0.004 0.9895 0.9242 0.9554 
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RF (n=600, entropy) 91.919 8.081 99.998 0.002 0.9944 0.9191 0.9550 

RF (n=100, Gini) 89.394 10.606 99.984 0.016 0.9548 0.8940 0.9223 

RF (n=200, Gini) 90.909 9.091 99.984 0.016 0.9551 0.9091 0.9305 

RF (n=400, Gini) 89.394 10.606 99.993 0.007 0.9784 0.8940 0.9340 

RF (n=600, Gini) 89.899 10.101 99.989 0.011 0.9692 0.8991 0.9321 

 

As expected, Naïve Bayes and KNN underperform against the ensemble classifiers, due 

to the complexity of the task. The best values for each column are highlighted for both 

AdaBoost and RandomForest. 

 

When the recall is plotted (Figure 22) a clear superiority is seen for the entropy criterion 

within RandomForest. For AdaBoost, however, entropy seems better only for lower 

number of base estimators, with two maximums at x=100 and x=200. 

 

 
Figure 22 

 

Looking back at the previous table, AdaBoost, there are two possible best choices, the 

first one being a classifier with 100 base estimators using the entropy criterion, and the 

second one having 600 base estimators using the Gini criterion. Even though the first 

one has a slightly lower true positive score (189 vs. 190 correctly detected DoH 

connections), it has half as much false positives (5 vs. 10), and takes a considerably 

smaller time to train (13.911 seconds vs. 62.476). The differences between both can 

even be considered random noise, due to their small magnitude, and therefore the first 

classifier is chosen. 
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As for RandomForest, the best configuration (200 base estimators and entropy criterion) 

is way safer on the false positive score (just 2 samples), while still having a high true 

positive value (184 out of 198 detected samples). 

 

As mentioned in section 3.3, a PR (precision-recall) curve can be plotted for each 

iteration during the k-fold validation. Along with the datapoints for this curve, the AP 

(average precision) metric can be obtained. The PR curves along with the AP values for 

the best AdaBoost and RandomForest configurations are shown in Figure 23 and Figure 

24 respectively. 

 

 
Figure 23 
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Figure 24 

 

Clearly, folds with AP=1 are represented as straight lines, i.e., the classifier behaved 

perfectly for that subset of data. AdaBoost averages on a 0.968 precision score, while 

RandomForest has a slightly higher 0.978 average precision score. 

 

Regarding performance, both algorithms have high classification throughput. Given that 

each fold has 10991 samples, and that one fold is used to classify: 

 

Classifier 
Average time 

elapsed 

Estimated 

throughput 

AdaBoost, 100 estimators, entropy 0.3640 seconds 30195 samples/second 

RandomForest, 100 estimators, entropy 0.1418 seconds 77510 samples/second 

 

Therefore, in a real time scenario, sample classification will not likely be the bottleneck 

in the pipeline.  
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5. Conclusion 
 

5.1. Overview 
 

In this thesis, DoH and HTTPS traffic was analyzed jointly, and characterized through a 

number of features, reduced to a total of 12. Treating each TCP stream as a single 

sample, through the review of existing literature and using the proposed machine 

learning algorithms, Random Forest and AdaBoost, true positive rates between 91 and 

95.6% have been consistently achieved, along with false positive rates below 0.01%. 

 

In conclusion, DoH traffic is highly detectable among regular HTTPS traffic, mainly 

due to lengthy connections and variety of message sizes and durations; this is 

specifically notable when looking at the asymmetry of the distributions of these 

features. 

 

5.2. Further work 
 

As further work, the proposal is to obtain more varied datasets, using different target 

websites, DNS resolvers, browsers (Chrome, due to its popularity) and DoH formats 

(GET, JSON, although they cannot be set from the basic configuration interface). There 

is no a priori reason to think that any of these variables will affect the results presented 

directly,  other than slight variations in message sizes. 

 

Furthermore, tests could be made where avoidance techniques are employed, such as 

shortening DoH connections, adding a constant sending rate or modifying the payload 

padding. 

 

Finally, a real time system proof of concept is interesting. This system would need to 

follow a pipeline with the following shape: 

 

traffic capture > traffic processing > feature extraction > 

sample classification 

 

A traffic processing intermediate is needed to reconstruct TCP streams and parse TLS 

messages, although omitting this element and working with raw packets could lead to a 

faster system with perhaps similar results. Of course, this traffic processor would need 

to dump regularly the state of opened connections in order to classify them before they 

are closed. As mentioned in section 4.3, the selected algorithms already support a high 

classification throughput in a single threaded environment, and so they would likely not 

be a performance bottleneck.  
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