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Resumen (250 palabras): Objetivos, context, metodología, resultados y conclusiones 

Las plantas de tratamiento de aguas residuales son responsables de tratar y desinfectar el agua 

mediante procesos físicos, químicos y biológicos. Preocupa la propagación de ADN recombinante y 

la proliferación de resistencias a antibióticos. Los puntos críticos, como las muestras de aguas 

residuales, están compuestos por comunidades microbianas complejas que son capaces de 

incorporar ADN extracelular o intercambiar ADN entre ellos pudiendo generar lo que se conoce 

como ‘superbacterias’ o microorganismos resistentes a dos o más antibióticos. Hi-C permite el 

enlace conformacional en 3D entre elementos genéticos. Brinda la posibilidad de vincular qué genes 

de resistencia a antibióticos (ARGs) y elementos genéticos móviles (MGE) de comunidades 

complejas, como lodos activados, están en familias microbianas específicas. En esta tesis, datos Hi-

C ya disponibles de lodos activados se han utilizado para desarrollar un pipeline. El análisis 

bioinformático ha consistido en desarrollar y publicar (en GitHub: 

https://github.com/davidcalfran/Linking-Hi-C-to-metagenome-data-pipeline) un pipeline para 

cuantificar las interacciones entre grupos microbianos específicos y contigs que contienen hits para 

ARG, plásmidos e integrones. El análisis de los resultados ha demostrado que hay familias de 

microorganismos específicos que tienen mayor predisposición a captar o intercambiar ARGs y 

MGEs, específicamente microorganismos de la familia Aeromonadaceaee, Neisseriaceae y 

Moraxellaceae, que corresponderían a los microorganismos seleccionados como potenciales 

huéspedes en el estudio de referencia. Los resultados de Hi-C obtenidos con este pipeline siguen la 

misma tendencia que el estudio de referencia, incluso habiendo mejoras a realizar con el fin de 

ampliar la visualización y resolución de la interacción gen objetivo y huésped. 
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Abstract (250 words): Aim, application context, methodology, results and conclusions 
Wastewater treatment plants are the responsible for treating and sanitizing water from different 

sources by physical, chemical and biological processes. One of the public concerns is the spread of 

engineered DNA and proliferation of antibiotic resistances released caused by transgenic 

microorganisms. Hotspots, such as wastewater samples, are composed by a large, complex 

microbial communities that, under certain environmental factors, are capable of taking up free 

genetic fragments or exchange DNA between them. Uptake of DNA by microorganisms could 

generate the well-known superbugs or microorganisms resistant to two or more antibiotics. Hi-C 

sequencing allows 3D-conformational linkage between genetic elements. Thus, giving the 

possibility to link which antibiotic resistance genes (ARGs) and mobile genetic elements (MGE) from 

complex communities, such as activated sludge, are enclosed inside which specific microorganisms. 

In this master thesis, an already published Hi-C dataset from activated sludge has been used to 

develop and test the pipeline. The bioinformatic analysis has consisted on developing and 

publishing (GitHub: https://github.com/davidcalfran/Linking-Hi-C-to-metagenome-data-pipeline) a 

pipeline in order to quantify the interactions between specific microbial clusters and contigs 

containing hits for ARGs, plasmids and integrons. Results have shown that there are specific 

microorganisms’ families that have a bigger predisposition to uptake or exchange ARGs and MGEs, 

specifically microorganisms from the Aeromonadaceaee, Neisseriaceae and Moraxellaceae 

families, which corresponded to the microorganisms selected as hosts in the reference study. Hi-C 

results obtained with this pipeline does still follow the same trend as the reference study even if 

improvements must be performed in order to magnify the host:target gene resolution.  
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1. Introduction 
 

1.1. Work context and work justification  

 

Wastewater may come from different origins like municipal or urban wastewater, domestic 

wastewater and industrial sewage, among others. Wastewater treatment plants are the 

responsible for treating and sanitating these different water sources by physical, chemical 

and biological processes for the removal of solids, pollutants and some nutrients (Van 

Loosdrecht et al., 1998) . One of the public concerns is the spread of engineered DNA and 

proliferation of antibiotic resistances released and caused by transgenic microorganisms. This 

is of special interest in hotspots such as wastewater treatment plants. These hotspots are 

composed by a large, complex microbial community that, under certain circumstances, are 

capable of taking up free genetic fragments or exchange DNA between organisms. Uptake of 

DNA fragments by natural organisms could generate, as example, unwanted resistances 

against a broad range of antibiotics. 

 

Wastewater treatment plants (WWTP) operate with a natural community resembling that of 

natural systems (Cydzik-Kwiatkowska and Zielińska, 2016). The incoming wastewater is much 

more a human gut microbiome related and the industrial organisms are more related to a 

community. In the WWTP they meet and have the potential to exchange DNA between urban 

microbiome and natural microbiome.  

 

The study of the populations and mobile genetic elements (MGE) from activated sludge as 

well as other complex environments will try to clarify (i) the emission and fate of genetic 

fragments from industrial settings (ii) the presence of horizontal gene transfer and tracking 

of mobile elements between microorganisms present in wastewater plants. 

 

Hi-C sequencing, also known as all-vs-all, uses DNA conformation capture to quantify 

interactions between all possible pairs of DNA fragments simultaneously (Fraser et al., 2015). 

Before DNA is sent to sequence, DNA found in the problem sample is cross-linked with 

formaldehyde (Figure 1), introducing bonds that freeze the interactions between genomic 

loci and mobile genetic elements such as plasmids that are near in the 3D space (Rocha et al., 
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2016). The resulting cross-linked genome is then cut into fragments with restriction 

endonucleases such as EcoR1 or HindIII. Those cut fragments, are marked with biotin and 

ligated so the resulting sequence in a proximity-based approach. The pair of sequences are 

individually aligned to the genome and other databases such as plasmid databased, thus 

determining the fragments involved in that ligation event. This allows the linkage of specific 

plasmids harboring integrons and transposons that may be more prolific to jump between 

microorganisms and which microorganisms found in complex communities can be easier a 

natural competent.  

 

 
Figure 1. Hi-C sample preparation overview. Figure adapted from (Lieberman-Aiden et al., 2009).  

 

In order to generate links between target genes such as ARGs and MGEs and specific species, 

it is of great importance to generate in parallel, from the same initial sample, a metagenome 

assembly. The workflow followed for recovering genomes is detailed in figure 2. 

Environmental genomes are sent to sequence in order to get short reads (from 150 to 300 

bp). Then, it is necessary to generate what is called contigs (from contiguous) by using 

metagenome assemblies’ software (i.e. MEGAHIT or SPADES). Contigs are a set of overlapping 

DNA segments that together represent a consensus region of DNA. Contigs will be used for 

binning, grouping nucleotide sequences belonging to individual/similar organisms, the 

different environmental bacterial metagenomes based on sequence overlapping and 

homology (Sedlar et al., 2017). The obtained bins will be used for retrieving the different 

phylogenetic groups belonging to the sample. Moreover, target genes (ARGs and MGEs) will 

be linked to specific bins. This will allow the study of co-occurrence between specific 

phylogenetic families and genes of interest.  
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Figure 2. Workflow used for recovering genomes from an environmental metagenome using metagenome assembly and 

binning.  

So far, Hi-C is highly implemented in epigenetics and cancer studies on the biomedical field 

(Burton et al., 2014; Orlando et al., 2018). However, not that many studies have been 

published on the environmental field where DNA is constantly being released and can be 

exchange and transferred. There is an increase of papers being published in high impact 

journals (Stalder et al., 2019), thus showing the increasing interest on this field due to its 

consequences on human health and risk assessments development.  

 

There are not free bioinformatic pipelines available for analyzing Hi-C sequencing data 

obtained from environmental samples. The amount of relevant information Hi-C could give in 

order to understand better the exchange and uptake of antibiotic resistance genes and 

mobile genetic elements is enormous. Because of that, an easy to use bash script has been 

written in combination of python and R code. User will only be requested to give some inputs 

in order to generate an output plot that will allow researchers the understanding of thee 

dynamics in their system.  
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1.2. Objectives 

 

1. Developing a Hi-C pipeline in bash using already published datasets from wastewater 

samples. 

2. Linking antibiotic resistant genes and mobile genetic elements to specific 

microorganisms.  

3. Obtaining which microorganisms can be highly potential candidates to uptake, 

exchange and transfer targeted genes.  

4. To compare analysis with already published data, where raw data was obtained from 

(Stalder et al., 2019) 

 

1.3. Approach and methodology used 

 
To develop the pipeline, a script written in bash in combination with small scripts in python 

have been used. Different metagenomics and Hi-C binaries have been implemented in the 

code above-mentioned. In order to plot the results, the environment and programming 

language R was used (R Foundation for Statistical Computing., 2018). R packages as ggplot2 

(Wickham, 2016), taxize (Scott et al., 2020) and ggtree (Yu, 2020) have been used for the 

creation of interactives figures that facilitate the understanding and discussion of the results 

obtained. Overall, this script will have as an objective the obtention of the results necessary 

to meet the goal of objectives 2, 3 and 4.  
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1.4. Working program 

 

  Feb-20 Mar-20 Apr-20 May-20 Jun-20 Jul-20 

Tasks 

Check quality of the data             

Align sequencing data             

Process results             

Graph results             

Discuss results             

Write report             

Milestones 

Data quality is correct             

Microbiome hit list (Metagenomics)             

ARGs hit list (Metagenomics)             

MGEs hit list (Metagenomics)             

Microbiome hit list (Hi-C)             

ARGs hit list (Hi-C)             

MGEs hit list (Hi-C)             

Hi-C to metagenomics data linkage             

List of microorganisms more prone to exchange DNA             

Write code in bash and python             

Finished report             

Deliverables 

PEC0: Work contents definition             
PEC1: Work program             

PEC2: Work development I             
PEC3: Work development III             

PEC4: Thesis writing and submission             
PEC5a: Presentation preparation             

PEC5b: Public thesis defense             

 

1.5. Short summary of obtained products 
 

The expected results pursued during this master thesis are: 
 

• Working plan 

• Report 

• Virtual presentation 

• Project auto-evaluation  
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2. Material and methods 
 

2.1. Data retrieving and quality 

 

The metagenomic and the Hi-C set of data were retrieved from the NCBI BioSample database. 

The shotgun reads accession number ID: SRX5057658. The Hi-C reads accession number ID: 

SRX5057659. They both belong to the BioProject ID: PRJNA506462. The quality of the 

acquired Illumina reads was assessed by FastQC version 0.11.9 with default parameters 

(Andrews, 2010). 

 

2.2. Metagenomic assembly 

 

Shotgun metagenomic assembly was created using Megahit (version 1.0.2) with default 

parameters (Li et al., 2015). De novo assemblies were assessed using QUAST (version 5.1) with 

default parameters (Gurevich et al., 2013).   

 

2.3. Processing of the Hi-C reads 

 

The set of Hi-C reads was mapped to the metagenomic assembly. Mapping was done using 

the Burrow-Wheeler alignment tool BWA-MEM (version 0.7.17) (Li, 2013), obtaining a SAM 

file. SAM file was sorted by name using samtools (version 1.10) (Li et al., 2009).  

 

2.4. Deconvolution of the Hi-C data 

 

Binning process was performed using bin3C (version 0.1.1) with default parameters (Demaere 

and Darling, 2019), an unsupervised method that exploits the hierarchical nature of Hi-C 

interaction rates to resolve metagenome-assembled genomes (MAGs) using a single time 

point. For the binning process, MluCI enzyme was selected as the digestion enzyme used for 

Hi-C library construction. Bin3C pipeline makes use of the Infomap network clustering 

algorithm. Assembly output from Megahit and the sorted-by-name result from the Hi-C 

alignment process were the input data.  
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2.5. Annotation of genome clusters 

 

Genome clusters were compared with RefSeq genomes (refseq.genomes.k21.s1000.msh) 

using Mash (version 1.1) (Ondov et al., 2016) to identify any close database matches for new 

genome clusters. Genome clusters were analyzed using the CheckM lineage_wf (version 

1,1,2) workflow (Parks et al., 2015) to assess genome quality and estimate high-level 

phylogenetic placements for each cluster based on single-copy marker gene analysis. Some 

genome clusters were excluded on the basis of low completeness, high heterogeneity and 

high contamination.  

 

2.6. Target gene detection in the metagenome assemblies 

 

Detection of target gene from the contigs was done using BLASTn (version 2.6.0+) with the 

option E-value< 1e-20. When a contig had multiple hits for the same locus, the best hit was 

selected (lowest e-value). Detection of the ARGs and plasmids were, respectively, done using 

the MEGARes database (Doster et al., 2020) and the PlasmidFinder database (Carattoli et al., 

2014), accessed in May 2020. Detection of the class 1, 2, and 3 Integron integrase genes was 

done using the reference sequences AB709942 (intI1), FQ482074 (intI1delta1), JX566770 

(intI1R32_N39 aa329337 mutated + 35aa), JX469830 (intI2) and EF467661 (intI3) as Stalder 

et al. (2019) did.  
 

2.7. Linking plasmid, ARG, and Integron contigs to genome clusters 

 

For each target gene identified in a contig, we considered all Hi-C linkages between the contig 

containing the target gene and any other contig present in that cluster/MAG. We normalized 

the number of Hi-C contacts according to abundance of the genome cluster. Phylogenetic 

analysis of the genomes linked to contigs of interest was performed using the R package taxize 

(Chamberlain and Szöcs, 2013) and ggplot2 (Wickham, 2016). 

 

2.8. Script 

 

The script was written in bash, Python 2.7 and RStudio. Then, it was uploaded in the public 

GitHub repository (https://github.com/davidcalfran/Linking-Hi-C-to-metagenome-data-

pipeline).    
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3. Results and discussion 
 

3.1. Data quality 

 
Illumina reads data quality were assessed by FastQC and are displayed in Figure 3a-d.  For this 

study, paired-end reads were kept in its original length as data quality was considered to be 

high enough for avoiding future false positives. Despite that, reads from the reverse 

metagenomics file (Fig. 3d) would be recommended to be trimmed at around 145 bp for 

increasing accuracy.  

 

 
Figure 3. Base sequence quality graph from the (a) forward Hi-C Paired End file, (b) reverse Hi-C Paired End file, (c) forward 

metagenomics Paired end file and (d) reverse metagenomics Paired end file.  
 
 

3.2. Assembly quality control 

 
For assessing the quality of the metagenome assembly done with MEGAHIT, the QUAST 

software was utilized. All statistics are based on contigs of size >= 500 bp and total length 

include all contigs. The metagenomic assembly quality control results are summarized in table 

1. The majority of the contigs generated were longer than 1000 bp due the threshold applied 

(contgs >1000).  
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Table 1. Table summarizing the quality parameters calculated by QUAST of the metagenomic assembly 
 

Statistics Assembly out of MEGAHIT 
Number of contigs 210’786 

Number of contigs (>= 0 bp) 210’786 
Number of contigs (>= 1000 bp) 210’786 

Number of contigs (>= 10000 bp) 12’404 
Number of contigs (>= 100000 bp) 25 

Number of contigs (>= 1000000 bp) 0 
Largest contig 249’622 

Total length 921’213’071 
Total length (>= 0 bp) 921’213’071 

Total length (>= 1000 bp) 921’213’071 
Total length (>= 10000 bp) 213’350’468 

Total length (>= 100000 bp) 3’591’844 
Total length (>= 1000000 bp) 0 

N50 4712 
N75 2903 
L50 50’374 
L75 111’998 

GC (%) 48.18 
 

 

3.3. Code in bash, Python and R 

 
This code explains step by step how to obtain cluster-link heatmaps for ARGs, plasmids and 

integrons. The details about the code are explained in the supplementary material.  

 

Considerations before executing the code 

 
In order to run this code successfully, there are some software and binaries that must be 

locally installed and added to the path. Those requirements are the following:  

• bwa is assumed to be installed in path. 

• samtools is assumed to be installed in path. 

• blastn is assumed to be installed in path. 

• CheckM is assumed to be installed in path. 

• Bin3C binaries are supposed to be downloaded and be saved in current folder as a 

folder named "bin3C". 

• refseq.genomes.k21s1000.msh is supposed to be downloaded and be in current 

folder. It is necessary for mash. It can be downloaded here: 

 https://mash.readthedocs.io/en/latest/tutorials.html 
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It is important to save it with the following name: refseq.genome.k21s1000.msh.  

• Python2 is assumed to be installed in path. 

For running the script, the following code had to be written in the terminal on the folder 

with all the previously mentioned files: 

 

bash Hic_MG_pipeline.sh assembly.fa HiC_1.fastq HiC_2.fastq  megares_database_v1.01.fasta 

enterobacteriaceae.fsa integrase_database.fa 1 
 

Where: 

• assembly.fa is your metagenome assembly generated with MEGAHIT, SPADES or 

other assembly software.  

• HiC_1/2.fastq are the Hi-c sequencing data. 

• megares_database_v1.01.fasta is the antibiotic resistance genes database 

• enterobacteriaceae.fsa is the plasmid database from PlasmidFinder.  

• integrase_database.fa is the manually-generated integrons database 

• "1" is the number that starts running the script. 

3.4. Binning quality control 

 
For assessing the binning quality, CheckM with the lineage_wf option was used. This step was 

crucial in order to proceed with the analysis. It gave information on how complete are the 

bins generated and how much contamination there was. From here, it filtered out the low-

quality bins: those whose completeness was below 70% and contamination above 15%. After 

the binning process, 2250 bins or MAGs were generated. CheckM analysis showed that only 

55 bins completeness and contamination were good enough to be used for further analysis 

(Figure 4).  
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Figure 4. Graphical representation of bins/clusters completeness, heterogeneity and contamination from the CheckM 

output analysis. Note: clusters/bins displayed were the ones for proceeding with the Hi-C linkage. 
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3.5. Linking microbiome to resistome and mobilome 

 

In this section, antibiotic resistance genes (ARGs), plasmids and integrons were Hi-C linked 

with specific microorganisms’ species in order to elucidate which bacterial families are more 

prone to be hosts that can uptake and exchange these potentially dangerous genetic 

elements. The term cluster is used to describe a cohesive group of contigs belonging to a 

genome of a microorganism, also known as MAGs.  

 

For doing that, all the contigs generated were blasted against one of the target genes 

databases to retrieve which of them were present and in which affluence. BLASTn hits were 

assigned to specific contigs. Those contigs were then checked to which phylogenetic clusters 

belonged. Then, the sum of interactions between the hit contig (i.e. containing and ARG) and 

all the contigs from the clusters it belonged was calculated. This sum of interactions was 

further normalized by the number of contigs that the cluster had. Only clusters having a 

contact with one of the target gene are shown: ARGs (Figure 5), plasmids (Figure 6) and 

integrons (Figure 7).  

 

Hi-C links between ARGs and specific bacteria are depicted in figure 5 on top of placing 

phylogenetic belonging to each cluster. ARGs were mostly linked to contigs in clusters related 

to the Gamma- and Betaproteobacteria (Figure 5). The other links to ARGs were mostly 

associated with clusters affiliated with the Firmicutes, and very few with clusters affiliated 

with Actinobacteria, Alpha-proteobacteria, Fusobacteria and Bacteroides.   

 

Mutations in the genes for the subunits GyrA and ParC of the target enzymes DNA gyrase and 

topoisomerase IV are important mechanisms of resistance in quinolone-resistant bacteria, 

especially in bacteria belonging to the Neisseriabaceae family (Lindbäck et al., 2002). 

Neisseria meningitis from clinical isolates has also been described as a potential reservoir for 

rifampicin resistance (rpoB) (Skoczynska et al., 2009). Due to the abuse of fluoroquinolones 

and rifampicin in the last decades, is not surprisingly to observe that one of the most 

ubiquitous ARGs are gyrA and rpoB. 
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Figure 5.  Hi-C links between the clusters and ARGs, identified in the wastewater sample and affiliated with most abundant bacterial families. Each edge of the phylogenetic tree represents a 
cluster. Only clusters having a contact with ARGs are shown. The presence or absence of a link is shown on the heatmap to the right of the tree, and the color shading represents the intensity 
of the normalized Hi-C link signals on logarithmic scale. Note: cutoff of MAGs containing less than 150 contigs.



David Calderón Franco 
MSc. Report  

 20 

Bacteria belonging to the Moraxallaceae and Comamonadaceae have also been described as 

potential reservoirs for ARG in water for ornamental fish samples (Gerzova et al., 2014). 

Special interest must be given to Acinetobacter johnsoniii, bacteria found in water and soil, 

on human skin, and in human feces. It is found to be the species harboring the widest range 

of ARGs in these samples (9 different ARGs). In general, the Acinetobacter sp., specifically 

Acinetobacter baumannii (not found in these samples), has been described as one of the most 

challenging pathogens due to the emergence and widespread of antibiotic resistance (Xie et 

al., 2018). Thus, special interest in the study of the prevalence and ARGs carrier must be 

conducted.  

 

Overall, the bacterial taxa that had the most contacts with known ARGs were affiliated with 

the Moraxallaceae, Aeromonadaceae and Burkholderiales, families typically associated with 

aquatic environments. Hi-C linking suggests that Aeromonadaceae, Moraxellaceae, 

Neisseriabaceae, Chromobacteriaceae and Commamonadeceae are the most likely reservoirs 

of ARGs in this wastewater samples.  

 
Figure 6.  Hi-C links between the clusters and plasmids, identified in the wastewater sample and affiliated with most 
abundant bacterial families. Each edge of the phylogenetic tree represents a cluster. Only clusters having a contact with 
plasmids are shown. The presence or absence of a link is shown on the heatmap to the right of the tree, and the color shading 
represents the intensity of the normalized Hi-C link signals on logarithmic scale. 
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Regarding the plasmidome analysis, it can clearly be observed that the number of hits were 

significantly lower when compared to the ARGs analysis (Figure 6). Two known groups of 

broad-host-range (BHR) plasmids (IncQ-1 and IncQ-2) were linked to clusters spanning both 

Beta- and Gammaproteobacteria but also Bacteroides and Chlamydiae. IncP-1 plasmid, also 

known to be a BHR plasmid, was mainly highlighted in the Enterobacteriaceae family. In 

contrast, markers for narrow-host-range (NHR) plasmids (colE1-type plasmids) were almost 

exclusively linked to clusters belonging to the Enterobacteriaceae.  Overall, it is shown here 

that IncQ (1 and 2) plasmids had the broadest range of putative hosts, followed by the colE1-

type plasmids.  

 
Among the integrons, class 1 integrons (AB609942 and JX566770, specially the last one) 

exhibited links to 7 out of the 10 clusters with hits within a broad range of bacterial families, 

specifically in the Gamma-proteobacteria and less in the Bacteroides, Actinobacteria and 

Chlamydiae families (Figure 7).  

 
Figure 7.  Hi-C links between the clusters and integrons, identified in the wastewater sample and affiliated with most 
abundant bacterial families. Each edge of the phylogenetic tree represents a cluster. Only clusters having a contact with 
integrons are shown. The presence or absence of a link is shown on the heatmap to the right of the tree, and the color 
shading represents the intensity of the normalized Hi-C link signals on logarithmic scale. 
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No links were found within the Beta-proteobacteria. Class 2 integrons (JX49830) and class 3 

Integron (EF467661) were associated to Beta-proteobacteria bacteria, specially affiliated to 

the Neisseriaceae family (Vitreoscilla sp. and Bergeriella denitrificans). 

 

To sum up, Hi-C links can indeed help determining taxonomic placement of the hosts of 

ARGs and MGEs in environmental settlements such as complex wastewater samples.  
 

3.6. Comparison with reference study 
 
This work did not aim to compete with already commercial workflows such as the ProxiMeta 

platform. In general, the macroscopic results obtained with this method are similar to the 

ones obtained in Stälder et al. (2018) in terms of messages given. The major differences 

between these studies are the number of hits and links obtained. In this study, similar values 

for ARGs were obtained but much lower number of links were obtained on the mobilome 

analysis (plasmids and integrons). This lower number of links, even if giving similar 

information, lacks the clustering effect that they could get due to multiple species containing 

target genes from the same taxonomical group. In this study, same taxonomic units linked 

similar target genes but showing a lower clustering effect.  

 

If we compare the number of clusters or MAGs that were selected after CheckM for their 

study and ours, the values ended up being similar: 51 vs. 55 MAGs in our study. This clarifies 

that the starting point for the Hi-C analysis was similar in both studies. Some differences could 

have arisen through the binning process. For the binning process, bin3C was utilized during 

this study, where as an input file, the metagenomic assembly, the Hi-C to the metagenomic 

assembly alignment and the enzyme utilized for digestion of Hi-C genetic material had to be 

provided. It is hypothesized that any relevant variation between both processes could be 

driven by the enzyme selected for binning. In our case, MluCI enzyme was used as default as 

the enzyme used in their study was not referred. Metagenomic assembly and Hi-C reads 

processing was done the same way so we do not consider these steps as the ones increasing 

the variability on the results. However, it is important to highlight that same software 

executed on the same data with different machines and operative systems might give 
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different results unless they are executed on Docker. Thus, this being a major concern in 

bioinformatics in terms of reproducibility (DI Tommaso et al., 2017). The binning algorithm is 

also different. Regarding taxonomy assignment (annotation), it is not believed that many 

variations was added due to the usage of the same software (Mash) for assigning it and 

obtaining of similar number of high-quality MAGs.  

 

The bigger variation comes to the way the Hi-C reads were deconvoluted. They use the 

ProxiMeta platform while we tried to link directly contigs containing ARGs or MGEs to the 

MAGs they belonged and then, normalize by size of the MAGs (number of contigs it 

contained). During these steps, BLASTn was utilized to obtain the ARGs and MGEs hits. In their 

study, they used BLAT wth the option -minIdentity =90 and coverage higher than 80% while 

in this study BLASTn was utilized with the option -evalue <10-20. For detection improvement, 

best hits should be the ones with the highest bitscore. When contigs had multiple hits for the 

same locus, we selected the best hit based on the lowest e-value and not the multiplication 

between the coverage and identity, which was what they did. This could also give high 

variability in the results.  

 

Regarding the target genes assignment, we see again a similar trend but with substantial 

differences, especially with the ARGs. We see that the same bacterial families are potential 

hosts for containing ARGs within their genome or integrated in episomal plasmids. However, 

when it comes to specific ARGs, we see differences. Significant differences are highlighted 

specially on highly-abundant ARGs such as sulfonamides (sul1) and some aminoglycosides 

(AANT3’) resistance genes. On the other hand, ARGs such as rifampicin (rpoB) and 

fluoroquinolones (GyrA) resistance genes are not even mentioned on the selected paper and 

are highly abundant and present with this pipeline.  Similar behavior is observed when 

plasmids and integrons are assessed. However, this last one could be due to a different 

version of the database used as the integrons database was locally built and the plasmid 

database from PlasmidFinder was the enterobacteria database one, which remains unclear if 

it is the same used in the reference study. 

 

Overall, this pipeline replicates successfully what has been published in Stalder et al. (2019). 

Major drawbacks come on some specific ARGs and links richness. This could have happened 
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by having applied a more restrictive cutoff (removing all the MAGs for the visualization that 

contained less than 150 contigs). If we just generate the ARG figure without any cutoff, we 

can actually see genes that were not present in the ARG analysis such as sul1, tetO and qnrS 

(Figure 8) in the same bacterial families stated in the reference paper. Phylogenetic tree of 

non-cutoff ARG analysis can be found in Supplementary material (Figure S1).  

 

 
Figure 8.  Hi-C links between the clusters and ARGs, identified in the wastewater sample and affiliated with most abundant 
bacterial families. Each edge of the phylogenetic tree represents a cluster. Only clusters having a contact with ARGs are 
shown. The presence or absence of a link is shown on the heatmap to the right of the tree, and the color shading represents 
the intensity of the normalized Hi-C link signals on logarithmic scale. Note: not cutoff was applied here. Red arrows showing 
significant ARG differences and the effect of applying visualization cutoffs.  
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4. Conclusions 
 

• Hi-C linking suggests that Aeromonadaceae, Moraxellaceae, Neisseriabaceae, 

Chromobacteriaceae and Commamonadeceae are the most likely reservoirs of ARGs 

in this wastewater samples. 

• IncQ (1 and 2) plasmids had the broadest range of putative hosts, followed by the 

colE1-type plasmids.  

• Class 1 integrons were the most represented, specifically in the Gamma-

proteobacteria and less in the Bacteroides, Actinobacteria and Chlamydiae families. 

• Hi-C results obtained with this pipeline does still follow the same trend as the 

reference study even if improvements must be performed in order to magnify the 

host:target gene resolution.  
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5. Glossary 
 
ARG – Antibiotic Resistance Gene 

BHR – Broad Host Range  

MAG – Metagenome-Assembled Genome  

MGE – Mobile Genetic Element 

NHR – Narrow Host Range 
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8. Supplementary material  
 

The code 
 
#!/bin/bash 
 
set -e 
 
############# 
# Variables # 
############# 
 
MASH_PATH="./mash" 
BIN3C_PATH="./bin3C/bin3C.py" 
 
################### 
# PARSE ARGUMENTS # 
################### 
 
if [[ ! $(type bwa 2> /dev/null) ]] ; then echo "bwa program is not in the \$PATH"; fi 
 
if [[ ! $(type blastn 2> /dev/null) ]] ; then echo "blastn program is not in the \$PATH"; fi 
 
if [[ ! $(type samtools 2> /dev/null) ]] ; then echo "samtools program is not in the \$PATH"; 
fi 
 
if [[ ! $(type checkm 2> /dev/null) ]] ; then echo "checkm program is not in the \$PATH"; fi 
 
if [[ -z $1 ]]; then 
    echo "first argument should be an ASSEMBLY in fasta" 
    exit 1 
fi 
 
if [[ -z $2 ]]; then 
    echo "second argument should be Hi-C PairedEnd file 1" 
    exit 1 #0 means script was successful, 1 means script failed 
fi 
 
if [[ -z $3 ]]; then 
echo "third argument should be Hi-C PairedEnd file 2" 
exit 1 #0 means script was successful, 1 means script failed 
fi 
 
if [[ -z $4 ]]; then 
echo "database for ARGs" 
exit 1 
fi 
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if [[ -z $5 ]]; then 
echo "database for Plasmids" 
exit 1 
fi 
 
if [[ -z $6 ]]; then 
echo "database for Integrons" 
exit 1 
fi 
 
if [[ -z $7 ]]; then 
echo "give me a number!" 
exit 1 #0 means script was successful, 1 means script failed 
fi 
 

Align Hi-C paired-end library to the MEGAHIT assembly using BWA mem 
 
if [[ $start < 2 ]]; then  
    # STEP 1: Generate index file from assembly 
    bwa index $1 
fi 
 
if [[ $start < 3 ]]; then  
    # STEP 2: align Hi-C to assembly to generate the .sam file 
    bwa mem -5SP $1 $2 $3 > hic_mem.sam 
fi 
 
if [[ $start < 4 ]]; then 
# STEP 3: Generate the .bam file 
    samtools view -S -h -b -F 2316 hic_mem.sam > hic_mem.bam 
fi 
 
if [[ $start < 5 ]]; then 
# STEP 4: Sort by name the bam file 
samtools sort -n hic_mem.bam > hic_mem_name.bam 
fi 
 

Bin our assembly with the aligned Hi-C reads using Bin3C 
 
if [[ $start < 6 ]]; then 
# STEP5: Create a contact map for analysis 
python2 $BIN3C_PATH mkmap -e MluCI -v $1 hic_mem_name.bam bin3c_out 
fi 
 
if [[ $start < 7 ]]; then 
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# STEP6: Cluster the resulting contact map into genome bins. Only in ubuntu environments 
with more than 32GB ram 
python2 $BIN3C_PATH cluster -v bin3c_out/contact_map.p.gz bin3c_clust 
fi 
 

Binning Quality Control with CheckM 
 
if [[ $start < 8 ]]; then 
# STEP 7: Generate a folder with the quality control about the binning process. It can be 
used for "removing" low quality bins from folder and start over STEP 8 
checkm lineage_wf -x fna bin3c_clust/fasta fasta_bins_out 
fi 
 

Assign taxonomy using Mash  
 
if [[ $start < 9 ]]; then 
# STEP 8: Copy all fasta files in current folder 
   cp bin3c_clust/fasta/* . 
fi 
 
if [[ $start < 10 ]]; then 
# STEP 9: Generate a file with hits 
for i in `ls CL*.fna`; do $MASH_PATH screen -w -p 4 refseq.genomes.k21s1000.msh $i > 
$i.tab; done 
fi 
 
if [[ $start < 11 ]]; then 
# STEP 10: Generate a folder with the tab_sorted mash files 
mkdir tab_sorted 
fi 
 
if [[ $start < 12 ]]; then 
# STEP 11: Sort mash results to have on top the best hit 
for i in `ls CL*.fna.tab`; do sort -gr $i > tab_sorted/$i.tab; done 
fi 
 
if [[ $start < 13 ]]; then 
# STEP 12: Copy all sorted files to current folder 
   cp tab_sorted/* . 
fi 
 
if [[ $start < 14 ]]; then 
# STEP 13: Extract mash sorted hits on a table 
for i in `ls CL*.fna.tab.tab`; do head -n 1 $i> $i.tab ; done 
fi 
 
if [[ $start < 15 ]]; then 
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# STEP 14: Extract mash sorted hits on a table. 
bash concat.sh 
fi 
 

 
 
if [[ $start < 16 ]]; then 
# STEP 15: Extract names of fasta files (CL....fna) This is ok. 
    ls bin3c_clust/fasta/ | sed 's/.fna//g' > names.txt 
fi 
 
if [[ $start < 17 ]]; then 
# STEP 16: Merge both names file and merged_tophits_mash.tab file in one. Then we select 
only the columns with the CL... code and the name of the species to have a clean mash 
results file. 
    paste -d ' ' names.txt merged_tophits_mash.tab > MASH_results.txt 
fi 
 

Generate ARGs/Integrons/Plasmids hits on our hits 
 
if [[ $start < 18 ]]; then 
# STEP 17: Merge all the bins before generate in a fasta file 
 cat bin3c_clust/fasta/* > merged_fasta.fna 
fi 
 
if [[ $start < 19 ]]; then 
# STEP 18: Index file the databases that are going to be used for getting the hits 
makeblastdb -in $4 -dbtype nucl 
makeblastdb -in $5 -dbtype nucl 

###concat.sh code 
#!/bin/bash 
 
out=merged_tophits_mash.tab 
# delete the file prior to doing concatenation 
# or if ran twice it would be counted in the input files! 
rm -f "$out" 
 
for f in *.fna.tab.tab.tab 
do 
   if [ -s "$f" ] ; then 
      #cat "$f" | sed 's/^/$f,/'   
      sed "s/^/$f,/" "$f" 
 
   else 
      echo "$f," 
   fi 
done > $out 
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makeblastdb -in $6 -dbtype nucl 
fi 
 
if [[ $start < 20 ]]; then 
# STEP 19: Perform the blastn with the merged fasta file and the indexed databases with e-
value 10-20.  
 
# ARGs  
blastn -db $4 -query merged_fasta.fna -evalue 1e-20 -outfmt 7 -out ARG_results.txt 
cat ARG_results.txt |awk '/hits found/{getline;print}' | grep -v "#" | awk '{print $1,$2}' > 
ARG_top_hits.txt 
 
# Plasmids 
blastn -db $5 -query merged_fasta.fna -evalue 1e-20 -outfmt 7 -out plasmid_results.txt 
cat plasmid_results.txt |awk '/hits found/{getline;print}' | grep -v "#" | awk '{print $1,$2}'  > 
plasmid_top_hits.txt 
 
# Integrons 
blastn -db $6 -query merged_fasta.fna -evalue 1e-20 -outfmt 7 -out integrases_results.txt 
cat integrases_results.txt |awk '/hits found/{getline;print}' | grep -v "#" | awk '{print $1,$2}' 
> integrases_top_hits.txt 
fi 
 

Links between aligned contigs between the assembly and the Hi-C reads 
 
if [[ $start < 21 ]]; then 
# STEP 20: Generate alignment to links file necessary for STEP 21 scripts. 
samtools view hic_mem_name.bam | awk '{hash[$3"\t"$7]++}END{for (x in hash) {print 
x"\t"hash[x]/2}}'> contig_links.txt 
fi 
 

Sum of interactions between ARGs/Integrases/Plasmids and its respective clusters 
 
if [[ $start < 22 ]]; then 
# STEP 21: Generate sum of interaction files 
python2 script_ARG_d.py 
python2 script_plasmid_d.py 
python2 script_integrases_d.py 
fi 
 
The python scripts are shown in the following code: The idea is to take the all the hits from 

the blast results, extract hit per hit the cluster and contig that it belongs. Then, once we have 

that number, we extract only the contig and from the contig_links.txt file, it sums all the contig 

interactions between the blast hit contig and all the other contigs belonging to the same 

cluster.  
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# -*- coding: utf-8 -*- 
""" 
Created on Thu Apr 23 17:23:43 2020 
Script_ARG_d.py 
""" 
# Load the Pandas libraries with alias 'pd'  
import pandas as pd  
import glob 
 
path = r"./bin3c_clust/fasta" # use your path # use your path 
all_files = glob.glob(path + "/*.fna") 
# 
pd_list = [] #una lista de ficheros donde voy a guardar los ficheros filtrados. Se genera 
vacia al principio. 
for f in all_files:  #all_files es la lista y la f es cada uno de los elementos 
    print(f) 
    doc2_temp = pd.read_csv(f, sep='\s+', header=None) #leo el fichero 1 
    #Doc2 - Filter Rows with its first column not ">.*" 
    doc2_temp = doc2_temp[doc2_temp[0].str.contains(">")].ix[:,[0,1]] #tratamiento que 
haciamos antes: filtrar del mayor que y quedarse solo con la columna 0 y 1. 
    #Doc2 - Filter First and Second Column 
    doc2_temp.ix[:,[0,1]] 
    pd_list.append(doc2_temp) 
 
doc2 = pd.concat(pd_list, axis=0, ignore_index=True)#coge la lista y lo concatena, para tener 
1 solo dataframe en lugar de una lista de data.frames. El axis 0 es que lo juntas por el eje 
0, que me ponga uno debajo del otro y au. Esto me genera un fichero/documento. 
    # Read data from file 'filename.csv'  
# (in the same directory that your python process is based) 
# Control delimiters, rows, column names with read_csv (see later)  
doc1 = pd.read_csv("ARG_top_hits.txt", sep='\s+', header=None) 
#doc2 = pd.read_csv("CL0003.txt", sep='\s+', header=None)  
doc3 = pd.read_csv("contig_links.txt", sep='\s+', header=None)  
 
# Data cleaning  
#Doc1 - Keep column 1 delete others 
doc1 = doc1.ix[:,[0]] 
#Doc 3 -Delete rows with equal sign in any column 
doc3 = doc3[~doc3[0].str.contains("=")] 
doc3 = doc3[~doc3[1].str.contains("=")] 
#if k99 in doc3 is not in doc2 - delete interaction 
 
# Data preparation 
doc2[0] = doc2[0].str.replace(">","") 
doc2[1] = doc2[1].str.replace("contig:","") 
k99_list=doc2[1].drop_duplicates().values.tolist() 
doc3 = doc3[doc3[0].isin(k99_list)] 
doc3 = doc3[doc3[1].isin(k99_list)] 
 
#Join doc1 % doc2 
doc12=doc1.merge(doc2, on=[0], how='left') 
 
#Join doc12 % doc3 
doc12_doc3_c1=doc12.merge(doc3, left_on=[1], right_on=[0], how='left') 
doc12_doc3_c1=doc12_doc3_c1.ix[:,['0_x','1_x','1_y',2]] 
doc12_doc3_c2=doc12.merge(doc3, left_on=[1], right_on=[1], how='left') 
 
#Rename columns 
header_list = ["CL-doc1", "k99-doc2", "k99-interac","value"] 
doc12_doc3_c1.columns = header_list 
doc12_doc3_c2.columns = header_list 
 
#Append 
resultado=doc12_doc3_c1.append(doc12_doc3_c2).sort_values(by=['CL-doc1']) 
 
#Write Result 
resultado.to_csv("result_ARG.txt", index=False) 
 
#GroupBy["CL-doc1", "k99-doc2"] and sum 
resultado_suma=resultado.groupby(["CL-doc1", "k99-doc2"]).sum() 
resultado_suma.to_csv("result-sum_ARG.txt") 
 
#Calculate normalization file by number of contigs per cluster 
doc1_norm = pd.read_csv("ARG_top_hits.txt", sep='\s+', header=None) 
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It generates 3 files: result_ARG (plasmid or integrase).txt, result-sum_ARG.txt (this is the one 

that we will use for generating the heatmap) and result_CLXXX0ocurrences_ARG.txt, used for 

normalization.  

 
###Prepare files for heatmap generation 
 
if [[ $start < 23 ]]; then 
# STEP 22: Clean files and join sum of interactions with the events 
sed 's/,/ /g' result-sum_ARG.txt | tail -n +2 > result-sum_ARG_clean.txt 
sed 's/,/ /g' result-sum_plasmid.txt | tail -n +2 > result-sum_plasmid_clean.txt 
sed 's/,/ /g' result-sum_integrases.txt | tail -n +2 > result-sum_integrases_clean.txt 
 
#First we remove spaces from script results to generate columns, then we remove header 
and then we join with top hits of the specific event. 
fi 
 
if [[ $start < 24 ]]; then 
# STEP 23: Join them with top hits from blast results 
 
join -1 1 -2 1 ARG_top_hits.txt result-sum_ARG_clean.txt  > ARG_hits_suminteractions.txt 
join -1 1 -2 1 plasmid_top_hits.txt result-sum_plasmid_clean.txt  > 
plasmid_hits_suminteractions.txt 
join -1 1 -2 1 integrases_top_hits.txt result-sum_integrases_clean.txt  > 
integrases_hits_suminteractions.txt 
fi 
 
 
 

#Write Result 
resultado.to_csv("result_ARG.txt", index=False) 
 
#GroupBy["CL-doc1", "k99-doc2"] and sum 
resultado_suma=resultado.groupby(["CL-doc1", "k99-doc2"]).sum() 
resultado_suma.to_csv("result-sum_ARG.txt") 
 
#Calculate normalization file by number of contigs per cluster 
doc1_norm = pd.read_csv("ARG_top_hits.txt", sep='\s+', header=None) 
doc1_norm = doc1_norm.ix[:,[0]] 
doc1_norm = doc1_norm[0].str.slice(0, 
6).to_frame().drop_duplicates(keep='first').dropna().reset_index(drop=True) 
doc2_filter= doc2[0].str.slice(0, 6).to_frame() 
doc2_filter[1]= doc2_filter[0] 
doc2_filter=doc2_filter.groupby([1], as_index=False).count() 
join_norm=doc1_norm.merge(doc2_filter, left_on=[0], right_on=[1], 
how='left').ix[:,['key_0','0_y']].fillna(0) 
header_list = ["CLXXXX", "count-doc2"] 
join_norm.columns = header_list 
join_norm["count-doc2"]=join_norm["count-doc2"].astype(int) 
join_norm.to_csv("result_CLXXXXOcurrences_ARG.txt", index=False) 
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if [[ $start < 25 ]]; then 
# STEP 24: Remove "_" from ARG_hits_suminteractiosn so the species from MASH can be 
added and join them 
awk '{gsub("_"," ",$1)}1' ARG_hits_suminteractions.txt > 
ARG_hits_suminteractions_clean.txt 
join -1 1 -2 1 ARG_hits_suminteractions_clean.txt MASH_results.txt > 
ARG_final_results_R.txt 
awk '{gsub("_"," ",$1)}1' plasmid_hits_suminteractions.txt > 
plasmid_hits_suminteractions_clean.txt 
join -1 1 -2 1 plasmid_hits_suminteractions_clean.txt MASH_results.txt > 
plasmid_final_results_R.txt 
awk '{gsub("_"," ",$1)}1' integrases_hits_suminteractions.txt > 
integrases_hits_suminteractions_clean.txt 
join -1 1 -2 1 integrases_hits_suminteractions_clean.txt MASH_results.txt > 
integrases_final_results_R.txt 
fi 
 
if [[ $start < 26 ]]; then 
# STEP 24: Clean file part I 
awk '{print $1,$3,$5,$14,$15}' ARG_final_results_R.txt > ARG_final_results_R_clean.txt 
awk '{print $1,$3,$5,$14,$15}' plasmid_final_results_R.txt > 
plasmid_final_results_R_clean.txt 
awk '{print $1,$3,$5,$14,$15}' integrases_final_results_R.txt > 
integrases_final_results_R_clean.txt 
fi 
 
if [[ $start < 27 ]]; then 
# STEP 25: Clean file part II: subtract column by column and generate the final file 
awk -F"fna.gz" '{print $2}' ARG_final_results_R.txt | awk -F"." '{print $2}' | awk -F" " '{print 
$2" "$3}' > ARG_species.txt 
awk -F"fna.gz" '{print $2}' plasmid_final_results_R.txt | awk -F"." '{print $2}' | awk -F" " 
'{print $2" "$3}' > plasmid_species.txt 
awk -F"fna.gz" '{print $2}' integrases_final_results_R.txt | awk -F"." '{print $2}' | awk -F" " 
'{print $2" "$3}' > integrases_species.txt 
awk '{print $1}' ARG_final_results_R_clean.txt > ARG_cluster.txt 
awk '{print $1}' plasmid_final_results_R_clean.txt > plasmid_cluster.txt 
awk '{print $1}' integrases_final_results_R_clean.txt > integrases_cluster.txt 
grep "CL" ARG_final_results_R.txt | awk 'BEGIN{FS="|"}{split($0,a,"|") ; if 
(a[length(a)]~"Requires") {print a[length(a)-3]} else {print a[length(a)-2]}}' > ARG_event.txt 
awk '{print $2}' ARG_final_results_R_clean.txt | awk 'BEGIN{FS="|"}{split($0,a,"|") ; if 
(a[length(a)]~"Requires") {print a[length(a)-1]} else {print a[length(a)-0]}}' > ARG_gene.txt 
awk '{print $2}' plasmid_final_results_R_clean.txt |sed 's/_.*//' > plasmid_event.txt 
awk '{print $2}' integrases_final_results_R_clean.txt > integrases_event.txt 
awk '{print $3}' ARG_final_results_R_clean.txt > ARG_sumint.txt 
awk '{print $3}' plasmid_final_results_R_clean.txt > plasmid_sumint.txt 
awk '{print $3}' integrases_final_results_R_clean.txt > integrases_sumint.txt 
fi 
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Sum of interactions normalization by amount of contigs in cluster 
 
if [[ $start < 28 ]]; then 
# STEP 26: Clean file part IV: subtract number of contigs per cluster and normalize sum of 
interactions 
 
sed 's/,/ /g' result_CLXXXXOcurrences_ARG.txt | tail -n +2 > Ocurrences_ARG.txt 
join -1 1 -2 1 ARG_cluster.txt Ocurrences_ARG.txt | awk {'print $2'} > 
Ocurrences_ARG_clean.txt 
paste ARG_sumint.txt Ocurrences_ARG_clean.txt | awk '{print($1/$2)}' > 
normalizedsum_ARG.txt 
 
sed 's/,/ /g' result_CLXXXXOcurrences_plasmid.txt | tail -n +2 > Ocurrences_plasmid.txt 
join -1 1 -2 1 plasmid_cluster.txt Ocurrences_plasmid.txt | awk {'print $2'} > 
Ocurrences_plasmid_clean.txt 
paste plasmid_sumint.txt Ocurrences_plasmid_clean.txt | awk '{print($1/$2)}' > 
normalizedsum_plasmid.txt 
 
sed 's/,/ /g' result_CLXXXXOcurrences_integrases.txt | tail -n +2 > Ocurrences_integrases.txt 
join -1 1 -2 1 integrases_cluster.txt Ocurrences_integrases.txt | awk {'print $2'} > 
Ocurrences_integrases_clean.txt 
paste integrases_sumint.txt Ocurrences_integrases_clean.txt | awk '{print($1/$2)}' > 
normalizedsum_integrases.txt 
fi 
 
if [[ $start < 29 ]]; then 
# STEP 27: Clean file part III: join the parts and sort them by second column (Species) 
paste ARG_cluster.txt ARG_species.txt ARG_event.txt ARG_gene.txt ARG_sumint.txt 
Ocurrences_ARG_clean.txt normalizedsum_ARG.txt | sort -k 2 > ARG_R.txt 
 
paste plasmid_cluster.txt plasmid_species.txt plasmid_event.txt plasmid_sumint.txt 
Ocurrences_plasmid_clean.txt normalizedsum_plasmid.txt | sort -k 2   > plasmid_R.txt 
paste integrases_cluster.txt integrases_species.txt integrases_event.txt 
integrases_sumint.txt Ocurrences_integrases_clean.txt normalizedsum_integrases.txt | sort 
-k 2 > integrases_R.txt 
fi 
 
if [[ $start < 30 ]]; then 
# STEP 28: Add header to the file 
echo -e 'CLUSTER\tSPECIES\tARG family\tARG\tSUM\tNumber of Contigs\tNormalizedSum'| 
cat - ARG_R.txt  > ARG_R_clean.csv 
echo -e 'CLUSTER\tSPECIES\tEVENT\tSUM\tNumber of Contigs\tNormalizedSum'| cat - 
plasmid_R.txt > plasmid_R_clean.csv 
echo -e 'CLUSTER\tSPECIES\tEVENT\tSUM\tNumber of Contigs\tNormalizedSum'| cat - 
integrases_R.txt > integrases_R_clean.csv 
fi 
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if [[ $start < 31 ]]; then 
# STEP 28: Run R 
Rscript hic.r 
fi 
 

 

This R script will generate the heatmaps for ARGs, plasmids and integrases. For results 

interpretation, heatmap had to be linked to phylogenetic families and classes. For doing 

that, a R script was written. 

#!/usr/bin/env Rscript #This is the script for hic.r analysis 
library(ggplot2) 
 
#ARG_genes 
 
dataARG<-read.csv("./ARG_R_clean.csv", header = TRUE, sep="\t") 
 
LOG.normalizedabun<-log10(dataARG$NormalizedSum) 
mine.heatmap<-ggplot(data=dataARG, mapping = aes(x=ARG, 
                                              y=SPECIES, 
                                              fill=LOG.normalizedabun)) + 
  geom_tile() +  
  scale_fill_gradient(name = "Log(Normalized sum of interactions)", 
                      low = "#003366", 
                      high = "#EFEDC2") + 
  theme( 
    panel.grid.major = element_blank(), 
    panel.grid.minor = element_blank(), 
    axis.line = element_blank(), 
    axis.ticks = element_blank(), 
    axis.text.x = element_text(angle=45, size=20, hjust=1), 
    axis.text.y = element_text(size=20, hjust=1) 
  ) 
 
ggsave("heatmapARG_gene.tiff", units="in", width=30, height=30, dpi=300, compression 
= 'lzw') 
 
 
#ARG_family 
 
mine.heatmap<-ggplot(data=dataARG, mapping = aes(x=ARG.family, 
                                              y=SPECIES, 
                                              
fill=LOG.normalizedabun)) + 
  geom_tile() +  
  scale_fill_gradient(name = "Log(Normalized sum of interactions)", 
                      low = "#003366", 
                      high = "#EFEDC2") + 
  theme( 
    panel.grid.major = element_blank(), 
    panel.grid.minor = element_blank(), 
    axis.line = element_blank(), 
    axis.ticks = element_blank(), 
    axis.text.x = element_text(angle=45, size=20, hjust=1), 
    axis.text.y = element_text(size=20, hjust=1) 
  ) 
 
ggsave("heatmapARG_family.tiff", units="in", width=30, height=30, dpi=300, 
compression = 'lzw') 
 
 
 
 
 
#PLASMIDS 
 
dataARG<-read.csv("/Volumes/TOSHIIBA/TFM 
BIOINFORMATICA/plasmid_R_clean.csv", header = TRUE, sep="\t") 
 
LOG.normalizedabun<-log10(dataARG$NormalizedSum) 
mine.heatmap<-ggplot(data=dataARG, mapping = aes(x=EVENT, 
                                              y=SPECIES, 
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#!/usr/bin/env Rscript #This is the script for Heatmap_phylogeny_R_code analysis 
 
library(ggplot2) 
library(taxize) 
library(dplyr) 
 
# Documento del script ARG 
 
 
dataARG<-read.csv("./ARG_R_clean.csv", header = TRUE, sep="\t") 
dataARG<-subset(dataARG,Number.of.Contigs>=100) #Modify, depends on case. 
 
 
LOG.normalizedabun<-log10(dataARG$NormalizedSum) 
mine.heatmap<-ggplot(data=dataARG, mapping = aes(x=ARG, 
                                              y=SPECIES, 
                                              fill=LOG.normalizedabun)) + 
  geom_tile() + 
  scale_fill_gradient(name = "Log(Normalized sum of interactions)", 
                      low = "#003366", 
                      high = "#EFEDC2") + 
  theme( 
    panel.grid.major = element_blank(), 
    panel.grid.minor = element_blank(), 
    axis.line = element_blank(), 
    axis.ticks = element_blank(), 
    axis.text.x = element_text(angle=45, size=20, hjust=1), 
    axis.text.y = element_text(size=20, hjust=1) 
  ) 
 
 
mine.heatmap 
 
ggsave("heatmapARGtest.tiff", units="in", width=30, height=30, dpi=300, compression = 
'lzw') 
 
 
#Taxize was used for retrieve the species phylum and genus names from NCBI 
 
names<-as.character(dataARG$SPECIES) 
class(names) 
test<-tax_name(query=c(names), get= c("phylum","genus"), db="ncbi") 
 
 
#Subsetting genus and phylum to be added to the original output file 
 
 
ARG_genus<-test$genus 
ARG_phylum<-test$phylum 
dataARG1<-cbind(dataARG, ARG_genus, ARG_phylum) 
dataARG1 
 
 
LOG.normalizedabun<-log10(dataARG1$NormalizedSum) 
mine.heatmap<-ggplot(data=dataARG1, mapping = aes(x=ARG, 
                                              y=SPECIES,  #This can be modified by 
changin SPECIES to Genus or Phylum depending on the level of detail needed. 
                                              
fill=LOG.normalizedabun)) + 
  geom_tile() + 
  scale_fill_gradient(name = "Log(Normalized sum of interactions)", 
                      low = "#003366", 
                      high = "#EFEDC2") + 
  theme( 
    panel.grid.major = element_blank(), 
    panel.grid.minor = element_blank(), 
    axis.line = element_blank(), 
    axis.ticks = element_blank(), 
    axis.text.x = element_text(angle=45, size=20, hjust=1), 
    axis.text.y = element_text(size=20, hjust=1) 
  ) 
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 LOG.normalizedabun<-log10(dataARG1$NormalizedSum) 
mine.heatmap<-ggplot(data=dataARG1, mapping = aes(x=ARG, 
                                              y=SPECIES,  #This can be modified by 
changin SPECIES to Genus or Phylum depending on the level of detail needed. 
                                              fill=LOG.normalizedabun)) + 
  geom_tile() + 
  scale_fill_gradient(name = "Log(Normalized sum of interactions)", 
                      low = "#003366", 
                      high = "#EFEDC2") + 
  theme( 
    panel.grid.major = element_blank(), 
    panel.grid.minor = element_blank(), 
    axis.line = element_blank(), 
    axis.ticks = element_blank(), 
    axis.text.x = element_text(angle=45, size=20, hjust=1), 
    axis.text.y = element_text(size=20, hjust=1) 
  ) 
 
 
mine.heatmap 
 
ggsave("heatmapARG1test.tiff", units="in", width=30, height=30, dpi=300, compression 
= 'lzw') 
 
 
#Remove duplicates for tree 
 
library(dplyr) 
names<-as.data.frame(dataARG1$SPECIES) 
names<-distinct(names) 
 
names<-as.character(names[,1]) 
 
 
##Generate the classification vector 
 
tree_ARG<-classification(names, db="ncbi") 
 
## Generat tree 
 
tree_ARG_real<-class2tree(tree_ARG, check=TRUE, varstep = TRUE) 
 
tiff(file="tree_ARG.tiff", width=15, height=30, units="in", res=300) 
 
plot(tree_ARG_real) 
 
dev.off() 
 
 
tree_ARG_real$phylo$tip.label 
 
 
## Obtain a vector with the species order of appearance in the tree 
 
 
order_ARG<-
rev(tree_ARG_real$phylo$tip.label[tree_ARG_real$phylo$edge[tree_ARG_real$phylo$edge[,
2] <= 91,2]]) #This 91 has to be adjusted depending on the number of entries. Case-
dependent. Manually. 
order_ARG 
 
df<-data.frame(dataARG1) 
df_corrected<-gsub("\\b[sp]{1,2}\\b", "sp.", df$SPECIES) #This will add a point after 
every sp 
dataARG2<-cbind(df,df_corrected) 
dataARG2 
 
# Reverse order to fit the way the tree is generated 
level_order<-rev(order_ARG) 
level_order 
 
 
#Representation of the heatmap in order of appearance for 
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The R code before detailed is the one used for ARGs. Same workflow was followed for 

plasmids and integrases details. Figures obtained with this code: tree_ARG.tiff (Figure S1) 

and heatmapARG_ordered.tiff are further arranged by Microsoft PowerPoint in order to 

generate the figures of this report.  

 

 

 

 

 

 

 

 
# Reverse order to fit the way the tree is generated 
level_order<-rev(order_ARG) 
 
#Representation of the heatmap in order of appearance for linking it to the 
phylogenetic tree 
 
LOG.normalizedabun<-log10(dataARG2$NormalizedSum) 
mine.heatmap<-ggplot(data=dataARG2, mapping = aes(x=ARG, 
                                              y=factor(df_corrected, 
level=level_order), 
                                              fill=LOG.normalizedabun)) + 
  geom_tile() + 
  scale_fill_gradient(name = "", 
                      low = "#003366", 
                      high = "#FFD700", 
                      ) + 
 
  labs(x="Antibiotic Resistance Genes (ARG)", y="Species") + 
 
  theme( 
    panel.grid.major = element_blank(), 
    panel.grid.minor = element_blank(), 
    axis.line = element_blank(), 
    axis.ticks = element_blank(), 
    axis.text.x = element_text(angle=45, size=20, hjust=1), 
    axis.text.y = element_text(size=30, hjust=1), 
    legend.key.size = unit(1,"in"), 
    legend.text = element_text(size=30), 
    axis.title  = element_text(size=30) 
  ) 
 
mine.heatmap 
 
ggsave("heatmapARG_ordeded.tiff", units="in", width=40, height=30, dpi=300, 
compression = 'lzw') 
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Phylogenetic tree 

 
Figure S1. Phylogenetic tree from the cluster-links obtained for the ARGs analysis. All the clusters/MAGs 
here represented had a link or more with specific ARG target genes.  
 
 


