
Multivariate Analysis of Mineral
Profile in Paprika with

Protected Designation of Origin

TFM - Màster en Bioinformàtica i Bioestad́ıstica
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En primer lugar, me gustaŕıa dar las gracias, ”obviously”, a mi colega
Marta Parada. No sólo me ha ayudado de forma impagable en la revisión del
texto en inglés, sino que en su momento me hizo ver que se pod́ıa ser más
valiente y plantear un proyecto más ambicioso. (Gracias por tu enerǵıa y tu
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Resum:
En un entorn cada cop més globalitzat, el frau alimentari és una preocupació
creixent per part tant de productors i distribüıdors d’aliments, com de con-
sumidors, i en aquest entorn els laboratoris de control alimentari juguen un
paper clau en la seva detecció. Un dels possibles tipus de fraus és aquell
vinculat amb l’incorrecte etiquetat de productes amb Denominació d’Origen
Protegida. Des del punt de vista anaĺıtic, una de les tècniques de detecció
d’origen més modernes és l’anàlisis multivariant no selectiu, com el perfil
mineral, seguit d’un tractament estad́ıstic adient de les dades generades que
permeti extreure conclusions relatives a l’origen del producte. Concretament
en aquest treball s’han aplicat models d’aprenentatge automàtic sobre dades
de perfil mineral de pebre vermell amb denominació d’origen, obtenint resul-
tats de classificació que informin de l’origen dels productes. Les tècniques
emprades han estat l’anàlisis de components principals, l’anàlisis de con-
glomerats, l’anàlisis lineal discriminant i, per primer cop en aquest tipus de
producte, el mètode del bosc aleatori, que ha estat capaç de classificar correc-
tament segons l’origen geogràfic la totalitat dels productes analitzats. S’ha



desenvolupat un mètode que inclou l’adquisició del perfil mineral mitjançant
l’espectrometria de masses i l’algoritme de processat de dades, en llenguatge
R, que podrà ser aplicat tant a altres denominacions de pebre vermell com
presumiblement a d’altres tipus de productes amb denominació d’origen.

Abstract:
In an increasingly globalized world, food fraud has brought a growing con-
cern in food producers, distributors and also consumers. In this context, food
control laboratories play a key role in fraud detection. One possible type of
fraud is related to incorrect labelling of products with a Protected Designa-
tion of Origin specification. From the analytical point of view, one of the
main modern techniques for origin detection is the untargeted multivariate
analysis, like mineral profile, followed by an appropriate statistical treatment
of the produced data, which its aim is drawing conclusions regarding the ori-
gin of the product. In this work machine learning models have been applied
to paprika’s mineral profile data with a protected designation of origin for
the obtention of classificatory results in terms of the origin of the products.
The applied techniques have been Principal Components Analysis, Cluster
Analysis, Discriminant Linear Analysis and, for the first time in this type of
product, Random Forest method, which has been able to correctly classify all
the analyzed samples according to the geographical origin. A global method
has been developed including the acquisition of the mineral profile by means
of Mass Spectrometry, and the data processing algorithm, in R language,
which can be applied to other paprika designations and presumably to other
types of products with Protected Designation of Origin.



Contents

1 Glossary 1

2 Project information 2
2.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2.2.1 Specific objectives . . . . . . . . . . . . . . . . . . . . . 2
2.3 Project planning . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.4 Sumary of results . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.5 Sumary of chapters . . . . . . . . . . . . . . . . . . . . . . . . 4

3 Introduction 5
3.1 Food safety in a globalized world . . . . . . . . . . . . . . . . 5
3.2 Food fraud . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.3 Geographical origin. Paprikra de la Vera . . . . . . . . . . . . 7

4 Data adquisition 7
4.1 ICP-MS and Mineral fingerprint . . . . . . . . . . . . . . . . . 7

4.1.1 Mineral fingerprint. State of the art . . . . . . . . . . . 7
4.1.2 Selected elements and ICP-MS analysis . . . . . . . . . 10
4.1.3 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . 12

4.2 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2.1 Statistical analysis . . . . . . . . . . . . . . . . . . . . 16
4.2.2 Data exploration . . . . . . . . . . . . . . . . . . . . . 18
4.2.3 Normality . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.4 Homoscedasticity . . . . . . . . . . . . . . . . . . . . . 21
4.2.5 Comparison of means . . . . . . . . . . . . . . . . . . . 22

5 Data analysis by means of unsupervised models 23
5.1 Introduction and state of the art . . . . . . . . . . . . . . . . 23
5.2 Principal Components Analysis . . . . . . . . . . . . . . . . . 24

5.2.1 PCA results . . . . . . . . . . . . . . . . . . . . . . . . 25
5.2.2 PCA conclusions . . . . . . . . . . . . . . . . . . . . . 27

5.3 Cluster Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.1 CA results and conclusions . . . . . . . . . . . . . . . . 29



6 Data analysis by means of supervised models 32
6.1 Introduction and state of the art . . . . . . . . . . . . . . . . 32
6.2 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . 33

6.2.1 LDA results and conclusions . . . . . . . . . . . . . . . 33
6.3 Random Forest . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.3.1 RF Results and conclusions . . . . . . . . . . . . . . . 36

7 Bootstrap 40
7.1 Bootstrap results and conclusions . . . . . . . . . . . . . . . . 40

7.1.1 Normality (Bootstrap) . . . . . . . . . . . . . . . . . . 42
7.1.2 PCA (Bootstrap) . . . . . . . . . . . . . . . . . . . . . 43
7.1.3 RF (Bootstrap) . . . . . . . . . . . . . . . . . . . . . . 43

8 Final conclusions 45
8.1 Discussion: applied methods results . . . . . . . . . . . . . . . 45
8.2 Final conlusions and future work . . . . . . . . . . . . . . . . 46

9 Addendum I: Dataset 49

10 Addendum II: Pipeline and R Code 53

References 54



1 Glossary

ANN Artificial Neural Networks
ANOVA Analysis of variance
AOAC Association of Official Analytical Chemists
CA Cluster Analysis
CART Classification And Regression Trees
GC-MS Gas Chromatography - Mass Spectrometry
ICP-MS Induced Coupled Plasma - Mass Spectrometry
ICP-OES Induced Coupled Plasma - Optical Emission Spectroscopy
kNN k-Nearest Neighbors
LC-MS Liquid Chromatography - Mass Spectrometry
LDA Linear Discriminant Analysis
NIR Near Infrared Spectroscopy
MS Mass Spectrometry
PC Principal Component
PCA Principal Component Analysis
P.D.O. Protected Designation of Origin
PLS Partial Least Squares regression
ppb parts per billion
ppm parts per million
RF Random Forest
SIMCA Soft Independent Modellin of Class Analogy
SVM Support Vector Machine
UV-vis UltraViolet-visible spectroscopy

sample1

1In the context of present work, ”sample” is used as ”observation” or ”individuals from
one population”.
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2 Project information

2.1 Context

The main goal of the present project is the development of a food fraud de-
tection method in products from a specific Protected Designation of Origin
(P.D.O.). Paprika ”de la Vera” was the matrix chosen for the current study.
The procedure proposed is based on the analysis of the mineral profile of
paprika samples through multielement techniques like ICP-MS and the suc-
ceeding data analysis with multivariate models for the detection of possible
fraud referring to the P.D.O. paprika ”de la Vera” label.

The multivariate models applied include Principal Component Analysis
(PCA) with Cluster Analysis (CA) together with artificial intelligence algo-
rithms (Random Forest -RF- and Linear Discriminant analysis-LDA-).

2.2 Objectives

- Development of an ICP-MS method for the study of mineral profiles of
paprika samples from the P.D.O.
- Apply multivariate data analysis techniques to be able to identify paprika
from the P.D.O. and possible frauds in widespread paprika by means of su-
pervised (PCA and CA) and unsupervised (RF and LDA) models.

2.2.1 Specific objectives

- Select the elements for analyze from the periodic table that bring the most
information in terms of geographical origins of the product.
- Create the acquisition and quantification method with the ICP-MS.
- Analyze the chosen samples with the ICP-MS for the obtention of the min-
eral profile.
- Design the algorithm for the data analysis (R code).
- Explore the obtained data (including hypothesis test).
- Application of unsupervised analysis (PCA, CA).
- Performance of supervised models (RF and LDA).
- Evaluate the obtained results and the method applicability for the desire
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goal.

2.3 Project planning

The excuted temporal planning and the main tasks that have conformed
the project are presented in a Gantt diagram. Real data was obtained as
planned, and all tasks were performed following the scheduled plan.
The main source of uncertainty in the timeline was the derived from the
pandemic COVID-19 crisis, which affected specially to sampling process.
Before the end of the project, two extra weeks were proposed by the Univer-
sity.

2.4 Sumary of results

Results of the project must include:
- The thesis, which includes the detailed bibliography that applies to the
project, the obtained results and the drawn conclusions.
- The R code used for the data analysis.
- Intermediate progress reports (PACS from 1 to 3).
- The final oral presentation that will be delivered (PAC 4B).

Furthermore, if the obtained results are satisfactory, the project can be ex-
tended to the services of Silliker Ibérica (Merieux NutriSciences), and also
published in a scientific paper.

3



2.5 Sumary of chapters

After Glossary and Project Information, chapter 3 (Introduction) is an overview
of Food Safety and Food Fraud state of the art. This chapter also covers ge-
ographical P.D.O.”de la Vera” overview.

Chapter 4 is fosused in experimental data acquisition and first data ex-
ploration. Mineral fingerprint in Food Analysis and ICP-MS applied method
are dicussed. Obtained dataset is described and data pipeline is presented.

Chapter 5 covers unsupervised machine learning models. After an intro-
ductory explanation and state of the art description, Principal Components
Analysis and Cluster Analysis are discussed.

Chapter 6 repeats the same scheme as chapter 5, with supervised models.
Linear Discrimant Analysis and Random Forest are presented.

To enlarge sample size, resampling technique of Bootstrap is covered in
chapter 7. Principal Components Analysis and Random Forest are applied
to the re-sampled subset.

Chapter 8 covers a project discussion, comparing the results from the
different methods, and the final conclusions and future work.

Two addendum chapters are included. Addendum I shows the experi-
mental dataset. Adendum II is the data pipeline. Rcode is presented, in
Markdown format. This Addendum is presented in an attached document
(pdf format).
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3 Introduction

3.1 Food safety in a globalized world

According to the World Health Organization, ”Food safety, Nutrition and
Food security are inextricably linked. Unsafe food creates a vicious cycle of
disease and malnutrition, particularly affecting infants, young children, el-
derly and the sick.”2

In addition, food supply chains are crossing multiple borders, therefore
control measures are nowadays mandatory in order to keep food safety and
people’s health. Analytical control is a key point for food companies and re-
tailers, in order to make sure that their products are safe for the consumers.
The more distance and borders the ingredients and products have to cross ,
the more difficult that control becomes.

Food safety is not the only factor in the ”Food equation”. Food is not
only about providing energy and nutrients, or about people’s health, but
also about culture and human being’s pleasure. In an increasingly worldwide
connected planet, culture globalization means also food globalization, in the
sense of local ingredients traveling abroad, based on their widespread popu-
larity. Italian or Japanese cuisines, as an example, can be found all over the
world (pizza and sushi are eaten in all continents). Therefore, the local pro-
duced cheese ”Parmgiano” is exported around the globe, so the brand value
might be highly affected by any related food safety issue or any commited
food fraud. Consequently food control is not only affecting consumers but
also producers.

3.2 Food fraud

The costs related to food fraud for the global food industry in the EU are
estimated to rise every year up to 30 billion euros. 3

Moreover, some fraudulent practises have drawn worldwide attention, arous-
ing great impact within consumers’ confidence. Some popular fraudulent

2”http://who.int/news-room/fact-sheets/detail/food-safety”
3”http://ec.europa.eu/food/safety/food-fraud”
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episodes were:

- ”Rapessed oil”, Spain 1981. More than 600 people were poisoned and
many others irreversibly affected due to the consumption of adulterated rape-
seed oil. The mentioned vegetable oil was mixed with mineral oil, not allowed
as food ingredient.

- ”Dioxin crisis”, Belgium 1999. Dioxins from a factory unintentionally
contaminated the food production chain, which caused massive economic
losses.

- ”Melamine issue”, China 2008. Melamine was introduced in milk and
infant formula to fraudulently increase the nitrogen content of the product,
and thus, simulate higher protein concentrations (products with elevated pro-
tein content are more valuable). The outcome of the fraud was bigger than
expected, since the use of melamine as an ingredient originated kindness is-
sues in infants.

- ”The horse meat scandal”, Europe 2013. Horse meat (not allowed for
human comsuption) wwas mixed in processed meat products and sold as
bovine (hamburgers, filled pasta, etc.)

- ”Sudan dyes”, Europe 2005. Sudan are azo dyes which have been shown
to cause liver cancer in animal tests. Their use as food ingredients is for-
biden, but they were found in paprika samples, to adulterate poor quality
products.

Fraud may or may not be committed intentionally. Regardless of the pur-
pose, surveillance from National and International agencies (related to food
safety) plays a key role, by constantly monitoring food products. RASFF
(Rapid Alert System for Food and Feed)(RASFF, 2019) and EFSA (European
Food Safety Agency) are examples of anti-fraud supervision organizations at
a European level.

Different classifications can be found to describe fraudulent actions based
on diverse criterion. From a composition approach, two types of fraud are
defined. The first group englobes those actions related to the addition, sub-
stitution or falsification of ingredients. The second class refers to labeling
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issues: labels declaration and misleading ingredients, product characteristics
or benefits, including false geographical origins.

3.3 Geographical origin. Paprikra de la Vera

Products authenticity is becoming nowadays an emerging topic: consumers
from developed countries seek out high quality and locally produced goods,
among other characteristics. Some reasons are encouraged by environmental-
friendly ideas since pollution linked to transport is reduced and therefore the
product footprint becomes lower.

Local manufacturing that follows defined procedures of production, like
Protected Designation of Origins (P.D.O.), has earned reputation towards
customers, based on higher quality products. This is the case of Paprika ”de
la Vera”.

P.D.O paprika ”de la Vera” refers the product obtained from the grind-
ing of red fruits of the varieties ”Ocaleas” , (Jaranda, Jariza, Jeromı́n), and
”Bola” variety, belonging to the species Capsicum annum L and Capsicum
longum L. These fruits are dried with oak firewood, following the traditional
system of La Vera (one specific production area located in the South-West of
Spain). (D.O.P.Vera, 2006) Therefore, species and variety, production pro-
cess, and geographic production area are specific for the product labeled as
Paprika ”de la Vera”.

4 Data adquisition

4.1 ICP-MS and Mineral fingerprint

4.1.1 Mineral fingerprint. State of the art

From an analytical point of view, two main approaches can be used to mon-
itor food authenticity. First one is focused on detecting known targeted
components that must comply with products’ specifications. Going back
paprika ”de la Vera” example, the product specification, among others, for
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ASTA color (an spectrophotometric absorbance value, performed at an spe-
cific wavelight) must be higher than one previously established value of 90
(D.O.P.Vera, 2006). The global compliance of all single criteria from the
specification sheet is accepted as the product conformity, and generally rec-
ognized by producers and retailers.

The second approach is based on untargeted components analysis. Chro-
matograpic, spectrometric techniques (UV-Vis, NIR, MS) and their combi-
nations in coupled techniques like GC-MS, LC-MS and ICP-MS, are also
used to obtain non-specific data from the samples. These data, that could
go from a sample spectrum to a multivariate data record, can be used as the
sample ”fingerprint”: the data properly managed can be a descriptor of the
sample in a really individual way, allowing the detection of similarities and
differences between samples.

Inductively coupled plasma mass spectrometry (ICP-MS) is a coupled
technique that combines mass spectrometry and inductively coupled plasma
that ionizes the sample at atomic level. It creates atomic and small poly-
atomic ions, which are isolated and detected in the mass spectrometer. This
technique is known as a powerful tool in terms of sensitivity, selectivity and
high dynamic range. It can detect almost all the elements from the peri-
odic table and also different isotopes of the same element, which makes it
a versatile tool for isotopic labeling. Based on these characteristics, ICP-
MS is one of the best choices for authentication studies, and especially for
accurate geographical origin verification. The mineral profile and the rel-
ative abundance of natural isotopes is related to local conditions and may
therefore provide information about the origin of food products. (Picó, 2015)

ICP-MS mineral fingerprint has been proven to be a reliable technique
to identify the provenance in all types of food. Selected examples are the
following:

-Lead and strontium isotopic ratios can be used for wine authentication if
their contents in the wines are compared to their contents in the soil samples
from where the grapes were cultivated. (Dehelean & Voica, 2012)

-Multielemental analysis by ICP-OES and exploratory data using PCA
showed that the elemental composition of spices is influenced by the country
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of origin, also allowing discrimination between countries.4

- Nineteen spices from the same country were classified into their different
types and brands by ICP-MS followed by PCA and CA data analysis.(Tokalıoğlu,
Çiçek, İnanç, Zararsız, & Öztürk, 2018)

Some elements and isotopes found in food, specially light elements like
nitrogen, oxygen and sulphur, are strongly influenced by chemical, physi-
cal and biological phenomena. In addition, these elements are non metal,
therefore non easily ionizable by ICP-MS. On the contrary, heavier elements
(and easier to analyze by ICP-MS) are not that strongly influenced by bi-
ological phenomena. Elements like strontium or lead, for example, remain
more constant because they are not subject to relevant seasonal variability
or biological cycles. Once established into rocks, those metals are maintained
unaltered in the passage from soil to food, which makes them good markers
in terms of fingerprint for the determination of geographic location: finding
fingerprint differences between paprika samples would allow the determina-
tion of the provenance location.

Several papers from recent literature demonstrate the good performance
of mineral profile followed by different chemometrics analyses to investigate
vegetable origins, although it is still a novel approach, therefore there are
not officially recognized methods yet. A growing number of studies and pub-
lications is expected for the coming years, which indicates the great effort
and the motivation of the international scientific community to improve food
quality worldwide by using this multivariate approach.(Picó, 2015). Unfor-
tunately, at the time this project is being written, not much information is
found regarding mineral fingerprint analysis followed by chemometrics data
analysis in paprika samples.

Recently, Ordog et al (Ördög et al., 2018) found differences between hot
and sweet paprika of the Szeged region, Hungary, by multi-elemental ICP-
MS followed by PCA analysis. Closer to the scope of the present study,
Palacios-Morillo et al (Palacios-Morillo, Jurado, Alcázar, & de Pablos, 2014)
have performed geographical characterization of paprika from the two pa-
prika P.D.O. in Spain (de la Vera and Murcia), by using multi-elemental

4https://foodqualityandsafety.com/article/authentic-spices-identifying-country-origin
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ICP-OES plus multivariate analysis. Good classification was obtained.

As a consequence of the novelty of these techniques applied to origin certi-
fication, and the lack of legislation related to its application within P.D.O.’s,
every author is proposing different mineral selection for testing. Also, differ-
ent chemometric approaches are described.

4.1.2 Selected elements and ICP-MS analysis

The chemical analyses for the present work have been conducted at Chem-
istry laboratory facilities of Silliker Ibérica (Merieux NutriSciences). Merieux
NutriSciences is an international company dedicated to protecting consumers’
health by delivering a wide range of test and consultancy services to the food
and nutrition industries.

In Spain, the main laboratory is located in Barcelona. Throughout more
than 40 years, the laboratory owns deep experience in nutritional testing,
including minerals and metals analyses in food. The mineral tests are con-
ducted by a dedicated and experienced team, and their results in food com-
modities are under the ISO17025 accreditation.

The used equipment includes an Agilent ICP-MS 7800 and a microwave
oven Milestone Ultrawave. All paprika samples were firstly well mixed, and
then a small and representative portion of every sample was heated in the
microwave oven at high pressure, in an acidic-oxidant medium. During the
digestion procedure all the organic content was removed, and the final sam-
ple extract was diluted and analyzed in the ICP-MS, where mineral content
was quantified.

The aim in the selection of the elements for this project was to get a gen-
eral view, as wide as possible, of the periodic table. Hence, light and heavy
elements were included; also elements from different atomic groups: group
1 (alkali metals), group 2 (alkali earth metals), transition metals, rare earth
metals and heavy metals.

In the metals selected there were included some multi-isotopes acquisi-
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Element Symbol Atomic weight
Boron B 11

Sodium Na 23
Magnesium Mg 24
Aluminum Al 27
Phosphorus P 31

Sulfur S 32
Potassium K 39
Calcium Ca 44

Vanadium V 51
Chromium Cr 52
Manganese Mn 55

Iron Fe 56
Cobalt Co 59
Nickel Ni 60
Copper Cu 63

Zinc Zn 66
Strontium Sr 86-87-88

Molibdenum Mo 95
Cadmium Cd 111

Tin Sn 118
Antimony Sb 121
Barium Ba 137

Europium Eu 153
Lead Pb 208

Uranium U 238

Table 1: Minerals

11



tions. Throughout the scientific literature it has been proven that geographic
determination by mineral fingerprint using lead (Pb) and strontium (Sr) iso-
topic pattern has provided successful results. Sr, alkaline-earth metal, has
four stables naturally occurring isotopes: 84Sr, 86Sr, 87Sr and 88Sr. Only
87Sr is radiogenic, and gradually increases in minerals due to the radioac-
tive decay of 87Rb (rubidium). Differences in the absolute proportion of
87Sr vary with the geological ages and consequently with the geographical
locations.(Dehelean & Voica, 2012) Therefore, the 87Sr/86Sr ratio can pro-
vide information regarding vegetables sample’s origin grown in different types
of soil.

Certified standards were used for quantitation purposes. An internal cal-
ibration method was used for the elements most analyzed in food: sodium,
calcium, iron, lead,...For those elements where certified standards were not
available, the quantitation software provides a semi-quant method, based on
a default response of every element of the periodic table previously intro-
duced by the manufacturer(Zhao et al., 2018). This semi-quant method is
not as good, in terms of accuracy, as the internal calibration method with
certified standards, therefore some bias can be introduced for these elements.
This error component in the concentration value will be removed after the
initial data transformation in last section of this chapter.

The high dynamic range of this technique allows to quantify from the
ppt’s to the ppm’s range without any extra dilution, so all results per sample
could be collected in a single run.

4.1.3 Sampling

In every analytical method, including those focused in food testing, sampling
is a critical step in order to assure reliable results, in terms of precision and
accuracy. Correct sampling is one of the most important and challenging
steps in food fraud analysis.

An important aspect of sampling in fraud detection analysis is knowing
the actual size of the population under study. In P.D.O. samples, as paprika
”de la Vera”, the population can be measured in terms of the number of cer-
tified producing companies/factories. Currently, 16 manufacturers are listed
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in the P.D.O. The regulatory council P.D.O. ”de la vera” certifies that all the
paprika products labeled with ”de la vera” comply the specification. Three
main varieties of paprika are produced (sweet, spicy and bittersweet) in a
specific smoking process used to dry the pepper, which contributes to the
characteristic flavor of the product.

Inter-lot and inter-harvest variations can also increase the population of
the product for sale. At the pre-planning phase,contacting with P.D.O. was
considered in order to collaborate, exchanging samples and information. Due
to the circumstances occurred during this project (global pandemic), this
contact was never made, therefore the info from this source is not available.

Other types of paprika from all over the world, including fraudulent sam-
ples, were also analyzed, belonging to a second population (not ”de la vera”
paprika). Since there is an unquestionable impossibility of knowing the whole
population, a ”supermarket sampling” approach was performed: the labo-
ratory was provided with as much paprika samples as possible (considering
mobility restrictions during pandemic crisis in Spain).

Fraudulent samples were not known as fraudulent in advance, so the
project target was focused on finding statistical difference between ”de la
Vera” labelled samples and the rest of paprika samples.

From the 27 samples analyzed, 12 were from paprika ”de la Vera” popu-

lation (labelled), the other 15, without the distinction logo, were randomly
picked from local markets. To get a general idea of studies carried in this
field: other research with paprika analyzed a number of samples in the range
of 100-150.(Palacios Morillo, 2015). A fraud study in almonds (López, Trul-
lols, Callao, & Ruisánchez, 2014) was conducted with 28 samples.

Since during the development of the project local market samples were
the only available, one of this work prospects would be the enlargement of
the sample size (specially if the P.D.O’s involvement can bring material for
study). The greatest concern during the sampling period was to find more
samples than variables for study, which was a must in order to develop a fea-
sible and global method and data analysis. Same procedure, data treatment
techniques and data pipeline can be applied to a larger dataset, therefore,
even the actual size is big enough to test the model, it can be updated and
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ID Paprika Type Vera: Y/N
1 Sweet Yes
2 Sweet No
3 Sweet No
4 Sweet Yes
5 Sweet Yes
6 Hot Yes
7 Sweet No
8 Sweet No
9 Bittersweet Yes
10 Sweet No
11 Sweet Yes
12 Sweet Yes
13 Sweet No
14 Sweet No
15 Hot Yes
16 Sweet Yes
17 Sweet No
18 Bittersweet Yes
19 Sweet No
20 Sweet No
21 Hot No
22 Hot Yes
23 Sweet No
24 Sweet No
25 Sweet Yes
26 Sweet No
27 Hot No

Table 2: Samples (form different producers and lot numbers)
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enlarged anytime without important changes in the pipeline and analysis.

4.2 Dataset

27 experiments were performed (paprika samples) and 28 variables were stud-
ied: sample ID, levels factor (Vera-NoVera) and 26 elements concentration
in each sample expressed in µg/kg (variables from 3 to 28). The data set
layout consisted of rows defining the samples of the study and the columns
containing the information of the variables.
Not all the minerals were in the same range of concentration in every sam-

id vera 11.B 23.Na 24.Mg (...)
1 1 35306.93 315708.74 5510893.34
2 0 21764.12 909690.43 7178715.61
3 0 21163.09 949565.85 7346523.88
4 1 32823.16 598800.01 4999496.65
5 1 38335.73 354324.15 5752216.70
6 1 34660.70 476751.36 5324170.98
(...)

Table 3: Dataset (head)

ple, some metals content were considerably higher than others. Results were
all expressed in micrograms of analyte per kilogram of sample (ppb), hence a
wide range of values can be found in the dataset: phosphorus mean content
is about 9.5e6 (0.95g/100g) ppb while antimony mean concentration is 25ppb
(0.0000025g/100g).

In order to fit all the information (metals concentration from the raw
data) in a narrower and comparable range of values, the data was normal-
ized to perform the algorithm: all the values for each variable were divided
by its mean, obtaining a more cententered and unitless dataset, while vari-
ability was preserved.

All data analyses have been conducted with R (R Core Team, 2019). R
code and data can be found in the addendum.
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Figure 2: Boxplots of raw data

4.2.1 Statistical analysis

After the data acquisition in the ICP-MS the data analysis was performed.
The proposed data workflow (the data pipeline, or global algorithm), in-
cluded the statistical analyses and models are described here below.

First performed step was data importation to the statistical software used
in this project: R. All the data analysis was performed with different R li-
braries and every detailed step is shown in the Pipeline and Rcode section
(Addendum II).

After importation, data exploration and normalization was performed
with graphical and summary functions from R. Methods for outliers detec-
tion were not used since precision and accuracy was proven and considered
as acceptable during ICP-MS validation (previous to this work). 5

5based in ISO17025, every analytical technique must be validated before using it, re-

16



Figure 3: Boxplots of normalized data.

First approach to the data was based on the study of multivariate/univariate
data distribution, homogeneity of variances and homogeneity of means.

Then two types of data analysis models were applied to the dataset: first
unsupervised models (Principal Component Analysis and Hierarchical Clus-
ter Analysis), secondly supervised models (Linear Discriminant Analysis and
Random Forest). Unsupervised models were used in this case with viewing
purposes, in other words, displaying multivariate data. For the application of
supervised models the original dataset was divided into two subsets (training
set and test set): the models were trained for classification purposes (Vera-
NoVera), and then validated with the test set in order to calculate the error
generated from the application of the model.

Finally, due to the size of the dataset, Bootstrapping was applied to sim-
ulate a dataset with a higher number of observations. In this work, this step
was performed to check the models working with a more likely size dataset.
Not all the applied models were used with the bootstrapped dataset, only

porting evidences of its analytical performance
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Figure 4: Boxplots of normalized Vera and NoVera samples.

PCA and RF were performed (one unsupervised and one supervised model).

4.2.2 Data exploration

Regular data exploration commonly includes data viewing, data distributions
study (checking for normal distribution), variance study (homoscedasticity)
and mean comparison (ANOVA). The first exploration performed was based
on dividing the set of data in the two levels of the variable defined as a factor:
values classified with Vera and NoVera (data represented was also normal-
ized).

Continuing with the set separated by the factor Vera/NoVera, the fol-
lowing graphs show some differences between both subsets for some selected
minerals.

Depending on the mineral, different behaviour between Vera and NoVera
samples is shown. Data comparison will be performed in coming sections.
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Figure 5: Iron.Left:Vera-Right:NoVera

Figure 6: Phosphorus.Left:Vera-Right:NoVera
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Figure 7: Strontium Isotopic ratio.Left:Vera-Right:NoVera

4.2.3 Normality

Second step, related to the study of the distribution of the data set, was
performed: normality study. Due to the number of observations (12 Vera
samples and 15 No Vera samples) and the high number of variables taken into
account (26), multivariate test like Mardia test (mardiaTest MVN) cannot
be directly applied, considering that the sample size is close to the dimension
and only few methods can deal with this situation(Tan, Fang, Tian, & Wei,
2005). Furthermore, if the dataset is divided into Vera and NoVera subsets,
sample size is actually lower than the number of dimensions, which implies
that multivariate normality tests are discarded. Univariate tests can be used
keeping in mind that a p-value correction might be needed in order to avoid
errors from multiple comparisons (increase of false positives/negatives, errors
known as type I and II).
Focusing on the set of data under study, Shapiro test (univariate normality
test) was applied with exploratory purposes: 19 out of the 26 variables from
the Vera subset obtained a p-value higher than 0.05. For the NoVera subset,
17 of the 26 variables have a p-value higher than 0.05. As an example, iron’s
QQ-plot Figure 5 shows the data distribution.
In the chapter ”Bootstrap” normality will be checked again.
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Figure 8: Iron data distribution in Vera and NoVera subsets

4.2.4 Homoscedasticity

To check homogeneity of variances, Leven’s test was used (median formula
was applied). Levene test assess the equality between two or more groups
variables variances. Two groups were considered, Vera/No Vera, and for ev-
ery variable (mineral) a p-value was obtained. P-values showed homoscedas-
ticity of variances between Vera and No vera for 19 out of the 26 minerals
observed (equality of variances was assumed). For the other seven minerals
studied, the null hypothesis of equal variances was rejected (p-value < 0.05),
therefore homoscedasticity for those metals between the two subsets was not
proved.

Lack of homoscedasticity for some of the minerals could happen due to
several reasons. Low size data can generate a wrong variance estimation
because of a possible bias in the mineral data. Another reason can be the
heterogeneity of NoVera samples. The only matter they have in common
is that they are not produced in the P.D.O., so differences among NoVera
observations when checking the content of some minerals are reasonable.
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4.2.5 Comparison of means

After the study of the variance, mean comparison was performed, and despite
the fact that homoscedasticity was not assumed for all variables, MANOVA
test was applied. MANOVA is the multivariate generalization of ANOVA
which infers the t-test beyond two means. Although in the analysis only
two means were compared (Vera and NoVera) MANOVA was used due to
its applicability in multivariate scenarios. Hotelling’s T 2 test also applies
to this particular case. Same conclusions were obtained with the two tests
proposed: mean difference between groups (Vera- NoVera) is significative (p-
value: 0.02188).
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5 Data analysis by means of unsupervised mod-

els

5.1 Introduction and state of the art

Since the last century physicists have been looking for a ”Theory of Every-
thing”6, a theoretical framework that fully explains and links together all
physical aspects of the universe. This unsolved problem has already some
candidate theories, like the ”Strings Theory”7. According to this currently
unproven theory, a multidimensional space, with more than three dimen-
sions, has been proposed. But space with more than three dimensions (width,
height, length) is not possible to imagine by the human being. One point is
one dimensions object, one line is a two dimensions object, and one cube is a
three dimensions object, but none can imagine a four dimensions object which
is precisely the disadvantage of multivariate analysis: data with more than
three variables cannot be plotted in a two-dimensions or three-dimensions
graph. On the contrary, the advantage is that much more information can
be obtained, compared to univariate data.

”A picture is worth a thousand words”, therefore techniques applied to
reduce data dimensions without losing much information, would allow us
to perform two- or three-dimensional plotting, which can be very helpful to
understand multivariate data. For instance, Principal Components Analysis
(PCA) is widely used in multivariate experiments. PCA and others PCA-
related techniques have been commonly used in food fraud detection(Callao,
2014). In addition, LDA, CA and PLS have been commonly used in sev-
eral food products. Different factors may influence in the selection of the
technique: number of classes, number of variables, type of data (discrete,
continuous) and the aim of the analysis. (M. Forina & Oliveri, 2009)

In general terms, two main types of models are used in food fraud test-
ing, moreover, in the whole data analysis field: unsupervised and supervised
models.

Unsupervised models work with a set of observations of a variable (X)

6https://en.wikipedia.org/wiki/Theory of everything
7https://en.wikipedia.org/wiki/String theory

23



without knowing the association with the other variable Y ( Y=f(X)). The
aim of this models is not the prediction (for instance giving response to
Vera-No Vera), but to visualize the data and/or detect subgroups among the
samples. (James, Witten, Hastie, & Tibshirani, 2013). Two of the main
techniques of unsupervised models are PCA and CA (correspondence analy-
sis). While PCA is used for data visualization or data pre-processing (before
supervised techniques are applied), CA is applied for detection of subgroups
in the data set.

It is important to keep in mind that there is no way to check the obtained
results from the application of those methods because it is not possible to
know the true answer. (James et al., 2013). Despite the fact that unsuper-
vised methods do not have any universally accepted mechanism for validating
results from an independent data set, they are extensively used in fingerprint
analysis and fraud analysis in food, specially PCA before applying supervised
models(Berrueta, Alonso-Salces, & Héberger, 2007)

Supervised models will be discussed in the next chapter.

5.2 Principal Components Analysis

”PCA is a multivariate technique with the central aim of reducing the di-
mensionality of a multivariate data set while accounting for as much of the
original variation as possible present in the data set. This aim is achieved
by transforming to a new set of variables, the principal components, that are
linear combinations of the original variables”. (Everitt & Hothorn, 2011)

These new ”variables” called principal components (PC) are not corre-
lated, which is an important attribute for fingerprint analysis. Correlation of
the variables may involve redundant data. Moreover, principal components
can be arranged based on their variation, from PC with higher variation
associated to the lowest. In PCA analysis, variation of the variables is un-
derstood as the amount of information that the PC brings, so the method
of analysis allows to keep most of the initial information using few variables:
in most of the cases , two or three principal components account for more
than 70-90% of the total variation from the original set. As a linear combi-
nation of the original variables, the PC’s have no units, meaning that in case
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Figure 9: Variances vs PC

the variables were expressed in terms of concentration of the minerals, they
would be dimensionless in a two or three dimensions PCA plot.

5.2.1 PCA results

PCA was applied to the normalized dataset. Calculations were performed
by ”prcompstats” function for R (R Core Team, 2019).Then ten principal
components were plotted, principal components variation is shown in Figure
9. Three PCs are the maximum of variables that could be plotted. Further-
more, the ”elbow” (change in the decreasing tendency), is located in the 3rd
PC, which implies that from the 4th PC there is not much variation added.

The total cumulative variation of a PC (expressed as the percentage of
the variance of the PC referred to the total dataset variation) is: 47% for the
1st PC, 63% for the 2nd PC, 71% for the 3rd, 79% for the 4th. 99% of the
total variance is explained at PC14, and 100% at PC26.

Plotting two PC’s it is shown 63% of the total variance of the data in a
two-dimensions graph (Figure 10)
A three-dimensions graph shows 71% of the total variance (Figure 11).
In both graphs, samples from the two factors (Vera-NoVera) were high-
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Figure 10: Blue triangles represent Vera samples, orange dots represent
NoVera.

26



Figure 11: Blue triangles represent Vera samples, orange dots represent
NoVera.

lighted with different colours, and ellipses show, respectively, the two- and
three-dimensions 95% confidence intervals.

For a two-dimensions analysis, it is shown the coefficients applied to the
first and second PC (plotted as coordinates). This is called the ”variables
factor map” and it is frequently shown together with PCA graph (Figure 12).

5.2.2 PCA conclusions

Vera and NoVera samples can be distinguished applying PCA analysis. Us-
ing the first three PCs (71% of the total dataset variance) both factors are
completely separated with 95% of confidence (if normal distribution assumed
for Vera and NoVera subsets). The small surface for Vera samples in both
graphics (Figures 10 and 11) in comparison with the area for NoVera can
be explained in terms of geographical origins of the samples: The group of
NoVera includes samples which the only thing they have in common is that
the origins do not belong to ”la Vera” location. On the contrary, all Vera
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Figure 12:

samples have a common geographical origin.

PC’s are composed by the linear combination of the ”original” variables,
i.e. analyzed elements. For instance,

PC1 = α ·B + β ·Na+ γ ·Mg + · · ·

Coefficients (α, β,γ,...) of the first and second PC’s (mathematically known
as eigenvectors) are shown on table2. They are the coordinates of Figure10,
and describe the contribution of the original variable in the new one (the
PC).

5.3 Cluster Analysis

”Cluster analysis is a generic term for a wide range of numerical methods
with the common goal of [...] discovering groups or clusters of observations
that are homogeneous and separated from other groups.”(Everitt & Hothorn,
2011). It is included in the unsupervised models group because the response
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variable Y=f(X) can be unknown. After PCA, CA has been the most used
unsupervised technique in food analysis during the last decade(Berrueta et
al., 2007)

There are different types of clustering methods, being k-means clustering
and hierarchical clustering the two main examples. In this dataset, hierarchi-
cal clustering was applied.This technic classifies data from one single cluster
(the whole data) to one individual cluster for each sample from the total data
set, generating a ”tree-shape” graph called dendrogram that shows different
groups within the observations. This groups are build based on the distance
between the individuals, which can be measured in different ways: Euclidean
and Mahalanobis distance are the most common techniques. Euclidean dis-
tance is a generalization of the Pythagorean theorem for a multi-dimensional
space. It is the straight-line distance between two points in an Euclidean
space. With the data of the distance between all pairs of individuals, it is
built the distance matrix. CA method uses this distance matrix to build
the dendrogram, following the hierarchical clustering algorithm. It was the
process used for this work.

Once the dendrogram is being plotted, the number of partitions of the
data must be decided, since the dendrogram could be ”cut” at any height.
The number of partitions is known as k, and different methods are described
to select which could be the best number of partitions to be applied in a
specific dataset. In most cases, k cannot be easily decided with mathemati-
cal methods, and the opinion of the experts must be considered. (Irizarry &
Love, 2016). Concerning the current dataset, two main groups (Vera-NoVera)
were expected. However, as NoVera samples origin is unknown, more clusters
inside NoVera samples can be found. The mathematical method proposed
to get the best number of clusters k for the dataset is Average Silhouette,
which represents the silhouette of the average value (mean of the similarity
between de individual samples and the clusters they belong) for every value
of k.

5.3.1 CA results and conclusions

Complete linkage and Euclidean distance methods were used with the R
function agnes(cluster) for cluster analysis calculations. The obtained den-
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Figure 13: Samples on the left (1-4-...-25) are Vera samples. Non Vera sam-
ples are located on the right (2-3-...-24). See details in table 4

drogram is shown in figure 13.

id 1 4 5 6 9 11 12 15 16 18 22 25
vera 1 1 1 1 1 1 1 1 1 1 1 1

id 2 3 7 8 10 13 14 17 19 20 21 23 24 26 27
vera 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 4: Association of Hierarchical Clustering numbers (Fig.13) to the ID
and factor of each sample to better results understanding.

The average silhouette graphic (Figure 14) indicates that the best average
is achieved with 2 or 3 clusters.

We can see below the clustering graphics obtained with k=2 and k=3
(Figure 15)

From a non-mathematical point of view, with k=2 we can observe two
groups perfectly define: Vera and NoVera. When k=3 , NoVera group was
split in two subsets. With these analyses we concluded that CA and PCA
results are concordant and furthermore those techniques are capable of dif-
ferentiate Vera and NoVera samples.
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Figure 14:

Figure 15: k=2 and k=3
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6 Data analysis by means of supervised mod-

els

6.1 Introduction and state of the art

As we have discussed in previous chapters, the response variable is not needed
to the application of the model: PCA results (coefficients, coordinates, plots)
are the same whether Vera- No Vera factor is known or not. Supervised mod-
els are based on the knowledge of the response: training the model. These
types of algorithms are also known as supervised machine learning.

Any machine learning algorithm includes the following steps: (1) data
collection, (2) data exploration and normalization, (3) model training, (4)
model evaluation and (5) model improvement. (Lantz, 2013).For step 3, a
training set is needed: in this project, since the Vera-No Vera parameter
was known for all samples, the training was performed with a random sub-
set from the original dataset. Model evaluation or validation (step 4) was
performed with another random subset, called test dataset. This set of data
for testing was processed as unknown samples, and the responses obtained
from the model were compared with the known information for that data.
This procedure allows the model to evaluate itself, and to obtain quality data
as false positive and negative errors. Usually the applied ratio for ”training
set:test set” is ”80:20”. This type of validation procedure is known as cross-
validation.

There are a wide range of techniques included in supervised machine
learning, and they have been applied in very varied fields: predicting results
of elections, discovering genetic sequences linked to diseases, or forecasting of
weather behaviour and long-term climate changes(Lantz, 2013) Even though
supervised machine learning models have not been used in the food indus-
try analysis as much as in other areas like economics or biostatistics, the
last decade shows an increasing tendency on its application in this field,
including multivariate analysis and supervise models. LDA is the most com-
mon supervised technique for classification purposes in food analysis. Other
common applied techniques are k-nearest neighbours (kNN) , classification
and regression trees (CART), artificial neural networks (ANN), partial least
squares discriminant analysis (PLS-DA), soft independent modelling of class
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analogy (SIMCA) or support vector machine (SVM).(Berrueta et al., 2007)

It is worth to note that it is expected for food industry to experience
a great increase in supervised model applications in the multivariate food
analysis in the coming years. The predictions skills of supervised machine
learning models, together with the growing popularity of Mass Spectrometry
and its multivariate data acquisition, have become promising fields for food
laboratories and industries. The amount if information that is currently pro-
duced with modern instrumentation, combined with the ease of computing
and predicting with supervised models, will bring loads of information, com-
pared with classical targeted screening approaches.

6.2 Linear Discriminant Analysis

LDA is a technique based on finding the linear function that does the best
separation in classes. It can be used in simple class separation, 2 factors (
Vera-No Vera), or multiple class separation ( with higher number of classes).
LDA and PCA are very popular techniques in multivariate food analysis,
both of them reducing data dimension and projecting to a lower dimension
space: ”PCA selects a direction that retains maximal structure among the
data in a lower dimension, LDA selects a direction that achieves maximum
separation among the given classes”(Berrueta et al., 2007).

The result of LDA is a contingency table, where known results are com-
pared with the model output: as an example a 2x2 table can be built showing
true positive and true negative values, false positive and false negative values,
8, which gives valuable information of the model quality and performance.

6.2.1 LDA results and conclusions

When model validation is performed using a cross-validation approach, the
original data must be randomly divided into a training and a test set. In

8In statistical hypothesis testing, a type I error is the rejection of a true null hy-
pothesis (also known as a ”false positive” cocnlusion), while a type II error is the
non-rejection of a false null hypothesis (also known as a ”false negative” conclusion.
https://en.wikipedia.org/wiki/Type I and type II errors
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Figure 16: NoVera:group 0 - Vera:group 1

order to do that, a sufficient number of observations is recommended: the
test set should be around 20% of the total size of the dataset. In this project
dataset, considering the number of variables and available observations, find-
ing a good compromise balance between training and test was necessary. The
lowest test set size was fixed in nine observations. Considering that Vera
samples were 44.4% of the dataset, a random test set will have 4 Vera-group
observations.

Before LDA, dataset partition was performed with R function create-
DataPartition(caret). LDA was applied with R function lda(MASS). LDA
function returns the group means for all variables and the coefficients of lin-
ear discriminants. The means were displayed in the histograms (Figure 16).

Both groups (Vera-NoVera) were properly separated, and thus, appar-
ently, the model has a clear discriminant decision area. After LDA was
performed, the test set was introduced in the model , and the output was
compared with the known information. The following contingency table was
obtained (Table 5)

The number of false positives and false negatives is zero, therefore the
model success is 100%. However, it should be noted that subset partition is
a random process. If data partition is repeated again and again with random
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predicted
test Vera NoVera
Vera 4 0

NoVera 0 5

Table 5: Contingency table

test sets, in some cases false positives and/or false negatives may appear.
This is known as the test error. Test error can be calculated with resampling
techniques that will be discussed in next sections (Random Forest and Boot-
strapping).

6.3 Random Forest

The first algorithm for Random Forests (RF) was created and first pub-
lished in 1995 by Tin Kam Ho, 3 years after she received her PhD degree
in computer science from the State University of New York at Buffalo.(Ho,
1995). The term ”Random Forest” was proposed by Leo Breiman and Adele
Cutler in 2001.(Breiman, 2001) Since then, Random Forest has grown very
fast, probably due to its capacity to improve the method?s accuracy for both
training and test sets, comparing to other supervised methods. Due to their
power, versatility, and ease of use, Random Forests is becoming one of the
most popular machine learning methods. (Lantz, 2013)

However, RF is a young technique that has just arrived to some scientific
areas, like food analysis. To get an idea of the actual situation, the search
of ”random forest” in the AOAC scientific journal (J.AOAC International)
returns only one published paper, from 2019(Lim et al., 2018)

Random Forest is based on decision trees algorithms, which are super-
vised methods that can be applied for data classification (and regression).
Decision trees are composed of nodes and shaped like trees, the trunk repre-
sents the whole data set, and successively the data is divided depending on
the question located in the node generating brunches. The nodes represent
division points based on conditionals, for instance if the data of one variable
is higher or lower than a randomly selected value. Depending on the value,
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the data continues in one or the other brunch, until the same procedure
happens further down in the next node (child node), where the variable is
processed in the same way. The process is repeated until the terminal node
is reached, and a classification label is assigned. In our project , the label
was the factor Vera-No Vera. Since the label and the actual factor for each
sample was known, the tree response was evaluated, and depending on the
success of the process ( number of successful labels), the tree learned the best
cutting-values and variables order for each node.

Random Forest goes one step forward from the techniques previously
studied, takes the prediction of the decision tree, and produces hundreds of
them. The average of all the predictions provides a more accurate result
than a prediction obtained from a single model, therefore the testing error
observed in LDA is reduced. Another strength is that RF fixes the issue
of the correlation of the trees: when decision trees are built, if one of the
variables is a much better predictor than other, there is the risk of many of
the trees using the same variable. RF algorithm starts every time with ran-
domly selected predictors, and thus correlation is reduced and so variance.
The consequence of all of the above is the reduction of the test error, by
applying a supervised machine learning model and a smart resampling and
average method.

6.3.1 RF Results and conclusions

The present work applies for the first time random forest analysis to mineral
fingerprint data in paprika samples (probably due to the still low incidence
of RF techniques in the food field). The R function used is randomFor-
est(randomForest). Same training set and test set obtained for LDA was
used. 500 were the number of trees used in the model with 5 variables tried
at each node (default randomForest function value). All parameters are the
randomForest function default values.

The output of the RF function returns the following information:
- The training test confusion matrix shows 0% of error (false positives and
false negatives). 10 NoVera samples were returned by the model as NoVera
samples, and 8 Vera samples were classified as Vera samples.
- Mean decrease Gini (Figure 17 - Table 6). This value is directly related to
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Figure 17:

the variable significance. When RF is applied as an unsupervised model be-
cause the value of the response is not known, the main information obtained
is the Gini parameter.
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MeanDecreaseGini
11.B 0.21

23.Na 0.45
24.Mg 0.13
27.Al 0.26
31.P 0.00
32.S 0.00
39.K 0.59

44.Ca 0.01
51.V 0.88

52.Cr 0.42
55.Mn 0.18
56.Fe 1.20
59.Co 0.03
60.Ni 0.06
63.Cu 0.27
66.Zn 0.87

87.86.Sr 0.75
88.Sr 0.62

95.Mo 0.41
111.Cd 0.01
118.Sn 0.00
121.Sb 0.73
137.Ba 0.06
153.Eu 0.01
208.Pb 0.03
238.U 0.16

Table 6: MeanDecreaseGini

The most important predictors according to the RF model are iron (Gini:1.2),
vanadium (Gini:0.88), zinc (Gini:0.87), 87/86Sr (Gini: 0.75) and antimony
(Gini: 0.73)

Figure 17 shows all Gini values ordered by element weight. 26 elements
are arranged from lighter to heavier atomic weight. Observing the graph we
could tell that lighter and heavier elements provide less information to the
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Figure 18: RF test error vs number of trees

model than ”medium size” elements.

Obtained predictors from RF are aligned with PCA results, furthermore,
results are concordant with literature of geographic determination by mineral
fingerprint.

Concerning test error, as shown in Figure 18, it decreases with the num-
ber of averaged trees. With less than 50 averaged trees the RF test error is
technically 0, which is a great strength of the model and the tree decorrela-
tion.
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7 Bootstrap

Cross-validation was applied in the present work for calculating the test er-
ror: the sample set was randomly divided into a training and a test set, then
the model was checked with ”blind-for-it” samples, and therefore the error
could be calculated.

Another approach studied is what is called Bootstrap (or Bootstraping).
Bootstrap is a resampling method with replacement: the initial dataset is
randomly sampled to obtain a subset, then a function is performed in this
subset. The next random extraction is performed again over the original
dataset in order to obtain a new different subset. The process continues and
system works over and over with subsets created every time from the whole
initial data set. This technique is widely used for calculating errors or confi-
dence intervals in data science.

Bootstrap is also used in order to increase the data size. It is a technique
recommended for poor sample size sets that allows you, through inference of
the original data set, to increase the volume of the data. However, it must be
noted that the results may depend on the representativity of the dataset, and
this could be the main inconvenient of Bootstrapping: if the initial dataset is
not representative of the population, Bootstrapping application can generate
a bias on the results. The name of this technique comes from the English
expression ”to lift oneself up by one’s own bootstrap” and represents the
impossible task of build information out of ”nothing”.

7.1 Bootstrap results and conclusions

Parametric Bootstrap was performed with R function boot(boot). Resam-
pling apply the ”mean” function 9. Applying Bootstrap to the global dataset
was discarded. Based on the information known from the sampling, Vera
samples have in common cultivation area, vegetal variety and preparation
process, while NoVera samples are much more heterogeneous. Due to this
fact, two groups (Vera - NoVera), with two assumed normal distributed pop-
ulation have been used for Bootstrap (although NoVera samples distribution

9see R code in the addendum for more details
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Figure 19: Boxplots comparision before and after Bootstrap

is actually unknown and probably samples from this group do not even be-
long to the same population). Bootstrap was applied in this work to check
how results from normality test, PCA and RF applied in the original dataset
would change with a bigger sample set (a desirable situation and hopefully
achievable in the near future).

For the application of the Bootstrap the sample size was fixed in 200 sam-
ples, and even the Vera- NoVera ratio was 45:55 (approx.), the Bootstrapped
dataset was Solomonically divided in 100 Vera and 100 No Vera samples in
order to simplify calculations. 200 is the number of observations that has
been found as a top range of number samples in scientific papers of food
fingerprint and chemometrics analyses.

The new dataset is shown in Figure 19. As expected, variance has de-
creased due to the use of ”mean” function.

Data from previous examples, liker iron data from Vera samples, can be
plotted before and after the Bootstrapping was applied (Figure 20). The
same comparison was done with iron from NoVera samples (Figure 21).
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Figure 20: Iron of Vera samples before and after Bootstrap

From the obtained results and plots we can conclude that iron from
NoVera samples were not normally distributed in one single population, prob-
ably two or more populations conform the entire NoVera set. These results
are aligned with the fact that No Vera samples have differences in terms of
origins.

7.1.1 Normality (Bootstrap)

The Bootstrapped dataset was checked for multivariate normality, which was
not possible to do with the original data. Mardia and Shapiro-Wilk (univari-
ate) tests were applied mrv(MRV).
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Figure 21: Iron of NoVera samples before and after Bootstrap

Multivariate normality was accepted in both cases.

7.1.2 PCA (Bootstrap)

PCA was performed with the new dataset and better results were obtained
in terms of separation of the factor Vera-No Vera (Figure 22): the sampling
size has impact on the PCA results. Moreover, bootstrapped dataset has less
variance, and thus there is more distance between groups.

7.1.3 RF (Bootstrap)

Random Forest was applied using a training set of 120 samples and a test set
of 80 samples. Once again, test and train error were cero (no false positives
or false negatives were obtained).

The main difference observed in comparison with the RF applied on the
initial dataset was the order of importance of the predictors (Mean Decrease
Gini): the three principal predictors in this case are barium (Gini:4.66),
87/86 strontium (Gini:4.18) and sodium (4.05). Iron, which was the first
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Test Statistic p value Result
1 Mardia Skewness 3179.95288670592 0.883000993981649 YES
2 Mardia Kurtosis -1.9045360067442 0.0568404118809671 YES
3 MVN YES

Test Variable Statistic p value Normality
1 Shapiro-Wilk 11.B 0.9861 0.3795 YES
2 Shapiro-Wilk 23.Na 0.9892 0.5993 YES
3 Shapiro-Wilk 24.Mg 0.9820 0.1890 YES
4 Shapiro-Wilk 27.Al 0.9920 0.8233 YES
5 Shapiro-Wilk 31.P 0.9913 0.7655 YES
6 Shapiro-Wilk 32.S 0.9898 0.6511 YES
7 Shapiro-Wilk 39.K 0.9811 0.1611 YES
8 Shapiro-Wilk 44.Ca 0.9889 0.5781 YES
9 Shapiro-Wilk 51.V 0.9862 0.3888 YES

10 Shapiro-Wilk 52.Cr 0.9950 0.9761 YES
(...)

Table 7: Vera Multivariate normality test results (Mardia) and Univariate
(Shapiro-Wilk)-showing first 10 minerals

predictor in the initial analysis, after applying the Bootstrap, has become a
medium size predictor (Gini:2.62).

The probable explanation is that initial dataset was biased for some ele-
ments, and Bootstrap application gains this bias. The best way to check this
hypothesis would be enlarging the initial dataset with real samples, which is
one of the main targets in the future.
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Figure 22: Blue triangles represent Vera samples, orange dots represent
NoVera.

8 Final conclusions

8.1 Discussion: applied methods results

Individual results discussion for every model applied have been exposed in
previous chapters. This section introduces a global analysis of the obtained
results. The project pipeline can be divided into four steps:
- Data exploration, normalization and application of hypothesis tests for nor-
mality, variance and mean analysis .
- Unsupervised machine learning models application: PCA and CA.
- Supervised machine learning models application: LDA and RF.
- Bootstrap resampling and retest PCA and RF.

The four steps were successfully applied and consistent results were ob-
tained in all cases. The conclusions concerning classification Vera-NoVera
were comparable, regardless the used model. ANOVA test showed that dif-
ferences in the mean value of Vera subset and NoVera subset were significant.
Using three PC’s the Principal Components Analysis showed a complete sep-
aration of both subsets with a confidence of 0.95. Cluster analysis with k=2
also obtained a complete separation of Vera-NoVera into two clusters.

45



After a random split of the dataset into training and test subsets, super-
vised machine learning methods were applied for classification. LDA obtained
good results, although not in all randomly cases it was possible to obtain a
0% value of false positive and/or false negative errors. However, random
forest has been proven to be the model that provides the best classification,
with 0% mislabelling classification errors.

Predictor elements (Fe, V or 87/86Sr) obtained from the Random Forest
application (Mean decrease Gini value) and PCA (main PC’s coefficients)
were in concordance, showing that from both techniques comparable results
were obtained.

Resampling method of Bootstraping was used to enlarge the dataset. The
obtained dataset provided the size needed to apply Multivariate normality
tests, PCA and RF with a higher number of data. Bootstrap has simulated
the usability of the proposed Rcode with a 200 observations dataset. How-
ever, Bootstraping has not been able to generate conclusive results for the
NoVera subset, probably due to more than one population were conforming
the subset.

Concerning RF, no issues related to the time of computing have been
detected, using a regular personal computer. That shows that the algorithm
proposed is capable to manage real datasets.

8.2 Final conlusions and future work

The objectives described at the beginning of the project have been achieved.
A multivariate method for fingerprint analysis of paprika samples has been
developed, showing that selected elements are able to provide the analytical
information needed for further data analysis.
Proposed unsupervised machine learning methods have been able to achieve
the objective of classifying the samples into Vera-NoVera groups. Proposed
supervised methods have been trained and tested, providing good results in
both cases (LDA and RF). For the first time, Random Forest technique has
been used to classificate paprika samples based on a P.D.O. description. The
method performance has obtained 0% of error type I and type II, proving

46



that it is a useful technique in this area of food fraud detection.
Validation of the models has been performed with cross-validation.
The designed algorithm (Rcode) is ready for further analyses, including ex-
panding current dataset or processing new datasets from others P.D.O.’s.
Additional personal skills have been also developed, like using LaTex editor
and JabRef for bibliography managing.

Future work This project has proven that coupling mineral fingerprint
acquisition with ICP-MS together with data analysis with Random Forest
supervised machine learning technique is a successful method for paprika
with P.D.O. classification. However, the present work can be extended in
different ways: first thing, sample size should be enlarged.

Sampling is a crucial step regarding the method ability to detect Vera
mislabelling products (food fraud related with DPO labelling). The group
of NoVera samples is heterogeneous and thus, expert opinion from P.D.O.
regulatory council and paprika producers, plays a key role to ensure the best
possible approach. Binary classification techniques success (specially in the
case where only one of the two groups is located in one specific location) is
based on a proper sampling process.

Future work is also related to variables selection. Despite the fact that
the dataset can be enlarged in the future, variables under study can also be
reduced. The models have indicated that some minerals have low prediction
levels for classification purposes, probably due to collinearity of the variables,
and/or same mineral content in both groups Vera-NoVera. A better selec-
tion of variables can be done in the future in order to optimize the method
performance.

Variables selection can also include other food components, involving dif-
ferent analytical techniques, like amino acids or fatty acid profile. The qual-
ity of the product fingerprint can be expanded with a more holistic approach.

Furthermore, supervised techniques can be extended. Even RF has been
proven as a powerful method, other supervised models can be applied: SIMCA,
SVM, etc.
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Data analysis was based on one variable factor (Vera-NoVera), however,
other factors can be included in the method scope (hot/sweet/bitter paprika,
harvest year and fumed/not fumed paprika).
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9 Addendum I: Dataset

vera X11.B X23.Na X24.Mg X27.Al X31.P X32.S
1 1 35306.93 315708.74 5510893.34 395165.33 10506511.10 309419.58
2 0 21764.12 909690.43 7178715.61 898881.57 12778856.04 262841.75
3 0 21163.09 949565.85 7346523.88 905411.07 13066797.81 319880.03
4 1 32823.16 598800.01 4999496.65 384500.58 9782071.68 247563.64
5 1 38335.73 354324.15 5752216.70 507791.36 10585140.36 432825.87
6 1 34660.70 476751.36 5324170.98 797529.69 10360780.28 248019.32
7 0 30458.30 1151927.41 5952460.40 695671.49 10515416.51 335205.89
8 0 28873.51 1425866.73 5900383.04 948662.30 8872081.61 270037.92
9 1 34121.26 376228.90 5695737.00 582128.35 10068786.40 376686.49

10 0 30608.57 861183.81 6425203.09 858742.82 9693111.58 305433.08
11 1 42667.30 883795.82 5081970.64 391689.02 8771388.72 460466.86
12 1 28772.36 345297.04 4595474.12 301953.20 9016525.14 461260.84
13 0 27343.36 839246.64 5645044.86 800994.18 8526113.08 339299.54
14 0 28015.06 708514.28 5691832.14 1150870.30 9159517.76 478946.04
15 1 30872.90 393290.90 4614068.34 654923.04 9133780.50 400480.78
16 1 39017.40 791608.32 5039829.04 673577.00 9461618.06 483441.72
17 0 29966.52 1092508.26 5727815.66 1170529.44 7851135.38 421724.94
18 1 34287.02 306437.44 4973955.92 445736.20 9282323.88 441491.42
19 0 29647.48 1215901.50 5151240.22 479541.26 8228835.68 648752.66
20 0 27965.44 1077998.44 6345362.96 1540074.38 8704986.50 392198.34
21 0 26441.72 892286.58 5497194.68 707207.30 8373719.34 383341.06
22 1 30314.86 243970.28 4489568.24 422499.90 9046480.10 476485.60
23 0 29888.18 855588.02 6342480.54 1300396.54 8685186.10 426636.22
24 0 33552.08 1307024.60 6953305.62 1533610.20 8462668.08 499029.38
25 1 28570.06 205401.42 4328138.48 244513.64 8826574.38 449704.22
26 0 23911.52 683819.36 6138210.82 859695.18 9443194.42 424500.50
27 0 26505.56 782147.26 5498802.66 615812.58 8920924.04 439547.90
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X39.K X44.Ca X51.V X52.Cr X55.Mn X56.Fe X59.Co
1 86633630.41 4863045.79 388.23 929.83 72578.27 328019.93 722.55
2 40438442.68 3117754.78 1383.95 3410.70 50620.13 710801.38 477.89
3 39540822.91 3114072.88 1409.86 3283.58 51693.72 728834.78 486.37
4 83606224.73 3912475.29 431.88 562.63 74960.94 328924.93 493.43
5 85542041.51 6153482.24 430.33 1274.09 57133.45 295584.46 259.12
6 84469973.56 4995908.79 634.10 1166.71 81039.51 457375.59 374.25
7 68186192.77 4787818.61 1108.92 4522.91 45747.31 598752.56 626.06
8 72269245.19 5015690.92 1703.20 6939.58 41291.10 805480.96 953.26
9 91364816.10 5031548.51 611.16 4092.67 69403.48 459781.67 457.63

10 69572646.71 5232722.65 1852.42 6619.90 49722.45 833536.66 589.82
11 72708038.86 5508745.34 381.66 463.16 96384.42 315391.62 708.08
12 70619941.66 3491628.52 366.90 1587.38 66231.86 278432.78 265.58
13 62371951.20 4573688.22 1506.28 6676.76 40196.46 703444.26 543.28
14 51230452.54 8048215.74 2296.20 6636.98 55483.78 1051728.10 716.52
15 72076312.64 4378139.50 541.32 1250.98 73091.70 380290.62 323.74
16 77428500.52 5231963.58 616.94 959.28 97918.08 428255.80 497.56
17 52013164.94 6095513.40 2038.64 16327.64 58483.38 1037323.12 969.86
18 71288116.98 5223225.08 380.36 1285.20 54643.04 269001.84 223.82
19 64075399.98 4061236.16 920.58 2307.64 30733.16 446299.84 545.14
20 48952326.56 9815869.58 3129.16 8071.40 68854.12 1483413.58 855.60
21 58640982.46 5388900.06 1289.28 5580.96 40681.86 678035.10 532.86
22 73333143.82 4581945.54 340.68 5227.36 83952.06 394742.44 679.62
23 52879800.84 9596690.22 2385.32 7379.48 55576.94 1145664.26 794.38
24 57706342.90 9106261.60 2999.40 8251.16 57131.00 1468769.90 841.34
25 76797422.48 4224038.20 272.92 2975.96 108182.33 282157.50 1296.85
26 478414.74 65521.92 1421.91 3290.21 45141.67 667266.88 462.90
27 619820.46 42665.66 984.62 3638.71 36925.25 533873.19 501.00
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X60.Ni X63.Cu X66.Zn X87.86.Sr X88.Sr X95.Mo X111.Cd
1 2034.34 22558.36 83063.97 6.65 558.86 601.48 102.53
2 1806.88 28223.80 57182.22 3.97 1024.41 1050.20 45.73
3 1849.64 29491.43 58982.07 3.68 976.22 1081.28 45.93
4 1385.79 23649.52 72947.13 8.09 666.13 516.16 96.13
5 1277.07 21009.90 80468.89 5.83 958.80 574.55 59.48
6 1334.28 20926.17 68540.30 4.58 747.26 713.94 64.73
7 2693.65 24371.70 47045.97 3.96 1528.18 928.87 122.58
8 4015.31 23291.73 39669.70 3.16 1713.95 1167.78 67.84
9 2141.34 23362.77 77667.56 5.20 1009.21 858.28 69.77

10 4066.17 29022.18 47701.42 3.56 1949.26 1079.74 56.92
11 1118.84 16413.00 64393.68 3.20 991.70 546.42 303.38
12 1351.02 18906.36 70953.96 5.95 688.20 905.36 122.62
13 3417.38 24843.16 38988.48 4.33 1574.40 819.74 108.28
14 3453.04 24227.36 49052.16 3.61 1616.10 1320.30 155.74
15 1273.94 18997.88 59957.46 4.91 617.60 632.16 143.68
16 1501.62 20486.14 84110.28 4.44 861.50 396.50 293.42
17 8354.92 23236.20 50914.68 4.11 1414.90 1213.70 132.70
18 1133.10 19062.30 70763.70 5.76 892.30 508.50 136.82
19 2370.26 22678.74 44143.14 3.33 1529.00 852.28 98.86
20 4405.18 26745.94 45543.12 2.76 2088.10 1309.04 120.28
21 3385.96 23724.06 37812.60 3.62 1553.10 1128.18 99.28
22 3689.60 19538.98 71885.42 7.14 670.30 751.08 315.98
23 3786.98 24500.64 44242.62 3.11 2249.20 1478.82 122.02
24 4355.90 23098.46 40918.90 2.16 3303.90 1295.10 96.18
25 4133.34 23896.78 67799.80 8.71 470.40 433.74 529.48
26 2239.16 25504.59 44538.27 3.16 1597.60 988.88 89.88
27 2364.94 22627.44 39739.13 4.05 1309.00 1045.19 96.35
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X118.Sn X121.Sb X137.Ba X153.Eu X208.Pb X238.U
1 46.77 17.27 7829.40 0.34 108.99 3.25
2 60.84 27.55 10031.64 1.38 171.20 3.84
3 201.66 24.17 10672.02 1.64 168.73 6.13
4 3981.65 9.04 6501.14 0.00 116.82 1.87
5 122.04 12.65 7100.88 0.33 141.98 3.59
6 158.92 10.06 11662.09 1.35 184.79 4.84
7 327.95 32.29 10516.69 2.36 298.21 2.81
8 104.39 35.37 13516.16 2.70 221.04 5.23
9 87.77 12.95 13865.11 1.71 147.33 3.54

10 270.77 41.53 14120.36 2.78 287.64 6.08
11 14789.12 9.24 6658.12 0.69 304.36 4.02
12 942.02 4.60 6475.98 1.24 200.96 2.99
13 410.00 30.28 11270.72 0.28 509.64 6.06
14 252.94 34.04 15322.56 1.65 866.78 6.07
15 130.28 9.58 9078.86 2.92 430.78 4.73
16 129.96 18.50 8792.58 1.35 420.72 5.69
17 176.42 42.48 17837.10 1.87 1042.86 6.54
18 141.74 7.30 6004.14 3.60 284.44 3.68
19 67.96 20.92 6556.28 0.73 468.50 4.32
20 110.08 65.78 19558.06 1.48 1346.80 11.71
21 539.86 34.50 10750.08 4.56 582.96 5.60
22 90.02 10.78 9022.08 0.96 524.16 5.91
23 85.52 41.92 17060.76 0.79 937.72 6.22
24 150.20 44.42 18556.32 1.59 931.88 10.58
25 153.76 11.71 9403.71 3.16 584.78 1.07
26 814.46 32.29 12365.84 1.01 622.74 5.81
27 54.82 20.79 8790.44 1.97 368.55 3.05
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10 Addendum II: Pipeline and R Code

(see attached document)
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