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Chapter 1

Introduction

1.1 Background and justification

The use of multiple measurements of cell morphology from images has been
performed to characterize effects of drugs or the function of genes[4]. Any-
way, the task of generating representations of single cells to summarize their
properties in a profile to represent the population is still an open problem[5].
Training of a variational autoencoder (VAE) is a tool that can address this
issue, modeling a latent variables space to characterize single cell imaging.

Other benefits of the use of generative models to produce synthetic im-
ages are to train discriminative models and also the simulation of biological
processes using techniques like latent variable walkthrough.

Some other efforts have been made to adopt generative techniques to deal
with cellular autoencoder reconstructions [5]. The novelty of the approach
of this work is 1) to describe the whole process at technical level 2) to discuss
the value settings, architectures and the mechanisms that influence the final
result and 3) to test public cloud infrastructure as a technological framework
for training models.

1.2 Project objectives

1. GO1. Analysis of the theoretical framework: in order to estab-
lish a theoretical background for the study, it is necessary to analyze
prior works in this field and identify possible issues and limitations.
The theoretical aspect must be also be worked to support decisions
and to be described in the final document.

1.1. Identify and review of related work.

1.2. Study of already implemented VAE architectures.

2. GO2. Design and implement a VAE: the core of the project is the
implementation of a VAE. Technical aspects include image treatment,
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tools integration and model generation. Conclusions must be sup-
ported by a measurable aspect beyond subjective similarity between
images.

2.1. Cell segmentation

2.2. Arrange cellular images by colour/channel, image enhance.

2.3. Image choosing based on image cell size and group control own-
ership.

2.4. Adjust images to a common size.

2.5. Propose and justify model decisions: architecture, neural network
deepness and latent variables space dimension.

2.6. Implement a variational autoencoder based on the design.

2.7. Define or use an already defined metric to compare the generated
data with the original data. Analysis of the results.

3. GO3. Study the factors that determine VAEs performance:
the design of a second VAE based on the first one has to confirm
or challenge theoretical assumptions. The use of the already defined
metrics will allow to compare results among this, the first one and the
raw images.

3.1. Based on the theoretical analysis and the implementation, iden-
tify which factors may improve VAE model performance.

3.2. Propose and implement a new model and check results with the
first model and the original data.

1.3 Approach and working methodology

Both the scientific and the technology aspects of the project require different
approaches. The scientific aspect is mainly related with the analysis of
the theoretical framework, the identification of the factors that are going
to improve the VAE model performance at second stage and the final con-
clusions of the project. This aspect has to be worked in a linear fashion,
supporting the technical decisions whenever are to be taken.

Regarding technology aspect, the use of ML standard frameworks
like Keras/Tensorflow, tools like Jupyter notebook and programming
languages like Python reinforce the idea of consistence at technology point
of view. Other tools like CellProfiler[6] are a common choice to perform
tasks like cell segmentation. The image treatment at file level is done using
Python and its supporting image libraries (Python Imaging Library by
Fredrik Lundh, PIL).

To avoid resource limitations, the use of the public cloud infrastruc-
ture is an approach that is worth to be considered. The pay-per-use price
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modeling and the discounts for idle computational power1 makes apparently
affordable the use of a ML instance for Deep Learning training. More-
over, there are some virtual machines in Amazon Web Services with pre-
installed frameworks and tools (Keras/Tensorflow, Jupyter notebook) that
perfectly fit the needs of the project makes AWS the chosen infrastructure
provider.

The use of a tool2 to describe the infrastructure components as a
code allows 1) to avoid delays between computing components creation and
model training, 2) to agile the second model training described in Project
objectives section and 3) to facilitate the study to be reproducible.

Considering the aspects described above, and taking into account un-
certainly over model training performance, it is more suitable to assume
an iterative methodology with reference to technology aspects. Assump-
tions and objective accomplishments were reassessed at the end of the work
phases.

1.4 Work plan

1.4.1 Tasks

1. GO1. Analysis of the theoretical framework (20 h).

• Collect different material about the topic both at theoretical and
implementation perspectives (10 h)

• Study of already implemented VAE architectures. (10 h)

2. GO2.1. Image processign (30 h).

• Cell segmentation (10 h)

• Arrange cellular images by colour/channel, image enhance. (5 h)

• Image choosing based on image cell size and group control own-
ership. (10 h)

• Adjust images to a common size. (3 h)

• Upload control group images to the cloud. (2 h)

3. GO2.2. Design and implement the VAE (125 h).

• Propose a model design for the VAE. (20 h)

• Set a pipeline to segment cellular images. (15 h)

• Image treatment: check integrity, adjust size, enhance images (if
necessary), and select control group images. (25 h)

1Amazon Web Services (AWS) spot instances: https://aws.amazon.com/ec2/spot/
2Terraform: https://www.terraform.io/
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• Create a script using Terraform to generate the cloud environ-
ment. (20 h)

• Create Python code to implement the VAE. (20 h)

• Execute model and grab the results. (5 h)

• Define the metric to compare the results with the original data.
Calculate over results. (20 h)

4. GO3. Study the factors that determine VAEs performance
(25 h)

• Identify parameters that can improve VAE performance and change
model parameters. (5 h)

• Execute the new model and grab the results. (5 h)

• Calculate the new metric with the new results. Compare with
the first model. (15 h)

Related with the PECs, the assessment (120 h) is:

• PEC0: Proposal (4 h)

• PEC1: Work plan (11 h)

• PEC2: Work Phase 1 (10 h)

• PEC3: Work Phase 2 (10 h)

• PEC4: Project report (50 h)

• PEC5: Presentation (20 h)

• PEC5: Public defense (15 h)

1.4.2 Milestones

Project milestones are:

Objective Milestone Deadline

GO1 Collect a set of references to support hypoteses 5-6 Mar

GO2 Enhanced segmented images persisted in a cloud environment 21-22 Mar

GO2 First VAE implemented 15-16 Apr

GO4 Second VAE implemented 10-11 May
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1.5 Deliverables

The deliverables for this project are:

• Project report, including a budget report to evaluate methodology
feasibility in other projects.

• CellProfiler pipelines used to segment MCF7 image set.

• Python code used for file and image processing, including source code
to enhance/modify segmented images and code used to create RGB
images from different image channels.

• Terraform scripts to ease environment creation and steps to setup (in
Markdown).

Source code is in a public version control repository (GitHub). See Ap-
pendix A for more details.

1.6 Brief description of other sections

After a brief introduction to generative models and the fundamentals
of variational autoencoders, loss function components for VAEs are de-
picted. Afterwards, basic elements of the Deep Networks that have been
trained in this work are also described.

Materials and methods chapter describes, step-by-step, the process
from segmentation to analysis, including the components of the cloud envi-
ronment. A final section details the budget for each trained model analyzed.

Results chapter describes the outcomes of each model and makes a
comparison among them. A sampling of one of the models is also performed,
showing the images produced.

The last chapter depicts the final ideas and possible improvements to
this work.

13



Chapter 2

Background

2.1 Introduction to generative models

The distinction between discriminative modelling (DM) and genera-
tive modelling (GM) is a major division in machine learning [7]. DM
attempts to, given an observation x and a category y, estimate the proba-
bility of p(y|x). The idea that relies under GM is to establish the probability
of observing p(x). Given a sample set {xi} with some attributes or charac-
teristics like image pixels, the generative model maps the attributes of the
training set to a mainfold or subspace of a more general space, enabling
representation learning.

Historically, discriminative modeling has been the driving force in ma-
chine learning. The aplicability in multiple business fields as user segmen-
tation or sentiment analysis and the ability to easily measure performance
in discriminative models have boosted the development of DM methods.

Some studies [8, 9] have relied in discriminative methods using neural
network analysis to monitor cellular responses. On the other hand, some
efforts have been made to adopt generative techniques to deal with cellular
autoencoder reconstructions [5].

2.2 Fundamentals of variational autoencoders

An autoencoder is a type of artificial neural network that consists of two
steps or phases. In the first one, the observation x is reduced or encoded
to a low dimensionality expression through a deep neural network. In the
second phase, another neural network called decoder reconstructs the initial
observation.

The standard Autoencoder, similarly to principal component analy-
sis (PCA), performs a dimensionality reduction of the features of the data,
but PCA preconditions are not applicable in autoencoders: several basis
can describe the same subspace, and orthogonality of the resultant principal
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components is not required, so new features in the latent space (LS) can be
dependent among them.

Figure 2.1: Variational autoencoder architecture [1].

A variational autoencoder is an autoencoder that, instead of mapping
one element x to one point of the latent space, maps the element to a
multivariate distribution (in general, a multivariate normal distribution).
Thus, the LS becomes continuous, allowing sampling and interpolation.
Furthermore, the points around the codification of x are likely to be similar
to this element, so a sampling near this point is likely to be decoded as a
well-formed image.

Figure 2.2: The difference between the encode in an autoencoder and a variational autoencoder
[2].

Reconstruction and Regularization

The method to evaluate performance of the model is the loss function, that
in variational autoencoder is composed by two terms:

• a classic, generative factor, which compares the input and the output
of the model. In this case the least square errors (L2) function has
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been implemented:

L2 =
n∑
i=1

(ytrue − ypredicted)2

• Kullback–Leibler (KL) distance, that compares the latent vector dis-
tribution with a normal with ~µ = 0 and Σ = I; this term penalizes the
variational autoencoder if latent vectors are not from the distribution.
In its closed-form expression [10]:

KL[qφ(z|x)‖p(z)] = −1

2

K∑
k=1

{1 + log σ2
k − µ2

k − σ2
k}

The value of the loss function

lossfunction = L2 +KL[qφ(z|x)‖p(z)]

is equalized via R LOSS FACTOR to balance the relation between L2 and
KL during the training process to avoid a preeminence of one of these fac-
tors.

2.3 Deep learning layers

Convolution and convolutional layer

A convolution (Figure 2.3) is an mathematical operation on two functions
(x and y) that produces a third function expressing how the shape of one is
modified by the other. In equation form:

x(t) ∗ y(t) =

∫ ∞
−∞

x(τ)y(t− τ)dτ

A convolutional neural network is a class of neural network that is mainly
composed by convolutional layers. In convolutional neural network (CNN)
terminology, the function x is referred to as the input, and the second
argument y as the kernel. The objective of a kernel is to extract features
from an input image. Thus, a kernel could, for example, enhance vertical
lines in an image. In machine learning applications, a CNN learns the values
of the kernel on its own during the training process.
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Figure 2.3: A kernel that implements a general 2D convolution operation [3]

Batch normalization

We define internal covariate shift as the change in the distribution of net-
work activations due to the change in network parameters during training
[22]. As backpropagation mechanism propagates the errors in the network,
and because initial values in layers have been randomly assigned, the gradi-
ent in early layers can grow exponentially (overflow).

To improve stability of neural networks, batch normalization layer cal-
culates the mean and standard deviation of its input layers and normalizes
by subtracting the mean and dividing by the standard deviation.

LeakyReLU

An activation layer that uses leaky rectifier linear unit (LeakyReLU) (see
Fig. 2.4), a function that implements a small, positive gradient when the
unit is not active.

Dropout

A dropout layer (see Fig. 2.5) is a regularization technique to avoid over-
fitting. The idea is to avoid the dependency of an arbitrary group of neurons
that remember the observations in the training set. Thus, in the training
process some units are disconnected (the number is configurable) to avoid a
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Figure 2.4: The Leaky ReLU function

dependency with the training set. Dropout layers are parametrized through
a rate p that specifies the fraction of the input units to drop.

Figure 2.5: Dropout layer p = 0.5

Lambda

Maps an expression (function) as a layer object. Used to map the multi-
variate normal distribution expression results as the encoder of the output
layer.

If an operation over data is not defined in predefined layers, it can be
done in a lambda layer, where an operation over the elements of the vector
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can be performed. Figure 2.6 illustrates this point, where the output of a
flatten layer is branched into two layers (mu and log var) whose elements
are the parameters of the lambda function. In this case, the output of the
lambda layer is a sampled point ~z from the latent space distribution defined
by mu and log var.

Figure 2.6: Lambda layer
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Chapter 3

Materials and methods

Training a Variational Autoencoder based on the premises described in
1.1 and 1.2 requires a series of steps to successfully to segment the im-
ages involved to distinguish the cells involved. After these steps, a post-
processing has to be done to check the size of the images and to upload
this images to a cloud storage. This process is done only one time, making
the images available for the models.

The images in the storage will be used in each model training, a process
that will be controlled through the creation of a cloud environment and
the execution of the programs that define model training.

Figure 3.1: Model built: from raw images, a preprocess stage cell image are identified. A second
stage checks the integrity of the images in some aspects like image size consistency for each channel
and resizes each file to a common width and height. Environment built script creates the Cloud
environment and automates the model built process.

After a description of the set of images, this chapter details the method-
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ology used to:

1. Segment the images of the human MCF7 cells - compound-profiling
experiment (Accession number BBBC021) to obtain a set of indi-
vidual cells, choosing the ones that belong to the DMSO control group
compound, since the focus of this work is to model the variability of a
type of cells, not the variability among compounds.

2. Check integrity, enhance images to avoid low signals in training (dim
images) and justify how the dimension of the images has been chose.

3. Describe how the cloud environment is performed, and the components
that are used in model training.

4. Describe the architecture of the implemented VAE, justifying design
decisions.

5. Describe the required steps to train a model and which parameters are
involved.

6. Describe how the results have been analyzed and the metrics calculated
for each model.

7. Depict which factors affects the budget for a model training

3.1 Image set

The image set used is the BBBC021v1 from [8], and it is available from the
Broad Bioimage Benmarch Collection and described in [11]:

Phenotypic profiling attempts to summarize multiparametric, feature-
based analysis of cellular phenotypes of each sample so that simi-
larities between profiles reflect similarities between samples. Pro-
filing is well established for biological readouts such as transcript
expression and proteomics. Image-based profiling, however, is
still an emerging technology.

This image set provides a basis for testing image-based profiling
methods wrt. to their ability to predict the mechanisms of action
of a compendium of drugs. The image set was collected using a
typical set of morphological labels and uses a physiologically rel-
evant p53-wildtype breast-cancer model system (MCF-7) and a
mechanistically distinct set of targeted and cancer-relevant cyto-
toxic compounds that induces a broad range of gross and subtle
phenotypes.
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There are 39,600 image files (13,200 fields of view imaged in three chan-
nels) in TIFF format. Broad Institute provide the images in 55 ZIP archives,
one for each microtiter plate. The archives are 750 MB each. The set also
contains different files as metadata, with the information associated to each
file like paths, filenames, plates and wells and the applied compound and
its concentration. Additionally, the file BBBC021 v1 compound.csv gives
the structures (in SMILES format) of most of the compounds.

Other files associated with the test also associate compounds and concen-
trations with mechanisms of action (BBBC021 v1 moa.csv). A CellProfiler
pipeline to analyze the images is also provided.

Each image in the set is composed by DAPI, TUBULIN and ACTIN
channels, and is also associated with the compound and the concentration of
these compound. DAPI is a fluorescent marker that easily binds to AT se-
quences in DNA so is a good marker to stain the nucleus, while TUBULIN
and ACTIN channels are related to the cytoskeleton. The image sub-
set employed in this work is the subset of the BBBC021v1 which matches
with the DMSO group compound, which corresponds to the control group;
DMSO is a common solvent used for preparing stock solutions in fluores-
cence.

As it has been pointed out, the whole set has 13200 composed images
that are 13200 files for each channel (one file for each channel) totalling
39600 files, while the DMSO subset has 1320 composed images that are
1320 images for each channel, totalling 3960 files.

3.2 Segmentation

This section describes the steps required to obtain individual cell images
from the subset image.

3.2.1 CellProfiler. Pipeline and adaption.

CellProfiler [6] is an open-source software for quantitative analysis of biolog-
ical images. The use of CellProfiler is implemented through pipelines, that
are a sequential set of image analysis modules.

The segmentation process has also been based on a public pipeline [12]
which has been adapted for the project objectives pruning subtasks related
to the measurements like counting the number of cells or measuring nuclei
radii that do not apply to the project goals. However, although not necessary
for the outcomes, the normalization process was a prerequisite to pipeline,
so it was also executed.

In the next section, the pipeline executed to segment the cells is de-
scribed.
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3.2.2 Regularization and Segmentation

Regularization

Because the analysis pipeline was developed to quantify some cellular pa-
rameters and those measurements require an image regularization 3.2 since
illumination pipeline outcomes are used in the analysis, normalization must
be executed before the main one.

Figure 3.2: Regularization pipeline

After the image definition (drag and drop the files/folders from the
filesystem), the pipeline defines the metadata of the associated files and
distinguishes image channels. A join of the channels for the same image
is performed before the illumination correction. The process ends with
the saving of the images.

Segmentation

Pipeline 3.3 has in common with its prerequisite that first steps are basi-
cally the same: image definition and metadata extraction. After that,
the correction of the channels is performed with the outcomes of the prior
pipeline and corrected images are saved. A process of identification of the
elements in the images in IdentifyPrimaryObjects is performed in DAPI
(Blue), Actin (Green) and Tubulin (Red) channels. Finally the image is
cropped and saved in one .tiff file for each channel.

As was mentioned, the original pipeline had more steps to perform cal-
culations.
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Figure 3.3: Analysis pipeline

3.3 Image processing

Image size

After cell segmentation, a maximum image cell size has to be choose. Con-
sidering performance restrictions, the image should not bee too large, with-
out compromising information quantity and quality. The size 128x128 (see
Figure 3.4) grabs most of the information of the image set.

Processing

After the images have been segmented, a process1 is executed prior to the
use of the images in the implementations of the VAE. Firstly, an image
resize is done in each channel to normalize images to 128x128 size. After
that, because Keras warns the user about the use of .tiff images, a .png

file is created combining all channels. Finally, due images frequently are
too dim, an enhancement is done through brightness correction.

# image syntesis (from .tiff to .png)

def create_png_images(folder, dest_folder):

for file in glob.glob(’’.join([folder, os.sep, "*.tiff"])):

png_filename = os.path.basename(os.path.splitext(

1some functionality like enhancement or resizing could have been performed using
Keras/PIL libraries
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Figure 3.4: Image size histogram

\\ file)[0] + ’.png’)

im = Image.open(file)

im.save(’’.join([dest_folder, os.sep, png_filename]))

Once the images have been totally processed, they are uploaded to an
S3 bucket.

3.4 Cloud environment

3.4.1 Introduction

Deep Learning training usually requires a significant amount of computa-
tional power, and although some studies[13] have challenged it, seems clear
that one of the most optimal configuration for the task is associated to
leverage GPU2 performance due its ability to perform multiple parallel cal-
culations in gradient descent algorithm. Thus, although possible, train deep
learning models is a task that underperforms in a CPU architecture, which
is the common one in general purpose computers.

In general, high-performance computers are not within reach on most
occasions. At this point, the lack of computational resources is a significant

2Graphic Process Unit
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challenge to train a model; because of that, a pay-per-use solution at the
less possible cost is a significant improvement due to budgetary restrictions.

Cloud Computing offers a resource framework to deal with this kind of
limitations. Besides, the possibility of environment description using tools
like Terraform allows automating the creation and the destruction of net-
work components, computing resources and persistence resources in a simple
manner.

3.4.2 Components and environment

Components

Cloud components can be divided into three types:

• Network components allow the communication among cloud com-
ponents and between those cloud components and the local environ-
ment, that is the environment that launches the formation scripts and
captures the result of the model training to analyze. The main cloud
network component is the VPC, that is the virtual network where
to launch computing resources. The Internet Gateway is the com-
ponent that connects the VPC with the Internet. Other components
are the Route Tables to manage packet transmission and Security
Groups, that are virtual firewalls.

• Computing resources are the core components of the system, where
models are trained. The use of a standard template (Amazon Ma-
chine Image, AMI) pre-installed with Deep Learning tools (Tensorflow,
Keras, Jupyter Notebook among others) allows a straightforward use
of the environment, without the necessity to set up other software
packages. The use of ML instance types, that combine CPU, memory,
storage, and networking capacity in a certain way to optimize training
works is also a key point in model training. The configurations used
are:

Instance GPUs vCPU Mem
(GiB)

Mem
(GiB)

GPU P2P Storage
(GB)

Dedicated
EBS
Band-
width

Networking
Perfor-
mance

p3.2xlarge 1 8 61 16 - EBS-
Only

1.5 Gbps Up to 10
Gigabit

p3.8xlarge 4 32 244 64 NVLink EBS-
Only

7 Gbps 10 Gigabit

• Storage components are the persistent components involved in the
training. The S3 object storage is an optimal infrastructure not only
to store images between trainings but also to store training results in
.h5 format.
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Figure 3.5: Images in a S3 bucket

Another resource that has been used to perform model training an EBS
(Elastic Block Storage) unit is a virtual block disk that is attached to
the computing resource and stores the images from the S3 resource
(a. k. a. bucket). That is implemented in this fashion to avoid costly
web service EC2 to S3 requests to get the images and because Python
libraries (Tensorflow, Keras) natively implement location on disk.

Environment operation

The environment is built through a terraform3 script, that processes the
declarative description of components described in 3.4.2 and performs its
creation in the cloud environment. The first step is the creation of the net-
working components; after that, the creation of the computational node and
the attachment of the EBS disk allow the local system to access the vir-
tual machine (VM) through a previously created public-private keypair
via ssh.

The copy of the images to the VM is manually executed. It is performed
through a utility that launches multiple threads and allows to concurrently
access the S3 bucket, thus reducing the time to download the images. Once
images are in the VM, files from the GIT repository containing the developed
code is pulled from the repository4. Jupyter Notebook (JN) can be executed
now in the root of this repository, and the notebook can be accessed from
the local environment through a browser through the URL that AWS public
DNS and JN token provides. The service is executed by default in 8888 port,
so the access is done through the URL:

3https://www.terraform.io/
4https://github.com/jmunozal/tfm-autoencoders.git
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https://[awsnds]:8888?token=[token]

Once the notebook cell analysis.ipynb is parametrized, the execution
can start, and when the process finishes, the results are manually grabbed
to the S3 bucket. Once the results have been recovered, the process ends
manually destroying the whole environment via Terraform.

Figure 3.6: The environment generated by scripting the infrastructure. Options like virtual ma-
chine type, region and maximum spend amount are fully parametrized.

Detailed procedure is developed in Appendix B.

3.5 Model design and training

3.5.1 Model design

The Variational Autoencoder developed to model images is based in Deep
Convolutional Neural Networks both in the encoder and in the decoder
and in training mode the use of batch normalization and dropout can be
activated or deactivated:

conv_t_layer_1b = Conv2DTranspose(

filters=32

, kernel_size=3

, strides=2
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, padding=’same’

, name=’decoder_conv_t_1b’

)

x = conv_t_layer_1b(x)

if self.use_batch_norm:

x = BatchNormalization()(x)

x = LeakyReLU()(x)

if self.use_dropout:

x = Dropout(rate=0.25)(x)

After normalization/convolution layers, an activation layer is implemented
based on the leaky version of the Rectified Linear Unit.

Model architecture

Puting all together the components: convolutional layer, ReLu layer, dropout
and normalization a model has been designed and implemented. The model
fora latent space of dimension 75 is ploted in figures 3.7 and 3.8.

3.5.2 Training steps

The source code is widely based on the example code of [2]. Jupyter Note-
book cell train.ipynb is implemented to execute the sequence of training
steps. Kernel Python 3.6 with Tensorflow conda tensorflow2 p36 is
the kernel used to execute both training and analysis notebooks.

1. Imports of the implemented VariationalAutoencoder class
and the other necessary resources like Keras ImageDataGener-
ator, numpy, glob and the os and time packages from the standard
library.

2. Definition of the variables for execution, including cloud training,
that distinguishes the environment between cloud (real training) or lo-
cal (development purposes). Depending on this variable, batch sizing,
the number of epochs and folders are established. Image dimension is
also set in this step.

DATETIME = time.strftime("%Y%m%d-%H%M%S")

LEARNING_RATE = 0.0005

R_LOSS_FACTOR = 1000

cloud_training = False

if cloud_training :
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Figure 3.7: Encoder architecture for a LS dim 75

BATCH_SIZE = 35

EPOCHS = 100

DATA_FOLDER = ’/data/train’
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RUN_FOLDER = ’/data/run/’

else:

BATCH_SIZE = 5

EPOCHS = 1

DATA_FOLDER = ’/Volumes/My Passport/PFM/fastcheck’

RUN_FOLDER = ’/Volumes/My Passport/PFM/run/’

run_id = ’0001’

data_name = ’cells’

RUN_FOLDER += ’_’.join([run_id, data_name, DATETIME])

INPUT_DIM = (128,128,3)

3. The training setup step includes the Variational Autoencoder in-
stance set up and compilation using the defined variables in the latest
step. Variational Autoencoder is parametrized with execution folders
and some attributes like the latent space dimension and others to
set the use of dropout and batch normalization.

t = VariationalAutoencoder(image_folder=DATA_FOLDER, \\

run_folder=RUN_FOLDER, train_mode=True, \\

use_dropout=False, z_dim=400)

t.compile(learning_rate=LEARNING_RATE, r_loss_factor=R_LOSS_FACTOR)

4. Train execution using epochs:

t.train_with_generator(data_flow = data_flow, epochs = EPOCHS, \\

steps_per_epoch = NUM_IMAGES / BATCH_SIZE, \\

run_folder = RUN_FOLDER, print_every_n_batches = 10)

The result of each partial result is printed on screen until the process
ends:

Epoch 1/50

7166/7165 [==============================] - 302s 42ms/step - loss: 103.6501 - vae_r_loss: 84.7759 - vae_kl_loss: 18.8821

Epoch 00001: saving model to /data/run/0001_cells_20200513-131813/weights/weights-001-103.66.h5

Epoch 00001: saving model to /data/run/0001_cells_20200513-131813/weights/weights.h5

(...)

Epoch 00049: saving model to /data/run/0001_cells_20200513-131813/weights/weights.h5

Epoch 50/50

7166/7165 [==============================] - 296s 41ms/step - loss: 26.7648 - vae_r_loss: 19.8169 - vae_kl_loss: 6.9476

Epoch 00050: saving model to /data/run/0001_cells_20200513-131813/weights/weights-050-26.76.h5

Epoch 00050: saving model to /data/run/0001_cells_20200513-131813/weights/weights.h5
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3.6 Model analysis

3.6.1 Trained models

Four models were trained with different LS dimension. The architecture of
models A, B and C is the same (see Figures 3.7 and 3.8) excluding this
LS Dim parameter. Model model 3 has a slightly different output layer,
but results were worse than the other design because although the model
captured position, size and orientation, output pixels were saturated.

Trained Models

model id LS Dim r loss factor epochs training time

model 3 200 10K 200 22 h
model A 75 50K 20 6 h
model B 150 10K 50 6 h
model C 300 10K 50 6 h

3.6.2 Metrics

In order to compare the results of the quality of reconstruction among the
models, a metric has been established considering that all models have the
same set of images to work with:

S = 1− 1

c h w N

∑
∀ image

∑
∀ pixel

|i1 − i2|

Where c is the color deepness (255 in our case), h, w the height and
witdth of the images and N the number of images; i are the intensities of
each pixel (1:255), that is because we divide by the color deepness. This
similarity metric S can be used for a collection of images of the same height
and width and its range is between 0 (no similarity) and 1 (all images are
equal).

Regarding the images collection, c is 256, h and w are 128 in both cases
and the number of images N is 250.783.

3.7 Budget

Based on the type of Amazon Machine Image (AMI) and the amount of
time that the environment is up and running, an estimation can be done.
In all cases the price/hour is the same and the AWS region is eu-west-1

(Ireland). Machines are spotted so the price is substantially lower than on
demand machines:
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Model AMI Epochs LS dim Time Price/hour Total price

model 3 p3.2xlarge 200 200 22 h 1.80 e 39.60 e
model A p3.2xlarge 20 75 6 h 1.80 e 10.80 e
model B p3.2xlarge 20 150 6 h 1.80 e 10.80 e
model C p3.2xlarge 20 300 6 h 1.80 e 10.80 e

Tariffs for other regions are different, and the price for persistence storage
is about 7 e/month for both the models and the images.
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Figure 3.8: Decoder architecture for a LS dim 75
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Chapter 4

Results

4.1 Segmentation

Although resource intensive, the process can be performed in a standard
computer, firstly generating the illumination adjusts with illum.cppie and
afterwards proceeding to the segmentation with analysis.cpppie pipeline.
An example of the segmentation for one file is show in figure 4.1.

Figure 4.1: Segmentation process for an image. The output are the multiple cropped files saved
(R/G/B) for each cell (numbered suffix). Division in cropped cells can be observed in the upper
right side.
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4.2 Training process

Loss function stabilizes quickly, and around epoch 10 the value is not sub-
stantially reduced; 4.2 is the plot for loss function for model B.

Figure 4.2: Loss plot for the model model B

Models B and C had to be mandatory trained using dropout layers;
otherwise the loss function diverges (NaN values). Dropout layer ignores
neurons in the training phase not considering them in forward or backward
pass.

Latent space distribution that is detailed in Figure 4.3 for the 20 first
components of a 5000 sample size shows that some distributions are signif-
icantly different from the standard normal distribution. The poor adjust
of some components points out that the relation between both terms of the
loss function should have been different, reducing the reconstruction loss
factor to get a more optimal latent space distribution.

4.2.1 Metrics

Metrics for the models reveal that the change in the network design has im-
proved metric’s value, and even the model with lowest latent space improves
the result of the old architecture. The results also indicate that the increase
of the latent space (between models B and C) to a wider one does not imply
a better performance.
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Figure 4.3: Latent space distribution for model B

Model Metric latent space size

model 3 (PAC 2) 0.82813 200
model A 0.85946 75
model B 0.91598 150
model C 0.90817 300
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A possible cause is that because models B and C can reconstruct more
images, their metrics value is better than model A, although model A
produces more detailed images. Is reasonable to infer that because the
high variability of the images not only in size but also about predominant
channels and orientations, the model does not capture all variables and is
not able to reconstruct more configurations than models B and C, reducing
this way its metrics value.

4.3 Reconstructing images from the image set

Although some images are not properly reconstructed, in general the quality
is fair not only under an abstract point of view, but also under a more
objective angle as section 4.2.1 shows.

1. in general, models capture position and orientation of the cell

2. models distinguish among color layers, specially model A (see Figure
4.4). A possible justification of this will be developed supported by
[14] in the final work.

3. better performance of model A regarding details contrasts in respect
to the ability of this model to reconstruct some images (see Figure 4.5)

4. some images are not properly reconstructed in any model (see Figure
4.6)

The problem of meaningless reconstruction points in figures 4.5 and
4.6 points out that the decoder can not rebuild the image through
the encoder result: because the encoder has returned a coordinate in the
latent space that is out the modeled space, the system has overfitted the
point, behaving like a classic autoencoder. An improvement in the training
process to adjust the latent space is the first reasonable step to fix this
point as it was pointed in 4.2. Another possible cause is that the image is
an outlier of the training subset, so the training set should be widened.

4.4 Image generation

Twenty points have been sampled from a normal distribution with z=75
dimensions to generate new cells, whose results are the images in Figure
4.7. Although images suffer from a common VAE blurriness, these are a
good approximation.
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Figure 4.4: Although its latent space has less components, model A captures more detail than
models B and C
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Figure 4.5: Models with wider latent spaces are able to reconstruct a long number of images
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Figure 4.6: Some images are not properly reconstructed
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Figure 4.7: Cell images generated with a variational autoencoder of latent space dimension 75
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Chapter 5

Conclusions

Outcomes

The implementation of two variational autoencoder architectures (model
3 and model A/B/C) that differs in its decoder design indicates that the
performance of the VAE is affected by minor changes like the addition or
removal of an activation layer in the output layer.

The analysis of models A/B/C that produce a better outcome that
differ only in its latent space dimension suggests that widen this does
not produce a better result at least in the sense of abstract human
perception.

Model A is the most disentangled [14], dimensionally efficient model
(the idea under disentangling is that each dimension in LV encodes an un-
derlying independent factor of variation) that produces, although noisy, the
more performant image reconstructions.

The improved metrics and primary cell reconstructions of B and C mod-
els (see Figure 4.5) points out that a possible cause is that widen latent
variable spaces allows the VAE to model essential treats like size or orien-
tation in a straight way than model A.

One hypothesis to interpret collapsed reconstructions is that the
number of examples in the training set could be too low to express the
extreme variability of the images, or the failed cases do not fit the latent
space distribution. However, because some components of the latent space
does not fit very well the standard normal distribution, the most
likely cause is that images are badly encoded in some of the cases and the
decoder is unable to rebuild the image.

Technology

The use of the public cloud infrastructure and its pay-per-use price mod-
elling added to the run of pre-built environments that eases the use of pre-
installed frameworks and tools makes assumable to tackle a project of this
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size. The use of a tool like Terraform adds an automation layer that avoids
delays between computing components creation and model training.

Further steps

Regarding outcomes, future steps would be to check the validity of the
hypothesis regarding the failed reconstructions, mainly rebalancing the loss
function reconstruction and regularization terms. With this information,
the study of the labelled sets (drugs and concentrations) can be tackled.
The technology aspect can be improved dealing with the automation of the
whole process, from creation and training to upload to the model’s repository
and the removal of the created environment.
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Glossary

autoencoder a type of artificial neural network that consists of a codifica-
tion phase to reduce dimensionality and a decode phase to regenerate
the input. 14, 15

convolution mathematical operation on two functions (f and g) that pro-
duces a third function expressing how the shape of one is modified by
the other. 16

convolutional neural network a subset of deep learning and neural net-
works most commonly used to analyze visual imagery. 16

discriminative modeling a class of supervised machine learning used for
classification or regression. 14

internal covariate shift the change in the distribution of network activa-
tions due to the change in network parameters during training. 16

kernel matrix used to extract features from an input image. 16

latent space a representation of compressed data. 15, 29, 31, 36, 38, 43

loss function a loss function or cost function is a function that maps an
event or values of one or more variables onto a real number intuitively
representing some cost associated with the event. 15, 16, 36, 44

variational autoencoder an autoencoder whose training is regularised to
avoid overfitting and ensure that the latent space has good properties
that enable generative process [15]. 7, 15, 16, 43
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Acronyms

AMI Amazon Machine Image. 32

AWS Amazon Web Services. 10, 27, 32, 57

CNN convolutional neural network. 16

DM discriminative modelling. 14

GM generative modelling. 14

KL Kullback–Leibler. 16

L2 least square errors. 15

LeakyReLU leaky rectifier linear unit. 17

LS latent space. 14, 15, 31, 32

PCA principal component analysis. 14

VAE variational autoencoder. 9, 10, 11, 12, 13, 21, 24, 38, 43
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Appendix A

Source code

Source code is available at https://github.com/jmunozal/tfm-autoencoders.
The repository is divided into three sections: pipelines, which contains Cell-
Profiler pipelines, terraform that includes the scripts to create the train-
ing environment and vae-images that includes the Python/Jupyter files to
manage images (images folder), the VAE (model) and utilities (utils).
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Appendix B

Model training in cloud
environments

B.1 Prerequisites

A connection to the Internet, the image set in a S3 bucket (in this case,
the bucket is tfm-images-cells and it has a subfolder training with all the
image set) and the tools terraform and aws cli installed and configured
are the prerequisites to execute the training.

o This appendix does not address the configuration of the AWS CLI
tool regarding security (tokens, authentication), neither the use of Ter-
raform tool.

B.2 Preparing the environment for training pro-
cess

Download GIT repository and change folder

Once we choose a folder, we download the repository from
https://github.com/jmunozal/tfm-autoencoders.git

and after the tfm-autoencoders folder can be checked:

[jmunozal@MacBook-Pro temp]$ git clone https://github.com/jmunozal/tfm-autoencoders.git

Cloning into ’tfm-autoencoders’...

remote: Enumerating objects: 268, done.

remote: Counting objects: 100% (268/268), done.

remote: Compressing objects: 100% (181/181), done.

remote: Total 268 (delta 136), reused 212 (delta 81), pack-reused 0

Receiving objects: 100% (268/268), 143.42 KiB | 848.00 KiB/s, done.

Resolving deltas: 100% (136/136), done.

[jmunozal@MacBook-Pro temp]$ cd tfm-autoencoders/

[jmunozal@MacBook-Pro tfm-autoencoders]$ ls -ltra

total 8

drwxr-xr-x 4 jmunozal staff 128 Jun 16 17:34 ..

-rw-r--r-- 1 jmunozal staff 97 Jun 16 17:34 .gitignore

drwxr-xr-x 7 jmunozal staff 224 Jun 16 17:34 pipelines

drwxr-xr-x 9 jmunozal staff 288 Jun 16 17:34 terraform

drwxr-xr-x 7 jmunozal staff 224 Jun 16 17:34 .

drwxr-xr-x 12 jmunozal staff 384 Jun 16 17:34 vae-images
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drwxr-xr-x 12 jmunozal staff 384 Jun 16 17:34 .git

[jmunozal@MacBook-Pro tfm-autoencoders]$

The repository is divided into three sections: pipelines, which contains
CellProfiler pipelines, terraform that includes the scripts to create the
training environment and vae-images that includes the Python/Jupyter
files to manage images (images folder), the VAE (model) and utilities (utils).

Generating the environment with terraform

The environment has to be generated in terraform folder using init com-
mand:

[jmunozal@MacBook-Pro terraform]$ terraform init

Initializing provider plugins...

- Checking for available provider plugins on https://releases.hashicorp.com...

- Downloading plugin for provider "aws" (2.66.0)...

Terraform has been successfully initialized!

You may now begin working with Terraform. Try running "terraform plan" to see

any changes that are required for your infrastructure. All Terraform commands

should now work.

If you ever set or change modules or backend configuration for Terraform,

rerun this command to reinitialize your working directory. If you forget, other

commands will detect it and remind you to do so if necessary.

[jmunozal@MacBook-Pro terraform]$

Terraform folder includes:

[jmunozal@MacBook-Pro terraform]$ ll

total 56

-rw-r--r-- 1 jmunozal staff 400 Jun 16 17:34 download_data.sh

-rw-r--r-- 1 jmunozal staff 791 Jun 16 17:34 ec2.tf

-rw-r--r-- 1 jmunozal staff 569 Jun 16 17:34 networks.tf

-rw-r--r-- 1 jmunozal staff 1568 Jun 16 17:34 s3.tf

-rw-r--r-- 1 jmunozal staff 1550 Jun 16 17:34 security.tf

-rw-r--r-- 1 jmunozal staff 120 Jun 16 17:34 terraform.tfvars

-rw-r--r-- 1 jmunozal staff 375 Jun 16 17:34 variables.tf

The files are:

• ec2.tf: defines the computational node and the block storage (disk)
associated

• networks.tf: virtual network, internet gateway and routing tables

• s3.tf: security policies for the already created buckets

• security.tf: network security. Open ports 8888 for Jupyter and 22
for ssh access.

• variables.tf/terraform.tfvars: setup parameters

terraform.tfvars file contains the configuration for the files.

[jmunozal@MacBook-Pro terraform]$ cat terraform.tfvars

aws_region="eu-west-1"

ami_id="ami-078d068af898f9114"

spot_price=2.00

instance_type="p3.2xlarge"

device_name="/dev/sdb"

[jmunozal@MacBook-Pro terraform]$
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Also notice that ec2.tf has a reference to a key that has to be generated
using IAM to access the server using SSH1.

If the environment is properly configured, the execution of terraform

apply will render the cloud objects to be created:

[jmunozal@MacBook-Pro terraform]$ terraform apply

data.aws_s3_bucket.a: Refreshing state...

data.aws_s3_bucket.b: Refreshing state...

An execution plan has been generated and is shown below.

Resource actions are indicated with the following symbols:

+ create

Terraform will perform the following actions:

+ aws_default_route_table.r

id: <computed>

default_route_table_id: "${aws_vpc.main.default_route_table_id}"

owner_id: <computed>

route.#: "1"

route.~966145399.cidr_block: "0.0.0.0/0"

route.~966145399.egress_only_gateway_id: ""

route.~966145399.gateway_id: "${aws_internet_gateway.gw.id}"

route.~966145399.instance_id: ""

route.~966145399.ipv6_cidr_block: ""

route.~966145399.nat_gateway_id: ""

route.~966145399.network_interface_id: ""

route.~966145399.transit_gateway_id: ""

route.~966145399.vpc_peering_connection_id: ""

tags.%: "1"

tags.Name: "main"

vpc_id: <computed>

+ aws_iam_instance_profile.modeller_profile

id: <computed>

arn: <computed>

create_date: <computed>

name: "modeller_profile"

path: "/"

role: "s3_reader_role"

roles.#: <computed>

unique_id: <computed>

+ aws_iam_policy.policy

id: <computed>

(...)

+ aws_vpc.main

id: <computed>

arn: <computed>

assign_generated_ipv6_cidr_block: "false"

cidr_block: "10.0.0.0/16"

default_network_acl_id: <computed>

default_route_table_id: <computed>

default_security_group_id: <computed>

dhcp_options_id: <computed>

enable_classiclink: <computed>

enable_classiclink_dns_support: <computed>

enable_dns_hostnames: "true"

enable_dns_support: "true"

instance_tenancy: "default"

ipv6_association_id: <computed>

ipv6_cidr_block: <computed>

main_route_table_id: <computed>

owner_id: <computed>

Plan: 12 to add, 0 to change, 0 to destroy.

Do you want to perform these actions?

Terraform will perform the actions described above.

Only ’yes’ will be accepted to approve.

Enter a value:

1https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/connection-prereqs.

html. Section Locate the private key/Creating a Key Pair Using Amazon EC2
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Once we answer ’yes’ the process starts and if it is finished properly:

wait_for_fulfillment: "" => "true"

aws_default_route_table.r: Creation complete after 1s (ID: rtb-029e3fac77fcf1b67)

aws_s3_bucket_policy.b: Creation complete after 9s (ID: tfm-images-cells)

aws_s3_bucket_policy.a: Still creating... (10s elapsed)

aws_spot_instance_request.dl_worker: Still creating... (10s elapsed)

aws_s3_bucket_policy.a: Creation complete after 17s (ID: segments-dmso-resized)

aws_spot_instance_request.dl_worker: Creation complete after 18s (ID: sir-5q1r5wsn)

Apply complete! Resources: 12 added, 0 changed, 0 destroyed.

[jmunozal@MacBook-Pro terraform]$

Now we can check in Figure B.2 in the console that the resources are
created:

Figure B.1: Virtual machine created after terraform success execution

Access to the VM

Using the private key of our key pair and the DNS created in the last step,
we can access to the VM:

ssh -i /Users/jmunozal/keys/jma-spots.pem ubuntu@

\\ ec2-3-249-243-186.eu-west-1.compute.amazonaws.com

Downloading the images

Using the s3copier tool that has been downloaded in the creation process,
images can be now downloaded:

ubuntu@ip-10-0-1-78:~$ export AWS_REGION=eu-west-1 && /tmp/s3copier

\\ -bucket=tfm-images-cells -baseDir=/data/train -concurrency 30

2020/06/16 16:35:18 Copied 715 files from s3 in 1.000132424s (2.2380 MiB/s)

2020/06/16 16:35:19 Copied 1636 files from s3 in 2.000136126s (2.7734 MiB/s)

(...)
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Figure B.2: Access to a remote machine using ssh

2020/06/16 16:40:09 Copied 247812 files from s3 in 4m52.000147235s (3.1549 MiB/s)

2020/06/16 16:40:10 Copied 248670 files from s3 in 4m53.000180143s (3.1391 MiB/s)

2020/06/16 16:40:11 Copied 249538 files from s3 in 4m54.000163289s (3.1845 MiB/s)

2020/06/16 16:40:12 Copied 250411 files from s3 in 4m55.000148383s (3.2482 MiB/s)

2020/06/16 16:40:12 Total number of files: 250782, Total time taken: 4m55.405649675s,

\\Transfer rate 2.8696 MiB/s

ubuntu@ip-10-0-1-78:~$

Downloading the git repo and launching Jupyter

Now we can get (again) the GIT repo in, for instance, the home folder and
now we access to the vae-images folder:

ubuntu@ip-10-0-1-78:~$ git clone https://github.com/jmunozal/tfm-autoencoders.git

Cloning into ’tfm-autoencoders’...

remote: Enumerating objects: 268, done.

remote: Counting objects: 100% (268/268), done.

remote: Compressing objects: 100% (181/181), done.

remote: Total 268 (delta 136), reused 212 (delta 81), pack-reused 0

Receiving objects: 100% (268/268), 143.42 KiB | 0 bytes/s, done.

Resolving deltas: 100% (136/136), done.

Checking connectivity... done.

ubuntu@ip-10-0-1-78:~$ cd tfm-autoencoders/

ubuntu@ip-10-0-1-78:~/tfm-autoencoders$ cd vae-images/

ubuntu@ip-10-0-1-78:~/tfm-autoencoders/vae-images$

And launch Jupyter notebook (notice the --ip parameter):

ubuntu@ip-10-0-1-78:~/tfm-autoencoders/vae-images$ jupyter notebook --ip 0.0.0.0

[I 16:41:06.923 NotebookApp] Using EnvironmentKernelSpecManager...

[I 16:41:06.924 NotebookApp] Started periodic updates of the kernel list (every 3 minutes).

[I 16:41:06.931 NotebookApp] Writing notebook server cookie secret to /run/user/1000/jupyter/notebook_cookie_secret

[I 16:41:11.943 NotebookApp] Loading IPython parallel extension

[I 16:41:12.377 NotebookApp] JupyterLab beta preview extension loaded from /home/ubuntu/anaconda3/lib/python3.6/site-packages/jupyterlab

[I 16:41:12.377 NotebookApp] JupyterLab application directory is /home/ubuntu/anaconda3/share/jupyter/lab
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[I 16:41:26.679 NotebookApp] [nb_conda] enabled

[I 16:41:26.683 NotebookApp] Serving notebooks from local directory: /home/ubuntu/tfm-autoencoders/vae-images

[I 16:41:26.683 NotebookApp] 0 active kernels

[I 16:41:26.683 NotebookApp] The Jupyter Notebook is running at:

[I 16:41:26.683 NotebookApp] http://ip-10-0-1-78:8888/?token=a8d5b0d5ca8c100eb870eff37edc4eb9c0baa51d583cf982

[I 16:41:26.683 NotebookApp] Use Control-C to stop this server and shut down all kernels (twice to skip confirmation).

[W 16:41:26.683 NotebookApp] No web browser found: could not locate runnable browser.

[C 16:41:26.683 NotebookApp]

Copy/paste this URL into your browser when you connect for the first time,

to login with a token:

http://ip-10-0-1-78:8888/?token=a8d5b0d5ca8c100eb870eff37edc4eb9c0baa51d583cf982

\\ &token=a8d5b0d5ca8c100eb870eff37edc4eb9c0baa51d583cf982

[I 16:41:26.685 NotebookApp] 302 GET / (209.17.97.18) 0.66ms

[I 16:41:26.686 NotebookApp] 302 GET / (209.17.97.18) 0.32ms

[I 16:41:26.686 NotebookApp] Starting initial scan of virtual environments...

B.3 Training

Training Jupyter notebook

Using the generated token and the AWS ec2 DNS we can get from the
console the access url to Jupyter NB can be constructed:

http://ec2-3-249-243-186.eu-west-1.compute.amazonaws.com:8888
?token=a8d5b0d5ca8c100eb870eff37edc4eb9c0baa51d583cf982
The image should be similar to Image B.3.

Figure B.3: Notebook home page

After selecting the kernel (conda tensorflow2 p36) the training process
can start. Image B.4 is the trainer. The cloud training parameter has to
be set to True and the folder /run has to be created manually in the file
system. The execution can be performed step by step to show the results.

Train section runs the final steps and the process starts (see B.5).
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Figure B.4: Training notebook

Figure B.5: Training process started

End of the process

When the process ends, a folder with the model has appeared in the /data/run
folder. This data can be uploaded to a bucket (in this case segments-dmso-
resized).

ubuntu@ip-10-0-1-78:/data/run$ aws s3 cp . s3://segments-dmso-resized/models --recursive

upload: 0001_cells_20200616-170048/images/Week1_22141_E11_3_Cells_199.png to s3://segments-dmso-resized/models/0001_cells_20200616-170048/images/Week1_22141_E11_3_Cells_199.png

upload: 0001_cells_20200616-170048/images/Week5_29341_C02_2_Cells_161.png to s3://segments-dmso-resized/models/0001_cells_20200616-170048/images/Week5_29341_C02_2_Cells_161.png

upload: 0001_cells_20200616-170048/images/Week5_28921_G11_2_Cells_121_001_0.png to s3://segments-dmso-resized/models/0001_cells_20200616-170048/images/Week5_28921_G11_2_Cells_121_001_0.png
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upload: 0001_cells_20200616-170048/params.pkl to s3://segments-dmso-resized/models/0001_cells_20200616-170048/params.pkl

upload: 0001_cells_20200616-170048/images/Week5_28921_G11_2_Cells_121.png to s3://segments-dmso-resized/models/0001_cells_20200616-170048/images/Week5_28921_G11_2_Cells_121.png

upload: 0001_cells_20200616-170048/images/Week5_29341_C02_2_Cells_161_001_0.png to s3://segments-dmso-resized/models/0001_cells_20200616-170048/images/Week5_29341_C02_2_Cells_161_001_0.png

upload: 0001_cells_20200616-170048/images/Week2_24121_D02_4_Cells_8_001_0.png to s3://segments-dmso-resized/models/0001_cells_20200616-170048/images/Week2_24121_D02_4_Cells_8_001_0.png

upload: 0001_cells_20200616-170048/images/Week7_34641_C02_4_Cells_253.png to s3://segments-dmso-resized/models/0001_cells_20200616-170048/images/Week7_34641_C02_4_Cells_253.png

upload: 0001_cells_20200616-170048/images/Week7_34641_C02_4_Cells_253_001_0.png to s3://segments-dmso-resized/models/0001_cells_20200616-170048/images/Week7_34641_C02_4_Cells_253_001_0.png

upload: 0001_cells_20200616-170048/weights/weights-001-5.95.h5 to s3://segments-dmso-resized/models/0001_cells_20200616-170048/weights/weights-001-5.95.h5

upload: 0001_cells_20200616-170048/weights/weights.h5 to s3://segments-dmso-resized/models/0001_cells_20200616-170048/weights/weights.h5

upload: 0001_cells_20200616-170048/images/Week2_24121_D02_4_Cells_8.png to s3://segments-dmso-resized/models/0001_cells_20200616-170048/images/Week2_24121_D02_4_Cells_8.png

upload: 0001_cells_20200616-170048/images/Week1_22141_E11_3_Cells_1

(...)

Removing the environment

After the model has been uploaded, the environment can now be removed
using terraform (local environment):

[jmunozal@MacBook-Pro terraform]$ terraform destroy

aws_iam_policy.policy: Refreshing state... (ID: arn:aws:iam::972975378845:policy/s3fullaccess)

aws_vpc.main: Refreshing state... (ID: vpc-0552c6ebd50ae682d)

aws_iam_role.s3_reader_role: Refreshing state... (ID: s3_reader_role)

data.aws_s3_bucket.a: Refreshing state...

data.aws_s3_bucket.b: Refreshing state...

aws_iam_instance_profile.modeller_profile: Refreshing state... (ID: modeller_profile)

aws_s3_bucket_policy.b: Refreshing state... (ID: tfm-images-cells)

aws_s3_bucket_policy.a: Refreshing state... (ID: segments-dmso-resized)

aws_iam_role_policy_attachment.test-attach: Refreshing state... (ID: s3_reader_role-20200616161158060500000001)

aws_security_group.allow_ssh: Refreshing state... (ID: sg-04050ba9890c2c990)

aws_subnet.main: Refreshing state... (ID: subnet-0d56ae97365f7f689)

aws_internet_gateway.gw: Refreshing state... (ID: igw-055305215203aaee0)

aws_default_route_table.r: Refreshing state... (ID: rtb-029e3fac77fcf1b67)

aws_spot_instance_request.dl_worker: Refreshing state... (ID: sir-5q1r5wsn)

An execution plan has been generated and is shown below.

Resource actions are indicated with the following symbols:

- destroy

Terraform will perform the following actions:

- aws_default_route_table.r

- aws_iam_instance_profile.modeller_profile

- aws_iam_policy.policy

- aws_iam_role.s3_reader_role

- aws_iam_role_policy_attachment.test-attach

- aws_internet_gateway.gw

- aws_s3_bucket_policy.a

- aws_s3_bucket_policy.b

- aws_security_group.allow_ssh

- aws_spot_instance_request.dl_worker

- aws_subnet.main

- aws_vpc.main

Plan: 0 to add, 0 to change, 12 to destroy.

Do you really want to destroy all resources?

Terraform will destroy all your managed infrastructure, as shown above.

There is no undo. Only ’yes’ will be accepted to confirm.

Enter a value:

The system is totally destroyed after answering ’yes’ to the tool.
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B.4 Analysis

Download data and running Jupyter

The model is now available to be analyzed in a local environment. Firstly,
it has to be downladed from the model’s bucket:

aws s3 cp s3://segments-dmso-resized/models/0001_cells_20200616-170048/

./0001_cells_20200616-170048 --recursive

Accessing analysis

The file cell analsys.pynb is the Jupyter NB that performs the analysis,
and can be accessed from the page B.3. The execution step by step is
analogous to the training, but performed in a local environment.

Now, we have to run Jupyter in local mode (launched from our tfm-
autoencoders/vae-images). Values of local folders must be parametrized
for our own values:

# os links

MODEL_FOLDER_A = os.environ.get(’HOME’) + ’/modelA/weights’

MODEL_FOLDER_B = os.environ.get(’HOME’) + ’/modelB/weights’

MODEL_FOLDER_C = os.environ.get(’HOME’) + ’/modelC/weights’

FILE_MODEL = ’weights.h5’

DATA_FOLDER = ’/Volumes/My Passport/PFM/output/training_png’

RUN_FOLDER = ’/Volumes/My Passport/PFM/run/’

Current implementation reconstruct random images from the folders and
generates also new images.
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