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1 Introduction

Machine learning has become more and more popular in recent years. This

popularization has been stimulated by multiple factors: large and affordable

computational power, new powerful algorithms, new tools that make it easy

to use machine learning algorithms, availability of big data to train the mod-

els, etc. Many disciplines have experienced significant changes thanks to its

adoption.

The fuzzing field has not been an exception. Many researchers have proposed

applying machine learning algorithms to the various stages of the fuzzing pro-

cess. Most studies seem to have brought improvements to the task, however

it is not always clear at what cost. Moreover, the reasons behind the selection

of one algorithm instead of another are not clear in much of the published

literature.

This master thesis not only presents the benefits and disadvantages of using

various machine learning algorithms in each fuzzing stage, but also identifies

new promising paths that researchers should take.

1.1 Origins of fuzzing

Fuzzing is a technique to discover vulnerabilities that uses invalid data as

input for identifying unexpected behaviors in software. The fuzzing method

was proposed for the first time by Miller et al. [1990] and has evolved through

the years, reaching better and better results.

In his work, Miller et al. [1990] analyze how some specific UNIX programs

behave when receiving unusual input streams. The authors identify cases

where the programs terminate abnormally or fall in infinite loops. They

structure the fuzzing process in four stages:

1. Random characters generation
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2. Interaction with the software application under test

3. Crash detection

4. Identification of the cause of the program crash

As a result of the tests, Miller et al. [1990] detect weaknesses in the imple-

mentation of several UNIX tools. Since their results were published, three

strategies have been designed for improving the fuzzing process:

� Using dictionaries with test cases that have been successful in other

tests

� Generating test cases following the specification a given technology

� Mutating valid samples

Classic approaches use heuristics to optimize this process, for example to

define if it is worth testing a given element or if it is better to switch to

the next one. Heuristics are still doing a great job nowadays, but the use

of machine learning algorithms seems to be changing the rules of the game.

Their capacity to learn from datasets and to adapt and solve complex prob-

lems makes machine learning algorithms the ideal solution to the challenges

of fuzzing.

2 Fuzzing

Section 2.1 presents the types of fuzzing techniques. Section 2.2 describes

the elements composing a fuzzing process. Section 2.3 talks about test-case

generations strategies. Finally, Section 2.4 summarizes the fuzzing software

used.
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2.1 Fuzzing techniques

When performing fuzzing tests, three different approaches can be followed:

white-box, black-box and grey-box. Choosing which of them has to be used

will depend on different factors, for example: the availability of the source

code, the protocol specification or the possibility of analyzing the outcome

of each test. In this section all three are reviewed and their weaknesses and

strengths described.

2.1.1 White-box

The white-box tests use the source code of the application under test. Adapt-

ing the fuzzing process to the requirements of a specific application is highly

time-consuming, but results in higher coverage ratios. If performed properly,

a white-box fuzzing tests should cover all the sections of software that can be

reached through the defined inputs. This means that ideally, all the inputs

will be tested and all the code branches will be covered. This two aspects

can be used as part of the metrics that evaluate the quality of the process.

White-box fuzzing can be used as part of the development cycle, and so it

can be adapted to fuzzing-specific software.

2.1.2 Black-box

The black-box technique consists in generating test cases for the targeted

software without having knowledge of its structure or functionalities. Their

strength resides on the speed. Additionally, black-box fuzzers do not require

neither human intervention nor the analysis of the software or the protocol

specification.

Google [2020a] describes the situations where this strategy should be used:

� The target is large: White-box and grey-box fuzzers may fail against

large targets since the necessary time for covering all the elements can
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be unacceptable.

� The target is not deterministic for the same input : analyzing the soft-

ware behavior will not be possible, grey-box fuzzing should be discarded

in this case.

� The target is slow : running all the tests on slow targets may increase

the time-costs in excess, random approaches are usually more effective

in these cases.

� The input format is complicated or highly structured (e.g. a program-

ming language such as JavaScript): generating new test cases without

providing its specification produces many non-valid test cases. When

this happens, the generated test cases do not bring improvements if

compared with a random approach.

2.1.3 Grey-box

Also known as coverage-guided fuzzers, grey-box fuzzers are capable of gath-

ering and analyzing information from the tested software and adapt their

own behavior. The approach differs from the black-box approach because in

this strategy the specification of the protocol or the format are used for gen-

erating the test cases. By using this information, the amount of non-relevant

samples drops dramatically, improving the speed of the fuzzing process.

Some grey-box fuzzers do not require much information about the target

but include features for the fuzzer to learn about the target. Their strategy

consists of investing an arbitrary amount of time on learning from the target

for defining valid test-cases. This kind of fuzzers are the most common

nowadays thanks to their efficiency.
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2.2 The elements of the fuzzing process

Although some authors propose a less detailed classification of the elements

that compose the fuzzing process, here a full list is provided. The proposed

list is based on Wang et al. [2019], Miller et al. [1990]:

1. Interfaces identification: detect where inputs can be sent (e.g. command-

line arguments that are processed by an application)

2. Input generation

� Seed file generation: This is an essential component of the fuzzers,

the capacity of producing good seeds affects significantly the re-

sults of the fuzzing process. While this generation can be done

with a random generator, it is quite common that an algorithm

drives this process. Classically heuristics have been used on this

process and more recently machine learning algorithms have also

been tested.

� Test case generation: This task consists on using the seeds, gen-

erated by the previous component, for generating valid test cases.

This can be done in two different ways:

– Mutation based: the seed file for creating the test cases. If the

source-code/specification of the tested element (application,

protocol, etc.) are not available, this approach is the most

feasible.

– Generation-based: this approach requires understanding the

protocol or the format expected by the application under test.

When the source-code/specification is available, this strategy

is feasible. As will be described in this thesis, understand-

ing the specification from some valid samples is possible by

training certain machine learning models.
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� Test case filter: identify the test cases with more chances to trig-

ger significant results. Commonly, fuzzers maintain a queue of

useful test seeds, when a test case produce relevant results, this

is included in the seeds list. The intervention of the test case

filter consists on discarding those with low probabilities of pro-

ducing exceptions or increase the path coverage. By doing this,

the number number of tests can be reduced.

� Mutation operator selection: Test cases are mutated for trigger-

ing unexpected behaviors on the tested software. This is done by

applying different operations to the bits which compose the test

case. Some examples of these operations are: flipping bits, set-

ting values to null, apply subtractions or additions to the values,

cloning data in different places of the test case, etc.

� Fitness function: After all the previous steps have been executed

a bunch of test cases are created. Although all the actions done,

some of the generated elements will not produce relevant results

in terms of crashes and code coverage. Fitness functions have the

objective of detecting the cases that can be filtered out of the

fuzzing tests. The fitness function uses the results of the tests

once they have been completed and acts on the elements before

they are served to the evaluation module. Since this activity has

an important impact on the performance of the entire fuzzing

process, usually the analysis by fitness functions is done only on a

small percentage of the evaluated test cases. A common approach

consists on estimating the quality of the final candidate case, this

process indicates with a numerical value how close the values are

to the optimal value, being ’0’ the desired result and increasing its

value when the results are far from it Zeller Andreas et al. [2019].

3. Sending Inputs: provide the generated test-case to the analyzed piece

of software. This can include simple like request-response interactions
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but also more complex cases including multi-step tests or requiring

adaptability to bypass security measures avoiding automated interac-

tions.

4. Monitoring and evaluation: also known as Exploitability Analysis. This

process should detect which of the outcomes are relevant. The analysis

is done on the generated outputs (e.g responses, logs, dumps, etc.). For

this to be done, the following aspects are considered:

� Availability issues: non expected inputs may produce the tested

software crashing or experiencing unusual delays for generating

the responses (if there are).

� Affectation of the file-system: mutations in the file-system of the

target may reveal unexpected behaviors on the asset.

2.3 Test-case generation strategies

Fuzzing processes require generating data for testing the targeted software.

Takanen et al. [2008] identifies four different ways of creating this data, also

known as test cases. The strategies are cyclic, random, or library-based.
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Table 1: Fuzzing strategies
Type Description Resources invested

Predefined cases List of test cases defined
for an specific software or
protocol. Only the
defined values are used.

Limited to the list length

Cyclic Iterative testing, the
values are modified on
each iteration following a
pattern.

Limited to the initial list
and defined modifications

Random Random testing, the
values are randomly
mutated, each variable is
tested against all the
values

Only limited by the time
frame dedicated to the
tests

Library List of values that have
been proven effective,
each variable is tested
against all the values

Limited to the product of
the number of variables
times the elements in the
dictionary

The described types of strategies are usually mixed for obtaining greater

results. The fuzzing process is limited by the resources boundaries, time

and computing power, so finding shortcuts is part of this science. Many

fuzzers include algorithms trying to improve the results (e.g. choosing the

parameters with more chances to produce a relevant result, defining the order

in which the data is provided).

As part of the techniques for improving the creation of test cases, machine

learning has been used lately for this purpose. The use of this technology

has brought great improvements on the fuzzing results and is the trend of

the latest research. However using machine learning for this purpose implies

solving new challenges. While the use of Machine Learning increases the

success ratio (percentage of new paths or crashes per number of tests), it

also adds computational costs, and consequently slows down the speed of
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the process. Almost all of the papers reviewed in the present document

point to the challenge of balancing the costs of the learning process with its

benefits compared to fully randomized approaches.

When using any of the strategies defined in the table 1 and regardless of

whether machine learning is used or not, the generation of valid fuzzing test

cases is always a challenge. Godefroid et al. [2017] exposes the complexity

of learning how to generate a valid test case (well-formed input) but at the

same time include elements breaking this structure (not well-formed inputs).

2.4 Fuzzing software

Most of the reviewed papers publications use the American Fuzzy Lop for

their tests. This is because the great performance it provides and the the

ease to integrate its approach with the different stages of the fuzzing pro-

cess. Other two fuzzers have been also used, LibFuzzer and the Microsoft

test driver included in the Microsoft Security Risk Detection testing service.

Only one of them has implemented an ad hoc solution depending of another

Microsoft tool (Intel’s instrumentation tool Pin) for recording the execution

sequences.

2.4.1 LibFuzzer

This fuzzer focuses on testing the software libraries. It is designed to be

run against Linux targets but it is also possible using it on Windows under

some functional limitations. It has some documented limitations including,

for example issues when run against large targets (many inputs) or when the

libraries have not been designed for supporting the fuzzer interface.

While it is possible to include personalized mutation operators, LibFuzzer

comes with a set of mutation operators:

� PersAutoDict (AddWord From Persistent AutoDictionary Count)

9



� CMP (AddWord From TORC Count)

� ChangeAsciiInt (Change ASCII Integer Count)

� ChangeBinInt (Change Binary Integer Count)

� ChangeBit (Change Bit Count)

� ChangeByte (Copy Part Count)

� CopyPart (Change Byte Count)

� CrossOver (Cross Over Count)

� CustomCrossOver (Custom CrossOver Count)

� CustomMutation (Custom Mutation Count)

� EraseBytes (Erase Bytes Count)

� InsertByte (Insert Byte Count)

� InsertRepeatedBytes (Insert Repeated Bytes Count)

� ShuffleBytes (Shuffle Bytes Count)

LibFuzzer is integrated in the Clang compiler, during the process, the mu-

tation operators above-indicated are combined randomly for increasing the

coverage of the tested software.

2.4.2 Microsoft Security Risk Detection

Although there is no documentation about the insights of this fuzzing tech-

nology, the descriptions offered by Microsoft indicate that multiple fuzzers

are used in this process. As per now, the Microsof Security Risk Detection

is not offered on premise and requires the developers uploading the software

pieces to the Microsoft infrastructure.
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Figure 1: Microsoft Security Risk Detection workflow

Microsoft [2020]

It is very likely that this tool is grounded on the work presented in Godefroid

et al. [2008b]. The reason behind this affirmation resides on the fact that

is the only publication from Microsoft on whitebox fuzzing tests (like the

Microsoft Security Risk Detection service).

Our approach records an actual run of the program under test

on a well-formed input, symbolically evaluates the recorded trace,

and gathers constraints on inputs capturing how the program uses

these. The collected constraints are then negated one by one and

solved with a constraint solver, producing new inputs that exercise

different control paths in the program. This process is repeated

with the help of a code-coverage maximizing heuristic designed to

find defects as fast as possible.

A reader interested in diving into this thematic could also read

Godefroid et al. [2012]
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2.4.3 American Fuzzy Lop

AFL is the most popular fuzzing software. It is based on a genetic algorithm

for understanding the file semantics necessary for generating test cases. This

fuzzer integrates multiple features:

� crash explorer

� test case minimizer

� fault-triggering allocator

� syntax analyzer

It also comes with a set of default mutation operators:

Figure 2: Adaptive grey-box fuzz-testing with thompson sampling - List of
AFL mutation operators

Karamcheti et al. [2018a]

The main reason why AFL has gained popularity among the researchers

is the quality of the results. This has been possible thanks to the default

features included in AFL but also due to the ease of including modifica-

tions in it and the integration with other tools, for example the ClusterFuzz
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project (https://google.github.io/clusterfuzz/) from Google integrates AFL

with LibFuzzer for greater results.

Currently, AFL is presented in multiple flavors:

Table 2: AFL flavors
AFL Fuzzer Linux applications
Win AFL Windows cations

TriforceAFL Linux applications, blackbox approach
AFLGo Linux applications, targets only specific sections of the software.

Shellphish Fuzzer Linux applications, Python interface for AFL

3 Machine Learning Algorithms

Throughout this work, various machine learning algorithms are referenced.

This section provides a short description for each of them.

3.1 Recurrent Neural Networks

They are a class of artificial neural network. As described in Fan and Chang

[2018], these neural networks are the attempt to solve the issues of the classi-

cal neural networks by keeping the status information among the loops. This

allows the model to grow based on the results of the previous iterations.

Specifically, Recurrent Neural Networks generate results in base to the re-

ceived input at the time T and the generated output at T-1. Since only

the status of the previous step affects the result of the current cycle, the

algorithm has difficulties on keeping the information over the cycles. This is

related with the gradient descent algorithm Ruder [2016] that is used by the

recurrent neural network.

This algorithm uses supervised learning. A dataset for training this model

has to be composed by samples and evaluations of the samples. In fuzzing
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this usually means executing a test case and use this information together

with the evaluation result for training the neural network.

Fan and Chang [2018] exposes that while in theory this algorithm can mem-

orize long-term dependencies, in practice, RNNs become unable to learn to

connect the information in cases where the distance between the relevant in-

formation and the place that it is needed becomes very large. This aspect is

solved in the Long Short Term Memory algorithm which will be described

later.

3.2 Long Short-Term Memory

LSTM is a type of Recurrent Neural Network algorithm. It is designed for

avoiding the long-term dependency problem Fan and Chang [2018]. Differ-

ently from the Recurrent Neural Networks, the LSTM has a state cell where

it is possible to add information that it is important to keep the information

among the different cycles or remove undesired information.

As described in Yuan et al. [2020], the LSTM network is composed by three

gates o controller functions:

� Forget gate: determines which information is not relevant, the result is

used for updating the state cell

� Input/update gate: determines which information has to be kept, the

result is used for updating the state cell

� Output gate: calculates the hidden state. Provides a filtered version of

the state cell.
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Figure 3:

Yuan et al. [2020]

The algorithm uses multiple networks like the one described above. The state

cell is shared among all the nodes and this gives the network the capacity of

keeping the information among the cycles. By training the cells forget and

update it is possible to determine which information is important to be kept

and which is not.

The use of the state cell ensures that long samples do not influence the model

to the detriment of short ones. Using this algorithm is it useful in fuzzing

processes because test cases usually have variable length.

3.3 Generative Adversarial Networks

Generative Adversarial Networks are a type of Neural Networks that are used

for unsupervised learning. They capture variations among the samples of a

given dataset. From those variations they are able copy those for generating

new elements.
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They were introduced by Goodfellow et al. [2014] with the objective of re-

ducing the computational costs of previous proposals including the Markov

decision chain Bellman [1977].

Generative Adversarial Networks are composed by two main elements: a gen-

erator (of samples) and a discriminator (a samples analyzer) who evaluates

the quality of the generated samples. Both elements are neural networks.

This algorithm is useful when there is not enough data to train a model (e.g.

fuzzing processes with limited samples amount).

Kalin [2019] presents an example of these networks for generating images.

While the generator produces image samples, the discriminator evaluates if

its a true image or not by comparing it with a dateset of real images. While

the generator tries to generate completely new images, the discriminator

ensures that those look like real ones.

Figure 4: Architecture diagram updated to show the backpropagation step
in training the GAN model

Kalin [2019]

The competition between bot elements makes possible generating new and

valid samples from a very small dataset of original samples.
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3.4 Logistical regression

Also known as logit model it is a nonlinear regression model that can be

used, among other possible uses, to classify observations according to their

characteristics. The model is able to divide the classifications in two cate-

gories.

This method is taken from the classic statistics methods. It allows not only

classifying data but also identify if the samples are useful for the predictions

(Wald test). For doing this, the variable’s effect on the binary outcome is

calculated and discarded if it is not statistically different from zero. It is a

supervised learning algorithm, this means that the learning process is done

by providing tagged data to the model.

This algorithm is not useful in fuzzing stages where generating new data

is necessary but it successfully improves classifying test cases as shown in

Karamcheti et al. [2018b] and it is very likely that can improve the mutation

operators selection stage.

3.5 Reinforced Learning

There are three paradigms in automated learning: supervised, non-supervised

and reinforced learning. The reinforced learning is a technique that uses

multiple and autonomous agents which are capable of choosing actions by

interacting with the environment.

For building Reinforced Learning models, Markov Decision processes are

used. This process is composed by the following elements:

� Environment

� Agent

� States

� Actions
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� Rewards

Figure 5: Markov Decision Process (MDP)

Reid et al. [2014]

The reinforced learning algorithm consists on selecting actions from a given

state, which produce changes in the environment and bring it to a new state.

The model learns by rewarding the agent when those actions produce the

desired final state of the environment. The learning process is then the prod-

uct of a trial-and-error interactions with a dynamic environment Kaelbling

et al. [1996].

Drozd and Wagner [2018] exposes the benefits obtained when selecting mu-

tation operators in fuzzing processes. The rewards are a key factor for the

success of this algorithm. It may be interesting to use it in for exploitability

analysis and test case filter in fuzzing processes.

3.6 Naive Bayes

A probabilistic classifier based on the Bayes theorem, a multivariable statis-

tical method. It is an supervised-learning algorithm used for classification.

18



It is capable to process large samples without having impacts on the results

quality. The model is trained with labeled data with the objective of iden-

tifying characteristics in the samples that can be used for classifying them.

When the training process has been complete, the model is able to assign

the probability of given classification criteria inside each evaluated sample.

The principal factor to be taken in consideration when using Naive Bayes

lies on the high amounts of samples that are needed to train the model. In

other words, the predictions may not be accurate when we have very little

labeled data.

The classification is done through the decision tree described in the next

diagram:
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Figure 6: Näıve Bayes decision tree algorithm.

Karim and Rahman [2013]

While the standard use of this algorithm consists on training the model with

labeled data and then use it for classification, it is possible to improve the

accuracy if the classification results can be evaluated.

This algorithm has been proven effective in fuzzing processes for classifying

samples in the exploitability analysis stage. It is very likely that other stages,

specially the test case filter, can be improved with this technique.
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4 Literature Review

This section contains the analysis of several papers that use machine learn-

ing in fuzzing. These papers have been grouped into six subsections, each

section representing the stage of the fuzzing process they seek to improve.

Apart from summarizing the relevant papers, each subsection also includes

observations about the strategies followed by the researchers. These ob-

servations include identifying the strengths and weaknesses of the proposed

method. Additionally, for each stage, gaps in the literature are identified and

proposals for future research are included.

4.1 Seed generation

Seed generation is one of the main features that most of the fuzzers include.

The ability on generating high quality seeds has a big impact on the fuzzing

results. Identifying the quality of these seeds is a duty where machine learning

techniques have a significant impact.

There are mainly two approaches to this problem: the first consists of dis-

carding seeds with low chances of producing significant results, the second

one on supporting the process by generating new seeds of greater quality.

These strategies can also be combined Cheng et al. [2019].

When creating machine-learning-based solutions the memory of the network

becomes a critical factor for seed generation. Using classic Recurrent Neural

Networks (RNN) for generating seeds brings some difficulties when generating

seeds, these are related with the memory of the network impact over each

of the predictions. While Cheng et al. [2019] solves this problem by adding

simplification functions, using LSTM solves these issues Nichols et al. [2017].

Although neural networks perform well, the results obtained with Generative

Adversarial Networks Nichols et al. [2017] are of higher quality. However,

these results should be taken cautiously since Nichols et al. [2017]only test
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one binary.

Personally, I consider that LSTM neural networks with different tunes can

be the a valid choice for future research.

4.1.1 Optimizing seed inputs in fuzzing with machine learning

The research by Cheng et al. [2019] presents a framework for generating seeds

that improve the coverage of the targeted software. The generation is sup-

ported by a Recurrent Neural Networks (RNN) machine learning algorithm.

The tests are performed on the American Fuzzy Lop fuzzer.

Cheng et al. [2019] address the problem of generating many similar seeds

unable to increase the coverage of the fuzzing process. For solving this issue

the authors propose using RNN for identifying the seeds, thus having more

chances of covering new sections of the fuzzed software. Redundant results

are eliminated by the RNN increasing the ratio of significant results per

number of tests.

The resultant seeds are used by the test case generation module. The targeted

software requires receiving valid PDF files. Generating valid complex-format

files like PDF is not trivial, so the author uses a different machine learning

algorithm, seq2seq for inserting the appropriate sequences and generate those

files.

RNN in the seeds generation process provides, according to the author, bet-

ter results when learning long sequences of discrete tokens. For supporting

this affirmation, the author confronts RNN against other two machine learn-

ing algorithms: AutoRegressive Integrated Moving Average (ARIMA) and

Convolutional Neural Networks (CNN).

Generating seeds able to increase the coverage of the fuzzing process requires

training the RNN model7. First the author uses an Intel tool for recording

the paths status after each cycle. Then the paths are shortened by replacing

short sequences of basic blocks shared by multiple execution paths with super-
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Figure 7: A framework for improving seed inputs in fuzzing

blocks. After this process, the paths are inserted in the RNN model. The

authors then use the char-rnn1 implementation by Karpathy [2015]which

allows a two layer structure of standard char-RNNs. In turn, this two layer

allow training the model for both, identifying how basic blocks form functions

and how functions form complete execution paths. Finally, the result of this

process is processed to generate a valid PDF file. Only seeds able to reach

uncovered paths are considered valid, and this decision is taken by a seq2seq

machine learning model Britz et al. [2017].

The effectiveness of the approach is evaluated on three different software:

MuPDF, libpng and freetype. Each one of the targetted binaries deals with

different filetypes: PDF, PNG and TFF. The results on a 24 hours limited

test sow great improvements on both the crashes and the covered paths.

4.1.2 Faster Fuzzing: Reinitialization with Deep Neural Models

The paper by Nichols et al. [2017] presents a framework for improving the

results of the American Fuzzy Lop (AFL) fuzzer by altering the original

randomness of the seeds generation.
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The study compares the results of three different strategies when generating

the seed for the fuzzing process:

� Standard AFL seed

� Seed generation based on Generative Adversarial Networks (GAN)

� Seed generation based on Long short-term memory (LSTM)

As a first step, the researcher runs AFL against the tested binary, ethkey,

during an arbitrary time period. AFL generates seeds that are used for

running the fuzzing process but also for training the machine learning model.

However, not all these seeds are used. The author proposes discarding both

identical and same-size seeds.

The GAN and the LSTM are then trained with the selected seeds. The

trained models are executed to generate the same amount of new samples.

As a final step, AFL is executed using the newly-generated samples.

Table 3: Faster Fuzzing: results
Strategy (C) L(C) Novel Rate

Random 778 1.000
GAN 555 0.705
LSTM 837 1.062

L(C) code paths with unique length per second, Novel Rate rate
of code paths not found in the training set.

Nichols et al. [2017]

The results show that determinate deep learning models can be used in the

process of seed generation. The quality of the results differ depending of

the chosen algorithm, in this sense Generative Adversarial Networks have

delivered better results.
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4.2 Test case generation

In test case generation there is a predominance of using the sequence to

sequence model with neural networks. The reviewed literature emphasizes

the importance of applying the mutations in the right positions. Fan and

Chang [2018] and Godefroid et al. [2017] expose how the selection of the

insert point affects the results, they define three possible choices:

1. NoSample: each character is generated based on a given prefix. This

strategy chooses the character with highest probability identified by

the model. The outcome of this strategy are valid test cases with low

or without entropy. The generated cases simply re-create the samples

used for training the model.

2. Sample: each character is chosen from a group of characters from the

combination of the different patterns learned by the model. This strat-

egy does not choose always the character with higher probability for

the given prefix, but takes one of the possible characters (The random

function for this selection is not described in the paper). The result

adds entropy to the test cases which is interesting for the fuzzing pro-

cess but produces less valid cases than other strategies.

3. SampleSpace: the strategy defined in the NoSample is applied for gen-

erating each character until there is a white-space; when this happens

the Sample strategy is applied and so on until a end-of-file is generated.

As a result, this strategy provides a balance between the previously de-

scribed ones by reducing the entropy added by the Sample strategy.

The two papers reviewed are almost equal in their approach; both use seq2seq,

but Godefroid et al. [2017] uses it with RNN while Fan and Chang [2018]

uses LSTM. The strategies described by Godefroid et al. [2017] (NoSample,

Sample and SampleSpace) are used by Fan and Chang [2018] with differ-
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ent names (Max at Each Step, Sample at Each Step and Sample on Spaces)

although no reference to each other appear in the papers.

The benefits of using sequence to sequence models for test case generation

appear limited. The results obtained in the two reviewed paper using Sam-

pleSpaces do not differ much from a random approach, however it is possible

that the models improve with reinforcement, although this requires investing

more time and it is uncertain whether the results will be greater in terms of

crashes per time unit.

4.2.1 Learn&Fuzz: Machine learning for input fuzzing

The research by Godefroid et al. [2017] makes a proposal for improving the

test case generation in grammar-based fuzzers. For this purpose the author

uses a Sequence-to-sequence (seq2seq) containing two Recurrent Neural Net-

works (RNN) using unsupervised learning. The generated test cases should

be aligned with the PDF format.

Defining the grammar boundaries increases the chances of generating valid

cases. Non-grammar-based fuzzers will fail against complex formats like the

targeted in this research. The paper focuses on fuzzing non-binary data

objects that can be fuzzed by the already-existent techniques based on white-

box and black-box strategies.

The proposed solution is based on a seq2seq model trained for generating

valid PDF test cases.
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Figure 8: Learn&Fuzz: Machine learning for input fuzzing: model diagram

Godefroid et al. [2017]

The seq2seq model 8is composed by two RNNs; an encoder and a decoder.

The purpose of the encoder consists in normalizing the inputs with different

lengths to a fixed dimensional representation. The decoder then takes the

results of the encoder to generate variable dimensional output sequences.

The process takes the corpus section from all the PDF files and then splits

the result in blocks with the same size. As a result the model generates

test cases following the PDF specification. All the generated test cases start

with a valid prefix, then a variable section filled with the data generated by

the trained model which ends wherever the model generates an end-of-object

suffix (in this case endobj ).

After training the machine-learning model, this can be used for generating

the test cases. To ensure that the generated cases are valid PDF objects, but

at the same time keeping chances to trigger exceptions in the tested software,

the author defines the following strategy: generate the next character from

a given prefix, then, when the current prefix is a white space, sample the

distribution. This allows avoiding choosing always the top predicted character

and, in consequence generating test cases without significant variations.

The results obtained by the author bring coverage improvements when run-

ning the fuzzing process using the test-driver tool by Microsoft. The author

indicates that this results could be improved with reinforced learning.
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4.2.2 Machine Learning for Black-Box Fuzzing of Network Pro-

tocols

Fan and Chang [2018] propose using machine learning to improve the gener-

ation of test cases so that they are capable to perform black-box fuzzing on

network protocols.

The paper uses Sequence to Sequence with long short-term memory neural

networks. The trained model has to be capable of fuzzing a network protocol

without knowing its specification or the code implementation.

The raw data used is a dump of network traffic containing only packets of the

targeted protocol. From this raw data, a dataset is composed by (unique)

characters sorted by the number of occurrences. The characters and their

position in the list are stored in a dictionary. This dictionary is then used to

calculate optimizations related with the used technology (these will not be

reviewed because it does not add value to the present review).

The test cases generated by this process are then used against a server run-

ning the targeted software. A specifically created listener handles the re-

sponses. The results are analyzed using the Microsoft AppVerifier Microsoft

[2017].

The coverage results are presented using as a baseline the normal use of the

applications, which is the same network traffic used for training the models.

The baseline is not related with a fuzzing process and therefore does not

allow assessing the real performance of the seed strategy. When comparing

the results with sampling at each step vs. at each white space the differences

in performance do not seem significant and more substantial and statistically

sound evidence is missing.

The fuzzing speed of the proposal is compared with other well-known fuzzing

tools. In this aspect the fuzzing process is significantly slower than the other

solutions.
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Figure 9: Coverage for WarFTPD and Serv-U from 10 to 50 epochs.

4.3 Test case filter

The reviewed literature related with test case filtering indicates that machine

learning techniques can be used for filtering test cases.

Although unsupervised machine learning algorithms may be useful for many

tasks, this fuzzing stage seems to be suitable for using regression algorithms

(supervised learning). The reason is because in this stage we do not need

generating new data but just selecting the best samples arriving to the filter,

then we have an automated evaluator that indicates the quality of the result.

Despite the computational time overrun added by training the model, the

reviewed literature has revealed that the benefits overcome the costs.

A test case filter should be able to deal with different-length samples, in Ra-

jpal et al. [2017] the Long short-term memory architecture is chosen because

of their capability on running variable length inputs. However this model

has not brought very impressive results to the author. It could be (but this

is a personal conclusion since there is not enough information in the paper)

that the architecture complexity adds processing costs that penalize the final

results of the process.

Future works could compare the results of the logistic regression with the

Decision Tree algorithm but also with Random Forest and Neural Network.

All three require supervised learning but the last two may require more time
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for training the models and this can reduce the effectiveness for fast fuzzing

processes.

4.3.1 Improving Grey-Box Fuzzing by Modeling Program Behav-

ior

Karamcheti et al. [2018b] exposes how machine learning can improve the

efficiency of a popular fuzzer, American Fuzzy Lop (AFL), by altering its

behavior.

While generating seeds does not require high computational costs, evaluating

them against the tested software does. Most of the fuzzers follow a common

approach for filtering test cases: they maintain a set of useful inputs, these

are used for testing the targeted software, and if the input covers a new

path (not covered previously) this input is included in the set and used in

further iterations. The author proposes optimizing the number of test cases

by discarding those with less chances to produce successful results.

The followed strategy consists on taking the test cases generated by AFL

and use them and the obtained result to train a Logistic Regression (LR)

machine learning model. This model is trained with the execution cycles,

the more they are, the more the filtering precision is.

They describe the steps of the process as follows:

1. Use AFL to generate some number of possible children inputs,

2. Feed these inputs through our model to predict distributions over exe-

cution paths,

3. Rank these generated inputs by the confidence in the predictions,

4. Execute some fraction of those ranked inputs that we are the least con-

fident about, and

5. Use the executed inputs to retrain our path prediction model.

30



(Karamcheti et al. [2018b])

Figure 10: Proposed workflow

Karamcheti et al. [2018b]

The results of this research are compared with other approaches. This is used

to measure the performance of the proposal. Four baselines are considered:

1. AFL, enabling the setting for fast fuzzing: FidgetyAFL Bohme et al.

[2019a] Bohme et al. [2019b]

2. AFL, using the batched version Batched FidgetyAFL Bohme et al.

[2019a]

3. AFL, using the Random Batched FidgetyAFL Bohme et al. [2019a]

4. Logistic regression (the proposed approach)

The paper focuses on the benefits obtained for fast fuzzing processes. The

tests have been done on 24 different binaries. The results show coverage

improvements.

As with linear regression models, the precision of predictions improve when

the model is fed with more samples. This improvement is confirmed with the

performed tests.
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Figure 11: Results comparison

Karamcheti et al. [2018b]

4.3.2 Not all bytes are equal: Neural byte sieve for fuzzing

In Rajpal et al. [2017], the author uses a sequence to sequence (seq2seq)

model with a Long short-term memory (LSTM) recurrent neural network

(RNN) for modifying the behavior of the American Fuzzy Lop (AFL) in a

grey-box approach. The final objective consists of increasing the coverage of

the fuzzing process for a given set of tested software pieces.

The author focuses on distinguishing the test case locations where the mu-

tations have more chances to generate a interesting result (e.g. crash or

covering a new path). First of all the author runs AFL for a limited time.

The inputs covering new paths are compared to detect the locations where

the mutations produce changes in the coverage. The cases with few inter-

esting locations are discarded, so they do not influence the model training

process. Finally the cases and the locations identified during this comparison

are marked and used for training the model.
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The paper adds an interesting strategy to the above-described process and it

is relevant to be considered in future works; the author faces the challenge of

distinguishing whether a given mutation (from the AFL fuzzing techniques)

produces on the tested software a behavior that has not been observed before.

The purpose: remove cases with high scores containing the cases where a

test case gives equivalent results for different mutations. The result of this

analysis is used to feed the reward function for tuning the model.

Figure 12: Not all bytes are equal Neural byte sieve for fuzzing - workflow

Rajpal et al. [2017]

AFL keeps a queue of inputs with high chances to cover new paths, however,

many of them will not be successful in this sense. This paper proposes refining

this process avoiding some of the inputs with low chances of discovering

paths. The proposal is evaluated by testing ELF, PNG, PDF, and XML

data processors.

The results reported by the author reflect significant benefits of following

this strategy. However the author indicates that will be necessary adjusting

the model for some file formats (PDF, and XML).
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4.4 Mutation operator selection

The reviewed research on the mutation operator selection have revealed that

fuzzing processes can be improved by including machine learning in this stage.

The impact on the results seems to be greater in this stage than in others

reviewed in this thesis (e.g. Test Case filter or Fitness function).

The analysis of the papers Drozd and Wagner [2018] and Karamcheti et al.

[2018a] has revealed the following important points that should be considered

in future research:

� Finding the balance between the time invested on learning and the time

invested on learning is a complex problem. The Multi-armed Bandit

Problem is a problem that researchers should understand and take in

consideration when trying to improve the fuzzing process.

� Fuzzers often add multiple (and different different) mutation operators

in each test case. While including many mutations gives the benefit of

testing different operators in a single test, identifying the success of a

specific operator can be done better when the number of different ones

is low.

� The effectiveness of any proposal to improve the fuzzing process has

a strong dependence on the process performance degradation. This is

specially important for choosing mutation operators.

� Re-running the tests many times helps on tuning the process for greater

results.

� When using machine learning algorithms in the mutation operators

selection, reinforcement on the models can be used for directing the

tests to cover more paths or discovering more crashes depending on

how we define the rewards.
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� Testing software from multiple domains (different purpose) is impor-

tant for evaluating the performance of the fuzzing process, but the

improvements added by the proposals can also be measured by the

benefits added on a determinate purpose software.

Future research could evaluate the effectiveness of other algorithms with

classification and regression capabilities. Two valid candidates are Random

Forest or Neural Networks. Since the impact on the process performance

may be noticeable, minimizing it can be a challenge.

Another possible research path can be a review of Drozd and Wagner [2018]

for identifying the reason behind the differences among the different tested

software.

4.4.1 Adaptive grey-box fuzz-testing with Thompson Sampling

Karamcheti et al. [2018a] presents an approach to choose the mutation op-

erators with high probability of producing relevant results from the point of

view of the fuzzing process. The proposal uses the American Fuzzy Lop as a

base and then tries to alter its behavior for improving the results.

The paper follows the approach of the Multiarmed Bandit Problem by Her-

bert [1952]and combines it with the Thompson Sampling algorithm by Agrawal

and Goyal [2012] to balance the two keys of the Multiarmed Bandit Problem:

exploration and exploitation.

As most of the fuzzers, AFL comes with a library of possible mutation oper-

ators like multi-length bitflips, bit additions, subtractions, etc. It is expected

that not all of them will have the same success rate when fuzzing a specific

software. Prioritizing the ones with more chances of producing useful results

(e.g. crashes, covering new paths) will then help on reducing the number of

tests to be performed by the execution engine for finding a single crash.

First the author considers the mutation operators included in AFL as ele-

ments (bandits) integrating the Multi-armed Bandit Problem. Then AFL is
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run and each of the mutation operators is evaluated with the outcome of the

process: the operators that have caused a crash or increased the coverage will

be rewarded while the others will not. Following the Thompson Sampling

algorithm, in next iterations the elements which have been successful will be

used then more often.

AFL can run multiple mutations at the same time and the author is aware

about the noise that this can add to the results (mutation operators being

rewarded wrongly) for solving this, the author runs multiple times the model

making AFL use a different number of mutations. The results show that

using a small amount of mutations (exactly 4) and accepting the error rate

added to the model gives promising results.

The proposal is evaluated with binaries from the DARPA CGC and LAVA-M

data-set during 24 hours.

Figure 13: Test results

Karamcheti et al. [2018a]

Although the final average is still positive, as shown in 13, the success of

the tests do differ among the binaries, with some of them not showing any

improvement while others do. According to the author, the cause of these

differences is related with the decision of reducing the number of mutations

that AFL can perform in a single sample. In his own words, “we are in fact

limiting the expressive power of our fuzzer”.

While increasing the number of mutations may seem a reasonable solution,

the results provided in the paper expose a conflict when trying to find a better

choice. High values on mutations per sample do not bring great results.

The reviewed publication shows that fuzzing some binaries can be faster with
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this strategy than with the standard AFL one, but its use can cause loosing

coverage capabilities.

4.4.2 FuzzerGym: A Competitive Framework for Fuzzing and

Learning

Drozd and Wagner [2018] present the research results of using machine learn-

ing for improving the coverage of fuzzing tests through the selection of the

best mutation operators. The triage is done by a Reinforced Learning (RL)

machine learning algorithm that bases its decisions on the structure of the

input data. The paper proposes using a Markov decision process tuned for

reducing the performance degradation.

The author builds a layer of improvement on the LibFuzzer tool. The samples

used for trainig the RL model have the same structure used by LibFuzzer.

As many other proposals, crashes and coverage improvements reported by

the fuzzer are used as rewards that are translated into higher decision prob-

abilities for future cycles.

There is an interesting topic related with the the way the model is rewarded,

the author points that these rewards can be used for adapting the objectives

of the fuzzing process The flexibility of the RL reward function means that it is

possible to create fuzzers with various specific needs such as rapid bug finding

or an increased reward for targeting specific code paths. This adaptability is

something that might seem obvious but not many research consider this in

their approaches.

While evaluating the model, the author notices that evaluating all the re-

sults can cause a significant performance degradation. Executing samples

on the targeted software is faster than analyzing the responses with the RL

algorithm. The proposed solution consists in analyzing a subset of all the

samples tested by the libFuzz fuzzer asynchronously. This is done by buffer-

ing a limited number of test-result pairs and allowing new insertions as soon
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as one of them is processed.

The efficiency of the proposal is evaluated against five targets that process

different data nature. The results are compared with the official ones from

LibFuzzer. The tested processes are:

1. Decompressing a JPEG

2. Parsing a PNG

3. Encoding a Private SSL Key

4. Evaluating a Regular Expression

5. Executing a SQL Query

Figure 14: FuzzerGym: A Competitive Framework for Fuzzing and Learning-
results

Drozd and Wagner [2018]

Using reinforced learning for choosing the right mutation operators seems

to bring improvements to standard executions of LibFuzzer. Still, the au-

thor express doubts about the results on other software and reminds the

importance of tuning the model by changing the rewards strategy.

For future research, the author proposes studying the reason behind the

improvement differences among the different tested software and extending

the tests on more software domains.
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4.5 Fitness function

The literature review about fitness function research has revealed that re-

fining the results of popular fuzzers (e.g. AFL) with machine learning is

possible.

The better results have been obtained by using a training dataset which is

composed by binaries written in the same programming language than the

one to be fuzzed.

AFL supports C, C++ and Objective C, training a machine learning model

with only C binaries for targeting C binaries could be the reason behind the

improvements observed in this section.

Research indicates also that limiting the capabilities of AFL for exploring

new paths and produce more crashes results on more unique crashes. This

could be positive for fast fuzzing processes but further research is necessary

to ensure that this does not penalize exhaustive fuzzing processes. It is very

likely that these conclusions can be extended to most of the fuzzing stages.

Fitness functions are used to evaluate the quality of the test cases after

having completed all the previous stages. The reviewed literature selects the

most useful test cases for increasing the coverage, instead future research

could focus on understanding how to use the final test cases for tuning the

strategies applied on the previous stages. This may allow balancing the

different strategies adopted on the other stages instead of focusing only in

one of them.

4.5.1 Machine Learning Augmented Fuzzing

Joffe [2018] proposes using neural networks to predict crashes. The prediction

is based on a model trained with execution traces generated by the AFL

fuzzer.

The author analyses all binaries contained in the Codeflaws program reposi-

tory. The training dataset is adapted for improving the results of the targeted
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software (the analyzed binaries allow few parameters and AFL is configured

to limit these).

The experiment starts with the execution of AFL over the binaries. The

information of the executions is classified using the Valgrind’s Callgrind tool

that labels the results indicating if the sample has produced a crash or not.

Then, using the Keras framework a neural network is trained for predicting

crashes for each given sample. The author do not specify whether Convo-

lutional neural networks (CNN) or Recurrent neural net (RNN) are used at

this point.

After training the model, the behavior of AFL is modified for prioritizing

the analysis of samples where the neural network indicates high probability

of crash. Elements with intermediate ratings are not proposed to be run by

the execution engine but used as seeds for future cycles (the author indicates

this strategy has brought good results).

The author do not show results in this paper but continues in Joffe and Clark

[2019] that will also be reviewed in the current thesis.

4.5.2 Directing a Search Towards Execution Properties with a

Learned Fitness Function

Joffe and Clark [2019] shows the results from implementing the approach

proposed in Joffe [2018]. The purpose of the fitness functions is to measure

the quality of the samples generated by the fuzzed and help generating more

useful samples in the future. In Joffe [2018], the author exposes how to use

machine learning for identifying characteristics on generated samples that

can be indicators of greater coverage.

The author trains a model running AFL with a subset of the Codeflaws

program repository ; 200 binaries are used. The outcome of the AFL execution

is used for training a neural network (the publication do not specify which

is used) is trained. The trained model is used for classifying then samples
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generated by AFL for fuzzing the targeted binaries.

Three binaries are analyzed: VLC media player, libjpeg library, and mpg321

library. The run experiments require limiting rewards on AFL to the strate-

gies covering new paths in order to focus all the process on finding crashes.

The author defines 8 different configurations of AFL and test them. The

best results are obtained by limiting the reward for new paths discovery to

a fixed amount (instead of allowing dynamic assignations) and merging this

AFL valuations with the ones produced by the trained neural network.

The paper demonstrates that increasing the number of crashes with AFL

is possible by modifying its behavior and adjusting the configuration of the

process. While the results show big differences in the number of crashes, it

is not the case with the unique crashes; although the introduction of neural

networks for evaluating the results brings improvements, these are small.

The paper focuses on analyzing three binaries, testing a larger dataset could

bring consistence to the results.

The influence of the dataset used for training the model seems to be rel-

evant for future research. In the research, binaries written in C language

are used for both training and analysis. Experimenting this approach with

other languages could help identifying the weaknesses and strengths of this

proposal

4.6 Exploitability analysis

While generating working exploits still requires human intervention, analyz-

ing how likely is that determinate results can materialize in a vulnerability

is possible.

Fuzzing results usually contain plenty of crashes. All of them are related

with a weakness in the software but only some will open the possibility for

attackers to take advantage of them.

The reviewed literature focuses the investigation on the fields of software
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assurance. Yan et al. [2017] presents a tool that can estimate the level of

exploitability of a given software piece. The results of these evaluations

can be useful also for other purposes, for example, determining where the

developers of those software need to put efforts for solving the weaknesses.

Using the results from fuzzing processes and identifying the nature of the

vulnerability that could have caused the crashes has been proven possible.

There are different classification-oriented machine learning algorithms that

can be used for this purpose. In Yan et al. [2017] Naive Bayes is used pro-

viding acceptable results.

Future research could consider following a similar approach using neural net-

works based algorithms like LSTM. Testing different datasets for training the

models can bring more accuracy to the results, probably using binaries based

on the same programming language will help but also using samples from the

same domain (e.g. PDF parsing, PNG edit, etc.) should be considered.

Although the classifying granularity is one of the objectives, reducing this to

the barely minimum (as less vulnerability types as possible) could ease the

task of the classifier and reduce the false positives.

4.6.1 ExploitMeter: Combining Fuzzing with Machine Learning

for Automated Evaluation of Software Exploitability

Yan et al. [2017] presents a framework for evaluating the level of exploitability

of a given software. The framework uses a Naive Bayes for both classifying

the software based on previous analysis (results obtained from Basic Fuzzing

Framework and Ofuzz) and classifying the errors per type of vulnerability

based on the CERT triage tools.

First the classified is trained for understanding the vulnerabilities that can af-

fect software. The classification process relies on the information provided by

!exploitable (Windbg implementation on windows, and CERT triage tools).

Four kinds of data are used for training the classifier: Hexdump features,
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Objdump features, Libraries features, and Relocation features.

The lack of detection is not considered as lack of issues but a low confidence

that they exist. This is, as the author indicates, because we cannot trust

that a software is free from issues only because nobody has detected them.

Once the model is trained, it is capable to estimate the probability that a

given software application suffers from a specific vulnerability. Then each

program under test is analyzed by multiple fuzzers. The resulting crashes

are classified by the model to indicate which type of vulnerability can be

related with a determinate crash.

The final step consists of assigning a score to each software. The author

defines an arbitrary value to each vulnerability type, and this is used for

calculating the final score.

The exploitability of a software program depends upon the

vulnerability types it contains as well as how likely each vulner-

ability type can be turned into a software exploit.

Yan et al. [2017]

Figure 15: Exploitmeter architecture

Yan et al. [2017]
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The effectiveness of the proposal is evaluated by analyzing 100 different Linux

applications. From the analyzed software, the tool identifies some with high

probability of being exploitable:

Figure 16: Scores

Yan et al. [2017]

The author of the paper indicates the need of performing more tests and

tuning in order to increase the accuracy of the predictions, this is because

during the tests many low probability occurrences happened.

Reading this paper rises two observations:

1. The number of vulnerability definitions can be a critical factor for this

and other similar proposals. While having few definitions could mean
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missing relevant issues, having many of them could lead to errors in

their classification.

2. The use of ExploitMeter (or other similar solutions) for Software as-

surance can be interesting as an additional layer for checking the risk

level of using a specific software, unfortunately while the revision can

detect some codding vulnerabilities all the errors introduced through

the application’s business logic will not be detected.
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5 Discussion and Conclusions

This thesis reviews the main strands of literature on the application of ma-

chine learning algorithms in the fuzzing process. In doing this, it shows the

strengths and weaknesses of different machine learning algorithms when they

are applied to fuzzing tests. It also determines which algorithms are more

suitable for each stage of the fuzzing process, and which should be used in

future research. These observations are a novelty of this thesis, and the con-

clusions presented for each of the fuzzing steps can inspire new applications

since many possibilities have not yet been investigated.

Seed generation is a stage where the improvements brought by machine learn-

ing have a large impact. There are two ways of improving the seed generation:

� Generating high quality seeds: when few valid samples are available, al-

gorithms like Generative Adversarial Networks can populate the fuzzer

with valid seeds.

� Discarding low quality seeds: the results of the fuzzer’s evaluation en-

gine can train models capable of identifying seeds with low chances of

producing crashes or covering new paths of the code. In this stage,

Recurrent Neural Networks have been used with success. This the-

sis concludes that the Long Short-Term Memory algorithm is likely to

bring even better results.

Discarding samples at this stage means not processing them in the following

stages. Errors in this process could cause a lack of coverage if the wrong

seeds are discarded.

In the test case generation stage, the objective is to transform the seeds

for generating new cases. Selecting the right position where to apply the

transformation affects the efficiency of the fuzzing test. The reviewed litera-

ture implements both Recurrent Neural Networks and the Long Short-Term

Memory algorithm for improving this stage. However, the cost of training
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the networks partially offset the benefits obtained with this design. The

observed improvements are consequently moderate in this stage.

After generating the test cases, the test case filter stage identifies the most

valuable samples. This stage is necessary because some of the samples may

produce redundant results. In particular, two papers have demonstrated to

improve this process using machine learning algorithms: one uses logistic

regression and the other one uses neural networks (both RNN and LSTM).

The results have shown moderate benefits of using any of those algorithms.

In general, algorithms which have low impact on performance seem to be

more suitable for this task, even if they are less accurate.

The mutation operator selection stage alters the test cases to produce un-

expected behaviors in the fuzzed software. The literature uses Reinforced

Learning and Thompson Sampling to improve the selection of the operators.

The results indicate that implementing such algorithms largely affects the

speed of the fuzzing process. It is possible that the accuracy of the opera-

tors selection can improve with the use of algorithms like Random Forest or

Recurrent Neural Networks, but these algorithms imply extra computational

costs which may degrade the performance.

Once the test cases have been created, a fitness function stage analyses them

for discarding those with low chances of producing relevant results. For

example, using machine learning it is possible to detect which seeds have

more chances of covering a new path or producing a crash. The reviewed

papers use neural networks for executing this analysis. The models are then

able to predict when a given sample has high or low chances of producing

a relevant result. Although the publications describe improvements in the

fuzzing process, the impact is lower than the one obtained when altering

other stages like the mutation operator selection or the seed generation.

The last stage composing the fuzzing process is the exploitability analysis.

The quality of the results obtained in this stage determines crucially the

value that the fuzzing processes can add. Classifying correctly the exceptions
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triggered by the fuzzer is the major challenge that researchers face in this

stage. This classification can be done with machine learning, but it depends

heavily on the availability of datasets for training the model and on the

granularity with which the crashes must be classified.

As a general remark, the typical approach of the current literature is: to

include a machine learning algorithm in one of the stages of a given fuzzer,

then to execute tests for measuring the performance, and finally to adjust the

model and to compare the results with the standard behavior of the fuzzer.

Although comparing the results within a single stage, in isolation, make ma-

chine learning look promising in most of the papers, none of the reviewed

studies considers how the specific technique behaves in combination with oth-

ers. A more systemic approach would be beneficial. Combining the improve-

ments brought by the machine learning algorithms can be a tough challenge.

The reasons are multiple:

� Process performance: finding the best balance between investing time

in learning and performing tests. This becomes a difficult decision when

it has to be taken for multiple processes.

� Chained processes: the improvements on a determinate stage may re-

duce the effectiveness of the algorithms used in later steps. This effect

can be caused by overfitted or underfitted models.

� Lack of standard benchmarks: the type of input data affects both the

performance of the fuzzing process and the optimal machine learn-

ing algorithm to be used, making comparisons difficult. Ideally, there

should be a standard collection of datasets divided by the protocol or

file-format used by the software subject of being tested.

Future researchers should try to use multiple combinations of machine learn-

ing algorithms and find the best ones. While some combinations are po-

tentially under-performing or point to inaccurate results, others could bring

disruptive improvements.
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