
Application Security Testing Tools Study and Proposal

Miro Casanova Páez
Máster Universitario en Seguridad de las Tecnologías de la Información y de
las Comunicaciones. (MISTIC)
Seguridad Empresarial

Pau del Canto Rodrigo
Victor Garcia Font

12/2020

i

Esta obra está sujeta a una licencia de
Reconocimiento-NoComercial-
SinObraDerivada 3.0 España de Creative Commons

https://creativecommons.org/licenses/by-nc-nd/3.0/es/

ii

FICHA DEL TRABAJO FINAL

Título del trabajo: Application Security Testing Tools Study and Proposal

Nombre del autor: Miro Casanova Páez

Nombre del consultor/a: Pau del Canto Rodrigo

Nombre del PRA: Victor Garcia Font

Fecha de entrega: 12/2020

Titulación: Máster Universitario en Seguridad de las Tecnologías
de la Información y de las Comunicaciones (MISTIC)

Área del Trabajo Final: Seguridad Empresarial

Idioma del trabajo: Inglés

Palabras clave SAST, DAST

Resumen del Trabajo

Hoy en día es una evidencia la necesidad de un menor tiempo de lanzamiento
al mercado de las aplicaciones. Sin embargo, aunque el tiempo necesario para
desarrollarlas se reduzca, todavía se necesita poder ofrecer aplicaciones con-
fiables y seguras. Esto era ya es una tarea difícil, y ahora lo es aún más con
las restricciones de tiempo y la rápida evolución de las tecnologías. Los erro-
res ocultos en el software pueden traducirse en vulnerabilidades de seguridad
que potencialmente permitan a los atacantes poner en peligro los sistemas y
aplicaciones.
Hay hackers y crackers que pueden estar al acecho para obtener nuestra valiosa
información personal. Por lo tanto, estas aplicaciones deben ser seguras y con-
fiables ya que nuestra información o documentos privados se almacenan en es-
tas aplicaciones de n capas. Cada año miles de estas vulnerabilidades se des-
velan públicamente en el Common Vulnerabilities and Exposures database [23].
Estas vulnerabilidades son a menudo ocasionadas por errores sutiles cometidos
por programadores y pueden propagarse rápidamente debido a la prevalencia
del software de código abierto así como a la reutilización de código.
Nos enfrentamos al dilema de la necesidad de acelerar el proceso de desarro-
llo de software y al mismo tiempo el requisito de ofrecer aplicaciones fiables
y seguras. Hay muchos enfoques para abordar este problema que van desde
adaptar el proceso de desarrollo de software a soluciones técnicas más concre-
tas. En este TFM intentaremos analizar el uso de una o varias herramientas
automatizadas para verificar si las aplicaciones en construcción tienen el nivel
de seguridad requerido mediante la detección de posibles vulnerabilidades o
errores que podría causar un funcionamiento no deseado. Este enfoque aborda
la detección de código vulnerable durante el curso del ciclo de desarrollo de
software.

Abstract:

iii

Nowadays the need for a shorter time-to-market of applications is evident. How-
ever, even though the time needed for developing them gets reduced, we still
need to be able to deliver reliable and secure apps. This was already a challen-
ging task, and it is even more so with the time restrictions and the rapidly evolving
technologies. Hidden flaws in software can result in security vulnerabilities that
potentially allow attackers to compromise systems and applications.
There are hackers and crackers who may be keeping an eye on our valuable
personal information. Hence, these applications need to be secured and should
be reliable since our private and important information or documents are stored
on the back end of these n-tiered applications. Each year thousands of such
vulnerabilities are reported publicly to the Common Vulnerabilities and Exposures
database [23]. These vulnerabilities are often caused by subtle errors made by
programmers and can propagate quickly due to the prevalence of open-source
software and code reuse.
We are confronted with the dilemma of the need for speeding up the software de-
velopment process while at the same time the requirement of delivering reliable
and secure applications. There are many approaches for tackling this problem
which range from adapting the software development process to more concrete
technical solutions. In this TFM we will try to analyse the use of one or several
automatized software tools for verifying whether the application under construc-
tion has the required level of security by detecting potential vulnerabilities or flaws
that could cause an undesired misfunction. This approach addresses the detec-
tion of vulnerable code during the course of the software development cycle.

iv

Contents

List of Figures vi

1 Introduction 1
1.1 Context and motivation . 1
1.2 Objectives . 1
1.3 Methodology . 3
1.4 Planning . 3
1.5 Summary of the obtained product 4
1.6 Description next chapters of this work 4

2 State of the art 5
2.1 SAST, DAST, IAST, SCA Overview 6
2.2 SAST . 7

2.2.1 SAST tools on the market 8
SonarQube . 9
Coverity . 9
SpotBugs . 9
AppScan Source . 10
CheckMarx . 10

2.3 DAST . 11
2.3.1 DAST tools on the market 12

AppScan Standard . 12
Managed DAST Synopsys 12
OWASP Zed Attack Proxy (ZAP) 13
Arachni . 14
Subgraph Vega . 15

2.4 IAST . 17
2.4.1 IAST tools on the market 17

Contrast Assess . 17
Synopsys Seeker . 18

2.5 SCA . 18
2.5.1 SCA tools on the market 19

OWASP dependency check 20
OWASP Dependency Track 21
Synopsys Black Duck 22
Snyk . 22

2.6 Table: Summary of tools . 23

v

3 Benchmarks 24
3.1 OWASP Benchmark . 24
3.2 WAVSEP . 27
3.3 SAMATE . 30
3.4 Other benchmarks . 31

4 Software Security Assurance Tools Selection 36
4.1 Selection criteria . 36
4.2 Organisation’s ecosystem . 39
4.3 Selection and exclusion of tools 40

4.3.1 SAST selection . 40
4.3.2 DAST selection . 41
4.3.3 IAST selection . 42
4.3.4 SCA selection . 42

4.4 Summary of selection . 43
4.5 Implementation of Quick Wins 43

4.5.1 SonarQube . 43
4.5.2 SpotBugs . 45
4.5.3 Find Security Bugs . 46

5 Conclusions 47

Bibliography 53

vi

List of Figures

2.1 Spotbugs Maven GUI - Scan OWASP Benchmark project . . . 10
2.2 OWASP ZAP Desktop Interface - Quick scan 13
2.3 OWASP ZAP Quick scan Alert 14
2.4 Arachni scanning www.uoc.edu 15
2.5 Vega scanning overview . 16
2.6 Vega scanning - detail on high risk XSS vulnerability 16
2.7 OWASP dependency check on OWASP Benchmark project . . 20
2.8 OWASP dependency check details 21

3.1 Diagram OWASP Benchmark true and false positives 25
3.2 OWASP Benchmark results . 26
3.3 Results of the Julia tool with OWASP Benchmark 27
3.4 Excerpt of WAVSEP results . 28
3.5 TP, FP, TN results in Idrissi et al. 29
3.6 Overview of the metrics results in Idrissi et al. 30
3.7 Parfait tool results . 31
3.8 Benchmark results of Bermejo et al. for TP and FP 32
3.9 Metrics obtained for the different tools 33
3.10 Lab environment used for penetration testing 34

4.1 SonarQube tool analysing some projects 44
4.2 SonarQube vulnerability details of one project 44
4.3 Signature of method . 45
4.4 SpotBugs for Intellij . 45
4.5 SpotBugs - Issues by severity 45
4.6 FindSecurityBugs - Issues . 46
4.7 FindSecurityBugs - Issues by severity 46

1

Chapter 1

Introduction

1.1 Context and motivation

Nowadays, the need for a shorter time-to-market of applications is evident.
However, even though the time needed for developing them gets reduced,
we still need to be able to deliver reliable and secure apps. This was already
a challenging task, and it is even more so with the time restrictions and the
rapidly evolving technologies. Hidden flaws in software can result in secur-
ity vulnerabilities that potentially allow attackers to compromise systems and
applications. Some hackers and crackers may be keeping an eye on our
valuable personal information. Hence, these applications need to be secured
and should be reliable since our private and important information or docu-
ments are stored on the back end of these n-tiered applications. Each year
thousands of such vulnerabilities are reported publicly to the Common Vulner-
abilities and Exposures database [23]. These vulnerabilities are often caused
by subtle errors made by programmers and can propagate quickly due to the
prevalence of open-source software and code reuse.

We are confronted with the dilemma of the need for speeding up the soft-
ware development process while at the same time the requirement of deliver-
ing reliable and secure applications. There are many approaches for tackling
this problem which range from adapting the software development process
to more concrete technical solutions. In this TFM we will try to analyse the
use of one or several automatised software tools for verifying whether the
application under construction has the required level of security by detecting
potential vulnerabilities or flaws that could cause an undesired misfunction.
This approach addresses the detection of vulnerable code during the course
of the software development cycle.

1.2 Objectives

The first objective of this TFM is to propose a suitable solution for using one
or many of the tools, reviewed in this document, to be incorporated in the
software development cycle for improving the delivery of more reliable and
secure applications, according to a set of criteria to be defined below. These

Chapter 1. Introduction 2

criteria are based on the current situation of the organisation where we cur-
rently work.

To be able to attain the previous objective, we need to perform a profound
literature study of the different tools (and kinds of tools) available in the mar-
ket that can be applicable to solve the aforementioned problem. We will also
search for benchmarks and comparisons of these tools to analyse their ad-
vantages and disadvantages with respect to each other.

We will compare the different kinds of tools and evaluate them with re-
spect to a set of criteria. A summary of those criteria are (amongst others):

• The use of the tool must not interfere with the normal development of
the application.

• The tools should be ideally automatised (or mostly automatised) without
the need for the intervention of developers.

• The tools must be easy to use.

• The tools should be effective, i.e. they should have a low rate of de-
tection of false positives (potential problems detected by the tools that
actually are not) and a high rate of detection of true positives (potential
problems that are actually real vulnerabilities).

• The output of these tools must be easy to understand by developers so
that they can take action immediately to remediate the situation

• The tools must support a certain set of technologies in which the applic-
ations are developed, being Java (Spring), TypeScript (Angular), and
Atlassian tools the most important.

• The cost of the tools must be reduced. Ideally, these should be free.
However, if there is a non-free tool much better than an open source ac-
cording to these criteria, its recommendation should also be pondered.

The final objective is to define a set of tools, for the aforementioned organ-
isation, with the set of criteria described above as well as some technological
restrictions, explained in detail in chapter 4. We will also try to immediately
integrate some tools in case we see it is a quick win, i.e. tools that do not
need a lot of configuration and that can be installed locally on the developers’
workstation (and thus not on the servers).

We would like to clarify that any risk analysis is out of the scope of this
TFM. Performing a rigorous cost/benefit (such as return on investment ROI)
of implementing the tools in the organisation is out of the scope of this work
as well. It would take longer to perform those two activities than what we
have available for this TFM, and it would be necessary to have access to
both demo or trial versions of commercial tools as well as their licensing
conditions.

Chapter 1. Introduction 3

1.3 Methodology

First, we will perform an extended literature study of all the kinds of tools and
the tools that may be applicable to attain our objectives. By extended we
mean that we will not only analyse the characteristics of each (kind of) tool,
including their benefits and drawbacks, but we will also look at the existing
comparisons and benchmarks that have been performed so far and their cor-
responding conclusions. This will be the one of our contributions.

Our initial idea is that we are not going to perform benchmarks of the tools
ourselves. We will try to find them in the existing literature. However, if we
see that some interesting tool (according to its specifications) appears, that
excels its competitors by far and has not been reviewed in the literature, we
will do some benchmarking in case the licensing of the product allows it. The
criteria for the realisation of the benchmark will be defined if needed. In case
we do the benchmark, it will be another contribution of our work.

Afterwards, we will analyse the convenience of some of the tools accord-
ing to the criteria described above so that they can be integrated by the or-
ganisation. We will accordingly choose the set of tools to be used to improve
the development process and in this way achieve our objectives. As already
said above, we will study the feasibility of integrating some tools in the current
software development ecosystem of the organisation.

1.4 Planning

• Review the state of the art of the kinds of tools suitable for this TFM. 2
weeks (13th October).

• Detect for each kind the tools that might be useful according to our cri-
teria (and some other potential criteria that we might consider relevant).
2 weeks (27th October).

• Review literature and search for benchmarks and comparison of those
tools. 2 weeks (10th November)

• Eventually perform benchmarks for some of the tools in case the tools
seem interesting, no unbiased benchmark of them has been found, and
the licensing allows us. 3 weeks (1st December).

• Based on the previous, we will conclude which tools are the most suit-
able for our case and argue how they can be integrated in the software
development cycle. 2 weeks (15th December).

• Corrections based on feedback. 2 weeks (29th December).

• Preparation of the video (5th January).

Chapter 1. Introduction 4

• Defense of TFM (15th January).

• Writing the TFM will be an ongoing task until 29th December.

1.5 Summary of the obtained product

In this TFM there are essentially two products. The first, and in our opinion the
most important contribution, is the extensive literature study of the different
kinds of software security assurance tools, the different tools in the market,
and their characteristics. We have tried to avoid going to look for information
on the vendors’ websites, since they always claim that their products are the
best of all. We have taken enough time to search for independent sources
of information, especially scientific published articles. The state of the art is
divided in chapters 2 and 3.

Our second contribution is the selection of the tools that might be useful
for our organisation based on some selection criteria. This is explained in
chapter 4. Furthermore, we integrate some of the tools and show some of
the results.

1.6 Description next chapters of this work

In chapter 2 we discuss in detail the different kinds of software security assur-
ance tools, namely static application security testing (SAST), dynamic applic-
ation security testing (DAST), interactive application security testing (IAST)
and software composition analysis (SCA) tools. For each of these types of
tools, we look at their characteristics, advantages and shortcomings. Also,
we discuss some of the specific tools that can be found on the market.

In chapter 3 we discuss in detail the different approaches taken to perform
benchmarks of the software security assurance tools. There are some public
approaches, such as the OWASP Benchmark project or WAVSEP, that have
been used for evaluating the performance of the tools. Also, we review some
benchmarks that have been proposed in the academic world.

In chapter 4, we present and discuss the selection criteria for the choice
of the software security assurance tools. After, we present the technological
ecosystem of the organisation where the tools will be implemented. Based on
the criteria and the ecosystem, we make the final selection of the tools to be
proposed. Finally, we show the implementation of some of the tools that have
been considered to be quick wins, due to their small amount of configuration
and small impact on the development of applications. We also show some of
the analyses run by those tools on existing projects of the organisation.

Finally, in chapter 5, we conclude.

5

Chapter 2

State of the art

Software security assurance tools are pieces of software that help detecting
or preventing security weaknesses. These weaknesses may result in vulner-
abilities, i.e. a possible way of harming the system [14].

There are many ways to look at a piece of software to try to improve
it and there are different categories of software analysis tools that can be
established according to various criteria. One of the most relevant and inter-
esting criteria is whether a process is manual or automatic. Manual software
improvement processes involve a developer or a quality analysis expert to
actively evaluate the piece of software, make use of their previously acquired
knowledge to understand it and identify its weaknesses. Automatic methods
consist of a tool that performs a predetermined series of tests on the piece of
software it is given and produces a report of its analysis.

Another criterion commonly used in differentiating the various existing
methods of analysing software is the approach they take. A method can
either use a black-box approach, considering the whole piece of software as
an atomic entity, or a white-box approach, examining the inner workings of the
software, e.g. its source code. The black-box approaches most often consist
of trying to give the piece of software being analysed unexpected input para-
meters or unexpected values, thus hoping to trigger incorrect behaviour. The
white-box approaches vary significantly in their implementations and can for
instance simply look for certain patterns in the code, reconstruct the logic or
data flow of the software or even attempt to simulate all possible executions
of the program.

You can also look at which stage of the software development life cycle
these tools can be used to identify vulnerabilities and weaknesses. Some
tools perform the evaluation early in the development cycle, namely during
the implementation phase, and produce reports of parts of code that might
be vulnerable according to a set of rules or policies. This gives immediate
feedback to developers of potential issues, and therefore they can analyse
the report and correct the code if necessary. Some other tools can perform
the evaluation a bit later in the development cycle, while the applications are
already in a running state. This can happen late when the application is ready
to go to production as a penetration test, or earlier while the application is not

Chapter 2. State of the art 6

yet ready to be released but it can be deployed and run.

Another criterion, somehow orthogonal to the previous ones, is to look at
which part of the applications are analysed by the tools. Some of them per-
form the tests of the proprietary code, while other tools analyse the depend-
encies (third-party libraries) used by the proprietary code being developed.
Due to the extensive use of third-party libraries in the development of applic-
ations, especially open source, this criterion becomes important.

2.1 SAST, DAST, IAST, SCA Overview

The most common way of classifying the software assurance tools is accord-
ing to whether they have access to the source code (white box) or they look
at the applications as a whole (black box).

The tools that are used to analyse the proprietary source code (or byte-
code) of the application to find potential security weaknesses while the code
is still in a static/non-running state are called static application security testing
(SAST) tools.

A second kind of tools is called web application vulnerability scanners or
dynamic application security testing (DAST) tools. These tools scan web ap-
plications from the outside and perform penetration testing, i.e. a passive and
active analysis of a web application in operating state by simulating attacks
on it. Therefore, they do not look at the source code of the application.

A third kind of tools is called interactive application security testing (IAST)
tools. IAST tools analyse code for security vulnerabilities while the app is
run by an automated test, human tester, or any activity interacting with the
application functionality [51]. This technology reports vulnerabilities in real
time, which means it does not add any extra time to your continuous integra-
tion/continuous delivery (CI/CD) pipeline.

A fourth kind of tools refers to the criterion of looking at the dependen-
cies (third-party libraries) of an application. These tools are called software
composition analysis (SCA) tools. They detect and track all open source
components in an organisation’s code base, to help developers manage their
open source components. Due to the increasing importance and massive
use of open-source components and libraries, SCA tools are becoming es-
sential for software security assurance.

Beyond these traditional tools, there has been significant recent work on
the usage of machine learning for program analysis. The availability of large
amounts of open-source code opens the opportunity to learn the patterns of
software vulnerabilities directly from mined data [33]. We are not going to
explore in detail this innovative kind of tools in this TFM.

Chapter 2. State of the art 7

2.2 SAST

As we said above, SAST tools are designed to analyse source code or com-
piled versions of code to help find security flaws when the code is in a non-
running state.

There are several techniques used by SAST tools for detecting a potential
vulnerability. The first and most obvious technique is pattern matching. The
tools search for some patterns in the source code that might indicate a poten-
tial vulnerability. For instance, a static analysis tool can search in source code
in C the use of functions that are known to be vulnerable, such as strcpy(),
gets(), sprintf(), etc.

A second technique that SAST tools use is to verify the control flow of a
program by looking at the source code. Control flow is the order in which indi-
vidual statements, instructions or function calls of an imperative program are
executed or evaluated. The control flow of a program can be represented as
a graph, where each node is one basic block or instruction and the transitions
are the different paths that the program might take dynamically. For example,
one instruction can be a conditional that according to a given condition might
execute the if or else part.

The last most common technique used by SAST tools is to transform the
source code into a set of data structures that represent the code known as a
program model. SAST tools that operate on source code begin by transform-
ing the code into a series of tokens by discarding all unimportant features
of code such as white spaces and comments. The stream of tokens is then
translated into a parse tree by the parser. The parser matches the token
stream using a context-free grammar, where the grammar consists of a set
of productions that describe the symbols in the language [7]. It is known that
checking this model can be expensive due to the state-space explosion [24].

SAST tools have some strengths and weaknesses [25]. SAST tools are
scalable: they can be run on a big quantity of software and can be run re-
peatedly. They are useful not only for analysing the conformance to coding
standards [6] but also for finding potential vulnerabilities automatically with
high confidence, such as buffer overflows, SQL Injection Flaws, cross-site
scripting [16] and so forth. Their output is easy to understand for developers
by highlighting the precise source files, line numbers, and even subsections
of lines that are affected.

As weaknesses, we can mention that many types of security vulnerabilit-
ies are difficult to find automatically, such as authentication problems, access
control issues, insecure use of cryptography, etc. The current state of the
art only allows such tools to automatically find a relatively small percentage
of application security flaws. However, tools of this type are getting better.
Also, one of the main drawbacks of SAST tools is that they usually give a

Chapter 2. State of the art 8

high number of false positives although there have been approaches that im-
prove accuracy at expense of analysis time [1] and thus affecting scalability.
Moreover, SAST tools usually cannot find configuration issues since these
are not represented in the code. They also have difficulties analysing code
that cannot be compiled due to, for instance, missing libraries. And finally,
these tools are dependent on the programming language, so if a company
works with many programming languages, it will need many different SAST
tools to be able to analyse all its code.

There have been different approaches to improving the effectiveness of
SAST tools. For instance, in [24] the authors combine static analysis with
modelling checking, which has been found to be very effective in eliminating
a significant number of false positives without being affected by the non-
scalability of the model checking. Another interesting approach for improving
the effectiveness of static analysis is the identification and documentation of
false positive patterns [31]. The goal of the study is to understand the differ-
ent kinds of false positives generated so tools can automatically determine if
an error message is truly indeed a true positive, and reduce the number of
false positives developers and testers must triage. The results of the study
have led to 14 core false positive patterns, some of which have been con-
firmed with static code analysis tool developers.

Another approach for improving the results of static analysis is given by
methods that leverage patterns in code to narrow in on potential vulnerab-
ilities. These patterns may be formulated by the analyst based on domain
knowledge, derived from external data such as vulnerability histories, or in-
ferred from the code directly. This methodology is called Pattern-based vul-
nerability discovery [55]. One of the biggest advantages of this methodology
is the use of machine learning techniques for the detection of patterns as well
as for vulnerability extrapolation (i.e. finding vulnerabilities similar to a known
vulnerability). Although this methodology lacks a deeper understanding of
program semantics, it outperforms the analysts when tasked with identify-
ing patterns in large amounts of data, both in terms of speed and precision.
This technique can be employed together with the analyst’s abilities so that
he/she can guide program exploration, and make final security critical de-
cisions. Machine learning thereby becomes an assistant technology useful in
different phases of the analysis.

2.2.1 SAST tools on the market

There are many SAST tools on the market. To name a few: SonarQube,
SpotBugs, Synopsis Coverity, Veracode Static Analysis, Fortify Static Code
Analyser, Codacy, HCL AppScan Source, Xanitizer and Checkmarx CxSAST.
In this section, we will present a brief summary of some of them.

Chapter 2. State of the art 9

SonarQube

SonarQube [38] is an automatic code review tool to detect bugs, vulnerab-
ilities, and code smells in the source code. It integrates with the existing
work flow to enable continuous code inspection across your project branches
and pull requests. During analysis, data is requested from the server, the
files provided to the analysis are analysed, and the resulting data is sent
back to the server at the end in the form of a report, which is then analysed
asynchronously on the server side. It has support for a large variety of pro-
gramming languages, being Java and TypeScript two of them, and it also be
integrated with integrated development environments (IDE).

SonarQube has as well several plugins that can be integrated with dif-
ferent tools, for instance, Gradle, Maven, Jenkins, Ant, etc. The ability to
execute the SonarQube analysis via a regular Gradle task makes it available
anywhere Gradle is available, without the need to manually download, setup,
and maintain a SonarQube Runner installation. The Gradle build already
has much of the information needed for SonarQube to analyse a project. By
preconfiguring the analysis based on that information, the need for manual
configuration is reduced significantly.

One last thing to note about SonarQube is the possibility to extend it with
plug-ins.

Coverity

Coverity [43] is a static analysis (SAST) solution that helps development and
security teams address security and quality defects early in the software de-
velopment life cycle, track and manage risks across the application portfolio,
and ensure compliance with security and coding standards, such as OWASP
Top 10 and CWE Top 25. Coverity provides developers issues descriptions
(categories, severities, CWE information, defect location, remediation guid-
ance, and data flow traces) as well as issue triage and management features,
within their IDE. Coverity has support for several IDEs, source code manage-
ment tools, issue trackers, continuous integration tools, and application life
cycle management solutions.

SpotBugs

SpotBugs [39] is a program which uses static analysis to look for bugs in
Java code. SpotBugs is the successor of FindBugs, carrying on from the
point where it left off. SpotBugs checks for more than 400 bug patterns.
SpotBugs can be used standalone or by integrating it with other tools, includ-
ing Ant, Maven, Gradle, and Eclipse. One of the advantages of SpotBugs
is that it is extensible through extra detectors that can be added as plug-ins,
being fb-contrib and Find Security [13] two of the most important.

Chapter 2. State of the art 10

One nice thing about SpotBugs is that there is a plug-in for using it with
SonarQube that will add coding rules to it.

In figure 2.1 we show the GUI of SpotBugs for Maven, using the NetBeans
IDE, after checking the OWASP Benchmark project, presented in section 3.
We see a potential SQL problem (SQL injection), which in this case is a true
positive. In the code (line 49) we see that the SQL query is built directly from
a string parameter without using a prepared statement. So it is indicated and
explained by the tool.

Figure 2.1: Spotbugs Maven GUI - Scan OWASP Benchmark
project

AppScan Source

AppScan source [17] is a SAST tool for web application testing during the
development process, with the goal of finding security issues, bugs, and an-
omalies before code can be committed to production environments. AppScan
can be set up to run vulnerability checking tests automatically to hunt down
any code vulnerabilities. Once these vulnerabilities are found, AppScan cre-
ates detailed reports with information on how to best remedy the findings.

CheckMarx

Another static code analyser is the Checkmarx CxSAST [8]. It helps in check-
ing for errors in the source code and detecting issues with security and reg-
ulation compliance. Checkmarx SAST scans uncompiled code and does not
require a complete build. For each language, the system has a list of security
vulnerability issues. It can be integrated into the building of automation tools,
software development, and vulnerability management.

Chapter 2. State of the art 11

2.3 DAST

As we know, the concept behind DAST is that it mimics a real attack. DAST
tools enable the automated review of a web application by testing all the ac-
cess points as they communicate through the front end. The tools simulate
malicious user behaviour and emulate random actions which can be com-
pleted by complex test cases defined by an operator or interactions with third-
party systems [50]. The calls, including web cryptography API, keychain, net-
work, filesystem, SQL, as well as content providers, broadcast receivers, URI
handlers, etc., will be intercepted, collected, probed, and checked for vulner-
abilities to determine if every piece is behaving as it should be or if it is not
part of the expected result set.

DAST testing happens once the application has advanced past its earlier
life stages and has entered into a runtime state. Most DAST tools only test
the exposed HTTP and HTML interfaces of web-enabled apps, but some
are specifically designed for non-web protocols and data malformation, such
as remote procedure calls (RPC) and session initiation protocols (SIP) [11].
DAST tools will continuously scan apps during and after development. The
DAST scanners crawl, i.e. they build a map of the possible pages and access
points, through a web app before scanning it. This first step allows the DAST
tool to find every exposed input on pages within the app and then test each
one.

The main advantage of DAST tools is that they are, for the most part,
technology independent. In other words, a company can implement web
applications in many different programming languages and, in principle, the
same DAST tool will be able to test them while they are running. The second
big advantage of DAST tools is that they can detect misconfigurations, some-
thing which is difficult or even impossible with SAST tools since most of the
time the configuration is not part of the source code. DAST tools allow to test
web applications in its entirety with all its interconnected parts such as web
servers, proxies, databases, caches, and so on.

In addition to identifying security holes, the vulnerability scans also predict
how effective countermeasures are in case of a threat or attack. A vulnerab-
ility scanning service uses pieces of software running from the standpoint
of the person or organisation inspecting the attack surface in question. The
vulnerability scanner uses a database to compare details about the target
attack surface. The database references known flaws, coding bugs, packet
construction anomalies, default configurations, and potential paths to sens-
itive data that can be exploited by attackers. After the software checks for
possible vulnerabilities in any devices within the scope of the engagement,
the scan generates a report. The findings in the report can then be ana-
lysed and interpreted to identify opportunities for an organisation to improve
its security posture. Depending on the type of scan the vulnerability platform
uses, various techniques and tactics will be leveraged to elicit a response

Chapter 2. State of the art 12

from devices within the target scope. Based on the devices’ reactions, the
scanner will attempt to match the results to a database and assign risk rat-
ings (severity levels) based on those reactions [52].

DAST tools also have weaknesses. One of them is that a DAST tool, to be
used to test a given web application, usually needs to be configured [36], and
depending on the complexity of the web application, the configuration pro-
cess can be time consuming. If we consider that a company can have many
web applications, the effort can increase considerably. Another weakness
of DAST tools is that even if they detect a real vulnerability, they are unable
to pinpoint exactly where the problem is located as well as having difficulty
following coding guidelines. Also, they may not be able to mimic an attack as
someone who has internal knowledge about the application, as it may be the
case with an advanced attacker [34].

2.3.1 DAST tools on the market

To list some of the DAST tools available in the market we can name: Arachni,
Detectify, Acunetix, Netsparker, Managed DAST Synopsys, HCL AppScan
Standard, OWASP ZAP, Subgraph Vega, etc. In this section we will present
a brief summary of some of them.

AppScan Standard

AppScan Standard [17] is a dynamic application security testing tool de-
signed for security experts and pentesters. It uses a scanning engine that
automatically crawls the target app and tests for vulnerabilities. Test results
are prioritised and presented in a manner that allows the operator to triage
issues and home in on the most critical vulnerabilities found. Remediation is
made easy using clear and actionable fix recommendations for each issue
detected. In this way, continuously testing and assessing risk for web ser-
vices and applications is allowed.

The users of AppScan can tailor testing to suit the needs of more elab-
orate test cases, by recording multi-step sequences, dynamically generating
unique data and tracking a diverse set of headers and tokens.

Managed DAST Synopsys

Managed DAST Synopsys is a DAST tools part of the tools suite of Synopsis
[22]. It uses automated tools to identify common vulnerabilities, such as SQL
injection, cross-site scripting, security misconfigurations, and other common
issues detailed in lists such as OWASP Top 10, CWE/SANS Top 25, and
more. It also includes manual test cases to find vulnerabilities that cannot be

Chapter 2. State of the art 13

found by out-of-the-box tools, such as some vulnerabilities pertaining to au-
thentication and session management, access control, information leakage,
and more. It has as well a manual review to identify false positives and a
read-out call to explain findings.

OWASP Zed Attack Proxy (ZAP)

Zed Attack Proxy (ZAP) [29] is a free open-source penetration testing tool
being maintained under the umbrella of the Open Web Application Security
Project (OWASP). ZAP is designed specifically for testing web applications
and is both flexible and extensible. Additional functionality is freely available
from a variety of add-ons in the ZAP Marketplace [56].

At its core, ZAP is what is known as a man-in-the-middle proxy. It stands
between the tester’s browser and the web application so that it can intercept
and inspect messages sent between the browser and web application, modify
the contents if needed, and then forward those packets on to the destination.
It can be used as a stand-alone application, and as a daemon process.

As shown in figure 2.2, the easiest way of using the tool is by running
a quick scan. As an example, we ran a passive quick scan on the site
www.uoc.edu to test the tool.

Figure 2.2: OWASP ZAP Desktop Interface - Quick scan

In figure 2.3 we show one of the warnings given by the tool while ana-
lysing www.uoc.edu. It is catalogued as a cross-domain misconfiguration with
a medium level of risk. The reporting of the alert contains the evidence (the

Chapter 2. State of the art 14

offending line of code), the CWE reference number, the WASC (web applica-
tion security consortium) reference number, a description, extra information,
a possible solution as well as a link to an external reference.

Figure 2.3: OWASP ZAP Quick scan Alert

Arachni

Arachni [5] is an Open Source, feature-full, modular, high-performance Ruby
framework aimed towards helping penetration testers and administrators eval-
uate the security of web applications.

It is smart, it trains itself by learning from the HTTP responses it receives
during the audit process and is able to perform meta-analysis using a num-
ber of factors in order to correctly assess the trustworthiness of results and
intelligently identify false positives.

It is versatile enough to cover many use cases, ranging from a simple
command line scanner utility, to a global high-performance grid of scanners,
to a Ruby library allowing for scripted audits, to a multi-user multi-scan web
collaboration platform.

In figure 2.4 we show Arachni passively analysing the site www.uoc.edu.

Chapter 2. State of the art 15

Figure 2.4: Arachni scanning www.uoc.edu

Subgraph Vega

Vega [41] is a free and open source web security scanner and web security
testing platform to test the security of web applications. Vega can help you
find and validate SQL Injection, Cross-Site Scripting (XSS), inadvertently dis-
closed sensitive information, and other vulnerabilities. It is written in Java,
GUI based, and runs on Linux, OS X, and Windows.

Vega can help you find vulnerabilities such as: reflected cross-site script-
ing, stored cross-site scripting, blind SQL injection, remote file include, shell
injection, and others. Vega also probes for TLS / SSL security settings and
identifies opportunities for improving the security of your TLS servers.

In figure 2.5, we show the use of Vega when scanning the vulnerable site
Google Gruyere [15]. We can see many vulnerabilities found when scanning
the site, grouped in different categories, from Info (no risk) to High risk.

In figure 2.6, we show the detail of one of the vulnerabilities, namely
Cross-Site scripting (XSS), found when scanning the Google Gruyere site.
On the detail screen, Vega shows a summary of the vulnerability, the (http)
request that detected it, the impact the vulnerability can have, the remediation
(solution) and some useful links with extra information.

Chapter 2. State of the art 16

Figure 2.5: Vega scanning overview

Figure 2.6: Vega scanning - detail on high risk XSS vulnerability

Chapter 2. State of the art 17

2.4 IAST

IAST, interactive application security testing tools, was developed as an at-
tempt to overcome some of the limitations of SAST and DAST. Like DAST,
testing occurs in real time while the application is running in a QA or test en-
vironment. Unlike DAST, however, IAST can identify the problematic line of
code and notify the developer for immediate remediation [10].

As with SAST, IAST also looks at the code itself, but it does so post-build,
in a dynamic environment through instrumentation of the code. IAST typic-
ally is implemented by deploying agents and sensors in the application post
build. The agent observes the application’s operation and analyses traffic
flow to identify security vulnerabilities. It does this by mapping external sig-
natures or patterns to source code, which allows it to identify more complex
vulnerabilities.

IAST can be integrated into the CI/CD pipeline and can be automated
or performed by a human tester. The biggest difference of IAST tools, with
respect to SAST and DAST, is that it works from inside the application. How-
ever, IAST does not scan the entire codebase. Instead, it tests functionality
only at certain points as defined by the tester, which makes it significantly
faster to execute than SAST but does not provide the complete coverage
SAST does.

Some of the advantages of IAST tools that we find in the literature are the
low number of false positives, instant feedback from the tool as well as the
fact that they are highly scalable. As weaknesses we can mention that they
have limited language coverage, they usually require a mature test environ-
ment, and that they are not widely adopted [10]. Moreover, they tend to be
more intrusive since they become part of the tested application or the applic-
ation server.

2.4.1 IAST tools on the market

Some examples of IAST tools we can mention are Checkmarx CxIAST, Con-
trast Assess, Hdiv Detection and Synopsys Seeker. We review some of them.

Contrast Assess

Contrast Assess, by Contrast Security, offers interactive application secur-
ity testing with elements from static application security testing and dynamic
application security testing to automatically identify software vulnerabilities in
real time while developers write code. Contrast Assess agents monitor code

Chapter 2. State of the art 18

and report from inside the application, and they claim that this enables de-
velopers to find and fix vulnerabilities without involving security experts and
without specialised security expertise.

Synopsys Seeker

Synopsys claims that unlike other IAST solutions, which only identify secur-
ity vulnerabilities, Seeker can also determine whether a security vulnerability
(e.g., XSS or SQL injection) can be exploited. The tool then provides de-
velopers with a risk-prioritized list of verified vulnerabilities to fix in their code
immediately. Seeker quickly processes hundreds of thousands of HTTP(S)
requests, identifies vulnerabilities, and it is claimed that it reduces false pos-
itives to near zero. The previous would enable security teams to focus on
actual verified security vulnerabilities first, greatly improving productivity and
reducing business risk.

Seeker applies code instrumentation techniques (agents) inside running
applications and can scale to address large enterprise security requirements.
They claim that Seeker provides accurate results out of the box and does not
require extensive, lengthy configuration. Seeker provides detailed vulnerab-
ility descriptions, actionable remediation advice, and stack trace information,
and it identifies vulnerable lines of code.

2.5 SCA

Third-party code may save time and money, but it can also harbour some
dangers if not addressed. These include security vulnerabilities, common
software weaknesses (e.g. OWASP Top 10), risks related to license viola-
tions, etc. In order to know whether these third-party libraries are safe to use,
we need to use a tool to analyse composition.

Software composition analysis (SCA) tools provide valuable data to se-
curity pros, legal pros, and application developers by identifying software vul-
nerabilities and exposing licenses for open-source components.

Advanced SCA tools automate the entire process of managing open source
components, including selection, alerting on any security or compliance is-
sues, or even blocking them from the code. They also provide comprehens-
ive information about the open source vulnerabilities discovered so that de-
velopers can easily fix them. SCA tools can be used throughout the software
development cycle, from creation to post-production [35].

Several risk factors are (or should be) analysed by SCA tools. Some of
them are:

• Component age/Outdated components: Components may have vary-
ing degrees of age acceptance criteria. Newer versions of components

Chapter 2. State of the art 19

may improve quality or performance. Using components that are end-
of-life or end-of-support also has some risks.

• Known vulnerabilities: Component analysis will commonly identify
known vulnerabilities from multiple sources of vulnerability intelligence.

• Component type: each component can have a different degree of dif-
ficulty when upgrading or replacing. For instance, upgrading a logging
framework might be very straightforward, but replacing a component for
generating PDF documents might be trickier.

• Component function: by analysing the function of components, the
SCA tool could find components with duplicate or similar functionality.

• Component quantity: The number of third-party and open-source com-
ponents in a project should be evaluated. The operational and mainten-
ance cost of using open source will increase with the adoption of every
new component.

• Repository trust: Components in many software ecosystems are pub-
lished and distributed to central repositories. Public repositories that
have code-signing and verification requirements have some level of
trust, whereas public repositories without basic countermeasures do
not.

• Provenance: A component’s provenance refers to the traceability of all
changes, releases, modifications, packaging, and distribution across
the entire supply chain.

• License: Third-party and open-source software typically have one or
more licenses assigned. The chosen license may or may not allow
certain types of usage, contain distribution requirements or limitations,
or require specific actions if the component is modified.

• Inherited risk: Third-party and open-source components often have
dependencies on other components. Like any component, dependen-
cies have their own risk which is inherited by every component and
application that relies on them. Components may additionally have
specific runtime or environmental dependencies with implementation
details not known or prescribed by the component.

2.5.1 SCA tools on the market

Some of the tools available in the market are GitLab’s Dependency Scan-
ning, WhiteSource, Synopsys Black Duck, Snyk, Sonatype Nexus Lifecycle
foundation, Veracode Software Composition Analysis, OWASP dependency
check, OWASP dependency track, etc. We review some of them.

Chapter 2. State of the art 20

OWASP dependency check

Dependency-Check [27] is a Software Composition Analysis (SCA) tool that
attempts to detect publicly disclosed vulnerabilities contained within a pro-
ject’s dependencies. It does this by determining if there is a Common Plat-
form Enumeration (CPE) identifier for a given dependency. If found, it will
generate a report linking to the associated CVE entries.

In figure 2.7 we show the result of the analysis of the tool OWASP de-
pendency check on the dependencies of the OWASP Benchmark project.
Two critical vulnerabilities found by the tool have to do with the use of the
library log4j-1.2.17.jar. In figure 2.8 the tool describes the vulnerabil-
ities found for that component. The first vulnerability CVE-2019-17571 has
the description: Included in Log4j 1.2 is a SocketServer class that is vulner-
able to deserialization of untrusted data which can be exploited to remotely
execute arbitrary code when combined with a deserialization gadget when
listening to untrusted network traffic for log data. The second vulnerability
CVE-2020-9488 has the description: Improper validation of certificate with
host mismatch in Apache Log4j SMTP appender. This could allow an SMTPS
connection to be intercepted by a man-in-the-middle attack which could leak
any log messages sent through that appender.

Figure 2.7: OWASP dependency check on OWASP Benchmark
project

Chapter 2. State of the art 21

Figure 2.8: OWASP dependency check details

OWASP Dependency Track

OWASP Dependency-Track [28] is an intelligent Software Supply Chain Com-
ponent Analysis platform that allows organizations to identify and reduce risk
from the use of third-party and open-source components. Traditional SCA
tools scan files on file system and extracts evidence with varying degrees
of confidence. On the other hand, Dependency Track monitors component
usage across all versions of every application in its portfolio in order to pro-
actively identify risk across an organization.

Dependency Track takes a unique and highly beneficial approach by lever-
aging the capabilities of Software Bill-of-Materials (SBOM). This approach
provides capabilities that, in principle, traditional SCA solutions cannot achieve.
The OWASP Dependency Track platform has an API-first design and is ideal
for use in Continuous Integration (CI) and Continuous Delivery (CD) envir-
onments. It tracks application, library, framework, operating system, and
hardware components and identifies multiple forms of risk including compon-
ents with known vulnerabilities, out-of-date components, modified compon-
ents and license risk. It also integrates with multiple sources of vulnerability
intelligence such as the National Vulnerability Database (NVD).

Chapter 2. State of the art 22

Synopsys Black Duck

Black Duck software composition analysis helps teams manage the security,
quality, and license compliance risks that come from the use of open-source
and third-party code in applications and containers. Black Duck Security
Advisories help you avoid being caught off-guard by open-source vulnerabil-
ities, both in development and production. And they provide the critical data
necessary to prioritise vulnerabilities for remediation, such as exploit info,
remediation guidance, severity scoring, and call path analysis. Black Duck
also mitigates the cost and risk to intellectual property with greater insight
into license obligations and attribution requirements. It integrates with build
tools like Maven and Gradle to track both declared and transitive open-source
dependencies in applications built in languages like Java and C#.

Snyk

One of the interesting features that Snyk provides is that it has integrated
development environment (IDE) integration, which allows developers to de-
tect vulnerable dependencies during coding to avoid future fixing efforts and
save development time. Snyk gauges risk by identifying whether a vulnerable
function in the used open-source library is reachable by the application or not.
In this way, it prioritizes fixes based on whether vulnerable code is actually
called during runtime. In the same way as Synopsys Black Duck, Snyk also
possesses support for creating, customising and managing license compli-
ance policies across your organisation.

Chapter 2. State of the art 23

2.6 Table: Summary of tools

Type Licensing

SonarQube Community Edition SAST Free/open source
SpotBugs SAST Free/open source
Synopsis Coverity SAST Commercial
Veracode Static Analysis SAST Commercial
Fortify Static Code Analyser SAST Commercial
Codacy SAST Commercial
HCL AppScan Source SAST Commercial
Xanitizer SAST Commercial
Checkmarx CxSAST SAST Commercial
Arachni DAST Free/open source
Detectify DAST Commercial
Acunetix DAST Commercial
Netsparker DAST Commercial
Managed DAST Synopsys DAST Commercial
HCL AppScan Standard DAST Commercial
OWASP ZAP DAST Free/open source
Subgraph Vega DAST Free/open source
Checkmarx CxIAST IAST Commercial
Contrast Assess IAST Commercial
Hdiv Detection IAST Commercial
Synopsys Seeker IAST Commercial
GitLab’s Dependency Scanning SCA Commercial
WhiteSource SCA Commercial
Synopsys (Black Duck) SCA Commercial
Snyk SCA Commercial
Sonatype Nexus Lifecycle foundation SCA Commercial
Veracode Software Composition Analysis SCA Commercial
OWASP dependency check SCA Free/open source
OWASP dependency track SCA Free/open source

Table 2.1: Type and licensing of tools

24

Chapter 3

Benchmarks

As software engineers and security experts, we want to have a reliable and
trustworthy picture of the security of our applications. Having a false sense
of security due to poor security evaluation tools might be even worse than
knowing that our applications are not secure at all. Indeed, in the latter case,
we can act and take measures to improve the security of the applications.
Therefore it becomes natural to try to evaluate the security tools in charge of
measuring how secure our applications are so that we get a view as close as
possible of reality.

As a consequence of what we explained above, there have been efforts
in benchmarking application security tools as a way of determining their ef-
fectiveness. There are many public benchmarks available, for instance, the
OWASP Benchmark project, the Web Application Vulnerability Scanner Eval-
uation Project (WAVSEP) and the Software Assurance Metrics and Tool Eval-
uation (SAMATE). We will analyse in detail these 3 benchmarks and we will
present others as well that are available in the literature.

3.1 OWASP Benchmark

The OWASP Benchmark Project is a Java test suite designed to evaluate the
accuracy, coverage, and speed of automated software vulnerability detection
tools. Without the ability to measure these tools, it is difficult to understand
their strengths and weaknesses, and compare them to each other [45].

OWASP Benchmark consists of a fully runnable open-source web applic-
ation. In this webapp, we can find thousands of exploitable test cases, each
case linked to a weakness in CWE, which can be analysed by any type of
application security testing tool, including SAST and DAST tools. All these
vulnerabilities are deliberately included in the webapp, exploitable and can
be detected by the tools. The benchmark also includes dozens of scorecard
generators for numerous open-source and commercial AST tools, and the
set of supported tools is growing all the time.

Chapter 3. Benchmarks 25

There are several vulnerability areas or categories covered by the webapp,
namely Command Injection, Weak Cryptography, Weak Hashing, LDAP In-
jection, Path Traversal, Secure Cookie Flag, SQL Injection, Trust Boundary
Violation, Weak Randomness, XPATH Injection and XSS (Cross-Site Script-
ing). Each area contains a set of test cases (a Java servlet), where each
test case is documented with the related CWE vulnerability, its vulnerability
category, and the expected result, i.e. whether it is a true or false positive.

OWASP Benchmark tries to identify tools that do better than a random
guess of whether a certain test case is a true vulnerability or not. A random
guess would be for each test case to flip a coin and depending on the result,
to mark the test as a true vulnerability or not. In this manner, in the end we
will have around 50% of true positives detected as well as 50% of false pos-
itives. Ideally, a tool should detect as many true positives as well as few false
positives as possible. In figure 3.1 from the OWASP Benchmark project, we
can see a graphic representation of the previous. The dotted line indicates
the tools that are as good as a random tool. The tools should be above the
dotted line on the white part of the diagram, the farther to the dotted line and
the closer to the 100% of the Y-axis the better the tool is in detecting vulner-
abilities and avoiding false positives.

Figure 3.1: Diagram OWASP Benchmark true and false posit-
ives

There are many tools, either free/open source and commercial, that have
been tested against the OWASP Benchmark by OWASP itself. Some of the

Chapter 3. Benchmarks 26

free SAST tools that have been benchmarked are PMD, SonarQube, Spot-
Bugs, SpotBugs with the FindSecurityBugs plugin and Visual Code Grepper.
Some of the commercial SAST tools that have been benchmarked are CAST
Application Intelligence Platform (AIP), Checkmarx CxSAST, Julia Analyzer,
Kiuwan Code Security, Micro Focus Fortify, Parasoft Jtest, Semmle LGTM,
ShiftLeft SAST, Thunderscan SAST, Veracode SAST and XANITIZER. Also,
there have been free DAST tools benchmarked like Arachni, OWASP ZAP
and Wapiti as well as commercial ones like Acunetix Web Vulnerability Scan-
ner, Burp Pro, HCL AppScan DAST, Micro Focus Fortify WebInspect, Nets-
parker, Qualys Web App Scanner and Rapid7 AppSpider. A summary of the
results are shown in figure 3.2.

Figure 3.2: OWASP Benchmark results

The OWASP Benchmark has also been used in other works, such as
in [12]. There, the Julia static analysis tool [40] is run against the OWASP
Benchmark project. The Julia tool performs taint analysis by modelling expli-
cit information flows through Boolean formulas. Taint analysis identifies every
source of user data, such as form inputs and headers, and follows each piece
of data through your system to make sure it gets sanitised before you do any-
thing with it. The results of the Julia tools are shown in figure 3.3. Note that
the Julia tool has been integrated into Verifysotf’s CodeSonar Static Applica-
tion Security Testing (SAST) platform [49].

Chapter 3. Benchmarks 27

Figure 3.3: Results of the Julia tool with OWASP Benchmark

There are other tools that claim 100% detection of true positives and 0%
false positives results such as RIPS [32] (SAST), Hdiv [26] (IAST) and Xan-
itizer [54]. However, as to our knowledge, these benchmarks have not been
done by an independent external source.

3.2 WAVSEP

The Web Application Vulnerability Scanner Evaluation Project (WAVSEP)
[46, 47, 48] is a vulnerable web application designed to assess the features,
quality and accuracy of web application vulnerability scanners, i.e. DAST
tools. It contains a collection of unique vulnerable web pages that can be
used to test the various properties of web application scanners. WAVSEP
contains a series of test cases with real vulnerabilities of many kinds as well
as false positives.

As examples of vulnerabilities included in the WAVSEP project, we can
find path traversal, remote file inclusion, cross-site scripting (XSS), SQL in-
jection, unvalidated redirect, etc. Each of these has many test cases (or
pages). For instance, there are 816 test cases for path traversal and 46 test
cases for SQL injection. As for false positives, we can find XSS, SQL injec-
tions, path traversal, etc. Each of these false positive categories is located in
many test cases as well.

Chapter 3. Benchmarks 28

There have been a bunch of DAST tools tested in WAVSEP. The com-
mercial web application scanners that have been evaluated are Appspider,
Netsparker, Acunetix, Burpsuite, WebInspect, WebCruiser and others. The
evaluated open-source scanners are Zed Attack Proxy (ZAP), Arachni, Iron-
WASP, WATOBO and others. In figure 3.4 we show an excerpt of the results
of the last benchmark performed by the WAVSEP project.

Figure 3.4: Excerpt of WAVSEP results

The interpretation of the results is left to the reader. This benchmark
acts as an observation of the current features and performance of the DAST
tools according to the provided test cases in WAVSEP. The authors note
that the lack of support for prominent input vectors, i.e. the structure of in-
puts being used in the client-server communication to deliver values from the
browser/mobile/client application to the web server, limits the capabilities of
scanners in relevant test scenarios, particularly in various payload injection
tests.

In [18] WAVSEP is used to test several tools, namely Acunetix, Burp Suite,
Netsparker, AppSpider, Arachni, Vega, Wapiti, Owasp ZAP, SkipFish, Iron-
WASP and W3af. They have selected some measures (precision, recall and
F-measure) based on the number of true positives (TP), false positives (FP)
and false negatives (FN). The greater the precision is, the smaller the num-
ber of false positive gets. As a result, the tool becomes more accurate in
detecting the vulnerability involved. The greater the recall is, the smaller the
false negative number becomes. Consequently, the tool detects the vulner-
ability better. They consider four vulnerability types for the tests, namely SQL

Chapter 3. Benchmarks 29

injection (SQLI), Cross-site scripting (XSS), Remote File Inclusion (FRI) and
Path traversal / Local file Inclusion (LFI).

They proceed first by calculating the number of TP, FP and FN and then
calculate the chosen metrics per type of vulnerability. Finally, they analysed
the results and conclude that each scanner performs differently depending
on the type of vulnerability. One of the most striking conclusion is that they
found that there was no correlation between the cost and quality of free and
commercial scanners. In figure 3.5 it is shown the results of the TP, FP and
TN for each tool in each of the vulnerability types. In figure 3.6 it is shown the
results of the chosen metrics for each tool in each of the vulnerability types.

Figure 3.5: TP, FP, TN results in Idrissi et al.

Chapter 3. Benchmarks 30

Figure 3.6: Overview of the metrics results in Idrissi et al.

3.3 SAMATE

The SAMATE’s Software Assurance Reference Dataset (SARD) Project [37]
provides a set of artefacts with known software security errors and fixes for
them. It also provides some test suites that cover many (or all) of the selec-
ted vulnerabilities. These test cases include designs, source code, binaries
and other artefacts from all the phases of the software life cycle. The dataset
includes wild (production), synthetic (written to test or generated), and aca-
demic (from students) test cases. This database will also contain real soft-
ware application with known bugs and vulnerabilities. The dataset intends to
encompass a wide variety of possible vulnerabilities, languages, platforms,
and compilers. This will allow end users to evaluate tools and tool developers
to test their methods.

In [9], the authors use a subset of the SAMATE tests, only those that are
for C code and that relate to buffer overflow and read outside the bounds
of an array, for evaluating the design of the Parfait tool. This tool is a static
layered program analysis framework for bug checking, designed for scalab-
ility and precision by improving false positive rates and scale to millions of
lines of code. The word layered means the use of a series of static program
analyses that range in complexity and expense, ordered from least to more
(time) expensive. The buggy statements are detected with the cheapest pos-
sible program analysis capable of detecting it, achieving in this manner better
precision with the smallest runtime overhead possible. The results are quan-
tified in terms of correctly reported, false positive and false negative rates
against the NIST SAMATE synthetic benchmarks for C code. Figure 3.7
shows the results of the Parfait tool.

Chapter 3. Benchmarks 31

Figure 3.7: Parfait tool results

Besides, some SAMATE tests have also been used to perform a study to
understand the coverage of the security rules in the Motorola coding stand-
ards [21]. Some of the test cases used at Motorola are developed by Motorola
itself while others come from SAMATE, especially for Java and C++. After im-
plementing the security-enhanced coding standards, supporting these new
standards in a static analysis tool became the next step to focus on. The
chosen tool was Klocwork because the majority of project teams at Motorola
were already using it for quality purposes. However, a good percentage of
these security rules were not detected by the tool. The vendor agreed to work
with Motorola to improve the detection of violations to the security rules in the
code.

The master thesis of Jayesh Shrestha [20] used SAMATE SARD to eval-
uate several static analyser security tools. There, the Juliet test cases are
used for benchmarking the tools they have chosen, namely Findbugs. One
of the conclusions of that work is that Findbugs was able to find the vulnerab-
ilities that fall under certain categories like numeric errors, API abuse related,
code qualitative related errors and other miscellaneous. However, it failed to
detect the flaws that are related to error handling, information leaks and race
conditions.

3.4 Other benchmarks

There have been as well other works that have performed benchmarking for
different kinds of tools. One of them is the work of Bermejo et al. where they
use the OWASP Benchmark for evaluating SAST tools [2]. The authors study
the performance of seven SAST tools using a new methodology proposal and
a new benchmark designed for vulnerability categories included in the known
standard OWASP Top Ten project. They have chosen seven commercial and
open-source SAST tools and ran them against the OWASP Top Ten Bench-
mark designed with the default configuration for each tool. Then they select
a set of metrics that are widely accepted in the literature. Finally, they rank

Chapter 3. Benchmarks 32

the SAST tools according to their results in the benchmark and the chosen
metrics.

The tools they have chosen are Xanitizer, Coverity, Checkmarx, Klocwork,
Fortify, SpotBugs and FsecBugs. With respect to metrics, they have chosen
the number and percentage of true positives (%TP), the number and percent-
age of false positives (%FP), the number of vulnerability categories for which
the tool is designed, the precision (the proportion of the total TP detections
and the ratio of detected vulnerabilities to the number that really exists in the
code), and so on.

Some of the results are presented in the figures below. In figure 3.8 we
show the results they obtained for the percentage of TP and FP. This per-
centage is an average of the percentages of TP and FP obtained in each
vulnerability category of the OWASP Top 10, such as injection, broken au-
thentication, etc. These results represent in an absolute manner the amount
of TP and FP they have identified, however, it does not indicate, for instance,
the precision of their analysis.

Figure 3.8: Benchmark results of Bermejo et al. for TP and FP

To have a better picture of the results, we show in figure 3.9 the numbers
obtained with the different metrics used by Bermejo et al. In general, the TP
ratio has a direct proportionality relationship with FP ratio. The best balance
between TP and FP for a concrete tool is having a higher TP ratio with a
lesser ratio of FP ratio breaking the direct proportionality relationship. The
precision metric normalises TP and FP metrics penalising the ratio of TP with
the ratio of FP. The average ratio of precision for all analysed tools is around
the 0.6, what suggests that the SAST tools used in the experiment have a
wide margin of improvement. Spotbugs and FindSecurityBugs (open source
tools) have the best results in the precision metric.

Chapter 3. Benchmarks 33

Figure 3.9: Metrics obtained for the different tools

With their approach, they obtain a ranking of the evaluated SAST tools ac-
cording to adequate and wide accepted metrics applied to the results of the
benchmarking. The tools are ranked having into account three distinct met-
rics for different degrees of importance for web applications. Five commercial
SAST tools have been included in the assessment and ranked showing their
results executed against the new benchmarking approach. They also sug-
gest that using more than one SAST tool in combination can improve the TP
and FP ratios.

An interesting study has been performed in [3], where the authors make a
comparison between manual (normally made by a pentester) and automatic
penetration testing (made by automatic DAST tools). The first step was the
construction of a lab environment, which represents a typical and represent-
ative IT infrastructure of a small to medium enterprise. This environment was
prepared so that it contains several vulnerabilities. The environment architec-
ture is shown in figure 3.10. As seen on that figure, the environment consists
of two hosts, one containing Kali Linux (used by the human penetration tester)
and the other containing the automatic vulnerability scanners. The installed
applications are popular and mostly open-source software. They include the
automation server Jenkins, the content management system WordPress, the
deliberately vulnerable web-application OWASP Mutillidae 2, the web devel-
opment tool XAMPP and File Transfer Protocol (FTP) services installed on
the Windows virtual machine (VM) and last but not least a typical Linux-
based desktop computer with lots of outdated components. While Mutillidae
is meant to be a vulnerable web application, the other VMs are prepared with
either outdated applications, weak credentials or bad misconfiguration.

Chapter 3. Benchmarks 34

Figure 3.10: Lab environment used for penetration testing

The second step is to perform a typical penetration test by a human pen-
etration tester without any prior knowledge of the lab environment that has
been prepared. Afterwards, they used two popular vulnerability scanners to
generate automated vulnerability reports in two modes, namely unauthentic-
ated and authenticated (i.e. the tools have access to credentials). They used
the proprietary software Nessus and the free software framework OpenVAS.

Finally, they validate both manually and automatically generated reports
and determine error rates. The results show that the vulnerability scanner
tools detect 1.5 to 3 times more vulnerabilities than the human pentester,
who detected a total of 73 findings. However, to conclude that the automatic
tools do a much better job than the pentester is a false conclusion because
the false positives and negatives have not yet been taken into account. The
human pentester has detected zero false positives and zero false negatives,
i.e. he detected all the right vulnerabilities and did not give any false alarm.
The automatic scanners detected about ten false positives and about twenty
false negatives. On the other hand, scanners took about 10% of the 40 hours
that the pentester needed for completing all his tasks (preparation, analysis,
exploitation and final report).

The most important finding of this work is the quite higher false-negative
rate of the scanners compared to the pentester, i.e. many security holes were
not even detected. Therefore the results of automated methods significantly
lack of quality and have less useful findings. Both manual and automated
methods can complement each other, but an automated scan cannot replace

Chapter 3. Benchmarks 35

manual penetration testing nowadays. The authors propose that a good ap-
proach may be to combine both methods, which can get the best ratio of
effort and results.

In [30] a methodology is shown, called Delta-Bench, for designing and
building benchmarks for SAST tools. The authors start from the premise that
designing a benchmark based on real-world software is a difficult task. They
mention, as some of the shortcomings of the existing benchmarks, the lack of
vulnerability realism, uncertain ground truth, and a large number of findings
not related to analysed vulnerability. They note that purely synthetic bench-
marks eliminate the above problems by isolating vulnerabilities into atomic
tests that represent small applications so that each of them contains only the
code relevant to a vulnerability to be tested or a deliberately inserted false
positive, and some other closely related code which may be required for the
vulnerable code to compile. However, one of the main motivations of this
work is that it is still desirable to see how the tools perform with real-world
instead of synthetic software.

Their approach for building a suitable benchmark is based on the use of
large and well-documented open-source projects. Those projects contain, in
their history of releases, many documented vulnerabilities that can be used
for building a benchmark. Once they identify such a project, they take one
of the releases with a given vulnerability as well as the release with the fix.
The tools are then run against both versions and their results are compared
to each other. In such a way, we can detect whether the tools have correctly
detected the vulnerability or not. They tested this methodology with several
SAST tools, some of them free, namely FindBugs, Jlint, OWASP LAPSE+,
OWASP YASCA, PMD and SonarQube and one of them commercial, namely
Fortify Static code analyzer.

In [4] the authors propose an innovative approach by combining several
SAST tools to reduce the probability of vulnerabilities remaining undetected
and, in this way, improve their detection rate. They selected five SAST tools
that were used for finding two kinds of vulnerabilities, namely cross-site script-
ing and SQL injection. Those tools are RIPS, Pixy, phpSAFE, WAP and
WeVerca. They studied the performance of all possible tuples of those tools,
namely 10 pairs, 10 triplets, 5 quadruples and 1 quintet. With this approach,
the authors provide empirically supported guidance in which of the combin-
ation produce the best results in terms of high true positives and low false
positive rates. In addition, they also considered three different detection con-
figurations of the tuples, namely raise an alarm for a vulnerability when one of
the tools in the tuple detects it (1ooN), raise an alarm for a vulnerability when
all of the tools in the tuple detect it (NooN), and raise an alarm for a vulnerab-
ility when the majority of the tools in the tuple detects it. As a concrete result,
they show that one of the best combinations of tools of their experiment is
achieved by using the diversity of Pixy, phpSAFE and WAP, especially in the
1ooN configuration.

36

Chapter 4

Software Security Assurance
Tools Selection

So far, in chapter 2 we have given an overview of the different kinds of soft-
ware security assurance tools. We have identified basically found kinds of
tools, namely SAST, DAST, IAST and SCA. Afterwards, in chapter 3, we have
reviewed some benchmarks methodologies that are publicly available, and
some other benchmarks that have been proposed in the literature. Further-
more, we show that some independent benchmarking has been performed,
i.e. benchmarking not realised by the same company offering a software se-
curity assurance product.

One of the main conclusions of the previous chapter is that software se-
curity assurance tools are aids to the development process. There is no
replacement to careful coding, manual coding (in particular security) reviews,
and manual penetration testing, as shown in section 3.4. They cannot be
seen thus as a silver bullet that will solve all security issues in the develop-
ment of software. It is still possible to write secure software without the use
of any of those tools.

In this chapter we will take the steps to select the best suitable secur-
ity assurance tools according to a set of predefined criteria and constraints,
which will be presented below. These criteria and constraints, as explained in
chapter 1, are based on the organisation of the Belgian public sector where
we currently work.

4.1 Selection criteria

In this section we will define some general selection criteria for the software
security assurance tools and elaborate the reasoning why we impose them.

The use of the tool must not interfere with the normal development pro-
cess. As expected, the use of tools should be an aid of the development
tasks of the organisation and in this way become a support of its business
goals. The use of these tools should not become a bottleneck or stand in
the way of an efficient software development process. Also, at a technical

Chapter 4. Software Security Assurance Tools Selection 37

level, we do not want any of the chosen tools to be included or packaged
in the productive application under development. The application built for
production should be the same as the one build for the tests environments.
This is the only way of reliably testing aspects of the application such as per-
formance. Moreover, we want to avoid having to build an application for a
test environment with the security tool included, and afterwards building the
same application without it. On the contrary, doing so can be seen as an
interference in the development process and also as an error-prone process.

The tools should be ideally automatised minimising the intervention
of developers. As a follow-up of the previous criterion, the chosen tools
should ideally generate reports automatically without the manual intervention
of the developers. For SAST tools, this can translate, for instance, in tools
that can be integrated in the integrated development environment (IDE), or
integrated in the continuous integration tool once the source code has been
committed/ pushed in the corresponding branch of the version control sys-
tem. For DAST and IAST tools, it can mean that once the source code is
committed and the application deployed, the DAST/IAST tool could automat-
ically trigger the tests on the application. For SCA tools, one option is that
the dependency analysis is performed when building the application, ideally
integrated in the IDE of the developers, and/or in the continuous integration
tool. Of course there is a balance between the effort of configuring these
tools and the degree of automation that can be obtained from the tools.

The tools must be easy to use. One extra criterion, besides having auto-
matised software security assurance tools, is that they should be easy to use.
This means that the configuration of the tools by developers should be very
simple, that their execution is transparent and that they do not take an enorm-
ous amount of time for giving the results of the tests. This applies especially
to SAST and SCA tools if they are integrated in an IDE; we cannot accept
the developers to wait for a long period just waiting for the results of their
analyses. Note that the amount of configuration is related to the degree of
automation; a good balance has to be found.

The tools should be effective One of the important issues with software
security assurance tools is related to the quality of the results. Tools that
provide with too many false positives will produce the effect to be quickly ig-
nored by developers due to the many results. On the other hand, we want the
tools to identify all issues with the code, so that we do not miss any important
vulnerability, i.e. the rate of false negatives should be low. This applies either
to SAST and DAST tools. With respect to SCA tools, the results are normally
less subject to discussion since the information of the vulnerable third-party
open-source libraries is either scanned or kept in a database. From the res-
ults of previous chapters, we have not found any evidence that there are tools
that considerably outperform the rest.

Chapter 4. Software Security Assurance Tools Selection 38

The output of these tools must be easy to understand. Developers must
be able to open the results and easily identify the problems with the code.
To review the results an external tool should not be needed, maybe with the
exception of a web browser. The results should be detailed enough to explain
the problem, to provide a possible solution, to provide extra information about
the vulnerability and, if possible, to locate the vulnerability in the source code
for quickly fixing it.

The tools should provide results as early as possible in the software
development life cycle. It is well known that the faster a bug or problem is
found in the development cycle, the cheaper it is to fix it. The detection and
correction of security vulnerabilities should be to the left of the DevOps cycle.

The tools must support a certain set of technologies. It is also a re-
quirement that the software security assurance tools must integrate with the
current technologies used by the organisation. It is of no use to have, for
instance, a SAST tool that can integrate with some IDEs but not the one used
in the organisation. The precise description of the organisation’s environment
will follow in section 4.2.

The cost of the tools must be reduced or ideally free. One important
aspect of the tool selection is the cost. Some organisations, especially insti-
tutions of the public sector, have budget restrictions that may be quite limiting.
They usually have a limited budget foreseen for licenses. To present a pro-
posal for several security tools that may cost several thousands of euros per
year is quite a sensitive matter. This is even more so if the benchmarks that
are presented in this TFM show no evidence that one single commercial soft-
ware security assurance tool outperforms the rest, as shown in the bench-
mark performed by OWASP in the OWASP benchmark project (section 3.1).
Also, in section 3.2, we saw that, in [18], one of the striking conclusions is that
the authors found that there was no direct correlation between the cost and
quality of free and commercial scanners. They concluded that each scanner
performs differently depending on the type of vulnerability. It is unthinkable,
at the level of license costs, to choose several commercial scanners, or tools
in general, because some of them perform better in some areas, while the
others perform better in other ones.

The tools have to be used internally. Most applications of the organisa-
tion are not accessible via internet, but internally on the intranet. It is, of
course, out of the question to open the access of those applications to the
internet so that a software-as-a-service (SaaS) scanner can perform auto-
mated penetration tests.

Documentation and communities. It is logical to require that the tools
should have sufficient documentation for installing, configuring and using

Chapter 4. Software Security Assurance Tools Selection 39

them. Furthermore, it would be ideal to have an active community where you
can find other people that have experience with the use and configuration of
the tool.

4.2 Organisation’s ecosystem

In this section we specify the organisation’s development environment that
will be considered as a reference for selecting one or many software security
assurance tools.

• Programming technologies

– Java 6, 7 & 8

– Google Webtool Kit (GWT)

– Angular 8 (Typescript)

– Spring boot

– Spring batch

– Hibernate

• IDEs:

– Eclipse Mars

– Intellij IDEA Community Edition

– Visual Studio Code

• Building tools:

– Gradle

– Maven repository

• Versioning control systems:

– SVN

– Git/Atlassian Bitbucket

• Operating Systems:

– Developers: Windows 10

– Servers: Linux

• CI/CD:

– Atlassian Bamboo

• Database:

– DB2

Chapter 4. Software Security Assurance Tools Selection 40

– MySQL

Special attention has to be put in the fact that most of the applications of
the organisation are Spring boot applications. There is no external application
server in which the applications are deployed. As a consequence, any tool
that requires to be installed in application servers are not eligible.

4.3 Selection and exclusion of tools

For the selection of the tools there are several aspects that must be con-
sidered, as seen in section 4.1. Besides that, we need a way of evaluating
which criteria can be considered more important than others. Depending
each criterion’s weight, the choice of the tools can be completely different.

In our case, we will consider the financial aspect the most important. The
reason for this is the nature of the organisation (public sector), and the restric-
ted budget for licenses they have. We cannot present a proposal for two or
three tools that might cost eight to ten thousand euros a year each, as shown
in [44] for Contrast Assess (IAST) or in [53] for Xanitizer (SAST), whereas
there exist free open-source alternatives. With this decision we discard any
commercial tools or paid versions of them. Only free tools or free editions of
commercial tools are to be considered in the selection.

However, the strongest reason not to choose commercial tools is that we
do not possess any figures to back up the possible argumentation of why
the organisation should pay thousands of euros for their licenses. The risk
analysis in which we measure and quantify the impact of the possible vul-
nerabilities that can be found by the software security assurance tools is out
of the scope of this TFM. Also, the financial analysis such as the return on
investment (ROI) of the use of the chosen tools are out of the scope of this
TFM.

4.3.1 SAST selection

As aforementioned, we will only consider free tools. The list of SAST tools
supporting the technologies listed in section 4.2 are the following: SpotBugs,
Find security bugs plugin and SonarQube (SonarLite IDEs).

SpotBugs, shown in section 2.2.1, supports the Java language and it is
easily integrable with Gradle. Moreover, SpotBugs has been around for many
years (before known as FindBugs), it is an active project with a large users
base to this day. It has a site with extensive documentation, and it has as well
an eclipse plugin, but unfortunately Eclipse Mars is not supported.

Find security bugs [13], is a plugin for security audits of Java web applic-
ations. It is integrable with several IDEs, including Eclipse, IntelliJ, Android

Chapter 4. Software Security Assurance Tools Selection 41

Studio and NetBeans. It is also a quite active project nowadays, and it has a
website with documentation with how to integrate and how to use.

SonarQube is a commercial tool. It has, however, one edition, namely
Community Edition, which can be used for free, with some restrictions of
course. On the one hand, SonarQube can be integrated with Bitbucket, and
on the other hand, it has a plugin, called SonarLite, integrable with several
IDEs, including Eclipse and IntelliJ. One of the shortcomings of the Com-
munity Edition of SonarQube is, however, that it does not have branch ana-
lysis. Hence, it is only possible to analyse the main (or master) branch of
each project. Also, the support you might get with the Community Edition is
a big question mark.

We do not see any good reason why we should not choose the three of
them. Afterwards, if we see that one of the tools gives, for example, too many
false positives, we might evaluate if it should be removed.

4.3.2 DAST selection

There are not many DAST tools in the market that are free. There are also
some tools, like AppTrana [19], that have a free plan but with a SaaS model.
As explained above, we will not consider these solutions because most of the
applications of the organisation are internal (not accessible via internet).

We have reviewed in section 2.3.1 the Zed Attack Proxy (ZAP) tool. This
tool is free and it has a website with plenty of documentation, as well as an
extensive active community. Automation of ZAP tests can be achieved with
the help of scripts or little programs that can be executed. It implies thus that
there is a step of configuration for each site/application that has to be tested.
Furthermore, ZAP has a list of add-ons that can be added to the tool to per-
form more specific or detailed tests.

Arachni is another free DAST tool available on the market. Unfortunately,
this tool, since January 2020, is no longer maintained. The previous makes
the adoption of this tool unfeasible.

There is another tool, called GoLismero. Unfortunately, we are unable to
test this tool, and even less propose it for its use in the organisation, because
after downloading the virus scanner detects a trojan in the downloaded file.
Moreover, they claim to have plugins for IDE but when we try to download
it, at this date (20/12/2020), the site gives a 404 not found error. This tool is
therefore discarded.

Vega is a free DAST tool which has good documentation on its site, a sim-
ilar user interface to ZAP. We have the impression that the tool is less active
than ZAP, if we look at the activity on its GitHub page [42]. There, we see, for
instance, that at the date of writing the current text (20/12/2020) the activity

Chapter 4. Software Security Assurance Tools Selection 42

on the last pull request dates back to March 2020.

For all the previous reasons, we see that the only two suitable tools are
Vega and ZAP. We will choose ZAP over Vega because of its active com-
munity.

4.3.3 IAST selection

The only free IAST tool that we have found in the market is Contrast Com-
munity Edition. This tool can be integrated into an application server or in
the application under development by including a dependency on the con-
trast jar file. The organisation strongly base its applications on Spring boot,
so there is no external application server that can be configured once for all
applications. The only option is to include a dependency of the contrast jar
file in the application under development, which is not acceptable due to the
selection criteria reasoned above. The reason is that we want to avoid having
to build different applications, namely with or without one extra dependency,
for testing or production environments. Doing so may hinder performance of
the tested applications as well as creating the possibility of error if the wrong
application is deployed in the wrong environment. We have the feeling that,
due to the choice of SAST and DAST tools, having such a tool like Contrast
does not create enough added value for the trouble.

4.3.4 SCA selection

We have found three SCA tools that are free and useful in our case. Snyk
has a free version but only for open-source project, otherwise the license that
will be useful for the organisation costs around two thousand a year.

The second interesting tool is OWASP Dependency Check, reviewed in
section 2.5.1. Integrating this tool in the existing projects of the organisa-
tion is pretty straightforward; we only need to apply the corresponding gradle
plugin, called dependency-check-gradle, which is publicly available. In that
way, we get gradle tasks that will analyse the dependencies while building
the project. The results of the tool are similar to those presented in section
2.5.1.

The last tool that can be used is the OWASP Dependency Track tool, re-
viewed in section 2.5.1. This tools that more than only dependency check, it
also manages licensing, libraries, frameworks, operating systems, etc. This
tool works at another level than the Dependency Check tool. While the De-
pendency Check tool works at the level of the development and build of each
project, the Dependency Track tool works in a more stand-alone way, at the
level of the continuous integration/continuous development. The Depend-
ency Track tool is not integrated in the IDEs of the developers but can be
integrated with the CI/CD tools of the organisation. Unfortunately, this tool

Chapter 4. Software Security Assurance Tools Selection 43

does not have support for integrating with Bitbucket. It will only be pos-
sible to link it to the maven repository (Java) and to the npm repository
(Typescript/Angular).

We will choose both OWASP Dependency Check and Dependency Track.
Even though we cannot take full advantage of the Dependency Track tool due
to its lack of integration with the CD/CI tools of the organisation, we think the
tool might be useful even though there is an effort in configuration.

4.4 Summary of selection

Selected tool Tool Type

SonarQube Community Edition SAST

SpotBugs SAST

Find Security Bugs Plugin SAST

Zed Attack Proxy (ZAP) DAST

OWASP Dependency Check SCA

OWASP Dependency Trace SCA

4.5 Implementation of Quick Wins

We show in this section how we implemented some Quick Wins in the organ-
isation with the tools that have been selected. In other words, we took the
tools that needed the least configuration possible and install them or activate
them. The organisation has already SonarQube Community Edition up and
running but it does not use it extensively in the development process.

We would like to mention that we also thought of incorporating the OWASP
dependency check tools, as it seems fairly easy to do. However, to include
the dependency check we must have it first in the organisation’s repository,
which is a central common repository for all developers and has only libraries
that are previously approved. The dependency check tool is unfortunately
not part of the repository, so we were unable to include it as a quick win.

4.5.1 SonarQube

SonarQube Community Edition is installed in one of the servers. Note that,
of the three projects seen on figure 4.1, only one of them has been analysed
in December 2020. The other analysis date back to March and June 2020.

Chapter 4. Software Security Assurance Tools Selection 44

Figure 4.1: SonarQube tool analysing some projects

In figure 4.2, we show some details of the analysis of SonarQube. We see
that there are several types of issues, being Vulnerability the most interesting
for us. They also classify the issues by Severity, ranging from Blocker to Info.
We see several issues classified as vulnerabilities and blockers, all of them in
the class ApiController with the message Make this method "public". This
rule related to one of the OWASP Top 10, namely Security Misconfiguration.
The rule says that the method should be marked as public because some
aspect-oriented programming (AOP) proxies, included in the Spring frame-
work, ignore non-public methods. Even if the method is marked with the
annotation @Secure, this annotation will be ignored, and the method will still
be called, even if the user is not authorised.

Figure 4.2: SonarQube vulnerability details of one project

Chapter 4. Software Security Assurance Tools Selection 45

However, this issue is a false positive. It is true that this might be a po-
tential vulnerability, but in this case it is not so because the method is not
annotated with any other annotation besides @GetMapping. In figure 4.3, we
show the complete signature of one of those methods.

Figure 4.3: Signature of method

4.5.2 SpotBugs

We have also added the SpotBugs plugin to IntelliJ for analysing source code.
We have analysed the same project and we get different results. In SpotBugs,
see figure 4.4, we do not get the same issue catalogued as vulnerability as
the one given by SonarQube.

Figure 4.4: SpotBugs for Intellij

In figure 4.5, we show that there are no severe issues detected by Spot-
Bugs. There are only grey (of concern) and yellow (troubling). Note that these
categories are the two of lowest severity in SpotBugs.

Figure 4.5: SpotBugs - Issues by severity

Chapter 4. Software Security Assurance Tools Selection 46

4.5.3 Find Security Bugs

We also installed the Find Security Bugs on IntelliJ and analysed the same
project. We observe in figure 4.6 that there are only four issues, three of them
related to efficiency and the last one related to usability.

Figure 4.6: FindSecurityBugs - Issues

If we look at the issues by severity, as shown in figure 4.7, we find that
there is only one critical which is related to a null pointer. In summary, no
vulnerability as such has been detected by the tool.

Figure 4.7: FindSecurityBugs - Issues by severity

47

Chapter 5

Conclusions

There are many approaches to increase the security in the development of
software applications. Many of the vulnerabilities found in the software are
due to errors in programming, errors in configuration, use of insecure lib-
raries, etc. Trying to detect those problems might not be an easy task if
development teams do not count with the means or helpful support given by
software security assurance tools.

One objective of this TFM was to perform an extensive literature study
of the different kinds of software security assurance tools that exist that can
help tackle the aforementioned problem. Of course those tools are not the sil-
ver bullet; they provide help so that development teams can identify or avoid
potential vulnerabilities as soon as possible in the development life cycle.
However, they are not the definitive solution that will solve all security prob-
lems nor they will correct automatically all vulnerabilities. The development
teams still need to take corrective actions and check the warning the tools
are giving. It is therefore important that the tools are as precise and give as
little false positives as possible. Another objective of this TFM is to define
a set of criteria for the selection of tools, based on the current situation in
the organisation where we currently work, and to make a proposal of which
tools can be the most suitable to improve quality and therefore security in the
development life cycle.

In chapter 1, we introduced and motivated the problem, we explained the
objectives of the TFM, we showed the methodology that we used in the de-
velopment of this TFM, and we presented the planning. Finally, we defined
what were the most important contributions of this work.

We have reviewed, in chapter 2, the kinds of software security assurance
tools that are most popular in the market. We have focused on four kinds
of tools, namely SAST, DAST, IAST and SCA. In one word, SAST tools ana-
lyse source code in a non-running state; DAST tools perform passive and
active penetration tests on application in a running-state; IAST tools incor-
porate agents in the application that can analyse bytecode as well as per-
forming some kind of dynamic analysis; and SCA focuses on the analysis of
dependencies that might be vulnerable, or in general, that might pose a risk.
Moreover, for each kind of tools, we mentioned the most relevant software

Chapter 5. Conclusions 48

products in the market, and we gave a brief summary of some of them.

In chapter 3, we presented a summary of the three most well-known
benchmark methodologies/frameworks for SAST and DAST tools, namely the
OWASP benchmark project, the WAVSEP project and SAMATE. We have
also reviewed the many benchmarks performed with those methodologies in
the literature. Afterwards, we reviewed literature of other benchmarks per-
formed using their own custom methodology. Two of the most important con-
clusions of this chapter is that each tool performs better in different areas,
and that there is no direct correlation between a tool being commercial and a
better effectiveness.

In chapter 4, we defined the criteria that we were going to follow for se-
lecting the most suitable software security assurance tools. Those criteria
encompass aspects varying from financial (i.e. what is the cost of imple-
menting or integrating the selected tools), technical (i.e. how the selected
tools integrate with the rest of the software of the organisation and how it fits
in the development life cycle) and effectiveness (i.e. how well the tools per-
forms in their support to the development team). Based on those criteria we
have chosen a set of tools, and implemented the ones that were considered
to be Quick Wins.

49

Bibliography

[1] G. Agosta et al. “Automated Security Analysis of Dynamic Web Ap-
plications through Symbolic Code Execution”. In: 2012 Ninth Interna-
tional Conference on Information Technology - New Generations. 2012,
pp. 189–194.

[2] J. R. Bermejo Higuera et al. “Benchmarking approach to compare web
applications static analysis tools detecting owasp top ten security vul-
nerabilities”. In: Computers, Materials and Continua. Vol. 64. 3. 2020,
pp. 1555–1577.

[3] Saed Alavi, Niklas Bessler and M. Massoth. “A Comparative Evaluation
of Automated Vulnerability Scans Versus Manual Penetration Tests on
False-negative Errors”. In: CYBER 2018, The Third International Con-
ference on Cyber-Technologies and Cyber-Systems. Athens, Greece:
IARIA, 2018, pp. 1–6.

[4] A. Algaith et al. “Finding SQL Injection and Cross Site Scripting Vulner-
abilities with Diverse Static Analysis Tools”. In: 2018 14th European De-
pendable Computing Conference (EDCC). Iasi, Romania, 2018, pp. 57–
64.

[5] Arachni scanner. Oct. 2020. url: https://www.arachni-scanner.com/
(visited on 20/10/2020).

[6] Q. Ashfaq, R. Khan and S. Farooq. “A Comparative Analysis of Static
Code Analysis Tools that check Java Code Adherence to Java Coding
Standards”. In: 2019 2nd International Conference on Communication,
Computing and Digital systems (C-CODE). 2019, pp. 98–103.

[7] M. Lal Das C. Chahar V. Singh Chauhan. “Code analysis for software
and system security using open source tools”. In: Information security
journal: A global perspective 21 (2012), pp. 346–352. url: http : / /

link.aip.org/link/?RSI/72/4477/1.

[8] Checkmarx CxSAST. Oct. 2020. url: https://www.checkmarx.com/
products/static-application-security-testing (visited on 20/10/2020).

[9] C. Cifuentes and B. Scholz. “Parfait: designing a scalable bug checker”.
In: SAW ’08: Proceedings of the 2008 workshop on Static analysis.
Tucson, Arizona: ACM, 2008, pp. 4–11.

[10] Does IAST Fit Into Your AppSec Program? Oct. 2020. url: https :

//resources.whitesourcesoftware.com/blog-whitesource/iast-

interactive-application-security-testing (visited on 20/10/2020).

https://www.arachni-scanner.com/
http://link.aip.org/link/?RSI/72/4477/1
http://link.aip.org/link/?RSI/72/4477/1
https://www.checkmarx.com/products/static-application-security-testing
https://www.checkmarx.com/products/static-application-security-testing
https://resources.whitesourcesoftware.com/blog-whitesource/iast-interactive-application-security-testing
https://resources.whitesourcesoftware.com/blog-whitesource/iast-interactive-application-security-testing
https://resources.whitesourcesoftware.com/blog-whitesource/iast-interactive-application-security-testing

Bibliography 50

[11] Dynamic application security testing (DAST). Oct. 2020. url: https :

//searchapparchitecture.techtarget.com/definition/dynamic-

application-security-testing-DAST (visited on 20/10/2020).

[12] P. Ferrara, E. Burato and F. Spoto. “Security Analysis of the OWASP
Benchmark with Julia”. In: In Proceedings of the First Italian Confer-
ence on Cybersecurity (ITASEC17). 2017.

[13] Find Security Bugs plugin for SpotBugs. Oct. 2020. url: https://find-
sec-bugs.github.io/ (visited on 20/10/2020).

[14] E. Fong and V. Okun. “Web Application Scanners: Definitions and Func-
tions”. In: 2007 40th Annual Hawaii International Conference on System
Sciences (HICSS’07). 2007, 280b–280b.

[15] Google Gruyere vulnerable site. Oct. 2020. url: https : / / google -

gruyere.appspot.com/ (visited on 20/10/2020).

[16] M. K. Gupta, M. C. Govil and G. Singh. “Static analysis approaches to
detect SQL injection and cross site scripting vulnerabilities in web ap-
plications: A survey”. In: International Conference on Recent Advances
and Innovations in Engineering (ICRAIE-2014). 2014, pp. 1–5.

[17] HCL AppScan. Oct. 2020. url: https://www.hcltechsw.com/products/
appscan (visited on 20/10/2020).

[18] S. Idrissi et al. “Performance evaluation of web application security
scanners for prevention and protection against vulnerabilities”. In: In-
ternational Journal of Applied Engineering Research 12 (Jan. 2017),
pp. 11068–11076.

[19] Indusface Apptrana. Oct. 2020. url: https://www.indusface.com/web-
application-scanning.php (visited on 20/10/2020).

[20] Shrestha J. “Static Program Analysis”. MA thesis. The address of the
publisher: Uppsala University, Sept. 2013. url: http : / / www . diva -

portal.org/smash/get/diva2:651821/FULLTEXT01.pdf (visited on
20/10/2020).

[21] R Krishnan, Margaret Nadworny and Nishil Bharill. “Static Analysis Tools
for Security Checking in Code at Motorola”. In: Ada Letters XXVIII.1
(Apr. 2008), pp. 76–82.

[22] Managed Dynamic Application Security Testing - Synopsis. Oct. 2020.
url: https://www.synopsys.com/software-integrity/application-
security-testing-services/dynamic-analysis-dast.html (visited
on 20/10/2020).

[23] MITRE, Common Weakness Enumeration. Oct. 2020. url: https://
cwe.mitre.org/data/index.html (visited on 18/10/2020).

[24] T. Muske and U. P. Khedker. “Efficient Elimination of False Positives
using Static Analysis”. In: 2015 IEEE 26th International Symposium on
Software Reliability Engineering (ISSRE). IEEE, 2015.

[25] OWASP - The Open Web Application Security Project. Oct. 2020. url:
https://owasp.org/ (visited on 20/10/2020).

https://searchapparchitecture.techtarget.com/definition/dynamic-application-security-testing-DAST
https://searchapparchitecture.techtarget.com/definition/dynamic-application-security-testing-DAST
https://searchapparchitecture.techtarget.com/definition/dynamic-application-security-testing-DAST
https://find-sec-bugs.github.io/
https://find-sec-bugs.github.io/
https://google-gruyere.appspot.com/
https://google-gruyere.appspot.com/
https://www.hcltechsw.com/products/appscan
https://www.hcltechsw.com/products/appscan
https://www.indusface.com/web-application-scanning.php
https://www.indusface.com/web-application-scanning.php
http://www.diva-portal.org/smash/get/diva2:651821/FULLTEXT01.pdf
http://www.diva-portal.org/smash/get/diva2:651821/FULLTEXT01.pdf
https://www.synopsys.com/software-integrity/application-security-testing-services/dynamic-analysis-dast.html
https://www.synopsys.com/software-integrity/application-security-testing-services/dynamic-analysis-dast.html
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/data/index.html
https://owasp.org/

Bibliography 51

[26] OWASP Benchmark - Hdiv Detection (IAST). Oct. 2020. url: https:
//hdivsecurity.com/owasp-benchmark (visited on 20/10/2020).

[27] OWASP dependency check project. Oct. 2020. url: https://owasp.
org/www-project-dependency-check/ (visited on 20/10/2020).

[28] OWASP Dependency Track. Oct. 2020. url: https://dependencytrack.
org/ (visited on 20/10/2020).

[29] OWASP Zed Attack Proxy (ZAP). Oct. 2020. url: https://www.zaproxy.
org/ (visited on 20/10/2020).

[30] I. Pashchenko, S. Dashevskyi and F. Massacci. “Delta-Bench: Differ-
ential Benchmark for Static Analysis Security Testing Tools”. In: 2017
ACM/IEEE International Symposium on Empirical Software Engineer-
ing and Measurement (ESEM). Vol. 1. Toronto, Canada, 2017, pp. 163–
168.

[31] Z. P. Reynolds et al. “Identifying and Documenting False Positive Pat-
terns Generated by Static Code Analysis Tools”. In: 2017 IEEE/ACM
4th International Workshop on Software Engineering Research and In-
dustrial Practice (SER IP). 2017, pp. 55–61.

[32] RIPS Scores a Perfect 100% at OWASP Benchmark. Oct. 2020. url:
https://blog.ripstech.com/2020/owasp- benchmark/ (visited on
20/10/2020).

[33] Rebecca Russell et al. “Automated Vulnerability Detection in Source
Code Using Deep Representation Learning”. In: 2018 17th IEEE Inter-
national Conference on Machine Learning and Applications (ICMLA).
Dec. 2018, pp. 757–762.

[34] SAST vs DAST: What is the right choice for application security testing?
Oct. 2020. url: https://codedx.com/blog/sast- vs- dast- tools/
(visited on 20/10/2020).

[35] SAST vs SCA: It’s like comparing apples and oranges. Oct. 2020. url:
https://resources.whitesourcesoftware.com/blog-whitesource/

sast-vs-sca (visited on 18/10/2020).

[36] Security Tools Benchmarking - A blog dedicated to aiding pen-testers
in choosing tools that make a difference. Oct. 2020. url: http : / /

sectooladdict.blogspot.com/2017/05/dast-vs-sast-vs-iast-

modern-ssldc-best.html (visited on 20/10/2020).

[37] Software Assurance Metrics And Tool Evaluation (SAMATE) - Software
Assurance Reference Dataset Project (SARD). Oct. 2020. url: https:
//samate.nist.gov/SRD/testsuite.php (visited on 20/10/2020).

[38] SonarQube. Oct. 2020. url: https://www.sonarqube.org/ (visited on
20/10/2020).

[39] SpotBugs. Oct. 2020. url: https://spotbugs.github.io/ (visited on
20/10/2020).

https://hdivsecurity.com/owasp-benchmark
https://hdivsecurity.com/owasp-benchmark
https://owasp.org/www-project-dependency-check/
https://owasp.org/www-project-dependency-check/
https://dependencytrack.org/
https://dependencytrack.org/
https://www.zaproxy.org/
https://www.zaproxy.org/
https://blog.ripstech.com/2020/owasp-benchmark/
https://codedx.com/blog/sast-vs-dast-tools/
https://resources.whitesourcesoftware.com/blog-whitesource/sast-vs-sca
https://resources.whitesourcesoftware.com/blog-whitesource/sast-vs-sca
http://sectooladdict.blogspot.com/2017/05/dast-vs-sast-vs-iast-modern-ssldc-best.html
http://sectooladdict.blogspot.com/2017/05/dast-vs-sast-vs-iast-modern-ssldc-best.html
http://sectooladdict.blogspot.com/2017/05/dast-vs-sast-vs-iast-modern-ssldc-best.html
https://samate.nist.gov/SRD/testsuite.php
https://samate.nist.gov/SRD/testsuite.php
https://www.sonarqube.org/
https://spotbugs.github.io/

Bibliography 52

[40] Fausto Spoto. “The Julia Static Analyzer for Java”. In: Static Analysis.
Ed. by Xavier Rival. Berlin, Heidelberg: Springer Berlin Heidelberg,
2016, pp. 39–57.

[41] Subgraph Vega. Oct. 2020. url: https://subgraph.com/vega/index.
en.html (visited on 20/10/2020).

[42] Subgraph Vega - Github Pull Requests. Oct. 2020. url: https://github.
com/subgraph/Vega/pulls (visited on 20/10/2020).

[43] Synopsis Coverity. Oct. 2020. url: https://www.synopsys.com/software-
integrity/security-testing/static-analysis-sast.html (visited
on 20/10/2020).

[44] The Contrast Assess Cost Advantage - Application Security Testing
Costs Compared. Oct. 2020. url: https://www.contrastsecurity.
com/hubfs/docs/WPCostAdvantage121916.pdf (visited on 20/10/2020).

[45] The OWASP Benchmark Project. Oct. 2020. url: https://owasp.org/
www-project-benchmark/ (visited on 20/10/2020).

[46] The Web Application Vulnerability Scanner Evaluation Project. Oct.
2020. url: https://code.google.com/archive/p/wavsep/ (visited
on 20/10/2020).

[47] The Web Application Vulnerability Scanner Evaluation Project. Oct.
2020. url: https://github.com/sectooladdict/wavsep (visited on
20/10/2020).

[48] The Web Application Vulnerability Scanner Evaluation Project. Oct.
2020. url: http://sectooladdict.blogspot.com/2017/11/wavsep-
2017-evaluating-dast-against.html (visited on 20/10/2020).

[49] Verifysotf’s CodeSonar. Oct. 2020. url: https://www.verifysoft.com/
en_grammatech_codesonar.html (visited on 20/10/2020).

[50] What is DAST? Oct. 2020. url: https : / / www . sqreen . com / web -

application-security/what-is-dast#how-do-dast-tools-work

(visited on 20/10/2020).

[51] What is IAST? Interactive Application Security Testing. Oct. 2020. url:
https://www.veracode.com/security/interactive-application-

security-testing-iast (visited on 20/10/2020).

[52] What is vulnerability scanning, and how does it work? Oct. 2020. url:
https://www.redlegg.com/blog/what-is-vulnerability-scanning-

and-how-does-it-work (visited on 19/10/2020).

[53] Xanitizer. Oct. 2020. url: https : / / www . rigs - it . com / xanitizer/

(visited on 20/10/2020).

[54] Xanitizer News. Oct. 2020. url: https://www.xanitizer.com/news/
(visited on 20/10/2020).

[55] Fabian Yamaguchi. “Pattern-Based Vulnerability Discovery”. PhD thesis.
Georg-August-Universität Göttingen, 2015.

https://subgraph.com/vega/index.en.html
https://subgraph.com/vega/index.en.html
https://github.com/subgraph/Vega/pulls
https://github.com/subgraph/Vega/pulls
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://www.synopsys.com/software-integrity/security-testing/static-analysis-sast.html
https://www.contrastsecurity.com/hubfs/docs/WPCostAdvantage121916.pdf
https://www.contrastsecurity.com/hubfs/docs/WPCostAdvantage121916.pdf
https://owasp.org/www-project-benchmark/
https://owasp.org/www-project-benchmark/
https://code.google.com/archive/p/wavsep/
https://github.com/sectooladdict/wavsep
http://sectooladdict.blogspot.com/2017/11/wavsep-2017-evaluating-dast-against.html
http://sectooladdict.blogspot.com/2017/11/wavsep-2017-evaluating-dast-against.html
https://www.verifysoft.com/en_grammatech_codesonar.html
https://www.verifysoft.com/en_grammatech_codesonar.html
https://www.sqreen.com/web-application-security/what-is-dast#how-do-dast-tools-work
https://www.sqreen.com/web-application-security/what-is-dast#how-do-dast-tools-work
https://www.veracode.com/security/interactive-application-security-testing-iast
https://www.veracode.com/security/interactive-application-security-testing-iast
https://www.redlegg.com/blog/what-is-vulnerability-scanning-and-how-does-it-work
https://www.redlegg.com/blog/what-is-vulnerability-scanning-and-how-does-it-work
https://www.rigs-it.com/xanitizer/
https://www.xanitizer.com/news/

Bibliography 53

[56] ZAP marketplace. Oct. 2020. url: https://www.zaproxy.org/addons/
(visited on 20/10/2020).

https://www.zaproxy.org/addons/

	List of Figures
	Introduction
	Context and motivation
	Objectives
	Methodology
	Planning
	Summary of the obtained product
	Description next chapters of this work

	State of the art
	SAST, DAST, IAST, SCA Overview
	SAST
	SAST tools on the market
	SonarQube
	Coverity
	SpotBugs
	AppScan Source
	CheckMarx

	DAST
	DAST tools on the market
	AppScan Standard
	Managed DAST Synopsys
	OWASP Zed Attack Proxy (ZAP)
	Arachni
	Subgraph Vega

	IAST
	IAST tools on the market
	Contrast Assess
	Synopsys Seeker

	SCA
	SCA tools on the market
	OWASP dependency check
	OWASP Dependency Track
	Synopsys Black Duck
	Snyk

	Table: Summary of tools

	Benchmarks
	OWASP Benchmark
	WAVSEP
	SAMATE
	Other benchmarks

	Software Security Assurance Tools Selection
	Selection criteria
	Organisation's ecosystem
	Selection and exclusion of tools
	SAST selection
	DAST selection
	IAST selection
	SCA selection

	Summary of selection
	Implementation of Quick Wins
	SonarQube
	SpotBugs
	Find Security Bugs

	Conclusions
	Bibliography

