
Universitat Oberta de Catalunya (UOC)

Data Science MSc

MASTER’S THESIS

Area: 3

Analysis of reinforcement learning techniques applied to

honeypot systems

—————————————————————————–

Author: Oriol Navarro Ferrer

Tutor: Blas Torregrossa Garcia

Professor: Ferran Prados Carrasco

—————————————————————————–

Barcelona, January 3, 2021

Copyright

This work is subject to Attribution-NonCommercial-NoDerivatives 4.0 International (CC BY-

NC-ND 4.0).

i

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

ii

Thesis Datasheet

Title: Analysis of reinforcement learning techniques applied to honeypots

Author: Oriol Navarro Ferrer

Tutor: Blas Torregrosa Garcia

Responsible Professor: Ferran Prados Carrasco

Date (mm/aaaa): 01/2020

Program: MSc Data Science

Master’s Thesis area: Area 3, Cybersecurity

Language: English

Keywords Reinforcement learning, honeypot systems, self-adaptive honeypot, threat intelligence, reward functions

iii

iv

”The most beauty aspect of Computer Science, compared to other domains, is that we share

information. This is not as common as it could be, and it will change the World”.

Gerardo Garćıa Peña, RootedCon 2012

v

vi

Acknowledgements

To my family, friends, colleagues and acquaintances who have been and will be a pillar on this

and other endeavours.

vii

viii

Abstract

The study of cybersecurity threats is an increasingly relevant element for public and private

organizations, due to the increasing number of cyber attacks and their impact on the organiza-

tions assets and their reputation. Collecting detailed information that allows to determine how

future attacks will be is key to anticipate the organizations’ defenses. Tactics, techniques and

procedures used by threat actors can be collected using several approaches, one being honeypot

systems. The effectiveness of these attack information collection targets depend significantly on

their ability to present a realistic environment that can lure attackers to reveal their techniques.

This project presents a study of designs and implementations of adaptive honeypots, focused

on the use of reinforcement learning, to reach more realistic interactions between honeypots

and attackers, and an analysis of the existing techniques and performance metrics.

Keywords: Reinforcement learning, honeypot systems, self-adaptive honeypot, threat in-

telligence, reward functions.

ix

x

Contents

Abstract ix

Contents xi

List of Figures xiii

List of Tables 1

1 Introduction 3

1.1 Introduction . 3

1.1.1 Project description . 4

1.1.2 Motivation . 4

1.1.3 Goals . 4

1.1.4 Methodology . 5

1.1.5 Planning . 5

2 State of the Art 7

2.1 State of the Art . 7

2.1.1 Taxonomy of honeypot systems . 7

2.1.2 Types of adaptive honeypots . 8

2.2 Reinforcement learning . 9

2.2.1 SARSA . 10

2.2.2 Q-learning . 10

2.2.3 Deep Q-learning . 11

2.3 Reinforcement learning usage on the analyzed honeypots 11

2.3.1 Heliza . 11

2.3.2 RASSH . 12

2.3.3 RLHPot/HARM . 12

2.3.4 QRASSH/IRASSH . 13

xi

xii CONTENTS

3 Analysis of the impact of reinforcement learning on adaptive honeypots 17

3.1 Analysis of the impact of reinforcement learning on adaptive honeypots 17

3.1.1 Parameterization options on QRASSH/IRASSH 17

3.1.2 Reward function parameterization on IRASSH 18

3.2 Cowrie honeypot data analytics . 19

3.2.1 Cowrie testing environment . 19

3.2.2 Logs format . 19

3.2.3 Analytics . 20

3.3 Metrics and evaluation of adaptive honeypots 27

3.3.1 Development of deployment environment 27

3.3.2 Proposed metrics on honeypots evaluation 28

3.3.3 IRASSH parameterizations from Cowrie analysis 30

3.3.4 Evaluation of the different adaptive honeypot parameterizations 31

4 Conclusions and future lines of work 37

4.1 Conclusions . 37

4.1.1 Limitations . 37

4.1.2 Results . 38

4.2 Future lines of work . 39

4.2.1 Adaptive modification of honeypots configurations 39

4.2.2 Graph analysis on honeypot data . 40

4.2.3 Reward functions additional parameterizations 40

4.2.4 Deployment automation and data analysis 40

5 Annex 1 43

5.1 Code listings . 43

5.1.1 QRASSH/IRASSH honeypot.py . 43

5.1.2 QRASSH/IRASSH nn.py . 45

References 45

List of Figures

1.1 Project planning. 6

2.1 Markov decision process diagram. 9

2.2 Shape of QRASSH/IRASSH neural network. 16

3.1 Kibana Cowrie dashboard on T-Pot. 20

3.2 Treemap of top recorded commands in Cowrie. 22

3.3 Treemap most common session lengths for compound commands on Cowrie. . . 22

3.4 Cowrie session lengths recorded per each day (anomalies removed). 24

3.5 Cowrie download commands recorded per each session and day. 25

3.6 Sample graph from 30 Cowrie commands analysis. 27

3.7 Complete graph from Cowrie commands analysis. 28

3.8 Comparison of command lengths for each session. 32

3.9 Comparison of download commands issued per day averages. 34

3.10 Comparison of total number of download commands issued per day. 35

xiii

xiv LIST OF FIGURES

List of Tables

2.1 Algorithms used on each of the honeypots analyzed. 11

3.1 Top commands recorded by Cowrie by times of appearance. 21

3.2 Download commands recorded in Cowrie. 25

3.3 Cowrie commands with more graph edges. 29

3.4 Most connected commands on each honeypot configuration. 33

2 LIST OF TABLES

Chapter 1

Introduction

1.1 Introduction

Cybersecurity is a growing concern due to the increasing number of attacks suffered by organi-

zations worldwide and the relevance of these events [10]. Both as direct impacts (data leakage,

extortion attacks, etc...), and as potential reputational impact deriving from these attacks.

Preventive measures against cyberattacks generally leverage on cyber threat intelligence:

knowledge on cyber threats and threat actors that can be used to prepare against them, or

mitigate the impact of their actions. A specific component of this knowledge are the attack-

ers’ tactics, techniques and procedures (TTPs) that are developed by threat actors. TTPs

consist of the description of attack techniques and specially-crafted tools that are designed to

access organizations’ assets and perform a desired number of actions. The MITRE ATT&CK

framework defines a standardization of these techniques classification [3].

This knowledge can be attained by several potential sources of information. One common

approach is the usage of simulated environments, isolated from productive systems, which are

prepared to lure attackers and track their activity for analysis purposes. These systems are

known as honeypots. The teams managing these simulated platforms gather the telemetry

created by the attacker’s interactions with the system in order to identify procedures, tools,

and practices in use. These systems commonly provide detailed logs of all attackers inter-

actions, from the establishment of a connection to a register of all the actions performed. A

trained analyst can use this data to gather knowledge on the attackers current TTPs and design

countermeasures and other components to prevent them, or in the worst case, react against

them.

Honeypots are commonly limited in effectiveness by being easily identifiable and prone

to evasion by attackers with a sufficient knowledge level [5]. This last fact results on a lack

of information about potential future attacks, that can leave organizations with insufficient

3

4 Introduction

awareness, prevention and reaction capabilities.

There are different approaches on honeypot design that are able to react on more realistic

ways to attackers’ interactions. Those are classified as adaptive honeypots. Research in artificial

intelligence techniques on honeypot development has been published since before 2010 [19], [1].

Seamus Dowling summarizes a number of projects that achieve different techniques and

goals related to enhancing honeypot systems via reinforcement learning [5]. The papers [5]

and [15] mention the usage of reinforcement learning techniques with specific algorithms and

metrics as rewards. Dowling [5] uses as a success metric the fact that the attacker has a longer

interaction with the honeypot. Pauna [15] prioritizes potential files downloads as an attempt

to obtain malware samples used by attackers.

This information is further analyzed in the chapter ”State of the Art” 2.

1.1.1 Project description

The observations and metrics presented on previous research describe different approaches to

complementary goals. This Master’s Thesis will analyze the data obtained by using different

adaptive honeypot parameterizations and explore potential alternatives, or even improvements,

to the analysis performed on the aforementioned projects.

1.1.2 Motivation

The usage of honeypots and other threat intelligence gathering systems is a relevant asset for

new attack patterns (TTPs) investigation. Strategies to protect organizations’ information

systems leverage this knowledge in order to prepare defenses for those identified threats. Data

science can be applied to this process from various perspectives [16].

An analysis of several publicly available projects, such as Cowrie [12], reveal that those are

normally based on automated responses to attackers actions, and described via policies. Hon-

eypots based on static configurations or policies are limited by the ability of attackers to detect

or even evade them, interrupting the interaction. Knowledge derived from the resulting infor-

mation gathered is therefore limited. Adaptive honeypots improve the number of commands

and information issued by attackers in the system, capturing more complex TTPs [5].

This project will attempt to further study the details of adaptive honeypot gains compared

to non-adaptive systems.

1.1.3 Goals

The main goals for this project are the following:

1.1. Introduction 5

• Analyze the state of the art on data science techniques applied on adaptive honeypots,

focusing on reinforcement learning.

• Study the algorithms and metrics used on reinforcement learning agents, identifying those

components with a higher relevance on the overall results.

• Analyze the captured honeypots logs with data exploration and visualization approaches.

• Study potential improvements on current research in order to obtain honeypot systems

that allow for better knowledge gathering.

The following additional goals will be approached during the project:

• Modify existing projects’ parameterization of reinforcement learning implementations,

aiming for changes on the reward functions outcomes.

• Develop an automated deployment of testing environments for the honeypots analyzed.

1.1.4 Methodology

The project will be based on the following methodology:

• Analysis of papers and documentation referring to reinforcement learning honeypots,

identifying parameterization and metrics in place.

• Analytic approach to modifications on the projects to study behavioural changes, and

even potential improvements.

• Definition of relevant metrics for reward functions evaluation on reinforcement learning

implementations and their impact on attackers interactions.

• Perform an evaluation on the proposed changes.

• Explore data analytics techniques that will be used to represent and visualize the honeypot

captured data

1.1.5 Planning

The planning has been defined with consideration to the project’s goals and methodology, the

thesis preparation and its defense:

6 Introduction

Figure 1.1: Project planning.

Chapter 2

State of the Art

2.1 State of the Art

Adaptive honeypots have been proposed as an improvement to classic honeypots based on

fixed policies, static configuration files and similar approaches. Non-adaptive systems require

manual updates and administrators actions to prepare for new techniques used by attackers

or malicious software for evading them [5], limiting the capture of up-to-date cyber threat

intelligence. This section outlines how new types of honeypots relying on machine learning

or deep learning capabilities fit into classic honeypot taxonomies, and describes their main

objectives and characteristics.

2.1.1 Taxonomy of honeypot systems

A classic honeypot taxonomy is outlined in Seifert’s 2006 paper [17]. This early analysis clas-

sifies honeypots under certain criteria, considering their interaction level, data capture capa-

bilities, containment approach, distribution appearance, communications interface and role in

multi-tiered architectures.

Dowling, on his paper’s conclusions [5] proposes the addition of a new item on the interaction

level class:

• Adaptive: Learns from attack interaction.

This addition to the taxonomy implies a new design paradigm that allows to achieve addi-

tional goals on honeypot development. Honeypots based on static parameterization can collect

TTPs from human or automated attackers that are not prepared for evading them. Adaptive

honeypots can adjust to new evasion techniques, optimizing threat intelligence collection.

The following types of honeypots are classified considering their interaction level:

7

8 State of the Art

• Low interaction honeypots present a simple, sometimes non-functional service, targeting

the collection of basic indicators of compromise (IOCs) that can provide an overview of

IP addresses, usernames and passwords attempted, etc... being used by threat actors.

• High interaction honeypots present a complete operating system that can emulate the

interaction of the attacker with a full-fledged system. They allow the observation of more

complex TTPs. The complexity for developing and configuring these systems is also

higher, and an attacker can test random operating system functionalities to determine if

the system is a honeypot.

• Adaptive honeypots can learn from attacker’s behaviour, luring the attacker to reveal its

TTPs by adapting the responses by learning from previously observed techniques.

2.1.2 Types of adaptive honeypots

Research on adaptive honeypots follows a common goal, obtaining more knowledge on attackers

operations by being able to deceive them on thinking that the honeypot is a real system. This

project focuses on the usage of reinforcement learning algorithms for enhancing interaction with

the potential attackers, and will study several honeypots developed using these techniques.

Wagener [19] presents the use of reinforcement learning in order to increase attackers in-

teractions on the Heliza honeypot. Pauna [13] proposes a similar approach on reinforcement

learning with a more complex honeypot implementation with RASSH. Both of these honey-

pots attempt on improving its interaction with humans by adapting to complex behaviours.

Further research from Adrian Pauna presents an IoT-specific honeypot (IRASSH) [15] which

focuses on collecting malware samples, and is derived from QRASSH, a honeypot that uses

Deep Q-Learning to leverage honeypot interaction [14].

Other research attempts to develop honeypots that can detect automated evasion tools. The

RLHPot [5] implements such techniques, moving away from Heliza and RASSH concepts, and

optimizing its approach to capture data created by automated agents attacking the honeypot.

Seamus Dowling describes more in detail the design of this honeypot [4], also known as HARM

in his PhD dissertation.

As a summary, adaptive honeypots which use reinforcement learning are a set of designs

that include various algorithms and techniques depending on their approach to the problem.

Relevant points in their differences are the usage of different algorithms, and how their reward

functions assign different success metrics in these cases, which will drive the evaluation of

potential attacks to have a more or less significant impact on honeypots optimization.

2.2. Reinforcement learning 9

2.2 Reinforcement learning

As described in [18], reinforcement learning is a machine learning area which studies the learning

from interaction by automated agents. It approaches problems starting with an unlabelled set

of data and decides on actions based on its current knowledge.

The problem, particularly on the algorithms studied in this project, is modelled as a Markov

decision process (MDP). It consists of the following elements:

• Task: An instance of the reinforcement learning problem.

• Reinforcement learning agent: The entity which is acting as a decision-maker for the

problem. Takes actions based on the interaction with the environment.

• Environment: The set of different situations that are presented to the agent, modelled as

a set of states.

• Steps: Discrete time interval in which the agent and the environment interact.

• State: Representation of the environment at a given step received by the agent.

• Action: The agent selects one of the actions available in the state on a given step.

• Reward: Numerical value received by the agent on the next step, which represents the

result from the previous action.

• Policy: Function representing the probability of moving to a given state based on taking

an action. The policy maximizes the cumulative reward obtained.

These elements and their interactions are summarized on figure 2.1, reproduced from [18] .

Figure 2.1: Markov decision process diagram.

In these kind of systems, a process representation through states, actions, transition proba-

bilities and reward, is used. Every certain time period the system’s agents that are representing

10 State of the Art

a specific state must perform a transition through one of the actions available for that state,

and getting to a new state. When executing an action, a reward is assigned to the agent. The

goal for these agents is to get a higher reward over a long-time period by choosing the actions

that will maximize it.

This model suits the honeypots problem, since it can work on an environment that can only

be described by interacting with it. The reinforcement agent has to interact with other agents

(the attackers) that provide the next environment state after an action has been presented to

them.

An additional important element on MDP-described reinforcement learning problems are the

Q-values. They represent the state-action values, which are the coupling of the state s and the

action a, which result on the state s′. An MDP-modelled problem will aim for the optimization

of these values for choosing the best possible outcome based on its current knowledge.

2.2.1 SARSA

Some of the honeypots analyzed during this project implement a State, Action, Reward, State,

Action (SARSA) algorithm. It defines the following function for updating Q-values [2]:

Q(st, at) ← Q(st, at) + α[rt+1 + γQ(st+1, at+1)−Q(st, at)]

The function for updating Q-values depends on the current state of the agent, the action

that the agent chooses, the reward for choosing this action, the new state after the action and

the next action the agent chooses in the new state. The agent updates the policy (it’s an

on-policy algorithm) after the actions are taken. The Q-values represent the possible reward

that will be received in the next step for taking the action a in state s plus the future one that

will be received from the next interaction [18].

2.2.2 Q-learning

Q-learning is an algorithm which is similar to SARSA, but which always applies a greedy policy.

It will evaluate the maximum values obtained, the best action [18]. Q-learning implementations

keep a table (Q-table) that contains the values of applying the Q-function to the possible states

and actions, formalized in the following expression:

Q(st, at) ← Q(st, at) + α[rt+1 + γmax
a
Q(st+1, a)−Q(st, at)]

2.3. Reinforcement learning usage on the analyzed honeypots 11

2.2.3 Deep Q-learning

A variant of Q-learning used in some of the analyzed honeypots is Deep Q-learning. Instead of

keeping a Q-table with all possible Q-values, the design of Deep Q-learning approximates the

Q-values with a neural network model [9].

The states are the inputs to the neural network, which computes the possible Q-values of

all possible actions are returned. The algorithm will then choose the maximum value, that

corresponds to the maximum reward [11].

2.3 Reinforcement learning usage on the analyzed hon-

eypots

The projects currently analyzed include the following reinforcement learning algorithms on their

designs (table 2.1):

Project RL Algorithm
Heliza SARSA
RASSH SARSA
RLHPot/HARM SARSA/Q-learning
IRASSH Deep Q-learning
QRASSH Deep Q-learning

Table 2.1: Algorithms used on each of the honeypots analyzed.

The majority of projects under analysis stem from the lines of research started with Heliza

and RASSH, and are therefore using an evolved version of a similar reinforcement learning

agent based on SARSA, modifying other honeypot aspects and also their reward functions.

The use of neural networks is a promising direction for new research, as outlined by Pauna [15].

The details of the implementation of each of the honeypots analyzed in this project will be

extended on the upcoming sections.

2.3.1 Heliza

Heliza creators presented a new paradigm in 2010 for the application of reinforcement learning

to adaptive honeypots [19]. The problems are modelled as a Markov Decision Process using

the SARSA algorithm.

Basically, the system intercepts the commands issued by the attacker and decides which is

the best action to be applied in order to maximize the future reward, derived from the scores

assigned to each command.

12 State of the Art

This paper introduces how the problem is approached, which has been followed by other

research cited in this project:

• Environment: Corresponds to the attackers connecting to the honeypot.

• States: Each of the commands that can be issued by an attacker plus the honeypot

states. ”Insult” (the honeypot has answered to the attacker with an insult), ”custom”

(the attacker issues a custom command) or ”empty” (the attacker types a enter keystroke

with no command).

• Actions: Allows, blocks, substitute the command or insult the attacker. The latter action

attempts to perform a reverse Turing Test to determine if the attacker is an automated

tool or a human.

• Rewards: Heliza has two different reward sets. Each of the commands recognized by

the honeypot has a score assigned, depending on the goals (there is a policy for keeping

the attackers as long as possible to collect more complex intelligence, and a policy for

prioritizing custom tools downloads by the attackers).

• The state-agent function works with an ε-greedy method.

2.3.2 RASSH

The paper on RASSH [13], by A. Pauna and I. Bica, follows the research presented by G.

Wagener, R. State, A. Dulaunoy and T. Engeland on Heliza. RASSH focuses on a new im-

plementation on Python as a fork of Kippo (a classic non-adaptive honeypot that has been

succeeded by Cowrie). While its implementation is new (based on Pybrain), the reinforcement

learning design and application have been evolved from Heliza’s.

It uses the SARSA algorithm, also with an ε-greedy method, and implements a new action

”delay” (it delays the execution of the commands issued by the attacker). It also changes the

”substitute command” action for a ”fake command” one, which provides a fake output to the

attacker.

The results stated on the paper confirm that the use of standard Python libraries makes for

a more scalable and extensible honeypot compared to Heliza, while achieving similar results on

the same data set.

2.3.3 RLHPot/HARM

Seamus Dowling, Michael Schukat and Enda Barrett studied common honeypot evasion mech-

anisms [5], and summarized previous research on adaptive honeypots. They presented a new

2.3. Reinforcement learning usage on the analyzed honeypots 13

implementation based on Cowrie, which is named RLHpot. In Dowling’s PhD dissertation [4]

this honeypot is named as HARM.

The aim of RLHpot is to increase command transitions to overcome honeypot detection

techniques. It is based on the RASSH framework, although its performance is better as iden-

tified on Dowling’s dissertation. It also uses SARSA, but the code can be easily modified for

switching to Q-learning.

RLHpot distinguishes among different categories of commands (native GNU/Linux com-

mands, custom attack commands, compound commands, unknown commands and others). A

significant difference is a reduces set of actions, ”allow”, ”block” and ”substitute command”.

This reduced action set allows for a faster convergence.

2.3.4 QRASSH/IRASSH

QRASSH was presented on [15]. It uses the RASSH framework and keeps its action set, but it

differs from previous research implementing a Deep Q-learning algorithm.

QRASSH is written as an extension to Cowrie. This consists on a substantial modification

of this honeypot in order to perform additional actions whenever a command is received. This

extension adds several components to the base Cowrie project. It implements a reinforcement

learning agent and the supporting modules around it. The components which are specifically

relevant for this project are:

• src/irassh/shell/honeypot.py: This modified file for the QRASSH/IRASSH honeypots

overrides the default Cowrie behaviour and calls the proxy component. It instantiates

the proxy element, which will intercept the commands issued to the honeypot and return

which action to take. The honeypot.py component will either execute the action or return

the defined messages according to the proxy’s decision.

The code listing on Annex 1 5.1.1 contains the instantiations of the proxy component,

the honeypot call to proxy to determine which action to take:

actionValid = validator.validate(raw_cmd , self.protocol.clientIP)

And the execution of the command is valid.

if pp and actionValid:

self.protocol.call_command(pp , cmdclass , *cmd_array[0][’rargs’])

If the resulting action doesn’t allow the command execution, the class StdOutStdErrEm-

ulationProtocol is invoked, which implements an interface to return different errors to the

attacker interacting with the honeypot.

14 State of the Art

StdOutStdErrEmulationProtocol(self.protocol , cmdclass ,

cmd[’rargs’], None , None)

• src/irassh/actions/proxy.py: Corresponds to the element that selects which of the actions

will be taken by the reinforcement learning agent. It instantiates this agent and interacts

with it on each intercepted command. It also implements the different responses that will

be given to honeypot.py for each possible decision by the learning agent. The different

actions have their own implementation. While ”allow” and ”delay” permit the execution

of the command intercepted, the rest of actions return different error messages.

A sample of one of these actions (”allow”) can be found on the following listing. The class

attribute modifier setPassed(True) will instruct the honeypot.py component to execute

the actual command:

class AllowAction(Action):

def process(self):

self.setPassed(True)

def getActionName(self):

return "Allow"

def getColor(self):

return "32"

• src/irassh/rl/learning.py: Implements the q learner class, which is the abstraction for

the reinforcement learning agent, and contains most of its parameterization, including

the reward function parameters.

The function that chooses actions first calculates a random float between 0 and 1, if the

result is smaller than the configured ε or the training process is shorter than a configured

time-frame, a random action will be chosen. Otherwise, the neural network will be in-

stantiated, returning a set of Q-values for each action. The maximum value will be the

action performed by the honeypot as a response to the attacker’s issued command.

def choose_action_and_train(self , state):

if len(state.shape) == 1:

state = np.expand_dims(state , axis=0)

self.t += 1

self.hacker_cmds += 1

if random.random () < self.epsilon or self.t < self.observe:

action = np.random.randint(0, self.number_of_actions)

2.3. Reinforcement learning usage on the analyzed honeypots 15

else:

qval = self.model.predict(state , batch_size=1)

action = (np.argmax(qval))

self.lastAction = action

return action

• src/irassh/rl/nn.py: Implements the neural network used for this project, as stated in

the original QRASSH paper [15]. The neural network shape is rather simple. It uses one

input layer, two hidden layers and an output layer, as depicted in figure 2.2.

The neural net function on nn.py implements the neural network, the code listing is

included on Annex 1 5.1.2. After developing a new reward function configuration, the

input layer needs to be adjusted to the number of commands included in the file.

• src/irassh/rl/cmd2number reward.p: Contains the reward function scores in Pickle for-

mat. Further detail on this file format is provided in section 3.1.1, which details the

reward function parameterizations on QRASSH/IRASSH.

IRASSH further develops this concept by adding a manual expert policy, which allows for a

more convenient way of creating Pickle files with reward values. Other than that, the functional

level is similar to QRASSH.

16 State of the Art

Figure 2.2: Shape of QRASSH/IRASSH neural network.

Chapter 3

Analysis of the impact of reinforcement

learning on adaptive honeypots

3.1 Analysis of the impact of reinforcement learning on

adaptive honeypots

Both QRASSH and IRASSH are an extension of the original Cowrie Honeypot (an SSH non-

adaptive medium-interaction honeypot) that include a Deep Q-Learning reinforcement learning

agent.

This chapter will describe with more detail the impact of reinforcement learning on the

honeypot IRASSH comparing the attackers behaviours registered to the ones collected by an

also deployed Cowrie instance. IRASSH has been used since it was implemented using newer li-

braries and functionalities than QRASSH. When not using the additional features that IRASSH

introduces, its functional level is equivalent to QRASSH.

The study will apply data analytics and visualization techniques in order to obtain knowl-

edge on the effect of modifications to the reinforcement learning algorithm parameterization.

The results of this analysis have been used as an input for reward functions targeting several

knowledge gathering purposes identified in previous research, as well as a case that has been de-

veloped by analyzing attackers behaviours as graph sequences. The results have been compared

using specific metrics on section 3.3.

3.1.1 Parameterization options on QRASSH/IRASSH

The aim of adaptive honeypots, as detailed in chapter 2, is to apply a more realistic interaction

between the attacker and the honeypot based on different possible actions implemented on the

honeypot considering the attackers behaviours.

17

18 Analysis of the impact of reinforcement learning on adaptive honeypots

Both RASSH and QRASSH apply a number of reactions to any command issued by the

attacker. The honeypots will either ”allow”, ”block”, ”delay”, ”answer with fake information”

or ”insult” (send a message to the attacker to identify if it’s an automated agent or a human

interacting with the honeypot) as an output from the reinforcement learning agent decision.

Additionally, IRASSH supports the configuration of expert policies. It assists the honeypot

administrator by recording specific events in a lab environment and creating a Pickle config-

uration file that will contain reward function scores tailored for the desired behaviour. This

configuration can also be created manually by crafting a Pickle file, albeit this IRASSH func-

tionality is more convenient. However, this feature is not currently working on the last publicly

available version of IRASSH. During this project, files have been created manually, using some

additional Python scripts to encode and decode Pickle files.

3.1.2 Reward function parameterization on IRASSH

In QRASSH/IRASSH the reward function scores are numeric values assigned to each kind

of command that is received on the honeypot (including the unknown ones). The reinforce-

ment learning agent will read the current command issued by the attacker and process the

best action-state value considering these scores. This enables one of the goals of this project,

which is analyzing the behaviours presented by attackers on a non-adaptive honeypot and try-

ing to achieve configurations that will help prioritize the gathering of knowledge on specific

cyberattacks.

The modification of the reward function values can be performed by modifying the file

src/irassh/rl/cmd2number reward.p.

The following example contains a sample of the policy in text format, which is then trans-

formed to a Pickle file with the src/bin/lines2pickle.py file. A decode Python program has been

created for this project in order to analyze the default included Pickle files (src/bin/decode-

pickle.py)

{
"unknown": [0, 0],

"mkdir": [1, 200],

"wget": [2, 500],

"uname": [3, 0],

"nc": [4, 500]

}

3.2. Cowrie honeypot data analytics 19

3.2 Cowrie honeypot data analytics

Cowrie, as a medium-interaction honeypot without reinforcement learning, just presents the at-

tackers connecting to it with a standard GNU/Linux bash interface. It intercepts the commands

that the attacker issues and substitutes them for controlled environment implementations. The

purpose is leading the attacker to think that he performed an action on the system, but the

honeypot keeps him in its sandbox.

Since Cowrie is a traditional non-adaptive honeypot, it has been a useful benchmark which

the adaptive-honeypot captured data can be compared to.

3.2.1 Cowrie testing environment

The deployment of Cowrie has been performed using the open-source project T-Pot (developed

by Deutsche Telekom employees [8]). It includes a number of honeypot systems running on

Docker containers, Cowrie being the most interesting for this project, since it presents an

SSH (and Telnet) interface to a sandboxed GNU/Linux system, which has been forked in the

adaptive honeypot analyzed projects. The Cowrie honeypot using T-Pot has been deployed on

an Amazon Web Services instance running for approximately two months.

The logs have not been continuously recorded for several days due to instability issues on

the Cowrie deployment. Since Cowrie is not modifying its behaviour due to the previously

recorded events, this did not affect the relevance of the collected data.

Figure 3.1 shows the Kibana dashboard for the tested environment.

3.2.2 Logs format

Cowrie and its derivatives (including QRASSH/IRASSH) use the following log format in json:

{"eventid":"cowrie.command.input","input":"free -m | grep Mem |

awk ’{print $2 ,$3, $4, $5, $6, $7} ’","message":"CMD: free -m

| grep Mem | awk ’{print $2 ,$3, $4, $5, $6, $7} ’","sensor":"1
cb98149b5ab","timestamp":"2020-10-21T17:39:08.951656Z","src_ip

":"134.73.5.5","session":"7c25724b1616"}

The eventid field identifies the type of event that is recorded in Cowrie. Those include

the establishment of a connection, login attempts (and its results), and more interestingly the

category cowrie.command.input that contains the recorded commands issued by the attacker.

In this event type, the input field contains the actual commands as typed by the attacker. In the

previous listing, the commands shown are multiple, using pipes for the chain of commands to be

executed. This adds a layer of complexity to log parsing, since each of these command chains

20 Analysis of the impact of reinforcement learning on adaptive honeypots

Figure 3.1: Kibana Cowrie dashboard on T-Pot.

are processed by the IRASSH honeypot as independent commands. Different analysis have

been performed considering compound commands, while others have taken into account a list

of expanded command lines resulting on different data rows inputs per each of the commands

in a compound one.

These events have been the primary source of information for the following section analysis.

They have been loaded into Pandas DataFrames to enable several analytics cases.

3.2.3 Analytics

The data captured shows a number of interesting insights from a cyber intelligence perspective.

The analysis have been developed in Jupyter Notebooks using Python Pandas and are available

on the public GitHub repository [6].

The honeypot, at the time of creating this thesis has captured:

• 825010 interactions (the Cowrie honeypot records all the SSH protocol connections, com-

mands issued, login and logoff events, etc...).

• 2895 unique source IP addresses.

• 172606 commands captured in the honeypot. The command lines with more than one

command have been split in order to reflect with more detail the total number of com-

3.2. Cowrie honeypot data analytics 21

mands issued. Without expanding compound command inputs, there have been 80982

command lines captured. 46,8% of the command inputs have been compound ones.

3.2.3.1 Commands logged on the honeypot

A list of the most common received commands has been obtained processing the

cowrie.command.input events, which are presented on table 3.1:

Command Number of times recorded
grep 29663
cat 15386

uname 14826
echo 12632
cd 9957
wc 9866

awk 9863
rm 5037

passwd 4992
ls 4984

head 4982
bash 4956

chmod 4946
free 4929

crontab 4928

Table 3.1: Top commands recorded by Cowrie by times of appearance.

Almost all of the commands shown in the most common list are used to query or search

for information about the honeypot. Some of them are more intrusive, trying to change the

users passwords or attempting to validate the users permissions, which can correspond to an

automated tool or attacker intention of checking the privileges obtained in the honeypot. All

of those commands are commonly used to identify if the system is a honeypot. Figure 3.2

includes a treemap visualization of the top recorded commands in Cowrie ordered by their

absolute number of appearances.

Another relevant point observed on raw Cowrie data has been the presence of compound

commands, that is the presence of more than one single command on the Bash input. For

instance, using ls -l ; cat /etc/passwd would execute the ls -l command, and subsequently cat

/etc/passwd. There are other separators and logical operators that have been considered on

the data preparation. For general analysis, and following how QRASSH and IRASSH work,

compound commands have been expanded as separate rows in a DataFrame, replicating the

rest of information (source IP address, timestamp...etc).

22 Analysis of the impact of reinforcement learning on adaptive honeypots

Figure 3.2: Treemap of top recorded commands in Cowrie.

Figure 3.3: Treemap most common session lengths for compound commands on Cowrie.

The sessions captured on Cowrie average a mean of 31,6 commands, and a median of 33.

Lengths with 33 or 35 commands are vastly more numerous than other compound length

sessions. The following treemap diagram 3.3 shows this data visualization. This fact can be

considered an anomaly on the captured data, but these commands have been manually validated

to discard potential data capture errors. In a deeper analysis, randomly searching two different

sessions with length 33 consist on the commands:

Session: c905b8d75cb4

Session Length: 33

Command sequence:

cat /proc/cpuinfo | grep name | wc -l

3.2. Cowrie honeypot data analytics 23

echo "root:2c6z9x4hmM2S"|chpasswd|bash

cat /proc/cpuinfo | grep name | head -n 1 |

awk ’{print $4,$5,$6,$7,$8,$9;}’

free -m | grep Mem | awk ’{print $2 ,$3, $4, $5, $6, $7}’

cat /proc/cpuinfo | grep model | grep name | wc -l

lscpu | grep Model

cd ~ && rm -rf .ssh && mkdir .ssh && echo "ssh-rsa AAAAB3NzaC1yc2EAAAA

BJQAAAQEArDp4cun2lhr4KUhBGE7VvAcwdli2a8dbnrTOrbMz1+5O73fcBOx8NVbUT0bUa

nUV9tJ2/9p7+vD0EpZ3Tz/+0kX34uAx1RV/75GVOmNx+9EuWOnvNoaJe0QXxziIg9eLBHp

gLMuakb5+BgTFB+rKJAw9u9FSTDengvS8hX1kNFS4Mjux0hJOK8rvcEmPecjdySYMb66ny

lAKGwCEE6WEQHmd1mUPgHwGQ0hWCwsQk13yCGPK5w6hYp5zYkFnvlC8hGmd4Ww+u97k6pf

TGTUbJk14ujvcD9iUKQTTWYYjIIu5PmUux5bsZ0R4WFwdIe6+i6rBLAsPKgAySVKPRK+oR

w== mdrfckr">>.ssh/authorized_keys && chmod -R go= ~/.ssh && cd ~

Session: d53418516393

Session Length: 33

Command sequence: cat /proc/cpuinfo | grep name | wc -l

echo "root:fvKcvtzyPqPv"|chpasswd|bash

cat /proc/cpuinfo | grep name | head -n 1 |

awk ’{print $4,$5,$6,$7,$8,$9;}’

free -m | grep Mem | awk ’{print $2 ,$3, $4, $5, $6, $7}’

cat /proc/cpuinfo | grep model | grep name | wc -l

lscpu | grep Model

cd ~ && rm -rf .ssh && mkdir .ssh && echo "ssh-rsa AAAAB3NzaC1yc2EAAA

ABJQAAAQEArDp4cun2lhr4KUhBGE7VvAcwdli2a8dbnrTOrbMz1+5O73fcBOx8NVbUT0b

UanUV9tJ2/9p7+vD0EpZ3Tz/+0kX34uAx1RV/75GVOmNx+9EuWOnvNoaJe0QXxziIg9eL

BHpgLMuakb5+BgTFB+rKJAw9u9FSTDengvS8hX1kNFS4Mjux0hJOK8rvcEmPecjdySYMb

66nylAKGwCEE6WEQHmd1mUPgHwGQ0hWCwsQk13yCGPK5w6hYp5zYkFnvlC8hGmd4Ww+u9

7k6pfTGTUbJk14ujvcD9iUKQTTWYYjIIu5PmUux5bsZ0R4WFwdIe6+i6rBLAsPKgAySVK

PRK+oRw== mdrfckr">>.ssh/authorized_keys && chmod -R go= ~/.ssh && cd ~

Not only the command sequence is almost identical, but also they share a clear indicator of

the attacker being the same agent: an identical SSH key to be inserted on the SSH authorized

keys file. This situation repeats in the sessions with a length of 33 or 35 commands, with

the same SSH key, and with small differences on the issued commands. Therefore, these noisy

events are real attacks that can be attributed to the same threat actor. Similar events have also

been identified, where a single actor creates a number of sessions that distort other captured

24 Analysis of the impact of reinforcement learning on adaptive honeypots

data in the honeypot. These events have been removed for some of the analysis, particularly

in the sessions length visualizations. However, observing this level of noise can be relevant

from a cybersecurity perspective, it allows to identify a single actor targeting our system with

insistence, which could imply a higher risk of attack. For these reasons, the data has been kept

for some analytics cases.

An important measure for honeypot comparison, also stated in the Heliza paper has been

the length of command sessions (number of commands registered in a session the attacker has

initiated on the honeypot). It is stated on the paper as ”keeping attackers busy”. In order to

reproduce this analysis with the logs recorded by Cowrie, the following visualization has been

created with Pandas time series plots: 3.4. The noisy attackers identified have been removed

to avoid the data anomaly created. This removal, and the malfunction of the deployment for

several days on mid-November 2020, are the cause for the empty spaces in the plot.

Figure 3.4: Cowrie session lengths recorded per each day (anomalies removed).

3.2.3.2 Download commands

Another interesting feature for this project are the number of appearances of download com-

mands. The original Heliza paper [19] calls this activity ”Collecting attacker related infor-

mation”. The data, with the logs used for this project, can be queried for the number of

appearances in the DataFrame (a new DataFrame expanding compound command lines into

3.2. Cowrie honeypot data analytics 25

different rows with one command for each has been used), as shown in table 3.2.

Command Number of times recorded
wget 188
tftp 168
curl 31
scp 7
nc 5

ftpget 5

Table 3.2: Download commands recorded in Cowrie.

It is already visible that they account for a small part of the overall number of commands.

More specifically, the wget command lines recorded constitute the 0.00109% of the total com-

mands recorded. In comparison, grep (the most commonly recorded command) accounts for

0.17185% of the total.

Also, the original author’s papers have stated the value of recording and prioritizing down-

load commands in the honeypots due to their relevance on attackers activity and techniques

analyzed. A visualization has been created to perceive the effectiveness of the honeypot on this

regard by considering the average number of download commands per each attacker session by

days: 3.5.

Figure 3.5: Cowrie download commands recorded per each session and day.

26 Analysis of the impact of reinforcement learning on adaptive honeypots

3.2.3.3 Graph analysis

A different approach to data analysis of honeypot logs was also studied. Using graph analysis

with the Python Networkx library, commands which are related were modelled in a DataFrame.

This data was shaped as a previous and next commands. To have an edge representing this

fact, two commands must belong to the same session and be executed one after the other.

As an example, for a given commands Data Frame:

session name commands

------------ --------

session1 cd home; cat file.txt; wget 1.1.1.1

session2 echo ’a’

session2 rm *

The resulting DataFrame to be modelled as a graph would result on:

previous next

-------- ----

cd cat

cat wget

echo rm

A sample graph from the first 30 commands of Cowrie registered data has the following

shape 3.6:

The graph including the overall data set is not as legible as the sample, due to the huge

number of commands related to each other 3.7:

However, the graph is useful to identify those commands with more edges, which appear

more frequently in attack sequences. Those have been considered the ”most significant com-

mands” because they can be interpreted as the commands that will more often lead to other

commands executions. Using the following Python command, the list on table 3.3 was obtained.

sorted(dict(G.degree ()).items(), key = lambda x : x[1], reverse = True)[:15]

As a conclusion from the analysis, it is visible that the Cowrie honeypot records a small

number of download commands on each session, although most sessions contain at least one

download command. The visualization used shows that the tendency does not significantly

improve or worsen over time.

The goals for the adaptive honeypots configurations developed for this project consider

these insights and try to improve the intelligence gathering of the honeypot by collecting more

valuable information.

3.3. Metrics and evaluation of adaptive honeypots 27

Figure 3.6: Sample graph from 30 Cowrie commands analysis.

3.3 Metrics and evaluation of adaptive honeypots

3.3.1 Development of deployment environment

The IRASSH and QRASSH honeypots have been deployed and analyzed as part of this project.

Since both share their core functionalities, only IRASSH was used for the honeypot metrics

because its a newer development that can be run with newer Python libraries and a more stable

dependencies environment. Both are an extension of the original Cowrie honeypot. This fact

allows to analyze logs with similar techniques, as the logs format is almost equal.

The original project source code was published by their authors. It requires a number of

dependencies (other Python libraries) and additional components to run (a MYSQL database,

operating system components), which require a significant effort for every single deployment.

A docker-compose environment that deploys containers for both the database and the in-

stance running the honeypot, and also automates dependencies management, was developed

as part of this project and released publicly [7]. This approach has been convenient for fast

testing deployment and parameterization and has reduced the number of potential errors due

to manual interaction.

The honeypot instances have been set up on Amazon Web Services servers using Terraform

28 Analysis of the impact of reinforcement learning on adaptive honeypots

Figure 3.7: Complete graph from Cowrie commands analysis.

as an automation tool for the cloud environment creation. All honeypots have been deployed

in the same region on identical Debian GNU/Linux instances to discard potential different

behaviours from the attackers when observing varying systems specifications or different loca-

tions.

3.3.2 Proposed metrics on honeypots evaluation

Measuring the performance of an adaptive honeypot system can combine several aspects. The

metrics listed in this section focus on the limited experiment by its primary use: Setting up

a honeypot and analyzing the data registered with real-world attackers interactions. Alter-

natively, we could focus on the performance of the machine learning models applied to the

adaptive honeypots. This project has focused on the field experiment, allowing to compare

3.3. Metrics and evaluation of adaptive honeypots 29

Command Number of edges
echo 37
cat 32
rm 24
cd 21

wget 21
grep 21

chmod 21
bash 19
sh 18

/bin/busybox 18
ls 13

uname 12
tftp 11
head 11
awk 11

Table 3.3: Cowrie commands with more graph edges.

the results with the benchmark data captured by Cowrie, and observing the behaviour of the

honeypot system in its productive role.

The tests performed can be subject to a lot of variables that can affect the analysis (such

as different attackers interacting with each of the different instances). But the goal of this

analysis is to observe trends and visible improvements on the knowledge collected by placing

the honeypot in a real environment.

Using Cowrie data, the following metrics were identified as enabling an analysis on the

effectiveness of the different parameterizations of the IRASSH adaptive honeypot placed on a

productive environment and registering attackers interactions. The first two are implementa-

tions of Heliza creators proposals [19]), the third being developed using data exploration from

graph analysis as described on section 3.2.3:

• Sessions length: The target of this metric is evaluating the honeypot capability to lure at-

tackers to issue a large number of commands on each session they establish. This number

can identify the possibility that attackers were deceived by the honeypot into thinking

that the system is a real device, and issued a number of commands without closing the

connection. A common attacker behaviour is to immediately leave the honeypot on the

suspicion that the system is a trap. On longer interactions, more data can potentially be

identified about the attackers TTPs. The metric has been evaluated as the mean of total

command counts per session per day.

• Number of download commands: Another target for honeypot evaluation can be the

30 Analysis of the impact of reinforcement learning on adaptive honeypots

number of download commands detected on each session. These commands imply that

the attacker will download a file on the honeypot, which can be especially interesting for

knowledge gathering on attackers tactics, techniques and procedures. The downloaded

scripts or binary files provide a more valuable source of information about threat actors

than standard commands captured. It also confirms that the attacker has not identified

the system as a honeypot, confirming that the adaptive behaviour of the honeypot has

succeeded on deceiving attackers. The metric has been evaluated as the mean of download

command counts per session per day.

• Most significant commands (from graph analysis): By analyzing which are the most

connected commands in a graph-modelled set of interactions, it can determined if the

instance of the honeypot has identified offensive or download commands among the most

connected. This fact can indicate that the attackers registered have performed more direct

attacks to the honeypot instead of interactions which have been launched as a recon effort

and aborted the session when identifying the system as a honeypot. The metric has been

evaluated by obtaining the list of most connected commands and checking if offensive or

download commands are present.

3.3.3 IRASSH parameterizations from Cowrie analysis

The following settings on IRASSH reward function have been developed, both using the default

configuration provided by the honeypot developer, and the ones derived from analyzing Cowrie

data:

• IRASSH default reinforcement learning: This set of parameters (present on the public

GitHub repository for IRASSH and QRASSH) prioritizes download commands (assigning

a 500 score), and also tries to create states on which the sessions use known ”hacking”

commands (assigning a 200 score to each of them).

• Download behaviour configuration: Assigns a higher score for download commands (using

a 500 score per download command and 0 to others).

• Longest sessions configuration: To achieve a configuration with the goal of maximizing

sessions with more commands on each of them, a list of the top commands appearing

on the Cowrie registered data was obtained, and manually transformed into a Pickle file.

The policy assigns a 200 weight to those, and 0 for the rest of commands.

• Most significant commands configuration: The commands seen as most connected in the

Cowrie data analysis have been set on a Pickle configuration file with a score of 500

3.3. Metrics and evaluation of adaptive honeypots 31

each. This configuration shall attract attackers to keep using the most typical commands

on the attacks, probably providing longer sessions and increased numbers of download

commands issued, compared to Cowrie data.

The detailed configurations can be checked on the public repository being used for this

project [7]. The configuration text files (and derived Pickle files) used are stored under the

path irassh/src/irassh/rl/.

3.3.4 Evaluation of the different adaptive honeypot parameteriza-

tions

The honeypots have been evaluated considering the metrics presented in the previous sections.

The observations from data obtained using Cowrie, the IRASSH default configuration, a be-

haviour prioritizing download commands, a behaviour setting that prioritizes long sessions, and

one favouring the most connected nodes from Cowrie analysis; are compared on the following

points.

• Sessions length: Cowrie (with the aforementioned anomalies removed) appears as quite

successful on capturing long sessions. This fact could also be explained by the fact that

some of the actions taken by the IRASSH counterparts (fake information, delays) can

lead the attackers to identify an abnormal situation than what they would expect on

a productive system. Comparing the IRASSH configurations, the behaviour that lures

the attackers into introducing the commands that appear on longer sessions appears to

regularly have a higher command count on each session, although with some exceptions

and not by a far distance. Figure 3.8 shows this comparison. This visualization suf-

fers from the lack of a longer observation period, since a surge on the IRASSH default

parameterization also leads to think it is more optimal, while the trend is later reduced.

• Number of download commands: The download commands have been plotted on two

different graphs: Figure 3.9 presents the daily number of commands mean per session,

whereas figure 3.10 shows the total number of download commands received. The average

graph shows that the IRASSH configuration that prioritizes download commands is having

a larger number of download commands per session than the rest (wget appeared using

this configuration as 0,05938% of the total commands, as opposed to 0.00109% in Cowrie),

despite the longest sessions behaviour configuration having a large number of download

commands too. Observing the total number of commands graph on figure 3.10, it reveals

that this honeypot configuration received more download commands than the rest of

32 Analysis of the impact of reinforcement learning on adaptive honeypots

Figure 3.8: Comparison of command lengths for each session.

3.3. Metrics and evaluation of adaptive honeypots 33

honeypots combined. The most connected configuration also shows a surge on these

commands over the short period it has been running. The configuration includes the wget

and tftp commands.

• Most significant commands: A table summarizing the most connected commands of each

of the configurations is visible on 3.4, which is the result of getting the commands that

have more edges in the graph representation. The commands and command counts are

similar on all the honeypots, but the honeypot configured to capture more download com-

mands registers values for wget and curl that are higher than the other honeypots, as it

could be expected. The longest sessions configuration and the most connected commands

configurations do not show higher number counts as it should, although these honeypots

have been running for a shorter period. These observations are further developed on

chapter 4.

Cowrie
IRASSH
default

IRASSH
download

IRASSH
longest sessions

IRASSH
most connected

echo: 37 chmod: 29 cat: 41 cat: 30 rm: 14
cat: 32 cat: 29 chmod: 36 cd: 26 cat: 11
rm: 24 rm: 28 wget: 34 echo: 21 grep: 11
cd: 21 wget: 25 curl: 29 grep: 20 chmod: 11
wget: 21 cd: 25 rm: 27 rm: 19 wget: 11
grep: 21 uname: 25 uname: 23 chmod: 18 uname: 10
chmod: 21 grep: 23 cd: 21 ls: 17 cd: 10
bash: 19 echo: 21 echo: 20 uname: 15 sh: 9
sh: 18 curl: 21 grep: 20 wget: 15 tftp: 9
/bin/busybox: 18 history: 15 history: 17 sh: 13 history: 8
ls: 13 bash: 15 sh: 14 tftp: 13 perl: 7
uname: 12 ls: 13 perl: 13 passwd: 11 echo: 6
tftp: 11 sh: 13 ls: 12 bash: 11 ls: 6
head: 11 get: 13 tftp: 12 head: 11 ftpget: 6
awk: 11 m: 12 awk: 11 awk: 11 ps: 5

Table 3.4: Most connected commands on each honeypot configuration.

34 Analysis of the impact of reinforcement learning on adaptive honeypots

Figure 3.9: Comparison of download commands issued per day averages.

3.3. Metrics and evaluation of adaptive honeypots 35

Figure 3.10: Comparison of total number of download commands issued per day.

36 Analysis of the impact of reinforcement learning on adaptive honeypots

Chapter 4

Conclusions and future lines of work

4.1 Conclusions

A number of observations and reflections have arised during this project. This section summa-

rizes the most relevant information and outcomes.

4.1.1 Limitations

First and foremost, the results presented on this thesis are limited by the own nature of the

field experiments that have been conducted. The experiments are bound to the nature of the

universe of observations being used: Actual attackers present on the Internet and looking for

misconfigured, vulnerable or unmaintained systems. Despite this fact, the collected data is

relevant from both a data science and cybersecurity point of view. Reinforcement learning

agents based on a Markov Decision Process are adequate for problems where the environment

is unknown and can be only analyzed through interaction with it. The honeypot optimization

problem fits into this category. Honeypots are, by principle, a tool to capture the interactions

with attackers that come across them. Any observation performed on these systems on the

Internet will be affected by the attackers (either human or automated) that can potentially

change their behaviour depending on the honeypot characteristics. Therefore, collected data

can be considered valid in the context of a limited and not deterministic experiment.

An anomaly on the data collected on Cowrie (most sessions have a similar length of com-

mands issued) is not a data collection error, but an event related to cybersecurity. As previously

mentioned, it is possible that a specific actor or group targeted the deployed Cowrie honeypot

more intensively. The data has been explored and the captured data shows identical commands

and other identifiable information related to a single attacker for sessions with specific lengths.

A longer period of observation would substantially improve the relevance of the performed

37

38 Conclusions and future lines of work

experiments. As a future effort to contribute with these experiments, the test honeypots de-

ployed on the context of this project will be kept running and the resulting data will be publicly

shared.

Another important limiting factor on this project development were the issues detected on

the public honeypot projects used for analysis and technical implementations. These projects

included several bugs, and lacked a configured environment. Deployments required some ad-

ditional development and analysis which had not been accounted for in the original planning.

These contributions have been open-sourced for anyone to be able to deploy the projects with

less effort.

4.1.2 Results

The results presented, even considering the aforementioned limitations, provide some trends

that are aligned with the hypothesis of previous research and the goals pursued by this project.

• Adaptive honeypots collect better knowledge (cyber threat intelligence) than traditional

medium-interaction honeypots: During the analysis of different parameterizations of hon-

eypots on chapter 3, IRASSH honeypots configured with specific target reward function

parameters obtained better results than Cowrie and their counterparts with less-specific

configurations, or those aiming for other target behaviours. One exception being the

sessions length metrics, which have been affected by the anomaly of data captured in

Cowrie.

• The studied reinforcement learning honeypots have been analyzed, and relevant config-

urations have been identified and modified to implement the field experiments based on

different policies.

• Honeypot data analytics: A number of analytics cases have been developed in order to

estimate the trends presented by each configuration. Those have permitted a comparison

among different honeypots.

• Deployment environment: A deployment environment has been developed that serves as

an improvement on the convenience of setting up test environments.

4.2. Future lines of work 39

4.2 Future lines of work

4.2.1 Adaptive modification of honeypots configurations

The proposed reinforcement learning honeypots approach the reinforcement learning problem

on a similar fashion. They change the reactions that the honeypots present after each different

command issued to them. The set of actions differs, and also how reward functions assign

different actions based on their parameters.

However, further action sets could be considered. For instance, how the system is presented

could altered and learnt over time. The states of the honeypot, instead of representing com-

mands received, could represent different configurations applied to the system and accessed by

the attackers. A small list of examples would be:

• System name: The honeypot name is now fixed as a static string. On production IT

systems the name can represent the role of the system (for instance, FWPN01 could be

guessed as a firewall, from the first two characters). Furthermore, home Internet routers

can have names that allow for guessing the provider that packaged it to the customer.

Modifying this system name to a set of different possible strings when the attacker issues

the uname command could lead to different attacks being issued.

• Technical specifications: The CPU type and their number, architecture, amount of mem-

ory, etc... can lead an attacker to guess a system role or assume more compute capability

by the honeypot system. Returning fake information on response to commands that query

this information and learnt over time as providing better rewards.

• Commands available: Some tools available on the system could extend some sessions that

are aborted when the attacker detects their absence. Providing different information on

commands listing or execution could help collect more knowledge.

• Users configured on the honeypot: All RASSH derivatives include a user named ”Richard”

by default. Deploying the honeypot with the default configuration leads to an easy

identification by attackers. Using a dynamic list of configured users could difficult the

honeypot detection.

The states could be grouped into several system roles (generic server - GS, home router - HR,

industrial firewall - IF, etc...) that would pack these features in a grouped basis. Furthermore,

the new state set including this parameter changes in addition to Linux commands and Other

commands, as the RASSH-based honeypots currently do. The states would be defined as:

S = {L ∪O ∪GS ∪HR ∪ IF}

40 Conclusions and future lines of work

Alternatively, this type of honeypot could have a state set with only these parameterization

changes:

S = {GS ∪HR ∪ IF}

.

The viability of implementing these states sets in a new adaptive medium-interaction policy

should be studied further, although this approach is similar to the state sets used in Heliza.

4.2.2 Graph analysis on honeypot data

The usage of graphs for modelling commands issued by attackers presents as a potential source

for getting more knowledge on their attacks, and also to include more reward functions param-

eterizations.

The analysis performed on this project used unweighted edges on non-directed graphs.

Potential improvements on this analysis could include:

• Directed graphs: Using directed graphs provides more knowledge on the attack sequences,

and allow for identifying similar attack techniques, or allow to compare their similarity.

• Weighted edges: More relevant commands could have a higher weight on a transition to

them, or in the transitions that they use. Commands that are previous or lead to known

hacking commands or download commands could be prioritized on reward functions using

this analysis.

4.2.3 Reward functions additional parameterizations

This project consisted on the evaluation of different parameterization sets based on the default

Cowrie honeypot analysis. With the further insights collected on this project these policies

could be improved to consider other types of goals. For instance, studying the commands that

are not implemented on the honeypot invoked frequently by attackers could be presented with

negative scores to discard them.

The opportunities presented by analyzing the honeypot data as graphs can provide more

fine-grained knowledge that can allow for more refined configurations targeting specific types

of attacks.

4.2.4 Deployment automation and data analysis

A number of potential automation features on honeypots deployment could have been developed

to further enable administrators to have an easier, faster and less prone to errors process.

4.2. Future lines of work 41

Configurations change (on the system names, on several static configuration files) could also be

randomized on this step to disguise the honeypot and making it more unique.

The automated deployment system developed in this project included the IRASSH hon-

eypot and its supporting MYSQL database. A plan for automating data collection was also

considered, but time constraints prevented this integration. Additional Docker containers with

a data analytics platform, such as an ELK stack (Elastichsearch, Logstash and Kibana) could

be added to the automated components, and data on the honeypot could be collected by it.

Kibana allows for a number of dashboard analysis to be compared in real-time, easing cyber

intelligence collection or anomalies identification.

42 Conclusions and future lines of work

Chapter 5

Annex 1

5.1 Code listings

5.1.1 QRASSH/IRASSH honeypot.py

lastpp = None

actionValid = None

for index , cmd in reversed(list(enumerate(cmd_array))):

cmdclass = self.protocol.getCommand(cmd[’command ’], environ[’

PATH’] .split(’:’))

if cmdclass:

log command to database

raw_cmd = cmd[’command ’]

rl_state.current_command = raw_cmd

proxy.ActionPersister ().save(self.actionState , raw_cmd)

generate action

actionListener = proxy.ActionListener(self.actionState)

if manual:

generator = proxy.FileActionGenerator ()

elif use_irl:

generator = proxy.IrlActionGenerator ()

else:

generator = proxy.RlActionGenerator ()

actionFactory = proxy.ActionFactory(self.protocol.terminal.

write , actionListener ,

generator)

43

44 Annex 1

validator = proxy.ActionValidator(actionFactory)

actionValid = validator.validate(raw_cmd , self.protocol.

clientIP)

actionName = validator.getActionName ()

actionColor = validator.getActionColor ()

log.msg(eventid=’irassh.command.action.success ’, action=

actionName , input=cmd[

’command ’] + " " + ’ ’

.join(cmd[’rargs ’]),

format=’Command found:

%(input)s’)

if index == len(cmd_array)-1:

lastpp = StdOutStdErrEmulationProtocol(self.protocol ,

cmdclass , cmd[’

rargs’], None ,

None)

pp = lastpp

else:

pp = StdOutStdErrEmulationProtocol(self.protocol ,

cmdclass , cmd[’

rargs’], None ,

lastpp)

lastpp = pp

if self.ttylogEnabled:

ttyAction = ’\033[1;’ + actionColor + ’m’ + actionName.

upper() + ’\033[1;

m\n’

ttylog.ttylog_write(self.protocol.terminal.ttylogFile ,

len(ttyAction),

ttylog.TYPE_OUTPUT

, time.time(),

ttyAction)

else:

log.msg(eventid=’irassh.command.failed ’, input=’ ’.join(cmd2

), format=’Command not

found: %(input)s’)

self.protocol.terminal.write(’bash: {}: command not found\n’

.format(cmd[’command ’]

))

runOrPrompt ()

5.1. Code listings 45

if pp and actionValid:

self.protocol.call_command(pp , cmdclass , *cmd_array[0][’rargs’])

5.1.2 QRASSH/IRASSH nn.py

def neural_net(input_length ,number_of_actions , params , load=’’):

model = Sequential ()

First layer.

model.add(Embedding(250 , 32, input_length=input_length))

if input_length==1:

model.add(Dense(params[0], init=’lecun_uniform ’))

model.add(Activation(’relu’))

else:

model.add(Bidirectional(LSTM(params[0])))

model.add(Dropout(0.2))

Second layer.

model.add(Dense(params[1], init=’lecun_uniform ’))

model.add(Activation(’relu’))

model.add(Dropout(0.2))

Output layer.

model.add(Dense(number_of_actions , init=’lecun_uniform ’))

model.add(Activation(’linear ’))

optimizer = Adam()

model.compile(loss=’mse’, optimizer=optimizer)

if load:

model.load_weights(load)

return model

46 Annex 1

Bibliography

[1] W. Z. Ansiry Zakaria and M. L. Mat Kiah. A Review on Artificial Intelligence Techniques

for Developing Intelligent Honeypot. 2012 8th International Conference on Computing

Technology and Information Management (NCM and ICNIT), 2012.

[2] G. Bonaccorso. Mastering Machine Learning Algorithms - Second Edition. Packt Publish-

ing, 2020.

[3] The MITRE Corporation. MITRE ATT&CK framework, 2020. https://attack.mitre.

org/.

[4] S. Dowling. A new framework for adaptive and agile honeypots. PhD thesis, National

University of Ireland Galway, Ireland, 2020.

[5] S. Dowling, M. Schukat, and E. Barrett. Using Reinforcement Learning to Conceal Hon-

eypot Functionality. ECML PKDD 2018: Machine Learning and Knowledge Discovery in

Databases, 2018.

[6] O. Navarro Ferrer. Honeypot data analytics GitHub public repository, 2020. https://

github.com/n3if/honeypot-data-analytics.

[7] O. Navarro Ferrer (Forked from A. Pauna repository). IRASSH project fork, 2020. https:

//github.com/n3if/irassh.

[8] Deutsche Telekom Security GmbH. T-Pot GitHub page, 2020. https://github.com/

telekom-security/tpotce.

[9] Y. Li. Deep Reinforcement Learning. arXiv.org, 2018.

[10] D. McCandless and T. Evans. World’s Biggest Data Breaches and

Hacks, 2020. https://www.informationisbeautiful.net/visualizations/

worlds-biggest-data-breaches-hacks/.

47

https://attack.mitre.org/
https://attack.mitre.org/
https://github.com/n3if/honeypot-data-analytics
https://github.com/n3if/honeypot-data-analytics
https://github.com/n3if/irassh
https://github.com/n3if/irassh
https://github.com/telekom-security/tpotce
https://github.com/telekom-security/tpotce
https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/
https://www.informationisbeautiful.net/visualizations/worlds-biggest-data-breaches-hacks/

48 BIBLIOGRAPHY

[11] V. Mnih, K. Kavukcuoglu, and D. Silver. Playing Atari with Deep Reinforcement Learning.

NIPS Deep Learning Workshop 2013, 2013.

[12] M. Oosterhof. Cowrie Honeypot, 2020. https://github.com/cowrie/cowrie.

[13] A. Pauna and I. Bica. RASSH Reinforced Adaptive SSH Honeypot. 2014 10th International

Conference on Communications (COMM), 2014.

[14] A. Pauna, I. Bica, F. Pop, and A. Castiglione. On the rewards of self-adaptive IoT honey-

pots. Annals of Telecommunications, 74, 2019.

[15] A. Pauna, A. Iacob, and I. Bica. QRASSH A self-adaptive SSH Honeypot driven by Q-

Learning. 2018 International Conference on Communications (COMM), 2019.

[16] I. H. Sarker, A. S. M. Kayes, S. Badsha, H. Alqahtani, and P. Watters. Cybersecurity data

science: an overview from machine learning perspective. Journal of Big Data, 7(41), 2020.

[17] C. Seifert, I. Welch, and P. Komisarczuk. Taxonomy of honeypots. Citeseer, 2006.

[18] R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. The MIT Press,

2014, 2015.

[19] G. Wagener, R. State, A. Dulaunoy, and T. Engel. Heliza: talking dirty to the attackers.

Journal in Computer Virology, 7, 2010.

https://github.com/cowrie/cowrie

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Introduction
	Project description
	Motivation
	Goals
	Methodology
	Planning

	State of the Art
	State of the Art
	Taxonomy of honeypot systems
	Types of adaptive honeypots

	Reinforcement learning
	SARSA
	Q-learning
	Deep Q-learning

	Reinforcement learning usage on the analyzed honeypots
	Heliza
	RASSH
	RLHPot/HARM
	QRASSH/IRASSH

	Analysis of the impact of reinforcement learning on adaptive honeypots
	Analysis of the impact of reinforcement learning on adaptive honeypots
	Parameterization options on QRASSH/IRASSH
	Reward function parameterization on IRASSH

	Cowrie honeypot data analytics
	Cowrie testing environment
	Logs format
	Analytics

	Metrics and evaluation of adaptive honeypots
	Development of deployment environment
	Proposed metrics on honeypots evaluation
	IRASSH parameterizations from Cowrie analysis
	Evaluation of the different adaptive honeypot parameterizations

	Conclusions and future lines of work
	Conclusions
	Limitations
	Results

	Future lines of work
	Adaptive modification of honeypots configurations
	Graph analysis on honeypot data
	Reward functions additional parameterizations
	Deployment automation and data analysis

	Annex 1
	Code listings
	QRASSH/IRASSH honeypot.py
	QRASSH/IRASSH nn.py

	References

