
Universitat Oberta de Catalunya (UOC)

Máster Universitario en Ciencia de Datos (Data Science)

Master’s Thesis

Area: Cybersecurity

Static PE antimalware evasion

Minimizing detection rate by using Reinforcement Learning

—————————————————————————–

Author: Francisco Javier Gómez Gálvez

Tutor: Blas Torregrosa Garcia

Professor: Ferran Prados Carrasco

—————————————————————————–

Barcelona, January 25, 2021

Copyright

This work is subject to a CC license. 3.0 España de CreativeCommons.

i

https://creativecommons.org/licenses/by-nc-nd/3.0/es/

ii

Master’s Thesis Information

Title: Static PE antimalware evasion by using Reinforcement Learning

Author’s name: Francisco Javier Gómez Gálvez

Consultant’s name: Blas Torregrosa Garćıa

PRA Name: Ferran Prados Carrasco

Delivery Date (mm/aaaa): 01/2020

Course: Data Science

Master’s Thesis’ Area : Data Science + Cybersecurity

Language: English

Keywords: malware, reinforcement learning, AV evasion, deep learning

iii

iv

Dedication

In dedication to my family and those friends who I consider to be part of it.

v

vi

Abstract

Malware detection is a critical capability which is usually deployed in any production system

as a first step to increase the infrastructure security. Due to this widespread security measure,

and with the intention of carrying out the actions for which it has been designed, malware

is constantly evolving in order to evade common detection techniques, ranging from simple

changes aimed to evade signature-based detection to complex variations involving malware

virtualization which are able to evade behavioural-based detection.

In this project, an experiment based on Reinforcement Learning is designed in order to

improve the evasion capabilities of a given self-generated malware sample. Such design is carried

out by defining the set of actions that can be taken in order to evade Static PE detection; an

environment which evaluates the sample; a reward function that allows us to minimize the

detection rate, and an agent which coordinates the entire process.

Tools used in the scope of this project are available for the general public, including those

used for self-generating the samples as well as those used to emulate an environment with

different antimalware solutions.

Keywords: reinforcement learning, malware, evasion, antimalware, deep learning, neural

network

vii

viii

Contents

Abstract vii

1 Introduction 3

1.1 Context . 3

1.2 Motivation . 4

1.3 Objectives . 5

1.4 Project scope . 5

1.5 Hypothesis . 5

1.6 Practical Applications . 6

1.7 Planning . 6

2 State of the art 9

2.1 Previous studies . 9

2.2 Theoretical framework . 10

2.2.1 Introduction to RL . 10

2.2.2 The k-armed bandit . 11

3 Work development 15

3.1 Design . 15

3.1.1 Design plan . 15

3.1.2 Theoretical design . 15

3.2 Implementation . 26

3.2.1 Implementing the environment . 27

3.2.2 Implementing the agent . 32

3.2.3 Data processing . 34

3.3 Results and analysis . 35

3.3.1 Scope and limitations . 35

3.3.2 Main results . 36

3.3.3 Additional results . 39

ix

x CONTENTS

3.3.4 Conclusion . 41

3.3.5 Future lines of work . 42

Appendices 45

A Malware Generation and Manipulation 45

A.1 Metasploit Overview . 45

A.2 The PE format . 46

References 51

List of Figures

1.1 Rise of malicious domains during COVID-19. Source: Krebs On Security 4

3.1 High-level overview of the designed environment 21

3.2 Approximated Rayleigh distribution after 1.000.000 iterations 23

3.3 Feed-forward neural network with 1 hidden layer 25

3.4 High-level overview of the designed Agent . 26

3.5 High-level overview of the system . 27

3.6 Sequence Diagram . 29

3.7 PE File structure . 30

3.8 LIEF Architecture. Source: Quarkslabs . 31

3.9 LIEF inner working for ELF files. Source: Quarkslabs 32

3.10 Implementation stack for the environment . 33

3.11 Agent’s implementation stack . 34

3.12 Data processing overview . 35

3.13 Full system stack overview . 36

3.14 Reward signal for every payload and mutation 37

3.15 Number of antimalware vendors marking the samples as malicious/suspicious . . 38

3.16 Number of antimalware vendors marking the samples by file size 39

3.17 Top 10 of antimalware vendors evaded after 20 iterations (left) and after only 1

iteration (right) . 40

3.18 Total of antimalware vendors evaded after 20 iterations 42

A.1 Overview of MetaSploit Framework . 45

A.2 PE File . 47

xi

xii LIST OF FIGURES

List of Tables

2.1 Fundamental concepts in RL . 11

3.1 Payloads used for the project . 25

3.2 Parameters to be configured . 25

3.3 Setup for testing . 30

3.4 Initial and final number of detections for our payloads. Those marked in bold

have been tested and verified to work properly. 40

3.5 Status of our final mutations . 41

2 LIST OF TABLES

Chapter 1

Introduction

1.1 Context

The COVID-19 pandemic has forced society to rely on computing systems more than ever. In

this sense, a relevant increase in cyberattacks has been observed1 to target users and companies

exploiting COVID-19 related fears to induce them to make mistakes which could lead to a

security breach.

Depending on the attackers’ modus operandi, there are different attack vectors2 that can

be used in order to compromise user endpoints or servers, but eventually the need of dropping

malware or malicious tools in the target’s system becomes clear. Due to the widespread use

of antimalware capabilities in servers and endpoints, attackers tend to minimize the detection

rates of malicious tools thus rendering a number of antimalware solutions useless as a detection

capability. This is why during the last years, the practical application of Data Science3 in

security capabilities has allowed companies and individuals to stand a chance by switching

from a signature-based to an anomaly-based detection strategy.

Unfortunately, as cybersecurity advances, so do the adversaries. There are already a number

of papers showing how an attacker could use Reinforcement Learning in order to prepare

against detection patterns and try to minimize the detection rate for a set of malware samples.

In this document, the feasibility of using Reinforcement Learning to evade Static PE Ma-

chine Learning detection models will be assessed to better understand the current state of the

art from an attacker’s perspective.

1https://www2.deloitte.com/ch/en/pages/risk/articles/covid-19-cyber-crime-working-from-home.html
2Most typical involve phishing or exploitation of a non-patched vulnerability
3Specifically, Machine Learning algoritms

3

4 Introduction

Figure 1.1: Rise of malicious domains during COVID-19. Source: Krebs On Security

1.2 Motivation

As attackers gain knowledge and develop more sophisticated techniques, cybersecurity needs

to improve in order to effectively prevent, detect and respond against a potential attack. In

order to properly defend against an adversary, a cybersecurity expert needs to know how an

attacker’s mind works, what are common TPPs4 and carry out extensive Penetration Testing

or Red Team exercises against the infrastructure to motivate a continuous improvement of the

security landscape.

One of the issues that penetration testers face is the short lifetime of those tools used in an

specific engagement. As a certain backdoor or malicious tool is first used, there is a chance that

it will be reported as suspicious to some antimalware engines, and hence becoming extensively

detected by several vendors hours or days after that.

Given that is possible[4] to carry out a number of operations over a binary file in a way

that functionality is preserved while substantial changes are made to the underlying structure,

4Acronym for Techniques, Procedures an Protocols

1.3. Objectives 5

our motivation will be to find an optimal way to industrialize such process and automate the

generation of a clean sample from a well-known5 sample.

1.3 Objectives

The main objective of this project is to take advantage of some existing Reinforcement Learning

algorithms and try to decrease the detection rate for a known malware by means of modifications

over the binary structure.

Ideally, in the end we should had built a black-box which can be fed with a malware sample

in order to obtain a equally functional malware sample with a lesser detection rate than the

original one.

1.4 Project scope

Due to cost and time constraints inherent to the nature of this project, the following scope

limitations arise:

1. Malware samples will be limited to binary files, as plain-text scripts can be easily obfus-

cated to prevent detection

2. The target operating system will be Microsoft Windows, specifically Windows 10

3. Malware samples will be self-generated by using Kali Linux alongside with the Metasploit

Framework

4. The detection rate will be obtained by making use of antimalware vendors’ public API

endpoints, which usually imposes restrictions in the requests rate.

Additionally, some specific techniques focused on binary modification might end up out

of scope given the complexity of the implementation and they will only be discussed from a

theoretical standpoint.

1.5 Hypothesis

Given that our interests lay in building a black-box system able to lower the detection rate

of a sample, we first need to establish a series of hypothesis that help us to keep our project

focused:

5already detected by a number of antimalware solutions

6 Introduction

1. A sample will be considered malicious in the eyes of a vendor when their specific malware

solution classifies it as something different that “harmless” or “undetected”

2. Binaries will always be be PE32 or PE64 executables

3. As functionality needs to be preserved in every iteration, the actions taken over the sample

will avoid:

• Altering the binary in a way that the operating system is unable to figure out its

structure.

• Altering the execution flow in a way that functionality is damaged

1.6 Practical Applications

Some immediate practical applications arise from the current project:

• Generation of clean samples for Red Team exercises

• Amplification of a given malware dataset, resembling data augmentation techniques

• Support in improving antimalware capabilities by making use of GANs6

1.7 Planning

In order to set an appropriate calendar for the project, the following stages will be defined:

6Generative Adversarial Networks

1
.7

.
P

la
n
n
in

g
7

2020 2021

Sep Oct Nov Dec Jan Feb

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Definition

State of the art

Defining objectives

Analysis

RL Algorithms research

Parameters definition

Implementation

Integration with antimalware engines

Implementation of RL algoritm

Fine-tuning

Conclusions

Analysis of the results

Documentation

8 Introduction

Chapter 2

State of the art

2.1 Previous studies

There are a number of different articles and resources dating from 2017 where machine learning

is used as an useful approach to antimalware evasion. Depending on the knowledge that an

attacker possesses regarding a specific antimalware solution there are different strategies to

increase the evasion rate, ranging from white-box attacks where the antimalware architecture

is well-known and we can try to minimize the gradient function to those in which the attacker

has no knowledge about the antimalware inner workings and aims to lower the detection rate

based on a score or good/bad indicator [2].

Focusing on the black box approach, one of the main requirements is to ensure that a binary

subject to this process keeps its functionality after the modifications that are carried out. In

[2] a set of seemingly innocuous actions are explored:

• Change existing sections names

• Create new unused sections

• Append bytes to the slack space in existing sections

• Append bytes to the overlay

• Break signature (if exists)

• Break header checksum

• Manipulate debug info (if exists)

• Pack/Unpack the file

• Create a new entry point which jumps to the original entry point

• Add an unused function to the import table

9

10 State of the art

It is later in [1] where it is found that even the innocuous functions detailed previously can

randomly break a PE file after several mutations. Looking to prevent that from happening,

a model to test for the functionality of the resulting binaries is proposed in [3], ensuring that

those mutations that cannot be properly executed in a virtual machine are discarded. In this

scenario, it was shown that functional binaries after several mutations were able to decrease

the detection rate by 80%.

Finally, in [4] a deep reinforcement learning model (DWEAF) which automatically chooses

between different actions to minimize the detection rate (thus maximizing the reward) is pro-

posed, improving the evasion rate of several malware samples over other frameworks (Gym-

Malware).

In this project, we will take advantage of the previous studies, looking to lower the de-

tection rate of a malware sample by means of several innocuous modifications while keeping

functionality.

2.2 Theoretical framework

2.2.1 Introduction to RL

Reinforcement learning is defined as an area in of machine learning which focus on maximizing

a reward provided by the environment after an agent takes an specific action.

In simple words, reinforcement learning help us to map certain actions with expected re-

wards, allowing us to choose the best course of action to benefit us in the context of a certain

problem. A reinforcement learning problem has some differentiated elements that need to be

carefully taken into account in any design:

• The agent, which is responsible of taking a specific action to alter the environment and

gather the feedback in order to improve future predictions.

• The environment, which refers to anything that the agent interacts with. The environ-

ment could be seen as the outside world from the point of view of the agent. It is also

the one who provides us feedback and allows us to measure changes and rewards.

• A set of states, which reflects the situation for the environment at a given time.

• A set of actions, often called the action space, which comprises the different changes

that can be carried out over the environment.

• A policy, which defines how the agent should behave at a certain moment. This is the

mapping between the states and actions, and can be seen as the core of the agent, enough

to define behaviour and next actions to be taken.

2.2. Theoretical framework 11

• A reward signal, which is a value returned by the environment after an specific action

has been taken and the environment has been altered. This reward signal would reflect

how the environment perceives that specific action.

• A value function, which allow us to keep track of the overall reward for each one of the

actions. This provide us with valuable information about the long run, allowing us to

understand how expected rewards change over time or epochs and allowing us to have a

better insight into the process.

It is equally interesting to talk about the Markov property, which states that a game

or problem is a MDP1 in case that we have enough information to play or proceed by only

knowing our current state, without having information about previous states.

A formal approach for the aforementioned concepts, presented in [7] and [9] is:

Concept Description
π, s→ Pr(A|s) A policy π is a mapping from states to the probabilistically

best actions for those states
π∗ = argmax {E(R|π)} An optimal policy π∗ is such that produces the optimal reward

based on our knowledge of the expected rewards for a set of
policies.

Vπ : s→ E(R|s, π) A value function Vπ is a function that maps a state, s, to
the expected reward in case we follow some policy π from the
state s

Qπ : (s|a)→ E(R|a, s, π) Qπ maps a pair (state,action) to the expected reward

Table 2.1: Fundamental concepts in RL

It is worth noting that there are a subset of RL problems which do not present all the

elements that we described previously. Those are what we could call stateless RL problems, on

which the outcome does not depend on a state, but only on the actions taken and the perceived

reward. In this class, we can find the k-armed bandit, which will be out starting point for this

work.

2.2.2 The k-armed bandit

The k-armed bandit takes its name from the slot machines (known as one-armed bandit), which

can be considered a particular scenario for this problem where k = 1. In this situation, we are

constantly faced with making a choice between a set of k different options. Once the choice has

1Markov decision process

12 State of the art

been made, the environment provides feedback in the form of a reward which can be greater

or lesser. Our objective is to find a way to maximize the reward over a time or steps.

If we denote the action select on time step t as At, and the reward returned in that time

step time as Rt, we can define the expected reward given that action a is selected as:

q∗(a) = E[Rt|At = a] (2.1)

As we cannot know the values associated to an action beforehand, we need to define the

estimated value of action a at time step t as Qt(a) as:

Qt(a) =
Sum of rewards for action a when taken

Number of times that a was taken
. (2.2)

This allows us to average the measured rewards for every action along time, ensuring that

we smooth any anomalies as the number of iterations grows. In this sense, it can be noted that,

by the law of large numbers:

lim
t→+∞

Qt(a) = q∗(a). (2.3)

Given that we have a simple way to approach the expected reward, we can now focus on

selecting a simple policy π that allow us to take the best actions based on the observed rewards.

2.2.2.1 The greedy approach

In this scenario, our policy will be based on always choosing the best action. This greedy action

selection can be written as:

At = argmaxaQt(a) (2.4)

where argmaxa makes reference to the action which throws the greatest average reward over

time. In this scenario, we stick with the best action, so the most likely course of action is:

• The same action is repeated until the end of the algorithm (i.e. we have consumed all

the time steps)

• The action is repeated until the estimated value of that action over time decreases in a

way that it stops being the best action

The initialization of the reward vector needs to be taken carefully in this scenario, as we

might end up in a situation where a reward for an action will never decrease enough to explore

another actions, meaning that only one action from the action set will be chosen in execution

time. For this reason, it is considered that the greedy approach is not necessarily the best in

2.2. Theoretical framework 13

to approach an optimal solution, as it might converge too fast to a non-optimal solution while

not exploring the rest of the choices.

2.2.2.2 The epsilon-greedy approach

As a way to motivate the exploration while keeping a greedy component that allow us to

converge to an optimal solution, we introduce the ε-greedy approach. In this scenario, we

make our model to behave greedily most of the time and choose a random action with an “ε”

probability, ensuring that after some time steps it becomes unlikely to always choose the same

action, so the algorithms forces itself to explore other alternatives.

It is also interesting to keep in mind that the choice of ε will condition our algorithm in

terms of time steps needed to explore every action. It is trivial to show that the probability of

keep choosing the best known action after t time steps drops exponentially:

lim
t→+∞

Pr(At = argmaxaQt(a)) = lim
t→+∞

(1− ε)t = 0 (2.5)

but at the same time, it is also complex to ascertain at what time step would the algorithm

have gone over all the possible choices. This is due to the strong random component that comes

with the ε-greedy model, and at this point we could establish the following analogy:

“Ascertaining after how many time steps we can consider all the “n” choices of an action

set selected at least once is comparable to ascertaining after how many rolls of a n-sided die we

can consider we have obtained every side at least once”

Based on empirical evidence2, the die problem presents a discrete distribution f [n] which

can be approximated by a Rayleigh continuous distribution g(x;σ) as follows:

Pr(a ≤ X ≤ b) =
b∑

n=a

f [n] ≈
∫ b

a

g(x;σ)dx =

∫ b

a

x

σ2
e
−(x−n)2

2σ2 dx. (2.6)

The exact parameters for the location (n) and scale (σ) of the distribution can be obtained

respectively from the size of the action set and from a empirical fit of the distribution by using

specific software (e.g. scipy)

Finally, considering that choosing t ≈ 3.717σ would ensure us a confidence of 99.9% for

obtaining all the sides of the die after t time steps, we can generalise for our ε-greedy approach

and derive that a potential number of time epochs to ensure that are actions are chosen can be

2Check Annex for evidence

14 State of the art

approximated by:

t ≈ 3.717σ

ε
(2.7)

which is due to the algorithm only taking a random choice with a probability of ε, hence

spending the rest of the time slot repeating a only action in a worst-case scenario. Note that

for a totally random scenario (ε = 1) this becomes the original die problem of choosing random

actions until we have gone over all possible options.

2.2.2.3 Contextual bandits

As we have seen in previous sections, the k-armed bandit problem is a basic example of rein-

forcement learning where actions are taken based on the reward provided by the environment.

In this analogy our agent would be the player, the environment would be the slot machine, and

our policy would be strategy we choose to take the best action (greedy or ε-greedy).

This classic problem is missing one of the fundamental elements that is usually present in

any reinforcement learning problem: the state. The k-armed bandit is known as one state-

less problem within the reinforcement learning field, as it does not need any kind of state or

transition between states.

Contextual Bandits is a stateful version of the classic k-armed bandit, were there are dif-

ferent signals coming from the environment that allow us to search for a better policy by the

association of signals to actions. This is also called an associative task search, as there is a

trial-and-error learning in order to find the best action, and there is an association of those

actions with situations in which they are the best possible choice.

The contextual bandits only lacks a proper policy able to map states with actions to be con-

sidered a full RL problem. Designing and implementing such approach will be the cornerstone

of this project.

Chapter 3

Work development

3.1 Design

3.1.1 Design plan

As has been stated in previous sections, a number of elements need to be defined in the scope

of our project. As our objective is to build a black-box system in which malware will be

automatically modified based on RL techniques, we can begin to materialize such elements in

a more specific way:

• The agent will be in charge of orchestrating the changes in the environment, including

new samples generation and modification over existing malware samples.

• The action space will be defined by a set of actions that effectively modifies the binary

while preserving its functionality.

• The environment needs to be a set of antimalware engines with the ability to classify

the sample in, at least, detected or undetected for every antimalware engine. The state

of the environment in a specific time step will be the action taken for that time step.

• The reward provided by the environment will be defined in a way that an undetected

result makes the reward higher, and a detected result will make the reward lower.

• The policy will be chosen based on feasibility given the design calculations. The greedy,

ε-greedy and deep learning approaches will be studied in the design phase.

The specifics of every element will be designed in the next section

3.1.2 Theoretical design

In order to meet the project timeline in an effective and efficient way, we will try to discard any

unfeasible implementation in the design phase, ensuring that we reach a final implementation

in the shortest time possible.

15

16 Work development

At this point, our aim will be to build up the foundations for our RL antimalware evasion

project by focusing on the different elements

3.1.2.1 The environment

The definition of the environment is the cornerstone of the entire project, as it will be our

“playground” around what the different actors in the RL problem will revolve.

Defining or choosing the right environment is inherently linked to tied to our main objective.

The following are some valid environments ideas in an antimalware evasion project:

• A known antimalware algorithm that, in presence of a sample, provides us with a

feedback that could range from a simple classification in terms of malicious or benign to a

more complex risk scoring (white box approach, focused on evading a specific algorithm)

(Option 1)

• A known antimalware product that, in presence of a sample, provides us with a classifi-

cation between malicious or benign for such sample(black box approach, aimed at evading

a specific vendor) (Option 2)

• A series of different atimalware products that, in presence of a sample, provides

us with a number of products detecting the sample as malicious or benign (black box

approach, aimed at evading a number of different solutions) (Option 3)

The three aforementioned environments could be built and our RL approach be implemented

to achieve the defined objective. In order to choose our approach, the following constraints need

to be taken into consideration:

1. Antimalware algorithms are usually proprietary, and public ones are usually deprecated.

2. Integration via API with a specific vendor depends on the features available for the

product and the type of subscription (in our case, free), which adds complexity to our

solution.

3. Our solution should work in most cases, and given that we do not have information or

statistics about the relative deployment of different vendors by company typology, we

should focus on evading as many different vendors as we can.

After careful examination of the scenario and the different constraints, we decide to choose

option 3, given that:

• We do not have an interest in an specific algorithm or vendor

• We do not have enough time to test different products

3.1. Design 17

• There are online services which allow for submitting a file and scanning it against a

number of known antimalware solutions

Choosing the sandbox As part of our analysis, the following comparison1 was carried out

between 3 major online scanning solutions:

VirusTotal MetaDefender Jotti’s

Vendors 60+ 30+ 15

Public API Yes Yes No

Distribution Yes Yes Yes

Consistency OK KO OK

The criteria used for the comparison is as follow:

1. Vendors: number of different antimalware engines supported

2. Public API: availability of a free interface for file scanning

3. Distribution: automatic sharing of samples with antimalware vendors

4. Consistency: ability to replicate previous results in a short time-span (before the dis-

tribution takes place) and lack of haphazard errors in experimental tests

From our analysis, VirusTotal seems the most feasible choice in order to have a big number

of different antimalware engines to test against, a mature public API2 and a good response

after several manual tests.

Defining the reward Once we have chosen a specific service, we begin by inspecting the

information provided by VirusTotal in the event of analysing a specific file. The following is a

sample (only showing 1 antimalware for brevity) of a real response received by the API after

uploading a malicious file

1Information gathered from official documentation for each platform
2Documentation available on https://developers.virustotal.com/reference

18 Work development

1 "data": {

2 "attributes": {

3 "date": 1605379112,

4 "results": {

5 "ALYac": {

6 "category": "malicious",

7 "engine_name": "ALYac",

8 "engine_update": "20201114" ,

9 "engine_version": "1.1.1.5" ,

10 "method": "blacklist",

11 "result": "Trojan.CryptZ.Gen"

12 },

13 ...

14 },

15 "stats": {

16 "confirmed -timeout": 0,

17 "failure": 0,

18 "harmless": 0,

19 "malicious": 53,

20 "suspicious": 0,

21 "timeout": 2,

22 "type -unsupported": 4,

23 "undetected": 17

24 },

25 "status": "completed"

26 },

27 "id": "

MjM2MWU2YWM0ZmYxZGFkNGIyZDEzODIwMzI3YTYzMmU6MTYwNTM3OTExMg

==",

28 "type": "analysis"

29 },

30 "meta": {

31 "file_info": {

32 "md5": "2361 e6ac4ff1dad4b2d13820327a632e",

33 "name": "qunmfvn",

34 "sha1": "57955 edcf711a005ca3056e61f2e2a73b09c4502",

35 "sha256": "0fb574ee1237d26c383c482a59f58781609d390985f430

...",

36 "size": 73728

37 }

38 }

Listing 3.1: JSON returned from VirusTotal

There is a fair amount of useful information that can be extracted from the response showed

3.1. Design 19

in listing 3.1:

• An unique identifier for the file (SHA256)

• A summary of the different statuses for the file. In this sense

– A harmless or undetected status will be considered a success from an evasion per-

spective

– A malicious or suspicious status will be considered a failure from an evasion per-

spective

• The detailed information for every antimalware regarding the file, including:

– Classification of the file (malicious, benign, timeout, ...)

– Specific name of the threat

With this information we can define a signal reward function and also have a way to track

changes between different mutations of our sample. This will allow us not only to explore the

reward over time, but to obtain interesting data regarding how different vendors behave when

facing a mutation of a known malware in every step.

We can define our signal reward function for a specific time step as follows:

Rn =

{
nundetected+nharmless

nmalicious+nsuspicious
· 100 if nmalicious + nsuspicious > 0

9999 other case

A quick look at the reward function let us ascertain some things about its behaviour, which

is the expected one for our scenario:

• it returns 0 in the event that the file is classified as malicious or suspicious by every

antimalware

• it returns 9999 in case that the file is classified as harmless or undetected by every anti-

malware

• it increases as the number of successful results (undetected/harmless) increases

• it decreases as the number of unsuccessful results (malicious/suspicious) increases

It is equally important to note that we also need to keep track of the past rewards in order

to weight them properly. The cumulative reward for a given action can be calculated as:

Qn+1 = Qn +
1

n
(Rn −Qn) (3.1)

20 Work development

In our specific case, apart from taking the average reward as shown, later we will make use

of the softmax function in order to translate our cumulative rewards to a probabilities vector

which will give us the likelihood of best action for every action:

Pr {At = a} =
eQt(a)∑k
b=1 e

Qt(b)
= πt(a) (3.2)

Note that, in this scenario, the rewards only are used as a preference function. This is why

they are not rewards any more, but auxiliary values which help our algorithm at balancing the

action selection while looking for the best possible outcome.

Defining the states The different states for this environment can be a complicated concept

to define, as there are several possibilities:

• Defining a binary state of “detected” or “undetected” based on a threshold we define for

the total number of antimalware engines. This threshold would be defined based on a

criteria of how many different antimalware engines we want to evade.

• Defining a binary state of “detected” or “undetected” based on a specific antimalware

engine. We could focus on a well-known vendor and consider that our mutation is good

enough when it evades a specific vendor.

• Defining the state based on the actions taken by the agent. In this situation, the state

becomes dummy information as it is not generated by the environment, but by the agent.

In our scenario, the preference function is already taking into account the detection status,

and as our design is based on gradient bandits we can afford to define the status based on the

actions without the need of defining transition states.

So, our states will be numbered based on the action set that will be defined by the agent.

General overview The following is a high-level diagram of our environment. Rt+1 and St+1

refers respectively to the signal reward and state after the sample has been assessed by the

different antimalware engines, and At is the action that modifies the sample prior examination.

A most detailed diagram will be built in the next sections as we design all the remaining

elements of our project.

3.1.2.2 Designing the agent

In a RL problem, it is said that everything the agent interacts with should be a part of the

environment. In this sense, the agent design will influence our previous environment design, so

the full diagram will experience changes through this document.

3.1. Design 21

Figure 3.1: High-level overview of the designed environment

The following is a list of tasks and constraints to be taken into account:

• The agent should be able to alter the binary in a way that the resulting binary can be

differentiated from the original one

• The agent should not break the functionality of the binary

• The agent should be able to understand the output of the environment (reward and state)

in order to assess the results of taking different actions

• The agent should implement a policy in order to process the feedback from the environ-

ment and improve the decision-making process

In order to accomplish our objective, we will define what actions the agent can take and

how it is going to learn from the environment.

Defining the action space After examination of previous researches[4], we come up with a

list of actions that meet the criteria previously defined, allowing for appreciable alterations3 in

the binary while presumably keeping its functionality.

The following is a list of the actions4 that our agent will be able to carry out over the

environment:

1. Add random bytes at the end of the file.

2. Add random bytes at the end of every section

3The SHA-256 hash of the sample changes after applying the action, making it a virtually different mutation
4Refer to Annex for a detailed explanation of the PE stack

22 Work development

3. Add a new section filled with random bytes. Regarding the section types, those are

randomly chosen from a predefined set: IDATA, BSS, TEXT, TLS , RESOURCE, RE-

LOCATION, UNKNOWN.

4. Rename every section by using random strings

5. Add a known library with a known function name. Both libraries and functions are chosen

from a predefined set.

6. Add a known function to a currently existing library

7. Remove metadata from the file, including debug information, signature, datestamps and

checksum.

There are a number of additional actions5 that will not be considered in the scope of this

work due to the high complexity that its implementation would imply.

Defining the policy Once the action space has been defined, we can theoretically assess the

viability of using different policies in order to improve our action-making mechanism. As our

approach is based on contextual bandits, we will revisit some of the possibilities we explored in

previous sections.

Greedy policy Going after a greedy policy would limit the learning rate of the algorithm

as there is a high chance of it getting stuck in an specific action. In order to reduce the likelihood

of this, we should:

1. Carefully initialise the vector reward. Zeroing it would make the first action taken also

the only action taken, as the average reward would never go under zero in the way it has

been defined. In case we do not have an estimated value for initialising the reward vector,

a redefinition of the signal reward function for considering negative values would help in

a more dynamic action selection.

2. Increase the number of time steps to ensure that we go over all the possible actions

This option is not feasible because even if the predefined actions are harmless and are

not supposed to break the binary functionality, this can actually be broken after undergoing

a number of iterations[1] taking the defined actions. It is difficult to estimate a number of

iterations needed based on the action space length, but we can never ensure that all the action

set will be chosen at least once

5Changing the Original Entry Point (OEP) or encrypting and packing the stub of the payload

3.1. Design 23

Epsilon-Greedy policy In order to improve our learning capabilities, the ε-greedy ap-

proach allows for a random inspection of all actions based on a predefined probability. As we

discussed during the theoretical definition of this policy, we can estimate how many iterations

would be needed to ensure that all actions are taken at least once.

For this scenario, an algorithm simulating a 7-side dice has been coded. This algorithm

virtually rolls a dice until all its sides are shown at least once, and then register the number

of rolls that were needed to reach that situation. Then, the resulting discrete histogram can

be used to generate a density distribution that can be empirically approximate by means of a

continuous Rayleigh distribution.

Figure 3.2: Approximated Rayleigh distribution after 1.000.000 iterations

As it is shown in Figure 3.2, our current real distribution can be approximated6 by taking a

Rayleigh distribution with loc = 5.7362 and σ = 10.248355. If we want to ensure that all sides

of the dice (or all actions in our action set) are chosen at least once with a 99.99% confidence,

we use the rayleigh property to get an estimate for a random choice scenario:

nrandom ≈
3.717

σ
≈ 38 iterations,

and given that our random choices are only taken with a likelihood of ε = 0.3, we can write

6Scipy was used to approximate such parameters

24 Work development

n ≈ nrandom

ε
≈ 127 iterations

which are too many iterations to ensure that our binary does not get corrupted in the

RL process. In summary, we could establish that depending on the ε chosen, we would need

between 38 and 127 iterations to have enough confidence of taking every action at least once,

but it is likely that the binary would break with that number of iterations.

Deep Learning approach It seems that a new approach that would allow our algorithm

to effectively learn while exploring all the possible actions with the fewer number of iterations

is needed. In this sense, we can take advantage of the Deep Learning concepts and try to

build a neural network that automatically improves our decision-making process based on past

rewards.

The strategy will be based on the use of the softmax function to convert our rewards into

a probability vector (as shown in 3.2). This vector can then be used as part of a classification

problem, where the output of this specific neural network would be a vector containing the

probability for every action of being the best one at a determined time step.

Choosing a right architecture is the cornerstone when facing a Deep Learning problem. In

this sense, opting for a FeedForward Neural Network (FNN) seems a plausible option. The

context of our problem will also help us to close our initial design:

• The input layer shall be conformed by the inputs we have. This is our action space, so

our input layer will have the same dimension that out action space (7 neurons)

• The output layer shall be conformed by the different actions and their associated proba-

bilities. In this sense, the output layer shall have the same dimension that the input layer

(7 neurons)

• The number of hidden layers will be kept as 1 given that our problem does not have a big

number of dimensions or a high complexity in terms of data involved for the calculations.

• The number of neurons will be fixed at 100 in order to increase the prediction capabilities

of the network, reduce the probability of falling into a local minimum and increase the

learning rate of the network.

Figure 3.3 shows a generic FNN with 1 hidden layer, similar to what we are defining. In

our scenario, n = 7 and we will choose k = 100.

Generating the malware One of the tasks that our agent will perform is to haphazardly

generate the initial malware samples from a predefined set. In order to simplify our project,

3.1. Design 25

...

...
...

I1

I2

I3

In

H1

Hk

O1

On

Input
layer

Hidden
layer

Output
layer

Figure 3.3: Feed-forward neural network with 1 hidden layer

we will focus on a set of widely used backdoors, shown in Table 3.1, where the variations are

the existing different techniques for executing the same payloads.

Platform Architecture Payload Variations
Windows x86 Meterpreter 30
Windows x64 Meterpreter 12
Windows x86 Shell 11
Windows x64 Shell 4
Windows x86 VncInject 13
Windows x64 VncInject 7
Windows x86 Others 2
Windows x64 Others 2

Table 3.1: Payloads used for the project

Table 3.2 shows the parameters we will use when generating our malware samples.

Parameter Value
Host 127.0.0.1
Port 1234

Table 3.2: Parameters to be configured

These parameters have been chosen to ensure that, in case of accidentally running a sam-

ple outside the isolated environment, its effect are innocuous as it would listen or trigger a

26 Work development

connection on the loopback interface, only locally addressable.

Finally, figures 3.4 and 3.5 show a high-level overview of the agent and the overall picture

when it interacts with the environment.

Figure 3.4: High-level overview of the designed Agent

Note that, as specified in 3.5, at a first moment we carry out a baseline definition. This is

mainly sending the unprocessed sample to the antimalware engine in order to ascertain what

is the detection rate prior to triggering our reinforcement learning process.

Once the foundations for our project have been laid, we can start to build a real implemen-

tation following the theoretical design that has just been defined.

3.2 Implementation

Once we are facing the implementation, some questions arise:

• What programming language is the most adequate for our task?

• What frameworks can be useful given our approach?

• How can we measure the success or failure of our system?

these and other questions are intended to be answered in this implementation phase. We

will split this section between:

1. The implementation of the environment

3.2. Implementation 27

Figure 3.5: High-level overview of the system

2. The implementation of the agent

3. The implementation for the processing of the data gathered during the different iterations

After defining the aforementioned building blocks, we will be able to present conclusions and

results.

As a cross requirement, the programming language that we will be using for the implemen-

tation will be Python due to its simplicity, flexibility and strong support received from the data

science community through its packages and tutorials.

3.2.1 Implementing the environment

The environment is the cornerstone of our implementation, as we need to:

1. Implement an interface to communicate with our antimalware engine, including parsing

the results and reporting back to the agent

28 Work development

2. Implement the actions that the agent can carry out to alter the environment

3. Implement the states and the rewards

3.2.1.1 API Communication

In order to implement the API communication, we will be using the requests package for python.

This will allow for easy communication with HTTP(s) endpoints.

In order to effectively take advantage of the free capabilities of VirusTotal, the following

actions are taken:

1. Create an user account

2. Request a personal API Key

3. Configure a header to use the API Key as a bearer token

4. Set up a request rate limit aligned with VirusTotal policies (i.e. 4 requests per minute)

Figure 3.6 shows the sequence diagram for our API Communication. It is worth noting that

we need to implement a polling mechanisms to continuously check for the completion status of

our analysis task, as we are dealing with a restful API without any kind of callback that allows

for our environment to be notified based on events.

Once the results have been received, they are processed by means of the JSON package and

translated into a Pandas dataframe, from which the following information is specially useful:

• Stats regarding how many antimalwares have detected the sample

• Detection information for the sample for each antimalware engine

• Specific information regarding the sample (size, sha256 hash, ...)

This provides us with valuable context information, as we can not only define the reward

function, but also compare two different outputs from different iterations and map actions with

specific evaded malware engines, correlate the sample size with detection rate, etc. This will

be revisited later in this document.

The implementation of the parameters for our environment will be as follows:

• Our reward function will take the form we designed in 3.1.2.1

• Out state will be the last action carried out over the binary for each iteration

This information will be provided to the agent as a feedback that it can use to learn about

the best course of action.

3.2. Implementation 29

Figure 3.6: Sequence Diagram

3.2.1.2 Binary modifications

As has been stated in the design phase, we need to ensure that we can alter the binary without

impacting functionality. In order to ease our task, we will rely upon the LIEF [8] framework

for python, which allows us to interact with the binary file as an object that we can rebuild at

the end of the process.

The PE Format Figure 3.7 shows a general overview of a PE File structure. As it was

explained during the design phase, our approach will be to take advantage of this format and

make modifications to our sample in a way that, at least, its SHA256 hash changes. Some

examples are:

• Create new sections filled with random bytes

• Rename existing sections

• Add random bytes at the end of the sections

• Add new imports to the import table

• ...

30 Work development

Figure 3.7: PE File structure

As no modification will be directly applied over the existing code, imports or data, the

functionality of the binary should not be affected.

Additional information about the PE format can be found in Annex A.

Using LIEF LIEF will allow us to parse our binary file and work with an equivalent object

which we can build later. Figure 3.8 shows a high-level overview of the LIEF architecture, while

3.9 shows a lower level overview of a modification over a ELF file

In our case, as stated before, we will be focusing on the PE Binary structure, as this is

the one that Windows platform understand and can work with. Figure 3.3 shows the deployed

setup in order to run LIEF.

Implementation Setup
Architecture x64
Operating System Kali Linux 2020.3

Platform
Windows Subsystem for Linux

(WSL)
Packages Python 3.8 + LIEF

Table 3.3: Setup for testing

It is worth noting that, at the time of this writing, LIEF presented problems to be deployed

over a Windows environment by using pip, that is why we moved to the WSL environment in

order to test our implementation.

Every time we carry out the desired modifications over our file, a copy will be saved to be

3.2. Implementation 31

Figure 3.8: LIEF Architecture. Source: Quarkslabs

fed into the antimalware engine. Additionally, we will not carry out more than 1 modification

per file, as every action involving a modification will be tested against the antimalware engine

to analyse the reward and learn about the best course of action in the future.

There is a situation that is most common that we could have foreseen. As we have no

automatic way of testing the files to ensure they are working correctly after every iteration,

they might end up broken even if the actions are supposed to be innocuous from a theoretical

standpoint. This was pointed out in previous researches [1] and explained through the invalid

PE format that some malware samples are using, which when combined with out actions can

effectively render our binary unstable or even corrupted.

While this is a setback which violates one of our initial assumptions, it is also of not

particular significance in terms of evasion. This is because our initial approach was to evade

static PE detection, and a broken binary still presents the static PE signatures that are analysed

by the different antimalware engines. This means that even if our binary is not working,

the detection rate for those antimalware engines relying on only static capabilities instead of

dynamic ones should be unaltered, as no execution of such binary is needed to perform the

static analysis.

Figure 3.10 shows a summary of the products / packages used in our environment’s imple-

mentation.

32 Work development

Figure 3.9: LIEF inner working for ELF files. Source: Quarkslabs

3.2.2 Implementing the agent

The agent has two main tasks to carry out:

1. Generate the initial malware sample

2. Gather the feedback from the environment, learn from it and take the best action to alter

the environment

In order to simplify the implementation, we will make use of different packages from python

and external tools that might assist us in this project.

3.2. Implementation 33

Figure 3.10: Implementation stack for the environment

3.2.2.1 Malware generation

Instead of sampling from an existing malware set, we will generate our own backdoors and

sample from a set of predefined payloads referred in table 3.1. For this, we will make use of

the Metasploit framework, specifically of the msfvenom tool that allows for the generation of

different backdoors in different formats.

Our approach for the malware generation using python is as follows:

1. Define a list of payloads to be used

2. Choose a random payload from such list

3. Generate the sample by invoking msfvenom

4. Exclude the selected payload from the initial list

5. Provide the sample to the environment

6. Repeat the process

This process ensures that we have different payloads used in different runs. It is also of

importance realising that some of the generated samples are based on predefined binary files

which contain strings easily recognisable by any antimalware engine. This is not convenient,

as the samples would be spotted independent on the changes we carry out. For this reason, we

will always apply a small change over the generated samples, specifically replacing the word

“PAYLOAD” for a random 6-characters string.

3.2.2.2 Feed-Forward Neural Network

In order to implement our neural network, we will make use of PyTorch as our framework

to implement the design discussed in the previous section. In [9] we can study some basic

implementations by using PyTorch. As for our problem, we define:

• The dimensions of the different layers:

34 Work development

– n = 7 for the input layer

– k = 100 for the hidden layer

– n = 7 for the output layer

• The input function as the weighted sum.

• The activation function to be used as the rectifier, due to its advantages regarding the

training of deep networks and the characteristic of not having a binary output.

• The loss function as the Mean Squared Error (MSE)

• The optimizer function to be used as Adam7 as it combines a series of properties to

provide an optimization algorithm that can handle sparse gradients on noisy problems.

Additionally, the softmax function will be implemented to ensure that we always work with

normalized values resembling a probability distribution. In each step, we will choose an action

based on its probability value, and this values will be balanced in every iteration of the neural

network based on the perceived rewards.

Finally, figure 3.11 shows a high-level overview of our implementation for the agent.

Figure 3.11: Agent’s implementation stack

3.2.3 Data processing

Once our environment and agent have been built, it is equally important to have an idea on how

the resulting data will be cleansed, processed and interpreted. A fair amount of information is

available thanks to the API we are using, so we can gather for every mutation:

• State of detection state for every antimalware engine provided by VirusTotal

• Global stats of our detection rate

Having this information for every iteration, we can focus on the differences between two

successive iterations or even the difference between the initial sample and the last mutation.

7Adaptive Moment Estimation

3.3. Results and analysis 35

In order to focus on these differences, we will make use of the DeepDiff package for python,

which allow us to compare different JSONs outputs and obtain the relevant differences.

In order to process those differences and generate relevant visualizations, we will make use

of Pandas ’ dataframes and theSeaborn package for Python. Figure 3.12 shows a basic overview

of this processing.

Figure 3.12: Data processing overview

Once our full system has been implemented[5] as shown in figure 3.13 we can move to

analyse the results obtained.

3.3 Results and analysis

3.3.1 Scope and limitations

Due to the rate limit imposed by our antimalware engine API, the time constraint that our

project is subject to and additional drawbacks found during the testing phase, our results will

be limited to:

• 9 different malware samples randomly generated from the predefined dataset

• 20 mutations per sample

In our worst-case scenario, as no multi-threading is implemented in our code, we need to

wait an average of 5 minutes until the sample is analysed8. After approximately 15 hours, we

have 180 new mutations fully analysed by VirusTotal.

8This has been empirically observed, depending on the VirusTotal workload at the time of the tests

36 Work development

Figure 3.13: Full system stack overview

Another reason why we have limited our dataset is due to VirusTotal ToS9. Every mutation

we send will be typically detected by at least one antimalware vendor, and this will trigger an

automatic submission to those vendors tagging it as harmless or undetected. This means that

every time our algorithm runs, we are generating noise to multiple vendors. Even if no policy

is being violated by our use of the API, we will try to keep noise to a minimum.

3.3.2 Main results

A way to measure the success of our implementation is to graph the evolution of the reward

signal for every sample and its resulting mutations. Figure 3.14 shows this trend of the re-

ward function for the different payloads and mutations automatically generated by our neural

network.

A growing trend for the different iterations in each one of the sample under analysis can be

observed. In this sense, based on the way in which the reward function was defined, figure 3.15

shows the expected negative correlation between our reward and the number of antimalware

vendors detecting our sample.

We can also appreciate there is difference between the slopes for the different payloads

tested, some of them evading a greater number of antimalware engines by using the same

iterations. Figure 3.16 shows how smaller samples tend to evade antimalware detection sooner

than larger ones.

9Terms of Service, specifically the section regarding “Sample & Community Content Guidelines”

3.3. Results and analysis 37

Figure 3.14: Reward signal for every payload and mutation

In a first moment, we can think that this is due to the different between our payloads being

staged or inline payloads:

• Inline payloads are those that contains all the exploit, including shellcode and necessary

logic to carry out the malicious actions it has been designed for. It works as an all-in-one,

taking the form of a binary that can be executed in the target architecture in a stable

way.

• Staged payloads are those that only contains a small amount of code necessary to

communicate with a C210 Server to download (stage) the main payload. Examples of this

are

As staged payloads are smaller than its counterparts, they also take advantage of a smaller

signature in terms of malware detection. Inline payloads usually contains specific strings, traces

of shellcodes and a more complex implementation than a stager payload, allowing antimalware

vendors to tag different parts of such binary. From this, it is inevitably derived that our changes,

10Command and control, or C&C

38 Work development

Figure 3.15: Number of antimalware vendors marking the samples as malicious/suspicious

predefined through our action space, would not have a huge impact over the inline payloads,

as the antimalware vendors would be tagging specific strings or pieces of the actual code.

Despite that, after analysing the code for our payloads11, we find that we only got staged

payloads in our dataset, meaning that there is a more fundamental component to this difference,

being it only a matter of the strings contained in the original binary.

Table 3.4 shows the improvement for every payload calculated as Final−Initial
Initial

alongside the

number of strings present in the file, obtained by using the strings command in Linux. We can

see how the initial detection rate is lesser for those binaries containing less predefined strings.

There are also notable improvements in some of our samples after undergoing our RL

process. For example, the Reverse Ordinal TCP payload is widely detected in an initial stage,

but it seems to evade a great number of antimalware engines.

Unfortunately, as it is depicted in the table 3.5, further tests show us that most of our

binaries have broken after 20 iterations, with only 33.3% of them working correctly.

Despite further research needs to be made to ascertain the exact reasons why this happened,

it seems plausible that LIEF is randomly breaking the binary file in the building phase. This

11Source code available at https://github.com/rapid7/metasploit-framework/blob/master/documentation/modules/payload/windows

3.3. Results and analysis 39

Figure 3.16: Number of antimalware vendors marking the samples by file size

was already pointed out in [1] and suspected to happen due to the mutations not respecting

obfuscation tricks or less common uses of the PE format. Some examples are:

• Binaries using specific instructions in the import address table, forcing us to do a custom

patching over the assembly code in the build phase.

• Binaries violating the PE standard to take advantage of Windows lazy parsing in order

to avoid detection.

Apart from this inconvenience, we have still achieved an amount of evasion against static

detection. It is important to note that a static analysis does not need to execute the file,

just understand its structure and tag specific signatures. Antimalware engines throwing an

undetected or failure result as a consequence of not being able to run the mutation are probably

relying in dynamic detection capabilities rather than static ones.

3.3.3 Additional results

Apart from the perceived improvement in our evasion ratio, we can also take advantage of the

information provided by the multiple antimalware engines in order to assess the effectiveness

of the different vendors. Figure 3.17 shows a top 10 of vendors evaded after major changes to

our sample (20 iterations) and only after a one iteration. As expected, most of them are not

40 Work development

Payload (Windows) Initial Final Improvement Strings
shell/reverse ord tcp 54 32 41% 698

patchupmeterpreter/reverse nonx tcp 56 35 38% 690
meterpreter/reverse http proxy pstore 56 42 25% 706

x64/shell/reverse tcp rc4 40 31 23% 25
x64/vncinject/reverse winhttp 35 29 17% 27
shell/reverse tcp rc4 dns 56 47 16% 700

patchupmeterpreter/reverse tcp uuid 57 49 14% 697
vncinject/reverse tcp uuid 56 49 13% 684
x64/shell reverse tcp 38 36 5% 22

Table 3.4: Initial and final number of detections for our payloads. Those marked in bold have
been tested and verified to work properly.

widely-known vendors, but still we can see some popular ones (McAfee or MalwareBytes) being

evaded after just 1 iteration for at least 2 of our samples.

Figure 3.17: Top 10 of antimalware vendors evaded after 20 iterations (left) and after only 1
iteration (right)

Figure 3.18 shows the count of evasion for every vendor after 20 iterations. For this, we have

compared differences in terms of detection between our original samples and our last mutations.

3.3. Results and analysis 41

Payload File Details
(x64/shell) reverse tcp jtvkjyk.exe OK - Received reverse connection

(x64/shell) reverse
tcp rc4

wtzafio.exe
Broken - Invalid access to memory lo-
cation

(x64/vncinject) reverse
winhttp

gqviaoe.exe
Broken - Invalid access to memory lo-
cation

(vncinject) reverse tcp
(uuid)

djeavkm.exe
Broken - Invalid access to memory lo-
cation

(patchupmeterpreter)
reverse nonx tcp

obphfrt.exe Broken - Invalid architecture

(patchupmeterpreter)
reverse tcp uuid

djeavkm.exe
Broken - Invalid access to memory lo-
cation

(shell) reverse ord tcp uipecyo.exe Broken - Missing dependency
(shell) reverse tcp rc4

(dns)
bqigswm.exe OK - Received reverse connection

(meterpreter) reverse
http proxy pstore

aybhclr.exe OK - Received reverse connection

Table 3.5: Status of our final mutations

3.3.4 Conclusion

During the development of this project, a simple framework for antimalware evasion based on

reinforcement learning has been designed and implemented. The results show how an existing

malware sample can be automatically modified by assessing how the environment reacts to the

mutations generated from such sample, learning from past events by means of a feed-forward

neural network and taking actions intended to keep the binary functionality intact.

We have also shown how the reward function presents a positive slope as the iterations

increase, which implies an equally increasing evasion rate, observed to improve between 5%

and 41% . From this point, we moved to test the resulting mutations in order to assess their

effectiveness in terms of functionality, and found that most of the samples were broken during

the process, only a 33% of them keeping their original functionality. Further research is needed

in that direction to ascertain if mutations can be fixed or need to be discarded and re-generated

in a different way to keep the functionality.

Finally, we have made use of the information gathered for every mutation and performed a

simple benchmark to assess the static detection capabilities of different antimalware vendors.

We have found that wide-known vendors seem to be harder to evade, while small vendors can

be bypassed in the very first iteration of our algorithm.

42 Work development

Figure 3.18: Total of antimalware vendors evaded after 20 iterations

3.3.5 Future lines of work

Given the time constraints for this project, some improvements need to be considered as part of

the future lines of work. The following is a non-exhaustive list of potentially interesting points

to be taken into account:

• Improve the agent to automatically check if a mutation is still functional, and apply a

penalization over the reward function in case the resulting binary is broken, allowing to

rollback the changes and take a different path.

• Explore further neural network models that might allow for a faster learning rate.

• Add new actions to the action space. Some examples are:

– Add an unconditional JMP from a new EIP to the original one

– Add packing capabilities

– Add stub encryption

Appendices

43

Appendix A

Malware Generation and Manipulation

A.1 Metasploit Overview

Metasploit is described by Rapid7 as the world’s most used penetration testing framework 1.

It is a complete suite that intends to cover the end-2-end process when planning a compromise

job, as depicted in Figure A.1

Figure A.1: Overview of MetaSploit Framework

As part of this process, the payload generation usually plays a fundamental role in the

exploitation and post-exploitation phases. In order to ease this task, MetaSploit provides us

1https://www.metasploit.com/

45

46 Malware Generation and Manipulation

with the msfvenom framework, which allows for a quick generation of 500+ payloads with

different encodings and formats.

The following is an excerpt of the code used to invoke msfvenom, which returns the payload

randomly chosen and the path for the generated sample.

1 PAYLOADS = [...]

2

3 def create_payload(used_payloads):

4 output_file = f"/tmp/{get_random_string(4)}.exe"

5 available_payloads = list(set(PAYLOADS) ^ set(used_payloads))

6 payload = random.choice(available_payloads)

7

8 # Payload generation

9

10 args = ("msfvenom", "-p", payload,

"LHOST=127.0.0.1","LPORT=1234","-f","exe","-o",output_file)↪→

11 popen = subprocess.Popen(args,stdout=subprocess.DEVNULL)

12 popen.wait()

13

14 # Subtle payload modification

15

16 args = ("sed", "-i", f"s/PAYLOAD/{get_random_string(7)}/g", output_file)

17 popen = subprocess.Popen(args, stdout=subprocess.PIPE)

18 popen.wait()

19 return payload, output_file

This code also made a slightly modification over the binary by using “sed” in order to

remove suspicious strings that might be tagged by antimalware vendors.

Note that msfvenom provide us with additional powerful options, such as:

• Generating different formats, from raw shellcodes to office documents macros

• Encrypting the payload to evade detection

• Constraint the payload to a maximum length

but, for the sake of simplicity, we will be generating the payloads without using advanced

options, as the higher the complexity of the binary, the higher the probability of such binary

getting corrupted after a number of iterations by using LIEF

A.2 The PE format

As it is extensively explained in [6], the Windows PE format describes the structure of modern

Windows program files such as .exe, .dll, and .sys files and defines the way they store data.

A.2. The PE format 47

PE files contain x86 instructions, data such as images and text, and metadata that a program

needs in order to run.

The PE format was originally designed to do the following:

• Tell Windows how to load a program into memory by describing with parts of a file should

be loaded into memory, and at what location.

• Supply medio or resources that a running program may use in the course of its execution

(e.g. strings, images or videos)

• Supply security data such as digital code signatures to ensure that code comes from a

trusted source.

The PE format accomplishes all of this by leveraging the series of constructs shown in Figure

A.2

Figure A.2: PE File

As the figure shows, the PE format includes a series of headers telling the operating system

how to load the program into memory. A brief explanation for the different elements follows:

The PE Header The PE Header defines a program’s general attributes such as binary code,

images, compressed data, and other program attributes. It also tells us whether a program

is designed for 32 or 64-bit systems. The PE header provides basic but useful contextual

information to be used by an antimalware engine. Indeed, the header includes a timestamp

field that can give away the time at which the malware author compiled the file, being this of

special relevance when it comes to binary templates generated by msfvenom in our case.

48 Malware Generation and Manipulation

The Optional Header The optional header defines the location of the program’s entry point

in the PE file, which refers to the first instruction the program runs once loaded, as well as the

size of the data that Windows loads into memory, the program targets (e.g. Windows GUI or

Windows command line), and other high-level details about the program. The information in

this header is crucial, as a program’s entry point tells where to begin the execution flow.

Section Headers Section headers describe the data sections contained within a PE file. A

section in a PE file is a chunk of data that either will be mapped into memory when the

operating system loads a program or will contain instructions about how the program should

be loaded into memory. In other words, a section is a sequence of bytes on disk that will either

become a contiguous string of bytes in memory or inform the operating system about some

aspect of the loading process.

Section headers also tell Windows what permissions it should grant to sections, such as

whether they should be readable, writable, or executable by the program when it’s executing.

A number of sections, such as .text and .rsrc, are depicted in Figure A.2. These get mapped

into memory when the PE file is executed. Other special sections, such as the .reloc section,

aren’t mapped into memory. The following is a brief description of the some of different sections

types that can be found in a PE file:

The .text Section Each PE program contains at least one section of x86 code marked

executable in its section header; these sections are almost always named .text

The .idata Section The .idata section contains the Import Address Table (IAT), which

lists dynamically linked libraries and their functions. The IAT reveals the library calls a program

makes, which in turn can betray the malware’s high-level functionality.

The Data Sections The data sections in a PE file can include sections like .rsrc, .data,

and .rdata, which store items such as mouse cursor images, button skins, audio, and other

media used by a program.

The information in the .rsrc (resources) section can be vital to antimalware engines because

by examining the printable character strings, graphical images, and other assets in a PE file,

certain elements can be tagged and linked with the binary functionality.

The .reloc Section A PE binary’s code is not position independent, which means it

will not execute correctly if it’s moved from its intended memory location to a new memory

location. The .reloc section gets around this by allowing code to be moved without breaking.

It tells the Windows operating system to translate memory addresses in a PE file’s code if the

A.2. The PE format 49

code has been moved so that the code still runs correctly. These translations usually involve

adding or subtracting an offset from a memory address.

50 Malware Generation and Manipulation

Bibliography

[1] Hyrum S. Anderson, David Evans, Anant Kharkar, Phil Roth, and Bobby Filar. Learning

to evade static pe machine learning malware models via reinforcement learning. arXiv:

1801.108917v2, 1 2018.

[2] Hyrum S. Anderson, Anant Kharkar, Phil Roth, and Bobby Filar. Evading machine learning

malware detection. Blach HAT USA, 7 2017.

[3] Raphael Labaca Castro, Corinna Schmitt, and Gabi Dreo Rodosek. Armed: How auto-

matic malware modifications can evade static detection? 5th Internationalk Conference on

Information Management, 2019.

[4] Zhiyang Fang, Junfeng Wang, Boya Li, Siqi Wu, Yingie Zhou, and Haiying Huang. Evading

anti-malware engines with deep reinforcement learning. IEEE, 4 2019.

[5] Francisco Javier Gómez Gálvez. Implementation for static PE evasion. https://github.

com/fgomezgalvez/StaticPEvasion, 2020.

[6] Joshua Saxe and Hillary Sanders. Malware Data Science - Attack Detection and Attribution.

No Starch Press, 2018.

[7] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning:An Introduction (2nd

Edition). The MIT Press, 2015.

[8] Romain Thomas. LIEF - Library to Instrument Executable Formats.

https://lief.quarkslab.com/, April 2017.

[9] Alexander Zai and Brandon Brown. Deep Reinforcement Learning in Action. Manning,

2020.

51

https://github.com/fgomezgalvez/StaticPEvasion
https://github.com/fgomezgalvez/StaticPEvasion

	Abstract
	Introduction
	Context
	Motivation
	Objectives
	Project scope
	Hypothesis
	Practical Applications
	Planning

	State of the art
	Previous studies
	Theoretical framework
	Introduction to RL
	The k-armed bandit

	Work development
	Design
	Design plan
	Theoretical design

	Implementation
	Implementing the environment
	Implementing the agent
	Data processing

	Results and analysis
	Scope and limitations
	Main results
	Additional results
	Conclusion
	Future lines of work

	Appendices
	Malware Generation and Manipulation
	Metasploit Overview
	The PE format

	References

