de Catalunya

Uo c Universitat Oberta

UNIVERSITAT OBERTA DE CATALUNYA (UOC)

MASTER UNIVERSITARI EN CIENCIES DE DADES (Data Science)

TREBALL FINAL DE MASTER

AREA: 3

Generative Adversarial Networks Based Data
Augmentation for Ultrasound Fetal Brain Planes
Classification

Author: Alberto Montero Agudo
Advisors: Xavier P. Burgos-Artizzu, Elisenda Bonet-Carne

Professor: Ferran Prados Carrasco

Ettlingen, January 26, 2021

Créditos/Copyright

[@lece]

Esta obra esta sujeta a una licencia de Reconocimiento - NoComercial - SinObraDerivada

3.0 Espana de CreativeCommons.

https://creativecommons.org/licenses/by-nc-nd/3.0/es/

11

FITXA DEL TREBALL FINAL

Titol del treball:

Generative Adversarial Networks Based Data Augmentation
for Ultrasound Fetal Brain Planes Classification

Nom de I'autor:

Alberto Montero Agudo

Nom del consultor/a:

Xavier P. Burgos-Artizzu, Elisenda Bonet-Carne

Nom del PRA:

Ferran Prados Carrasco

Data de lliurament (mm/aaaa):

03,2021

Titulacié o programa:

Master Universitari en Ciéncies de Dades

Area del Treball Final:

Area 3

Idioma del treball:

angles

Paraules clau

Generative Adversarial Networks

111

v

Dedication

To my sister Maria, to my father Agustin.

vi

Acknowledgements

I would like to thank my advisors Xavier P. Burgos-Artizzu and Elisenda Bonet-Carne for their

valuable guidance and warm support throughout my thesis.

vil

Viil

Abstract

Generative adversarial networks have been recently applied to medical imaging on different
modalities (MRI, CT, X-ray, etc). However there are not many applications on ultrasound
modality as a data augmentation technique applied to downstream classification tasks. This
experimental case study aims to explore and evaluate the generation of synthetic ultrasound
fetal brain images via generative adversarial networks and apply to ultrasound fetal brain plane
classification tasks. State of the art Generative Adversarial Networks stylegan2-ada was applied
to fetal brain image generation and GAN-based data augmentation classifiers were compared
with baseline classifiers. Our experimental results show that GAN-Based data augmentation
combined with classical data augmentation outperforms classifiers with only classical data aug-

mentation by 2% in both accuracy and area under the curve score.

Keywords: Generative Adversarial Networks, Data Augmentation, Ultrasound Fetal Brain

Images, Image Classification.

1X

Contents

Abstract ix
Contents xi
List of Figures xiii
List of Tables 1
1 Introduction 3
1.1 Justification and motivationo 3

1.2 Research objectives 4
1.3 Methodology 4
1.3.1 Development methodology 4

1.3.2 Research methodology 4

1.3.3 Deep learning methodologies 0L 5

1.3.4 Software and hardware resources 6

1.4 Planing 6
1.4.1 Tentative timetable 6

1.4.2 Implementation tasks L 7

2 State of the Art 9
2.1 Imtroduction 9
2.2 Generative Adversarial Networks oL 10
2.3 Generative Adversarial Networks in Medical Imaging 13
2.3.1 Unconditional GANs 13

2.3.2 Semi-supervised GANs 14

2.4 StyleGAN based architectures Lo 14

3 Methodology 17
3.1 Experiment design 17

X1

xii CONTENTS
3.2 Dataset 18
3.3 GANSs training and image generation 19

3.3.1 Trainingo 20
3.3.2 GANsevaluation 21
3.3.3 Fakes generation L 23
3.4 Classifiers 27
3.4.1 Implementation details L. 27

4 Experiments and Results 29

4.1 Augmentation experimentso 29
4.1.1 Analysis 32
4.2 Replacement experimentso 33
4.2.1 Analysis 34
4.3 Discussion 35

5 Project structure, design and implementation 37
5.1 Project structureo 37
5.2 Designo e 38

5.2.1 Packages description 39
5.2.2 Examples 40
5.3 Software and Hardware 43
5.3.1 Software 43
5.3.2 Hardware 45

6 Conclusions 47

7 Future work 49

Bibliography 50

A Code 55
Al experiment.py 55
A2 baseline.py 61
A3 augmentation.py 61
A4 replacement.py 63
AL results.py ..o 65
A.6 baseline_classifier.py 67
AT generate.py 69

List of Figures

1.1

2.1
2.2

3.1
3.2

3.3

3.4
3.5

3.6

3.7

4.1

5.1
5.2

Fetal brain planes. Source Burgos-Artizzu et al. (2020) 5
Graph and architectural representations of GANs 11
DCGAN: deep convolutional GAN. Source Radford et al. (2016) 12
Experiment design 18
Some examples of the dataset. Top row: trans-ventricular. Bottom row: trans-

thalamic e 19
dbp fakes generation: ¢ = 0.1,0.2,...,0.9,1 sweep for five random seeds. 24
trv fakes generation: ¥ = 0.1,0.2,...,0.9,1 sweep for five random seeds. 24

Generation of dbp images for some random seeds and different ¢. Same 25 seeds
were applied to each grid giving the same 25 brain plane generation for four
values. 25
Generation of trv images for some random seeds and different . Same 25 seeds
were applied to each grid giving the same 25 brain plane generation for four
values. 26

Comparison between original PyTorch and default fastai Resnet head architecture. 28

Accuracy (blue, with max and min), auc (orange, with max and min) and val-
idation loss (red) for experiments with ¢» = 0.3, ¢» = 0.5, v» = 0.7 and ¢ = 1.

Vertical gray lines are baseline auc, validation loss and accuracy. 30
Package dependencies L 39
High level description of an experiment pipeline 44

Xlil

Xiv

LIST OF FIGURES

List of Tables

3.1
3.2
3.3
3.4

4.1
4.2

4.3

4.4

4.5

4.6

4.7

4.8

Train/validation split with no overlapping patient samples.
Fized parameters for one gpu and 128x128 resolution image.
GANSs training configuration for dbp and trv images.
Metrics: FID, precision and recall for dbp and trv trained GANs.

Baseline results for 5 runs.o
Augmentation experiment for ¢ = 0.3 (5 runs). In left column augmentation
ratios with respect training set size are shown. Baseline metrics in first row.
Augmentation experiment for v = 0.5 (5 runs). In left column augmentation
ratios with respect training set size are shown. Baseline metrics in first row.
Augmentation experiment for 1 = 0.7 (5 runs). In left column augmentation
ratios with respect training set size are shown. Baseline metrics in first row.
Augmentation experiment for =1 (5 runs). In left column augmentation ratios
with respect training set size are shown. Baseline metrics in first row.
New baseline setting distinguishing between samples involved in GANs training
(gan column) and not involved (mo gan column).
Replacement experiment ¢ = 0.3. In left column augmentation ratios with respect
training set size are shown.
Replacement experiment 1 = 0.5. In left column augmentation ratios with respect

training set size are shown. e

LIST OF TABLES

Chapter 1

Introduction

1.1 Justification and motivation

Deep learning methods, in particular convolutional networks, have become in recent years
particularly successful in medical imaging analysis. Among other applications in this field we
find image classification, object detection, segmentation and image registration (Litjens et al.
(2017)).

One of the main difficulties in medical imaging is the scarcity of labeled data, which is a
fundamental piece in supervised learning methods. Additionally, privacy issues related to diag-
nostic medical image data involves availability constraints. To overcome scarcity and privacy
issues, generative adversarial networks (GANs) Goodfellow et al. (2014) have been recently
applied to medical image synthesis on different modalities (MRI, CT, X-ray, etc). However
there are not many applications of GAN-based data augmentation for classification tasks in

ultrasound images.

A positive result of this work might contribute to other classification tasks in ultrasound

modality with limited data or unlabeled data.

Personal motivation. From a personal point of view my motivation for this research work
is double. From one side, this kind of models belong to a fascinating broader family of models
(generative models) which are not covered in an introductory course of deep learning (besides
simple autoencoders) with a very beautiful mathematical basis. On the other hand, the oppor-
tunity to participate in medical applications based on these models is something very gratifying
for me. I also believe, that this kind of methods might contribute in a near future with very

valuable medical applications.

4 Introduction

1.2 Research objectives

Aim.
The aim of this research is to study the applicability of the generative adversarial networks as
a data augmentation method applied to ultrasound fetal brain planes classification tasks.

Objectives.

e Data preparation for classification tasks and GANs training.

e Analyze the performance of stylegan2-ada GAN applied to ultrasound fetal image gener-

ation.
e Define and implement baseline classification models.

e Compare performance of previous defined classifiers with classifiers using synthetic gen-

erated images.

1.3 Methodology

1.3.1 Development methodology

Due to uncertainty of models performance, complexity of hyper-parameters settings and variety
of models potentially to be explored, among others, we follow in this work a common machine
learning lifecycle project. Planning should be adaptable with very general milestones described

below in planing section.

1.3.2 Research methodology
1.3.2.1 Case study: ultrasound fetal brain planes classification

We consider two possible scenarios with respect data availability, which are both common
scenarios in medical imaging. In the first scenario we deal with a labeled dataset and in
the second scenario we additionally dispose of another larger unlabeled dataset. For the first
scenario the data preparation step is straightforward, while for the second one it is a little more
complex and we don’t know at this planning stage if it will be useful for our project with given
time constraints.

First scenario: labeled dataset.

To study the feasibility of GANs as a data augmentation technique we use as a case study
the brainplanes dataset which is a subset of FETAL_PLANES DB dataset released by Burgos-

Artizzu et al. (2020) containing centered cropped images of fetal brain planes (see figure 1.1).

1.3. Methodology 5

Trans-thalamic
\

L]
£

s
N

Trans-cerebellar

Figure 1.1: Fetal brain planes. Source Burgos-Artizzu et al. (2020)

brainplanes is comprised of about 12K images of ultrasound fetal brain images, annotated with
classes (three different planes). It has been previously studied in Burgos-Artizzu et al. (2020)
with respect plane classification task and shown that brain plane classification is a challenge
classification task, specifically the distinction between Trans-ventricular and Trans-thalamic
categories. We will study the feasibility of GANs-based data augmentation methods for fetal
brain classification task with this dataset.

Second scenario: labeled dataset plus larger unlabeled dataset.

In the second scenario with will try to extract useful data to study the feasibility of GANs

dealing with semi-supervised methods.!

1.3.3 Deep learning methodologies

To tackle complex computer vision problems there is no other alternative than use deep convo-
lutional neural based methods. Specifically to our project we will use Generative Adversarial
Networks (GANs) and consider several architectures, depending of time availability.

- Unconditional GANSs for all classes. These methods generate images of all classes at the
same time but we lose control over generation. That is, with this setting is not possible to

generate an specific class. Thus, we reject this framework because our goal is to control the

!Finally this second scenario has not been possible to execute due time constrains and unavailability of
additional dataset.

6 Introduction

generation of images by classes.

- One unconditional GAN for each class. In this case we will be able to generate images of
all classes separately. These architectures has been used in previous medical imaging works but

it has the disadvantage that we need to train so many GANSs as classes or categories we have.

- Class conditional GANs. This architecture exploits the labels of the dataset training a

single model generating controlled classes.

These are candidates that we consider to be potentially useful for our objectives. Time for
this project is scarce and we have to carefully set priorities. GANs development is nowadays
a very hot topic in research and every week several papers are published. Other architectures
as semi-supervised and self-supervised would be also worth to explore. There are hybrid ar-
chitectures of above mentioned like self-supervised semi-supervised conditional GAN Sun et al.
(2020) that look promising. Even explicit density models like variational autoencoders (which
are easier to train) have obtained very promising results in last months (see Pidhorskyi et al.
(2020)). Due time constrains we will mainly focus on second architecture mentioned above:

one unconditional GAN for each class.

We have to take into account that besides time constrains, we have to find open source code
of this models and maybe adapt to our needs, which is another constrain. We don’t consider
in this work to implement from scratch models due to the training implementation complexity

and time disponibility.

1.3.4 Software and hardware resources

We will mainly use PyTorch and Tensorflow libraries for deep learning. PyChram as IDE, git
and github for version control, kile as IXTEX editor.

As hardware we will use a laptop with a Nvidia GTX 1060 (6GB) graphic card for data
preparation and for prototyping, evaluation and dealing with small models. For training GANs

we will use cloud services as Google Colab, Kaggle or Coogle Cloud Platform.

1.4 Planing

1.4.1 Tentative timetable

We estimate 20-22 hours per week of work during the project period.

1.4. Planing 7

tasks deadline | weeks
18.10.20 | 3 weeks

State of the art

Datasets setup

GANs implementation 20.12.20 | 9 weeks
Classifiers setup

Analysis and results

Thesis writing 03.01.21 | 2 weeks
Presentation writing 10.01.21 | 1 week
Thesis defense 20.01.21 | 10 days

1.4.2 Implementation tasks

Data preparation. Data extraction and transformation from brainplanes dataset. Creation
of baseline dataset with train / validation split with no overlapping patients.

For second scenario, we will use a classifier to extract brain planes from US400K dataset
with the same distribution of brainplanes dataset, obtaining in this way a unlabeled dataset of
brain planes. 2
GANs implementation. We will make use of official implementations of SOTA GANs and
variants, adapting the code to our needs when necessary. We will mainly focus on models based
on styleGAN2 (Karras et al. (2020b)) and biggan (Brock et al. (2019)) with data augmentation
mechanisms as in Karras et al. (2020a) and Zhao et al. (2020) ? to deal with smalls datasets.
Classifiers setup. Implementation of good ResNet-based baselines classifiers with strong
classical data augmentation to assess and compare results.

Analysis and results. We will evaluate GANs performance with GANs based metrics as FID

(Fréchet Inception Distance) and GANs-based data augmentation classifiers through compar-

isons with baseline classifiers.

2Finally this second scenario has not been possible to execute due time constrains and unavailability of
additional dataset.
3https://github.com/mit-han-lab/data-efficient-gans

https://github.com/mit-han-lab/data-efficient-gans

Introduction

Chapter 2

State of the Art

2.1 Introduction

Diagnostic ultrasound examination is an essential procedure when clinical complications oc-
curred during pregnancy. The observation that the absence of clear risk factors may also
induce complications has promoted routine ultrasound in women pregnancies with the aim of
earlier detection of such complications Whitworth et al. (2010).

Ultrasound provides economic and non-invasive examination of fetal and maternal organs
development by means of several measures commonly used to monitor fetal growth Hadlock
et al. (1985) and fetal abnormalities detection. This procedure consists in ultrasound image
acquisition following well defined and repeatable protocols, with extraction of specific image
planes relevant for diagnosis. This practice is manually performed by trained technicians which
screen more than 20 images and validated by a senior maternal-fetal expert. Thereby, the whole
pipeline is time consuming and sensitive to errors.

In order to speed up and improve performance of planes selection an automatic process
would be beneficial, reducing costs and errors. Few works addressing this problem can we
find in literature with respect 2D still images and to our knowledge the only related work is
Burgos-Artizzu et al. (2020), in which several deep convolutional neural networks architectures
were evaluated with respect to common maternal-fetal ultrasound plane classification. We find
indeed some works related with video and 3D images with rich data that does not correspond
to the majority of available data in medical or research centers.

Deep learning methods, in particular deep convolutional neural networks, have become in
recent years particularly successful in medical imaging analysis. Among other applications in
this field we can find image classification, object detection, segmentation and image registration
Litjens et al. (2017). The success of these methods depends to great extend to the amount of

data that are trained with. Although pre-trained networks and data augmentation methods

10 State of the Art

can alleviate to some extend the data required, data gathering is still a concern in medical
imaging.

One of the main difficulties in medical imaging is the scarcity of labeled data, which is
a fundamental piece when training deep convolutional neural networks. In addition, class
imbalance is a common issue in medical imaging where anomalies or disease related image
samples are much less frequent than normal cases. Privacy issues related to diagnostic medical
image data involves also availability constraints.

In this work we study and evaluate the application of generative adversarial networks
(GANs) as a data augmentation technique in fetal ultrasound plane classification. Specifi-
cally we focus on fetal brain plane classification as a case study, which has been shown by
Burgos-Artizzu et al. (2020) to be a hard classification task.

Generative adversarial networks Goodfellow et al. (2014) have obtained a lot of attention
in last years due to generation capability of synthetic images. It has been shown to be useful
in many medical imaging applications such data augmentation, among many others Yi et al.
(2019). To overcome above mentioned issues related to scarcity, imbalance and privacy issues,
GANSs have been recently applied to medical image synthesis on different modalities (MRI, CT,
X-ray, etc).

In the following sections we explore some of the GANs methodologies and architectures

related to our work, starting by a brief introduction to GANs.

2.2 Generative Adversarial Networks

Generative vs discriminative models

Given a set of observable random variables X = {X1, Xs, -+, X,,}, discriminative models are
models of the conditional probability of a label or target variable, given an observation or set
of observations { X1, Xo,---, X, }, that is, P(Y| Xy, X, -+, X,,). This is the case, for example,
for cat/dog image classifier where a P(Y = “cat“|X) estimates the probability of an image X
to be a cat. In contrast, a generative model is a probabilistic model of the joint probabilistic
distribution P(X7, Xo, -+, X,,) on X;x,--- x X,,. Notice that it might be the case that for
some 1 < j <n, X; =Y being Y a label. The main difference between both is that generative
models are capable to generate new data.

Generative models

Generative models, as discriminative ones, can be trained via maximum likelihood estimation,
when they define an explicit density function ppege(z;6). These models are called explicit
density models. Normally this density function will be much harder to deal with compared to

discriminative models, specially when dealing with images. There are two main approaches to

2.2. Generative Adversarial Networks 11

— G — G2 Real
}—D—ror

Fake
X

(a) Probabilistic graphical (b) Simple GAN architecture. Source Pan et al. (2019)
model of GANs. Source
Goodfellow (2017)

Figure 2.1: Graph and architectural representations of GANs

overcome this complexity: defining tractable density functions (fully visible belief nets, non-
linear ICA, etc) or using tractable approximations to the likelihood (variational autoencoders
VAE, etc). Although these methods work well in a wide range of applications, they have the
inconvenient that either need strong restrictions with respect the family of density functions
to be used (tractable), or very good approximations for prior and posterior distributions are
required to obtain good quality of samples (approximate methods). For example, in last case,
variational autoencoders have been applied to image generation and shown difficulties to gen-
erate high realism images (although in last months VAE have achieved very promising results
Vahdat and Kautz (2020)).

Another way to define generative models is through implicit densities. That is, the model
does not define a density function but a mechanism for which to learn to generate new samples
by sampling from real data. This models are called implicit density models.

Generative Adversarial Networks

Generative Adversarial Networks (GANs, Goodfellow et al. (2014)) are implicit density models
in which a kind of game between two players is performed. These two players are called
generator and discriminator. Given a set of real samples, the generator creates samples that
simulate the real samples without looking at them, and the discriminator tries to determine
whether these samples created by the generator are real or not.

GANSs can be represented by probabilistic graphical model containing latent variables z and
observed variables x (Goodfellow (2017)). Figure 2.1(a) shows its graphical representation.The
generator samples z from some prior distribution and G(z) produce a sample z from ppodel,
where G is a differentiable function. The discriminator D is a differentiable function too and
classifies samples in real and fakes. 2.1(b) shows the basic architecture of a simple GAN.

A possibility to describe differentiable functions G' and D is by means of deep neural net-

works. Originally, GANs were defined in Goodfellow et al. (2014) by multilayer perceptrons,

12 State of the Art

1024

- — ‘ 5
NN e
SE—% &

N !

Stride 2 16

Project and reshape

CONV 2

CONV 4 -
G@@)

Figure 2.2: DCGAN: deep convolutional GAN. Source Radford et al. (2016)

but after Radford et al. (2016), deep convolutional networks have been used for G and D. In
figure 2.2 a deep convolutional network for the generator function G is shown.

Besides differentiable functions G and D, a training process is needed. And a training
process needs a cost function. Implicit models like GANs do not use maximum likelihood
based cost function for training. Instead, original GANs define its cost function under a game
theory framework in which D will minimize errors when classifying real data and fakes, and on
the other hand, G' will try to maximize to fool D.

Thus, the discriminator cost is defined by

Jo g

2 T~Pdata

logD(z) — %Ezlog(l — D(G(2))) (2.1)

where © ~ pgata are samples from real data distribution. Actually, J (D) g just a common
binary cross-entropy cost function defined by a binary classifier with sigmoid output. The only
difference is that this classifier is training by two different types of minibatches of data, one
from the training set with labels set to 1 and another coming from the generator with labels
set to 0.

The generator cost function J(@) originally was defined as —J) as a part of the game theory
setting defining in this way a zero-sum game (or minimax). The problem with this cost function
for GG is that saturates when the D is very confident when rejecting samples and the generator’s
gradients vanishes. So in practice, minimax framework is left and more computational stable
generator cost function was applied:

7 =~ E.log(D(G(2) (22)

Mainly, a GAN design is based on the selection of D and G architectures (mainly G) and
the loss function. Descriptions above show the most basic ideas about GANs. From here, in

the last few years hundred of new architectures and loss functions have been proposed making

2.3. Generative Adversarial Networks in Medical Imaging 13

hard keep updated of all novelties in this field.

2.3 Generative Adversarial Networks in Medical Imag-
ing

We mainly consider two kind of GANs methodologies suitable for applications of GANs in
classification tasks: unconditional GANs and semi-supervised GANs. Moreover, we are inter-
ested in architectures capable to deal with 128x128 resolution images, which is a good enough
resolution for image classification while having at the same time an affordable computation

requirements with respect to GANs training.

2.3.1 Unconditional GANs

Unconditional image synthesis with GANs refers to the use of unsupervised GANs for image
generation from random noise without additional information from classes or any kind of con-
ditional information (unlike conditional GANs). First GAN model introduced by Goodfellow
et al. (2014) was an unsupervised GAN defined by multilayer perceptrons, and Radford et al.
(2016) was the first unsupervised GAN defined by CNNs, which exploits the successful CNNs
in a unsupervised setting.

First DCGANs and variants were mainly applied by some authors to generate realistically
looking low resolution synthetic images, with resolutions ranging from 16x16 to 64x64. Ex-
amples can we find in Kitchen and Seah (2017) where 16x16 patches of prostate lesions are
generated, or in Chuquicusma et al. (2018) where 56x56 patches of lung cancer nodules are
generated. The main objective of those works was to generate fine quality of medical images
and any further downstream application was explored.

One of the first successful works applying unconditional GANs to downstream tasks as
classification was Frid-Adar et al. (2018). In that work, due data scarcity issues, they applied
a two stage pipeline where in the first stage they generated synthetic images using classical
data augmentation methods that later in a second stage was used for training a DCGAN. With
this approach they were able to increase sensitivity and specificity of liver lesion classification
from 78.6% and 88.4% with classical data augmentation methods to 85.7% and 92.4% with
additional GANs generated images, on a limited dataset of 64x64 computed tomography (CT)
images.

Beyond 128x128 resolution images is quite difficult to obtain good quality of synthetic
images with DCGANs, and progressive growing GANs based methods Karras et al. (2018)
have been applied in Baur et al. (2018a) on 256x256 skin lesion images, or Korkinof et al.

14 State of the Art

(2018) where 1280x1024 images of mammograms where synthesized. Moreover, Baur et al.
(2018b) shown that when dealing with limited and high variance data, DCGANSs performance
decreases notably from 64x64 to 128x128 up to 256x256 resolution images.

Unsupervised (or unconditional) image synthesis methods mentioned above can be applied
to downstream image classification tasks. The main idea is to train a separated GAN for each
class and use in a second stage, the generated images as data augmentation in the classification
task. In a very limited data regime, as we saw in Frid-Adar et al. (2018), an intermediate step
with classical data augmentation methods can be applied. The downside of these two stage
methodology is that for a N classes classification task, N GANs models must be trained. Such
methods discard the discriminative network once the training stage is completed and make use
of the new generated images as data augmentation method.

We will see in the next section another approach to apply GANs models in classification

tasks, mainly by exploiting class labels.

2.3.2 Semi-supervised GANs

Original unsupervised GANs applications for classification tasks make not use of annotated
data as classes or categories. Another approach that has been used in classification is to exploit
non-labeled data with a semi-supervised GAN architecture Sricharan et al. (2017). In this
scheme, the generator remains the same as in unsupervised GANs, but the discriminator is fed
also by labeled data. So instead learning to distinguishing between only two classes (real and
fake), it learns to classify among N+1 classes, where N is the number of classes plus one class
for real/fake. The final trained discriminator can be used as a classifier. The main idea is to
exploit both limited labeled data and non-labeled data in a unified architecture. Notice that in
this case, both source of data, labeled and non-labeled must come from the same distribution.

This kind of schema has been applied successfully in medical imaging classification in Madani
et al. (2018) for chest X-ray image classification and Lecouat et al. (2018) for for abnormality

classification in retinal images.

2.4 StyleGAN based architectures

As we saw in previous section DCGANs have been used for unconditional image generation
and applied to classification tasks as a data augmentation method. Most of works based on
DCGANSs and variants have been successfully applied to low resolution images and have been
shown less effective for medium/large resolution. 128x128 resolution is just in the limit of the
capabilities of DCGANs and we will explore more advanced and recent architectures. Style-
GAN family of architectures as StyleGAN Karras et al. (2019) and StyleGAN2 Karras et al.

2.4. StyleGAN based architectures 15

(2020b) have been state of the art in the last year with respect to high realistic and high reso-
lution image generation. However, applications of StyleGAN based models are scare in medical
imaging, mainly because this kind of architectures need tens of thousands of examples. To our
knowledge, there is no previous work applying StyleGANs to ultrasound images. And example
in whole-body magnetic resonance imaging (wbMRI) image generation can we find in Chang
et al. (2020) in which DCGAN and StyleGAN family of GANs architectures are compared.
They demonstrated that StyleGAN2 provides best performance with respect radiologist visual
inspection, although the Fréchet Inception Distance (FID) obtained by StyleGAN2 was not the
best, proposing a novel metric for MRI.

Recently, GANs have incorporated in-built data augmentation mechanisms to face data
scarcity. Works by Zhao et al. (2020) and Karras et al. (2020a) show good performance with
one order of magnitude less amount of data. Our main objective is to study and evaluate these

recent techniques and their applicability to fetal brain ultrasound images.

16

State of the Art

Chapter 3

Methodology

In this chapter we describe the methodology and study design carried out in this project. As
we mention previously the main objective is to study the feasibility of Generative Adversarial
Networks as a data augmentation technique for downstream classification task of fetal brain
planes.

Due to computational resources limitation, we state two main simplifications of the task:
we simplify the classification task to two planes instead three. This means that we trained
two unconditional GANs for planes trans-ventricular (trv) and trans-thalamic (dbp), which are
the most hard to classify. We also perform GANSs training over images of resolution 128x128,
reducing considerably training time and complexity of GANs. These two simplifications save
us computational time giving us at the same time an approximate understanding of the whole

problem.

3.1 Experiment design

The experiment design consists in three main stages that we depict in figure 3.1. In a first stage
we carry out data preparation, from the original dataset to the final baseline dataset that was
used for experiments (section 3.2). In the second stage we perform GANSs training in Google
Colab (section 3.3). Finally, we train classifiers for both baseline dataset and GAN augmented

datasets (section 3.4). In the following sections we describe these stages in more detail.

17

18 Methodology

brainplanes dataset
transform
baseline

train / valid split}

‘o

train set validation set
. %
4 N
s B \
GANs training baseline classifiers
—_— ;
——
/
1
trained networks [GAN—based classiﬁers]
\)
generate fakes
o)

Figure 3.1: Experiment design

3.2 Dataset

The original dataset is comprised of 8747 images, 3436 corresponding to trans-ventricular (trv)
planes and 5311 corresponding to trans-thalamic (dbp) planes. This dataset comes from a
broader dataset, including trans-cerebellar planes, and it was collected by BCNatal, a center
with two sites (Hospital Clinic and Hospital Sant Joan de Deu, Barcelona, Spain), with large
maternal-fetal experienced practice. Images were acquired from a total of six different US
machines by several different operators with similar experience. All images were cropped by
means of an automatic brain detector. In image 3.2 a sample of five trans-ventricular and five
trans-thalamic are shown.

Along with images, a description file in csv format is given with several fields, as image
name, brain plane, patient and others that we handle with pandas dataframe. In a first stage
we remove all unnecessary columns leaving the image name, patient anonymized identification

and brain plane label.

3.3. GANs training and image generation 19

Figure 3.2: Some examples of the dataset. Top row: trans-ventricular. Bottom row: trans-
thalamic

training | validation | total
trv 1656 1780 3436
dbp 2620 2691 5311
total | 4276 4471 8747

Table 3.1: Train/validation split with no overlapping patient samples.

In a second stage a baseline dataset is built with resolution 128x128 and a train-validation
split (50%-50%) method by means of GroupShuffleSplit sklearn function with seed set to 19,
splitting in this way the dataset into training and validation sets with no overlapping patient
samples. Once the split is done the patient column is removed. The final dataframe consists of
8747 rows and three columns: image, brain_plane and Valid. In table 3.1 the train/split of this
baseline is shown. The main goal is to compare performance between GANs-based classifiers
and no-augmented classifiers with the validation set. In the following stages, the training set

will be used for both, GANs training and baseline classifiers training.

3.3 GANSs training and image generation

In this section we describe the training process of GANs. Since we are approaching this problem
under an unconditional framework, two GANs were trained, one for each class. The training
was done in Google Colab with our own stylegan2-ada' fork with minor modifications and
custom training configurations. GANs training is entirely based on Karras et al. (2020a) work,
which first version was published on June 11th, 2020 and its open implementation that was
published in github on October 8th, 2020.

In the following sections we describe the training configuration we applied for GANs training
3.3.1, the evaluation methods used for network snapshot selection 3.3.2 and the procedure for

image generation 3.3.3.

'https://github.com/albertoMontero/stylegan2-ada

https://github.com/albertoMontero/stylegan2-ada

20 Methodology

mb | mbstd | fmaps | ema
32 4 0.5 |10

Table 3.2: Fixed parameters for one gpu and 128x128 resolution image.

3.3.1 Training

stylegan2-ada has several training parameters that are described in Karras et al. (2020a). Se-
lecting the proper parameters is the harder decision due to time spent in training GANs. We
made decisions based on experiments and suggestions described in that work (particularly on
similar data regime datasets) and defaults defined in the implementation, while evaluation was
preformed through metrics defined in next section.

Among the training parameters we have some that we might consider fixed due computa-
tional resources (number of gpus available) and image resolution. In our case, since we can
only use one gpu and our image resolution is 128x128 we set the following parameters shown in
table 3.2, 2 where mb is the minibatch size, mbstd the minibatch standard deviation layer at the
end of the discriminator, fmaps is the ratio of feature maps used with respect high resolution
settings, and ema is the exponential moving average of generator weights.

On the other hand other parameters are more sensitive to particular datasets, like R regular-
ization v, learning rate, the target value for r, overfitting heuristic and augpipe (augmentation
pipeline).

We remind the reader that the training dataset is comprised of 2620 trans-thalamic (dbp)
images and 1656 trans-ventricular (trv) images. For trans-thalamic (dbp) images we set Ry
regularization v as 0.16, which is the suggested value (and it is slightly different from the
implementation default), the target value to 0.5 since it is shown that it works better than
default value of 0.6 for small datasets (see figure 5 (b) in Karras et al. (2020a)), learning rate
to 0.002 and augpipe to configuration 'bg’ (blit and geometric augmentations) which is shown
that performs better than default 'bgc’, specially for gray images.

For trans-ventricular (trv) images we had to experiment more with R; regularization v with
values 0.08 and 0.24 getting the best results for v = 0.24. Also we decrease the learning rate to
0.001 and use data augmentation setting parameter mirror to 1, which it seems to be beneficial
for small datasets.

For both image sets we set the mapping network depth (map) to 8 although values between
2 and 8 are very similar and a depth equals to 2 might be slightly better (see appendix D.1
Karras et al. (2020a)). Finally, although there are not pre-trained networks for 128x128 image

resolution, we find out that higher resolution trained networks can be used for 128x128 resolu-

2We can find these fixed parameters in auto configuration of stylegan2-ada as a suggestion for a good starting
point.

3.3. GANs training and image generation 21

mb | mbstd | fmaps | ema | v | target Ir augpipe | map TL
dbp | 32 4 0.5 10 | 0.16 | 0.5 |0.002 bg 8 | celebahq256
trv | 32 4 0.5 10 1024 0.5 |0.001 bg 8 | celebahq256

Table 3.3: GANs training configuration for dbp and trv images.

tion for transfer learning. In our case we transferred from CelebAH(Q) pre-trained on 256x256
(celebahq256) images for both image sets. In table 3.3 we show the final configuration for GANs
training.

With above configurations we trained dbp-GAN in five Colab sessions (about 45 hours) and
trv-GAN in three sessions (about 27 hours).

3.3.2 GANSs evaluation

GANs have proved to be remarkably effective at generating both high-quality and extensive
synthetic images in a range of problem domains. However, GANs lack an objective function,
which makes it difficult to compare performance of different models.

Several quantitative measures have been proposed to evaluate GANs performance in the
last years. Specifically, stylegan2-ada implements the following metrics for small datasets: FID
(Fréchet inception distance Heusel et al. (2018)), KID (Kernel inception distance Binkowski
et al. (2018)) and PR (Precision and Recall Kynkéénniemi et al. (2019)). These metrics are
calculated over the whole training set, instead of 50K real images as in previous versions.
Fréchet inception distance

This is one of the most popular metrics to evaluate GANs performance. It was design to
overcome some issues of its predecessor inception score (IS Salimans et al. (2016) related with
the lack of diversity detection. The main idea is to embed a set of generated samples into a
feature space given by an specific intermediate layer of Inception network (although other CNNs
can be used). Then, the embedding space can be modeled as a continuous multivariate Gaussian
and the mean and covariance can be estimated for both fakes images and real data. The Fréchet
distance (also known as Wasserstein-2 distance) between these two Gaussians quantifies the
quality of generated samples. Equation 3.1 shows FID score for distribution g = (pg, £,) of
embedded fakes with respect distribution r = (u,, 2,) of embedded real samples.

D=

FID(r, g) = [l — pgllz + Tr(E, + 25 — 2(2,5)?) (3.1)

FID is more robust to noise and better measure for image diversity than IS. Since we are
working in this project under an unconditional framework and training one GAN per class, one

might think that we don’t deal with classes, but classes and labels are artificial and in this case

22 Methodology

image diversity is important because as it was described in section 3.2 the dataset contains
images acquired from several machines and IS might not be able to capture the lack of diversity
with respect machines.
Precision and Recall

Unlike FID, the main idea of PR metric is to form explicit non-parametric representations
of real and generated manifolds and estimate from them precision and recall. Similarly to
FID, real and generated samples are drawn from X, ~ P, and X, ~ P, and embedded into a
high-dimensional feature space using a pre-trained classifier network. Let ¢, and ¢, be real and
generated feature vectors respectively, and ®, and ®, the corresponding sets of feature vectors.

Then for any ¢ and any ® a binary function is defined as in equation 3.2.

L, if || — ¢'||l2 < ||¢p — NNi(¢', D)||2 for at least one ¢’ €

f(¢,®) = (3.2)

0, otherwise

where NNy (¢, @) is the kth nearest feature vector of ¢’ € ®.

This equation defines a way to decide whether a given image looks realistic or might be
produced by the generator with f(¢, ®,) and f(¢, ®,) respectively.

Finally, precision and recall are defined in equations 3.3 and 3.4

precision(®,., ®,) Z (g, @ (3.3)
<z> cd,

recall(®,, ®,) |(I> | Z f(¢r, @ (3.4)
r €D,

In practice Kynkéadnniemi et al. (2019) set k& = 3 and features vectors ¢ are calculated with a
pre-trained VGG-16 classifier, extracting the activation vector after the second fully connected
layer.

Karras et al. (2020a) notice that FID is not a good metric for small datasets and suggests
to use KID instead. We observed in our experiments that both are quite correlated. On the
other hand, precision and recall has little bias for small datasets and in Ravuri and Vinyals
(2019) observed that precision is better than recall for GANs-based classifiers, although in that
work another architecture (BigGAN) and another dataset (ImageNet) was studied. These two
observations suggest that precision and recall might be better metric for GANs-based classifiers
than other metrics available. With this in mind, the strategy for selecting a network was as
following: among the three or four networks with lower FID, those with higher precision were
selected for both GANs, although we found experimentally that high precision and low FID are

quite correlated. We have to mention at this point that, as we will see in next section, precision

3.3. GANs training and image generation 23

FID precision | recall
dbp | 13.08 0.6616 | 0.3336
trv | 17.4856 | 0.6609 | 0.2850

Table 3.4: Metrics: FID, precision and recall for dbp and trv trained GANs.

may be controlled by means of the truncation trick, so maybe a better strategy would be to
select those networks with higher recall. In any case, among better networks with respect FID,
we didn’t observe significant differences between precision and recall.

In table 3.4 the obtained metrics are shown. We can compare these values with results
obtained in Karras et al. (2020a) for BRECAHAD dataset (Aksac et al. (2019)) which consists
of breast cancer histopathology images with similar number of training images (1994, compared
with 1656 for trv and 2620 for dbp), where they obtained a FID value of 15.71 when training

from scratch and 16.33 when using transfer learning.

3.3.3 Fakes generation

An open problem in all generative models is the difficulty for the generator to learn from low
density areas that are poorly represented. In order to improve quality of samples, a method call
truncation trick proposed by Brock et al. (2019) is applied in most of recent architectures. The
main idea consists in sampling from a truncated distribution instead from original distribution
applied in training. In most of the cases models are trained with A/(0,) or U[—1,1]. Sampling
from these truncated distributions will generate in most of the models more realistic images,
increasing precision at the price of less variety or recall. As the truncated threshold ¢) — 0 the
generated images tend to some kind of training set mean image. On the contrary, when ¢ — 1,
generated images show high variety but also might present artifacts and seem unrealistic.

Notice that in stylegan architecture family, the truncation is done over an intermediate
latent space w € W (Karras et al. (2019)) coming from a mapping network consisting of 8
fully connected layers, instead of traditional latent code y € Z defined by the input layer.
Although in theory negative values of 1) are possible, we didn’t experiment in this work with
them, limiting the experiments only to positive values.

Figures 3.3 and 3.4 show five sweeps by rows over ¢ for values ¢» = 0.1,0.2,...,0.9,1 for five
random seeds over dbp and trv respectively. We can observe that for ¢» = 0.1 (first column)
images are more similar to each other than for) = 1 (last column).

Figures 3.5 and 3.6 show 25 random generated images for ¢» = 0.3,0.5,0.7,1 for both dbp
and trv planes, using the same 25 seeds for each grid.

As we will see in chapter 4 the selection of ¢ value when generating images is an important

parameter to study, giving different results with respect classification tasks.

24

Methodology

7_.5'<\><\><\><\><\><\><\><\>—<\>/

4 e 3 3 Nl N S _./ A
PP S S S S S

ealas astaatastarts

’/._H\"\ £

Figure 3.3: dbp fakes generation: v = 0.1,0.2,...,0.9,1 sweep for five random seeds.

N7

/
>¥>¥;<;<)</“\/\=/;</\;\

f

><><S<s<s<»<s<\-<»<><

/

\ -\ -\ - R R R R SR

Figure 3.4: trv fakes generation: v» = 0.1,0.2,...,0.9,1 sweep for five random seeds.

3.3. GANs training and image generation 25

Figure 3.5: Generation of dbp images for some random seeds and different ¢. Same 25 seeds
were applied to each grid giving the same 25 brain plane generation for four ¢ values.

26 Methodology

Figure 3.6: Generation of trv images for some random seeds and different). Same 25 seeds
were applied to each grid giving the same 25 brain plane generation for four ¢ values.

3.4. Classifiers 27

3.4 Classifiers

The main goal of this work is to study the feasibility of GANs-based classifiers. To perform
comparisons we implement the same classifier for both GANs-based and classical classification
with no fakes images, with default settings based on fastai library, which has a good set of
default values for hyper-parameters and data augmentation. These defaults have been shown

to work quite good in most of classification tasks Howard and Gugger (2020).

As shown in figure 3.1, training set was used for training both, baseline classifiers and
GANs-based classifiers and the validation set used to compare performance. In addition to real
images, GANs-based classifiers were trained also with fakes images. In chapter 4 we describe

all experiments and results.

3.4.1 Implementation details

3.4.1.1 Architecture

We describe briefly in this section the deep learning architecture implementation details applied
to both baseline and GANs-based classifiers.

The classifier architecture is based on Resnet architecture He et al. (2015) with pre-trained
weights on ImageNet dataset, slightly modified by fastai library. The differences between
original PyTorch Resnet and fastai version are two. First, the head of original PyTorch Resnet
(Paszke et al. (2019)) is modified, adding one more Linear layer with dimensions (in_features,
out_features) = (1024, 512) before the last layer, and modifying the dimension of the last one
to (512, 2), since we are dealing with a binary classification task. Moreover, the next to last
layer is followed by ReLU, BatchNorm and Dropout (p=0.5) layers and preceded by Flatten,
BatchNorm and Dropout (p=0.25). These modifications applied to the head give most of the

time an increase of performance in classification tasks.

The second modification is located in the link between body and head. While original
PyTorch Resnet has an Adaptive AvgPool2d layer connecting the last feature map with the head,
fastai version has AdaptiveAvgPool2d and AdaptiveMaxPool2d layers concatenated. Again,
fastai team have experimentally observed that by concatening both AdaptiveAvgPool2d and
AdaptiveMaxPool2d layers give in most of the cases better performance that using a unique
AdaptiveAvgPool2d layer. Notice that in both cases, input image size can be smaller than
(224, 224). The body of the Resnet remains the same as the original PyTorch. In figure 3.7

differences between both architectures are shown.

28

Methodology

(1):

PyTorch head:

(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))
(fc): Linear(in_features=512, out_features=1000, bias=True)

fastali head:

Sequential(

(@): AdaptiveConcatPool2d(
(ap): AdaptiveAvgPool2d(output_size=1)
(mp): AdaptiveMaxPool2d(output_size=1)

)

(1): Flatten(full=False)

(2): BatchNormld(1024, eps=le-05, momentum=0.1, affine=True,
track_running_stats=True)

(3): Dropout(p=0.25, inplace=False)

(4): Linear(in_features=1024, out_features=512, bias=False)

(5): ReLU(inplace=True)

(6): BatchNormld(512, eps=l1e-05, momentum=8.1, affine=True,
track_running_stats=True)

(7): Dropout(p=0.5, inplace=False)

(8): Linear(in_features=512, out_features=2, bias=False)

Figure 3.7: Comparison between original PyTorch and default fastai Resnet head architecture.

3.4.1.2 Training

The same training procedure was applied to baseline and GANs based classifiers. All classifiers

were trained a maximum of 20 epochs with early stopping on validation loss with patience set

to 5 and batch size to 64. The network was fine tuned the first epoch, by training only the head,

while the remaining epochs all the layers were unfrozen and trained. All hyper-parameters were

set using default fastai values with fine_tune method. Moreover, loss function and optimizer

were set to default values of create_lerner method. Finally, also default data augmentation

was applied with method aug_transforms with image resolution of 128x128. As we mention

previously, all these default values define good baselines.

Chapter 4
Experiments and Results

In this chapter we describe the experiments performed in this work.

Generation of fakes is done off-line in order to speed up the experiments. That is, the
generated images are limited to subsets of the first IV generated images for each plane defined
by seeds 1 — N, where N = 30000 for each plane. All experiments are performed over 5 runs
with pre-defined seeds. In the case of experiments involving fakes, each run samples a different
set of fakes with limitations mentioned above. In table 4.1 results for the baseline are shown.
In all experiments, accuracy (acc), area under the curve score (auc), as well as maximum and
minimum for both, and validation loss are reported.

In the next two sections two kind of experiments are described: augmentation experiments,
where the training dataset is augmented with fake images, and replacement experiments, where

some real training samples are replaced by fakes.

4.1 Augmentation experiments

The first question we ask ourselves is whether augmenting the training set with GANs generated
images improve the performance of brain plane classification task. As we mentioned in previous
chapter the quality of images can be controlled by the truncation parameter 1. We performed

several experiments for values v = 0.3,0.5,0.7, 1, with increasing amount of fakes defined by

F#fakes
#train set

ratios r, = with respect the training set. Tables from 4.2 to 4.5 show results obtained

and figure 4.1 shows graphs for all four experiments.

acc MaXgee | MiNgee auc MaXgye | Milgye | 1088404

resnetl8 || 0.799 £0.004 | 0.805 | 0.792 || 0.850 £0.003 | 0.855 | 0.844 | 0.460

Table 4.1: Baseline results for 5 runs.

29

30

Experiments and Results

084

0382

acclauc

0.80

084

082

accfauc

0.80

Accuracy and AUC for y=0.3

= loss
blax =0.85
bl_loss
al
S e
1
o
—_—
blace =079
—— acc
—— auc
05 1 2 3 i 5 6 7 B
augmentation ratio Rs
Accuracy and AUC for y= 0.7
- loss
\
bla =085
bl loss . I
-
—
=
o /\\“-h/ b
_____ I S — S
=y
_/ blace =0.79
S
—— ac
—— auc
T T T T T T T T T
05 1 2 3 4 5 3 7 B

augmentation ratio R.

loss

040

loss

Fo44a

acc/auc

acc/auc

084

0.82

0.80

0.84

0.82

0.80

Accuracy and AUC for p=05

050
= loss
T il - 048
Blax =0.85
------- 046
bi_loss 1
@
s
—
7___,,/ 044
— —
e S i —— i (R S N
Y= blae =079
0.42
—— acc
—— auc
T T T T T T r - 040
05 2 3 4 5 6 7 B
augmentation ratio Ra
Accuracy and AUC for y=1
Y L4 050
- loss
048
. blac =0.85
------- 046
bl_loss
- — @
\ ~ n k-
// Y =T * loas
F= e . =
—_— blaze =079
042
—— ac
— auc
T T T T T T T i 040
05 2 3 4 5 3 7 &

augmentation ratio Ra

Figure 4.1: Accuracy (blue, with max and min), auc (orange, with max and min) and validation
loss (red) for experiments with ¢ = 0.3, ©» = 0.5, ¢» = 0.7 and ¢ = 1. Vertical gray lines are
baseline auc, validation loss and accuracy.

4.1. Augmentation experiments 31

R, || fakesy, | fakesg, ace MaXge. | Mige, auc MaXgye | Milgye || 10SSaug
bl 0 0 0.799 +0.004 | 0.805 | 0.792 || 0.850 £ 0.003 | 0.855 | 0.844 | 0.460
0.5 828 1310 0.802 +0.006 | 0.809 | 0.793 0.85 £ 0.006 0.857 | 0.842 0.466
1 1656 2620 0.8 £+ 0.005 0.807 | 0.792 0.85 £ 0.001 0.851 | 0.848 0.466
2 3312 5240 0.805 +0.004 | 0.811 | 0.798 || 0.856 + 0.003 0.86 0.851 0.463
3 4968 7860 0.808 +0.006 | 0.817 | 0.801 || 0.858 £0.005 | 0.867 | 0.853 0.455
4 6624 10480 0.811 +0.003 | 0.816 | 0.808 || 0.856 £ 0.005 | 0.862 | 0.849 | 0.457
5 8280 13100 0.81 £0.004 | 0.816 | 0.804 || 0.859 £ 0.002 0.86 0.856 0.453
6 9936 15720 0.81 £ 0.006 0.817 | 0.799 0.86 £ 0.005 0.867 | 0.853 0.453
7 11592 18340 0.812 +0.003 | 0.815 | 0.806 || 0.862 4+ 0.003 | 0.865 | 0.858 0.456
8 13248 20960 || 0.813 £0.003 | 0.818 | 0.809 || 0.861+0.005 | 0.866 | 0.852 | 0.447

Table 4.2: Augmentation experiment for ¢ = 0.3 (5 runs). In left column augmentation ratios
with respect training set size are shown. Baseline metrics in first row.

R, || fakes;., | fakesg, acc MaXge. | Milgee auc MaXgye | MiNgye || 10SSgug
bl 0 0 0.799 +0.004 | 0.805 | 0.792 || 0.850+0.003 | 0.855 | 0.844 | 0.460
0.5 828 1310 0.798 + 0.007 | 0.806 | 0.788 || 0.844+0.005 | 0.851 | 0.838 0.482
1 1656 2620 0.795 +0.008 | 0.805 | 0.781 || 0.849+£0.004 | 0.854 | 0.842 0.481
2 3312 5240 0.802 +0.008 | 0.815 | 0.792 || 0.854£0.006 | 0.862 | 0.847 | 0.467
3 4968 7860 0.803 & 0.005 | 0.808 | 0.794 || 0.855+£0.005 | 0.861 | 0.848 0.461
4 6624 10480 0.801 +0.009 | 0.816 | 0.788 || 0.856 £ 0.003 | 0.861 | 0.853 0.464
5 8280 13100 0.804 +0.007 | 0.817 | 0.798 || 0.856 £ 0.007 | 0.869 | 0.848 0.463
6 9936 15720 0.807 +0.004 | 0.811 | 0.799 0.86 £ 0.006 0.87 0.85 0.454
7 11592 18340 | 0.814 +0.006 | 0.822 | 0.805 | 0.864 £+ 0.004 | 0.87 0.856 | 0.453
8 13248 20960 0.811 £ 0.006 | 0.819 | 0.803 || 0.862 £ 0.004 | 0.868 | 0.858 0.455

Table 4.3: Augmentation experiment for ¢ = 0.5 (5 runs). In left column augmentation ratios
with respect training set size are shown. Baseline metrics in first row.

R, || fakes;, | fakesg, ace MaXgee | MiNge. auc MaXgye | Milgye || 10SSauq
bl 0 0 0.799 £0.004 | 0.805 | 0.792 || 0.850£0.003 | 0.855 | 0.844 | 0.460
0.5 828 1310 0.791£0.004 | 0.796 | 0.783 || 0.838 £0.006 | 0.848 | 0.831 | 0.484
1 1656 2620 0.792 £0.008 | 0.803 | 0.783 || 0.843£0.009 | 0.856 | 0.832 | 0.492
2 3312 5240 0.803 £0.005 | 0.809 | 0.794 || 0.856 £0.004 | 0.861 | 0.852 || 0.466
3 4968 7860 0.802 £ 0.005 | 0.806 | 0.793 || 0.856£0.003 | 0.858 | 0.852 || 0.465
4 6624 10480 || 0.798 £0.008 | 0.812 | 0.787 | 0.858 £0.005 | 0.864 0.85 0.462
5 8280 13100 || 0.808 0.006 | 0.816 0.8 0.862 £+ 0.005 | 0.867 | 0.856 || 0.453
6 9936 15720 || 0.802+0.006 | 0.812 | 0.796 | 0.862+0.003 | 0.866 | 0.858 || 0.453
7 11592 18340 0.812£0.004 | 0.818 0.807 || 0.864 + 0.003 | 0.869 0.858 0.446
8 13248 | 20960 || 0.806 +0.008 | 0.817 | 0.798 || 0.861 +0.007 | 0.87 0.852 || 0.455

Table 4.4: Augmentation experiment for 1 = 0.7 (5 runs). In left column augmentation ratios
with respect training set size are shown. Baseline metrics in first row.

32 Experiments and Results

R, || fakesy., | fakesgy acc MaXgee | MiNge. auc MaXgye | Milgye | 10SSqyg
bl 0 0 0.799+0.004 | 0.805 | 0.792 | 0.850 4+ 0.003 0.855 | 0.844 | 0.460
828 1310 0.795 £ 0.005 | 0.804 0.79 | 0.846 £ 0.006 0.854 | 0.838 0.47
1656 2620 0.795 + 0.004 0.8 0.79 | 0.852 £ 0.005 0.861 | 0.848 | 0.472
3312 5240 0.793 £0.009 | 0.809 | 0.783 | 0.85+0.007 0.859 | 0.839 | 0.471
4968 7860 0.798 £0.009 | 0.816 | 0.789 | 0.856 4 0.005 0.867 | 0.851 | 0.465
6624 10480 0.8 + 0.006 0.81 0.792 | 0.858 + 0.005 0.865 0.85 0.465
8280 13100 0.808 +£0.007 | 0.813 | 0.795 | 0.862 4 0.006 0.869 | 0.856 | 0.455
9936 15720 || 0.815 +£0.003 | 0.82 0.812 | 0.867 4+ 0.003 0.87 0.862 | 0.441
11592 18340 0.81 £ 0.006 0.816 | 0.802 | 0.864 £ 0.005 0.871 | 0.857 | 0.451
13248 20960 0.81 £ 0.008 0.817 | 0.795 | 0.86 4= 0.006 0.866 | 0.851 | 0.449

ot

Table 4.5: Augmentation experiment for v = 1 (5 runs). In left column augmentation ratios
with respect training set size are shown. Baseline metrics in first row.

4.1.1 Analysis

As we can observe in tables and graphs, we found a little improvement with respect baseline
metrics. Best results were for ¢ = 1 for which we obtained a maximum accuracy of 0.815, which
represents a 2% of improvement, and a maximum auc of 0.867, which means an improvement

of 2% in auc. Finally, we observe an improvement of 0.019 in validation loss also for ¢ = 1.

When comparing results above it doesn’t seem to be a clear winner. Performances are very
similar to each other and best are found for R, > 6 and for R, = 8 seem start decreasing.
However we notice some differences with respect the quality of fakes. For fakes obtained by
1 = 0.3 (which have higher precision and lower recall than others), we see that classifiers are
the first to cross the barrier of baseline validation loss at ratio R, = 3 while the rest need
more samples to reach similar results. That is, when we add less fakes (R, < 3) the quality
(precision) matters, but as we add more fakes, variety (recall) seems to compensate quality.

There is not much previous work related to GANs-based data augmentation for classification
tasks in real applications to compare. In Frid-Adar et al. (2018) they perform GANs-based
synthetic computed tomography (CT) images for downstream liver lesion classification task and
they were able to increase sensitivity and specificity of liver lesion classification from 78.6% and
88.4% with classical data augmentation methods to 85.7% and 92.4%. Although in that work
the dataset belongs to low-regime data with only 182 examples, and they applied a previous
classical data augmentation method to increase the training set. Another related work is Ravuri
and Vinyals (2019) where the experiment is performed with ImageNet dataset and BigGAN.
They observed an increase in top-1 accuracy between 1% and 3% for a very few classes.

We have to mention here some important circumstances about this dataset that might
affect the obtained performance to some extend. First, our training set has about 4.2K images,

along with strong classical augmentation methods makes difficult to overcome baseline metrics.

4.2. Replacement experiments 33

Second, trv/dbp classification task is hard and there is little room for improvement. State of
the art algorithms reach about 85% of accuracy (obviously with higher image resolution and
better architectures). Actually, agreement between two specialists is 89.3% and 80% for trv and
dbp respectively, and therefore, both the training and validation set may contain label errors.
Although deep learning algorithms for classification are to some extend robust to noise, GANs

training might be affected by mixing sample labels.

Last observation suggest a first task for future improvement: a sample filtering module to
select good samples for GANs training. Similarly, a module for filtering good fakes candidates

might be worth exploring. We discuss these points in more detail in chapter 7.

4.2 Replacement experiments

Augmentation experiments suggest that we might obtain similar performance replacing some
real images by fakes. If we create a new baseline extending the training set with half of the
validation set samples, we obtain similar performance to previous GANs-based experiments.
We formalize this idea creating a new baseline setting and comparing with the same validation

set as we describe below.

Replacement experiments are those where real images are replaced by fakes. With this kind
of experiment we aim to explore a new point of view. Here the question to answer is: can we

reach similar performance by replacing some real images by GANs generated images?

In order to be fair and not replace real samples that have been also get involved in GANs
training, we implement a new baseline dataset from the previous one, in which the validation
set is split again into train and validation with no overlapping patients, obtaining in this way a
train /valid split of 75%-25%. However, in this case we differentiate training samples involved
in GANs training and not. In table 4.6 the new train/valid split is shown. Notice that column
gan shows the same amount of samples as the original baseline and we extend the training with
about half of the original validation set with samples not involved in GANs training. In the
following replacement experiments, all replacements will take place over training samples not
involved in GANS training (no gan column). Also notice that the validation set is now half of
the original which it means that the confidence of results are slightly lower than with initial
baseline.

We show in tables 4.7 and 4.8 replacement experiments for ¢» = 0.3 with augmentation
ratios R, = 5 and R, = 6, and ¥ = 0.5 with augmentation ratios R, = 6 and R, = 7. In
both experiments all samples not involved in GANs training (854 and 1368 for trv and dbp

respectively) are replaced by fakes. Metrics for new baseline are shown in first row.

34 Experiments and Results

train Cq L
planes validation | total
gan | no gan
trv 1656 854 926 3436
dbp 2620 1368 1323 5311
total 6498 2249 8747

Table 4.6: New baseline setting distinguishing between samples involved in GANs training (gan
column) and not involved (no gan column).

R, || fakes;, | fakesg, ace MaXge | Milge. auc MaXgye | Milgye | 1088404
bl 0 0 0.808 £0.005 | 0.815 | 0.803 | 0.861 £0.004 || 0.867 | 0.854 | 0.444
5 8280 13100 || 0.797 £0.009 | 0.808 | 0.783 | 0.853 £0.009 || 0.868 0.84 0.46

6 9936 15720 || 0.807£0.002 | 0.81 0.805 | 0.861 =0.002 || 0.864 | 0.858 | 0.457

Table 4.7: Replacement experiment v = 0.3. In left column augmentation ratios with respect
training set size are shown.

R, || fakes;, | fakesg, acce MaXgee | MiNgee auc MaXgye | Milgye | 108S40g
bl 0 0 0.808 £0.005 | 0.815 | 0.803 | 0.861 +0.004 || 0.867 | 0.854 | 0.444
6 9936 15720 || 0.804 £0.005 | 0.81 0.795 | 0.86 £ 0.003 0.863 | 0.857 | 0.463
7 11592 18340 || 0.806 =0.006 | 0.813 | 0.796 | 0.862 +0.002 | 0.865 | 0.859 | 0.452

Table 4.8: Replacement experiment v = 0.5. In left column augmentation ratios with respect
training set size are shown.

4.2.1 Analysis

Results show that auc obtained are similar to baseline, although validation loss is slightly
higher. For example, for ¥ = 0.5 and R, = 7 (table 4.8) we obtained an auc = 0.862 ~ 0.861.
In this specific case we are replacing 2222 (854 + 1368) real images by 29932 (11592418340)
fakes and obtaining similar performance. This suggests that for this specific case with a set
of 4276 (2620+1656) real training images, the waiting for the acquisition of about 2000 real
images might be saved and replaced by images generated by a trained GAN.

By construction of train/validation split, these 2200 images are from different patients than
the training set and taking into account that there are in average 3.5 images per patient, we
conclude that the waiting for about 570 patient visits and examinations might be saved with
a similar performance. Moreover, the acquisition, collection and selection of images containing
planes of interest is realized by trained research technicians followed by a validation from a
senior expert, which is a slow process and sensitive to mistakes. Thereby, this contribution
might save time, resources and money in the whole process towards automatic classification of

fetal brain planes.

4.3. Discussion 35

4.3 Discussion

We enumerate and discuss briefly our findings and limitations in this work.

Findings

e The results of replacement experiments indicate that by applying GAN-based data aug-
mentation to this specific use case with 4276 real training images, the waiting for 2200
images and about 570 patient examinations might be saved obtaining similar performance
in binary classification of trans-ventricular and trans-thalamic fetal brain planes with re-

spect baseline, with significant savings in time, resources and money.

e The results of augmentation experiments show an improvement of 2% in both accuracy
and auc, and an improvement of 0.019 in validation loss when GAN-based data augmen-
tation is applied to binary classification of trans-ventricular and trans-thalamic fetal brain
planes with 4276 real training images, showing that when combined with classical data
augmentation methods, GAN-based augmentation improves performance in this use case.

We observed this improvement for all ¢ values explored from a certain amount of fakes.

e We performed an exploratory grid search over several truncation values ¢ and amount of
fakes and obtained insights about about quality (precision) and variety (recall) trade-off

when generating GAN-based synthetic images.

e To our knowledge, this is one the first works applying GAN-based data augmentation for

classification tasks in ultrasound images and specifically in ultrasound fetal brain planes.

e To our knowledge this is the first project in medical imaging using recent work Karras et al.
(2020a) and its implementation of the state of the art Generative Adversarial Network

stylegan2-ada released on October 2020.
Limitations

e The main limitation of this work is that images used are clearly centered with almost no
background, which it is highly beneficial when training these kind of GANs. We don’t
know to what extend these results might be extensible to not centered images containing

more background.

e Another important limitation is that the image set used in GANs training contains about
4K images and we didn’t explore performance for smaller training sets, which it is a
common situation in medical imaging. Further experiments would be necessary to study

the applicability to smaller datasets.

36

Experiments and Results

Chapter 5

Project structure, design and

implementation

In this chapter we describe briefly the structure, software design and implementation used for
this project. In appendix A we show the code of most important modules of experiment package

which is the central package.

5.1 Project structure

The structure of the project has been organised as a typical data science project with the fol-

lowing directory structure:

usbrains

| _data
interim
processed
raw

| _experimentsm

| notebooks

| _usbrains
classifiers
data
experiments
gans
tests

e Data folder contains datasets in several stages, from raw to processed, with an interim

stage containing a pre-processed snapshot of raw data.

37

38 Project structure, design and implementation

e Experiments folder is a symbolic link to another machine partition and contains all fake-
extended datasets used in different experiments.

» Notebooks folder with all notebooks implemented for data preparation, experiments, de-
velopment, tests, visualizations, etc.

e Usbrains. Python source code of the project. We describe it briefly in next section.

5.2 Design

The software design is strongly coupled with the experimental design (see 7777). The project
is defined by for packages: classifiers, data, experiments and gans. Each package handles a
specific group of tasks and it is composed of several modules. Most of the modules implement
functions for specific sub-tasks. The experiments package is defined also by several classes, being
Experiment an abstract class which implements a common run method for all derived classes
(BaselineExperiment, AugmentationExperiment and ReplacementExperiment) and abstracts
the method create_train_df() to be implemented for derived classes. Details in appendix A.

The source code has the following directory structure.

usbrains

| classifiers
__init__.py
baseline classifier.py
| data

__init__.py
basic_transforms.py
data.py
datasets.py
utils.py
visualization.py

| _experiments
_init__.py
augmentation.py
baseline.py
datasets.py
experiment.py
replacement.py
results.py
utils.py

__gans
%init. Py
generate.py

| tests

5.2. Design 39

graphs.py
images.py
utils.py

Most relevant modules has documentation, and package documentation are in __init__.py files.

We describe briefly package the dependencies and functionalities. In figure 5.1 the package

experiment

torch
classifiers
\
fastai

Figure 5.1: Package dependencies

dependencies are shown.

5.2.1 Packages description
5.2.1.1 data package

The data package handles all processes related with data extraction, cleaning, transformation
and baseline datasets creation.

Modules:

data: basic read, save, clean functionalities, and train_test_split() function with patient based
train / test split.

datasets: contains create_dataset() method for baseline dataset creation.

basic_transforms: contains TransformAndSave callable method used by create_dataset() to
perform parallel transforms.

visualization: basic functionalities for image visualization in jupyter notebooks.

utils: basic util functionalities.

5.2.1.2 experiments package

The experiments package handles the whole experimental process definition. Experiment class
in experiment module is the core of the package. It is an abstract class with abstract method
create_train_df() which is implemented by derived classes, and implements the run() method

which it performs the experiment process. Also, it handles all settings related with training

40 Project structure, design and implementation

parameters and paths configuration, experiment and report names etc, defining some default
values that can be overridden.

Experiment pipeline (given GANs trained networks snapshots):

1. datasets.prepare_train_set(args)

2. e = ReplacementExperiment(args) [or any Experiment derived class]

3. e.run(args)

Modules:

experiment: Experiment class

baseline: BaselineExperiment class

augmentation: AugmentationExperiment class

replacement: ReplacementExperiment class

datasets: prepare_train set() — prepare fakes offline, before running experiments

results: Result and Report classes.

utils: utils. Contains AttributeDict which is an attribute access style dictionary (some kind of
EasyDict).

5.2.1.3 classifiers package

The classifiers package handles image classifier definition.

Modules:

baseline_classifier: run_classifier() — default classifier defined to perform classifications tasks.
It defines a set of default settings and it is used to compare baseline with gan-augmented

classifiers.

5.2.1.4 gans package

The gans package handles the generation of fake images given network snapshots.

Modules:

generate: generate_images() — generate images from given GAN network, trained with
styleGAN2-ada.

5.2.2 Examples

We show in this section some examples of how to run experiments (see figure 5.2 for a visual

description).

5.2. Design 41

5.2.2.1 Fakes generation

In order to speed up the experimental stage, we perform offline fakes generation for several
values of tpsi’s. The following snippet creates 10K of class trv and 10K of class dbp, and save
the images in ROOT_PATH /images.

import experiments.datasets as ds

import data.data as data

path folder where training images will be saved, fakes and reals
ROOT_PATH = Path("/usbrains/experiments/example/tpsiO3")

path folder where trained gan network snapshots are located
GANS_NETWORKS_PATH = ROOT_PATH / "ns"

folder containing baseline dataframe

BASELINE_PATH = Path("/usbrains/data/processed/baseline_sz128")

parameters

trv_ns = "network-snapshot-000512_s2.pkl"
dbp_ns = "network-snapshot-000065_s5.pkl"
tpsi = 0.3

gan_seeds = {
"trv": "1-10000",
"dbp": "1-10000"

generate fakes and copy baseline dataset into ROOT_PATH / images
path = ds.prepare_train_set(trv_ns, dbp_ns, tpsi, gan_seeds, ROOT_PATH,
— BASELINE_PATH, GANS_NETWORKS_PATH)

5.2.2.2 Augmentation experiment

We show in this example a complete experiment for a specific value of ¢y = 0.7, including the

graph obtained in image 4.1 of chapter 4 corresponding to ¥ = 0.7 and its table shown in 4.4

from experiments.experiment import DEFAULT_SETTINGS
from experiments.augmentation import AugmentationExperiment
from graphs import plot_tpsi_experiment

from utils import create_tex_table

42 Project structure, design and implementation

random.seed (19)

seeds = random.sample(range(1000), 5)

tpsi = "tpsiO7"
experiment_path = Path("/usbrains/experiments/gan2/trv_512s2_dbp_65s5") / tpsi

name = "augmentation_grid"
settings = {"model_name": name, "experiment_name": name,

"log_path": DEFAULT_SETTINGS.log_path / "augmentation" / tpsil}

e = AugmentationExperiment ("baseline_sz128", experiment_path, setting_params=

— settings)

rs = [0.5, 1, 2, 3, 4, 5, 6, 7, 8] # augmentation ratios

for r in rs:
trv_fakes = int(n_trv * r)
dbp_fakes
e.setting_params.report_name = f'"aug_ar_{r}"
print ("#" *x 40)

int(n_dbp * r)

print (f"Running experiment: {e.setting_params.report_name}")
print ("#" *x 40)

res = e.run(0, 0, trv_fakes, dbp_fakes, seeds=seeds)

creates plot automatically from all reports saved in e.results_path folder

plot_tpsi_experiment(e.results_path, 0.7, "augmentation ratio")

creates latex table automatically from all reports saved in e.results_path folder
fname = f"latex_table_{tpsil}.txt"
create_tex_table(e.results_path, fname, "Augmentation experiment for $\psi=0.7$ (5

— runs)", "table:exp_aug 07")

5.2.2.3 Replacement experiment

Now we perform a replacement experiment where we replace some real images by fakes. Specif-
ically we replace 500 trv and 500 dbp images by 3K trv fakes and 3K dbp fakes. We run the

experiment 3 times with given seeds. All Experiment derived classes as ReplacementExperi-

5.3. Software and Hardware 43

ment need two positional arguments, baseline name to be used in the experiment and a path
where training images for experiment were previously created. Also, it has two optional argu-
ments that allow to set the configuration related to training and settings. Defaults for both
arguments are defined in experiment.py (see appendix A). Most relevant training events are

logged to a file in log_path folder.

from experiments.experiment import DEFAULT_SETTINGS

from experiments.replacement import ReplacementExperiment

generate seeds
random. seed

seeds = random.sample(range

parameters
tpsi "tpsiO3"

path folder with all training images, previously created by prepare_train_set()

experiment_path = Path("/usbrains/experiments/example" tpsi

log_path = DEFAULT_SETTINGS.log_path "example" "replacement" tpsi

name "replacement_experiment_example"

settings_params "model_name": name, "experiment_name": name, "log_path": log_path
(_>

e = ReplacementExperiment ("baseline_sz128_2", experiment_path, setting_params

— settings

trv_reals = dbp_reals

trv_fakes = dbp_fakes

result e.run(trv, dbp, trv_fakes, dbp_fakes, seeds=seeds

5.3 Software and Hardware

5.3.1 Software

e Deep Learning. For image generation we use the official Nvidia stylegan2-ada imple-
mentation which is supported for Tensorflow 1.14 and 1.15, and Python 3.6 and 3.7. We

44

Project structure, design and implementation

GANs training Colab
network snapshots

& J

[experiments.datasets.prepare,train,set()J Local Machine

[experiments.experiment.run()]

Report

(&)

Figure 5.2: High level description of an experiment pipeline

forked and maintain our own repository in GitHub and adapt to our necessities with

minor modifications ®.

The whole training process of GANs is executed on Google Colab with Tensorflow 1.15,
where we clone our fork of stylegan2-ada. Once the training stage is finished we download
the networks snapshots and the generation of fakes is executed in the local machine where
we have cloned our fork of stylegan2-ada and installed its dependencies. We apply locally
the same Tensorflow and Python versions as in Colab, that is, Tensorflow 1.15 and Python
3.6.

For our experimental project, we implemented a python project with several packages and
modules, with Pytorch 1.8 and fastai 2.0.16. We decide developing in Pytorch instead
Tensorflow, because we are more familiar and also because fastai (which is a wrapper for

Pytorch) has a good default settings for classifiers that we apply for baselines.

Software development tools. The project was implemented with PyCharm Com-
munity 2020.2.4, which is one of the best IDE’s for Python development. For running
experiments we exploit jupyter notebooks, which are friendly to use and at the same time
serve as reporting. For version control we use git along with GitHub, where we maintain

both stylegan2-ada fork and a private repository for our project called usbrains.

'https://github.com/albertoMontero/stylegan2-ada

https://github.com/albertoMontero/stylegan2-ada

5.3. Software and Hardware 45

5.3.2 Hardware

For GANSs training we use Google Colab. Only P100 GPUs are able to run properly stylegan2-
ada for training, with the limitation that we cannot calculate metrics at the same time. For
metrics calculation, another session must be run with P100 or T4 GPU. For image generation
and classification tasks we utilise a local machine with Ubuntu 18.04, 16 GB RAM and Nvidia
GTX 1060 with 6 GB.

46

Project structure, design and implementation

Chapter 6
Conclusions

This work aimed to study the performance of GAN-based image data augmentation applied
to ultrasound fetal brain plane classification task. Based on the results obtained it can be
concluded that stylegan2-ada GAN-based data augmentation applied to this dataset achieves
an improvement in both accuracy and AUC of 2%. Additionally, results shown that data
collection can be replaced to some extend by GANs generated images. In this experimental
case study, results shown that with about 4K real training images the waiting for the collection
of about 2K real images might be saved and replace by fakes. This is especially important when
data acquisition is expensive and time consuming as in medical imaging.

Taking into account simplifications made in this project and considerations described in
chapter 7 better performance is expected with further exploration. That said, GANs have
their limitations and the efficiency of fakes generated by current methods is very far from real

samples when dealing with classification tasks, although their impressive realism.

47

48

Conclusions

Chapter 7

Future work

The experimental design shown in 3.1 lacks two important modules that we think might affect
the performance obtained in our experiments. The first module is a sort of quality control for
GANSs training set. In our current experimental pipeline we don’t filter samples that are trained
with GANs. We just split the dataset into train/validation sets based on patients but there is
no a quality analysis of images we are using for training. This is an important aspect in most
of the cases but it is even more relevant with this dataset because as we already mention in
chapter 4 the dataset might contain errors in labels. The ground truth comes from an specialist
and a previous work shows that the agreement between two specialists is 89.3% and 80% for
trv and dbp respectively. Having bad samples in GANs training set might confuse models and
we should avoid them. This bad samples filtering module might be implemented by filtering
out samples with low agreement by specialists or by means of good classifiers and confidence
scores. Another possibility that might be combined with above ones would be a recent work
by DeVries et al. (2020) where they improve the quality of training samples by selecting those
from high-density regions.

The second module missing in our experimental design is a fake quality control method.
Precision and recall metrics of trained GANs give us some kind of measure of the quality of
generated images. When generating fakes, we can control the precision and recall to some
extend with truncation trick. But in any case this quality control by means of precision is with
respect the whole set and not respect individual sample. A sample-centered precision metric
as in Kynkdanniemi et al. (2019) might improve the quality of fakes and therefore improve the
performance of GANs-based classifiers.

Another important point we skipped in our study is related to mode collapse. Although
both GANs have been trained under an unconditional framework without classes, they have
indeed classes. At least we might consider the ultrasound machine with which images where

acquired as a class in both datasets. This means that at this point of the study we don’t know

49

50 Future work

how good is the ultrasound machine distribution generated by these two GANs. We would
need to investigate this distribution and compare with real data because if distributions are
not similar this might impact on performance.

When training stylegan2-ada based GANs there are some parameters sensitive to datasets
that we would need to explore deeper. We found that for trv dataset (which contains 1656
training images compared to 2620 for dbp), decreasing the learning rate and increasing the
regularization v helped, but extensive experiments would be necessary, especially when dealing
with small datasets.

After above considerations, we aim to apply this GANs-based augmented technique to a
real scenario. This means remove all simplifications we made in our work concerning image
resolution. Thus, with proper computational resources, the next natural step would be to train
GANs with higher resolution and investigate if better performance for ultrasound fetal brain
plane classification is possible. Moreover, with higher resolution generated images we would be
able to realize visual experiments with domain experts that we skipped in this work due to low

resolution of generated images.

Bibliography

Aksac, A., Demetrick, D. J., Ozyer, T., and Alhajj, R. (2019). Brecahad: a dataset for breast
cancer histopathological annotation and diagnosis. BMC Research Notes, 12(1):82.

Baur, C., Albarqouni, S., and Navab, N. (2018a). Generating highly realistic images of skin
lesions with gans. In OR 2.0/CARE/CLIP/ISIC@MICCAL

Baur, C., Albarqouni, S., and Navab, N. (2018b). Melanogans: High resolution skin lesion

synthesis with gans.
Binkowski, M., Sutherland, D. J., Arbel, M., and Gretton, A. (2018). Demystifying mmd gans.

Brock, A., Donahue, J., and Simonyan, K. (2019). Large scale gan training for high fidelity
natural image synthesis. ArXiv, abs/1809.11096.

Burgos-Artizzu, X. P., Coronado-Gutiérrez, D., Valenzuela-Alcaraz, B., Bonet-Carne, E.,
Eixarch, E., Crispi, F., and Gratacés, E. (2020). Evaluation of deep convolutional neural
networks for automatic classification of common maternal fetal ultrasound planes. Scientific
Reports, 10(1):10200.

Chang, A., Suriyakumar, V. M., Moturu, A., Tewattanarat, N., Doria, A., and Goldenberg, A.

(2020). Using generative models for pediatric whmri.

Chuquicusma, M. J. M., Hussein, S., Burt, J., and Bagci, U. (2018). How to fool radiologists
with generative adversarial networks? a visual turing test for lung cancer diagnosis. 2018
IEEFE 15th International Symposium on Biomedical Imaging (ISBI 2018), pages 240-244.

DeVries, T., Drozdzal, M., and Taylor, G. W. (2020). Instance selection for gans.

Frid-Adar, M., Klang, E., Amitai, M., Goldberger, J., and Greenspan, H. (2018). Synthetic data
augmentation using GAN for improved liver lesion classification. CoRR, abs/1801.02385.

Goodfellow, I. (2017). Nips 2016 tutorial: Generative adversarial networks.

ol

52 BIBLIOGRAPHY

Goodfellow, I. J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,
A. C., and Bengio, Y. (2014). Generative adversarial networks. ArXiv, abs/1406.2661.

Hadlock, F. P., Harrist, R. B., Sharman, R. S., Deter, R. L., and Park, S. K. (1985). Estimation
of fetal weight with the use of head, body, and femur measurements—a prospective study. Am
J Obstet Gynecol, 151(3):333-337.

He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep residual learning for image recognition.

Heusel, M., Ramsauer, H., Unterthiner, T., Nessler, B., and Hochreiter, S. (2018). Gans trained

by a two time-scale update rule converge to a local nash equilibrium.

Howard, J. and Gugger, S. (2020). Fastai: A layered api for deep learning. Information,
11(2):108.

Karras, T., Aila, T., Laine, S., and Lehtinen, J. (2018). Progressive growing of gans for improved
quality, stability, and variation. ArXiv, abs/1710.10196.

Karras, T., Aittala, M., Hellsten, J., Laine, S., Lehtinen, J., and Aila, T. (2020a). Training
generative adversarial networks with limited data. ArXiv, abs/2006.06676.

Karras, T., Laine, S., and Aila, T. (2019). A style-based generator architecture for generative

adversarial networks.

Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., and Aila, T. (2020b). Analyzing
and improving the image quality of stylegan. 2020 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 8107-8116.

Kitchen, A. and Seah, J. (2017). Deep generative adversarial neural networks for realistic
prostate lesion mri synthesis. ArXiv, abs/1708.00129.

Korkinof, D., Rijken, T., O'Neill, M., Yearsley, J., Harvey, H., and Glocker, B. (2018). High-
resolution mammogram synthesis using progressive generative adversarial networks. ArXiv,

abs/1807.03401.

Kynk&danniemi, T., Karras, T., Laine, S., Lehtinen, J., and Aila, T. (2019). Improved precision

and recall metric for assessing generative models.

Lecouat, B., Chang, K., Foo, C.-S., Unnikrishnan, B., Brown, J. M., Zenati, H., Beers, A.,
Chandrasekhar, V., Kalpathy-Cramer, J., and Krishnaswamy, P. (2018). Semi-supervised

deep learning for abnormality classification in retinal images.

BIBLIOGRAPHY 53

Litjens, G., Kooi, T., Bejnordi, B. E., Setio, A. A. A., Ciompi, F., Ghafoorian, M., Laak, J.
V. D., Ginneken, B., and Sanchez, C. (2017). A survey on deep learning in medical image
analysis. Medical image analysis, 42:60-88.

Madani, A., Moradi, M., Karargyris, A., and Syeda-Mahmood, T. (2018). Semi-supervised
learning with generative adversarial networks for chest x-ray classification with ability of

data domain adaptation. 2018 IEEE 15th International Symposium on Biomedical Imaging
(ISBI 2018), pages 1038-1042.

Pan, Z., Yu, W., Yi, X., Khan, A., Yuan, F., and Zheng, Y. (2019). Recent progress on
generative adversarial networks (gans): A survey. IEEE Access, 7:36322-36333.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z.,
Gimelshein, N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M.,
Tejani, A., Chilamkurthy, S., Steiner, B., Fang, L., Bai, J., and Chintala, S. (2019). Pytorch:
An imperative style, high-performance deep learning library. In Wallach, H., Larochelle,
H., Beygelzimer, A., d'Alché-Buc, F., Fox, E., and Garnett, R., editors, Advances in Neural
Information Processing Systems 32, pages 8024-8035. Curran Associates, Inc.

Pidhorskyi, S., Adjeroh, D., and Doretto, G. (2020). Adversarial latent autoencoders. 2020
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 14092—
14101.

Radford, A., Metz, L., and Chintala, S. (2016). Unsupervised representation learning with deep

convolutional generative adversarial networks.

Ravuri, S. V. and Vinyals, O. (2019). Seeing is not necessarily believing: Limitations of biggans

for data augmentation.

Salimans, T., Goodfellow, 1., Zaremba, W., Cheung, V., Radford, A., and Chen, X. (2016).

Improved techniques for training gans.

Sricharan, K., Bala, R., Shreve, M., Ding, H., Saketh, K., and Sun, J. (2017). Semi-supervised
conditional gans. ArXiv, abs/1708.057809.

Sun, J.-Z., Bhattarai, B., and Kim, T.-K. (2020). Matchgan: A self-supervised semi-supervised
conditional generative adversarial network. ArXiv, abs/2006.06614.

Vahdat, A. and Kautz, J. (2020). Nvae: A deep hierarchical variational autoencoder.

54 BIBLIOGRAPHY

Whitworth, M., Bricker, L., Neilson, J. P.; and Dowswell, T. (2010). Ultrasound for fetal
assessment in early pregnancy. The Cochrane database of systematic reviews, (4):CD007058-
CD007058. 20393955[pmid].

Yi, X., Walia, E., and Babyn, P. (2019). Generative adversarial network in medical imaging:
A review. Medical Image Analysis, 58:101552.

Zhao, S., Liu, Z., Lin, J., Zhu, J.-Y., and Han, S. (2020). Differentiable augmentation for
data-efficient gan training. ArXiv, abs/2006.10738.

Appendix A

Code

In this section we show the major s in experiments package, which is the main package for

experimental tasks, along with baseline_classifier.py and generate.py s:

e experiment.py : contains Experiment abstract class, with abstract method

create_train_df() and implemented method run(). The following classes derived from it.
e baseline.py : containing BaselineExperiment class. Performs experiments for baselines.

e augmentation.py : contains AugmentationExperiment. Performs experiments related

with data augmentation via GANs.

e replacement.py : contains ReplacementExperiment class. Performs experiments in

which real images are replaced by fakes.

e baseline_classifier.py: implements run_classifier which runs the classifier with given

parameters and default data augmentation transforms.

e generate.py: generate fakes given the network snapshots. System call to stylegan2-ada
generate algorithm with python interpreter defined in a separated conda enviorment for

stylegan2-ada.

A.1 experiment.py

import numpy as np

import copy

from abc import ABC, abstractmethod
import os

import pathlib

95

56 Code

from datetime import datetime

import gc

import torchvision

from fastai.callback.tracker import EarlyStoppingCallback, SaveModelCallback

from data.data import read_df
from classifiers.baseline_classifier import run_classifier
from experiments.results import Result, Report

from experiments.utils import AttributeDict

DEFAULT_SETTINGS = AttributeDict({

"baseline_path": pathlib.Path("/home/alberto/Data/master/TFM/usbrains/data/
— processed/baseline_sz128"),

"model_name": "model",

"log_path": pathlib.Path("/home/alberto/Data/master/TFM/usbrains/experiments/
< results"),

"experiment_name": "experiment",

"report_name": "report',

"save_best_model": False

H

DEFAULT_TRAIN = AttributeDict({
"classifier": torchvision.models.resnetl8,
"freeze_epochs": 1,
"epochs": 20,
"bs": 64,
"data_augmentation": True,
"cbs": [EarlyStoppingCallback(monitor=’valid_loss’, patience=5),
SaveModelCallback (fname=DEFAULT_SETTINGS.model_name) |,
"img_size": 128,
"label_col": 1,
"all_planes": False,

b

class Experiment (ABC) :

A.1. experiment.py 57

Abstract class to perform experiments with abstract method create_train_df and

def

— implemented method run.

__init__(self, bl_name, experiment_path, train_params=None, setting_params=

< None) :

Parameters
bl_name: str
name of baseline used
experiment_path: str or Path
path to folder containing a sub-folder called images with all images used
< 1in training
train_params: AttributeDict
training parameters. If None, DEFAULT_TRAIN are used. Parameters can be
< overridden.
setting_params: AttributeDict
setting parameters. If None, DEFAULT_SETTINGS are used. Parameters can be
— overridden.
i
assert os.path.exists(experiment_path)
self.bl_name = bl_name
self . experiment_path = pathlib.Path(experiment_path)

self . imgs_path = self.experiment_path / "images"

self . train_params = copy.deepcopy (DEFAULT_TRAIN)
self . setting_params = copy.deepcopy (DEFAULT_SETTINGS)

if setting_params:

self .setting_params.update (setting_params)
if train_params:

self .train_params.update (train_params)

self train_params.cbs[1].fname = self.setting_params.model_name

self . train_params.patience = self.train_params.cbs[0] .patience
self.bl = read_df (bl_name, self.setting_params.baseline_path)

self .model_name = self.setting params.model_name

Code

date = datetime.today() .strftime(’%d_Ym_%Y__%H_%M_%S’)
self .results_path = self.setting_params.log_path / f"{self.setting_params.

< experiment_name}_{datel}"

self .best_val = [np.inf, 0.0, 0.0, 0.0]
self .best_learn = None
self .best_cr = None

self .report = None

os.makedirs(self .results_path)

@abstractmethod
def create_train_df (self, *args):

pass

def run(self, *args, seeds=19):
""" run method for all experiments. create_train_df must be overridden by
< all derived classes.

performs #seeds runs with *args and class defined arguments.

self .report = Report(name=self.setting_params.report_name, path=self.
— results_path)

self .report.write(f"algorithm: {self.__class name__}")

self .report.write(f"run args: {args}\n")

self .print_params ()

if not isinstance(seeds, list):

seeds = [seeds]

result = Result(name=self.model_name)

n_experiments = len(seeds)

for i, seed in enumerate(seeds):
self .report.write("=" * 50)
self .report.write(f"Running experiment {i + 1} of {n_experiments} (with
— seed {seed}h)")

self .report.write("=" * 50)

. experiment.py

59

train_df self.create_train_df

args, seed

learn, cr = run_classifier(train_df, self.experiment_path, self

— train_params.classifier

epochs=self .train_params.epochs

freeze_epochs=self.train_params.freeze_epochs

bs=self.train_params.bs, da=self.train_params

— data_augmentation

cbs=self.train_params

cbs

label_col=self.train_params.label_col

size=self .train_params.img_size

all_planes=self.train_params.all_planes

save_model_path=self.results_path

self .report.write("validating best model..."

validation learn.validate items

self .report.write(f"best model: {validation}"

if validation self . best_val
self .best_val validation
self .best_learn learn

self .best_cr cr

result.valdidations.append(validation

result.crs.append(cr.classification_report(True

result.cms.append(cr.confusion_matrix

self .report.write("\nconfusion matrix\n"

self .report.write(str(cr.confusion_matrix

self .report.write("\nclassification report\n"

self .report.write(cr.classification_report

cr.plot_confusion_matrix(title=f"Confusion matrix: run {i + 1} of {

— n_experiments}"

self .report.write("="

self .report.write("Metrics average:

experiment_avg = np.mean(np.array(result.valdidations axis

experiment_std = np.std(np.array(result.valdidations axis

self .report.write(f"accuracy. avg.:

<> experiment_std[1]:.5f}"

{experiment_avg[1]:.5f}, std.:

60

Code

self .report.write(f"fl-score macro. avg.: {experiment_avg[2]:.5f}, std.: {
< experiment_std[2]:.5f}")

self .report.write(f"roc_auc. avg.: {experiment_avg[3]:.5f}, std.: {
< experiment_std[3]:.5f}")

self .report.write(f"validation avg.: {experiment_avgl}t")

self .report.write("=" * 50)

self .report.write(f"Metrics: ")

self .report.write(result.get_metrics())
self .report.write("=" * 50)

self .report.write(f"Stats")

self .report.write(result.stats())

self .report.write("=" * 50)

if self.setting_params.save_best_model:
self .best_learn.save(self .model_name)

self best_learn.export ()

return result

def print_params(self):
self .report.write("Training parameters:")
self .report.write(self.train_params)
self .report.write("Setting parameters:")
self .report.write(self.setting_params)
self .report.write(f"Baseline: {self.bl_name}")
self .report.write(f"Images path: {self.imgs_path}")

self .report.write(f"Model name: {self.model_namel}")

def clear(self):
self .best_learn = None
self best_cr = None

gc.collect ()

def __repr__(self):
return f'"{self.bl.shape}, {self.experiment_path}\n{self.train_params}\n" \
f"{self.setting_params}"

A.2. baseline.py 61

A.2 baseline.py

import pathlib

from .experiment import Experiment

DEFAULT_BASELINE = pathlib.Path("/home/alberto/Data/master/TFM/usbrains/data/
< processed/baseline_sz128")

class ExperimentBaseline (Experiment) :

nnn

Class for baseline experiments. create_train_df() is identity, returning the

> baseline dataframe unmodified.

def __init__(self, bl_name, experiment_path=DEFAULT_BASELINE, train_params=None,
— setting_params=None) :

super () .__init__(bl_name, experiment_path, train_params, setting_params)
dummy seed
def create_train_df(self, seed=19):

return self.bl

A.3 augmentation.py

import pathlib

import pandas as pd

from experiments.experiment import Experiment

from experiments.utils import create_fakes_df, sample_by_condition

class AugmentationExperiment (Experiment) :

Class for augmentation experiments. Overrides create_train_df method. The main

<— purpose is data augmentation via

62

Code

fakes. Although it allows also replacement experiments, notice that replacement
— 1is done over images

involved in GANs training. For replacement over images no GAN involved use
— ExperimentReplacement.

o

def __init__(self, bl_name, experiment_path, train_params=None, setting_params=
— None) :

super () .__init__(bl_name, experiment_path, train_params, setting_params)

def create_train_df (self, trv_real, dbp_real, trv_fakes, dbp_fakes, seed=19):

Parameters
trv_real: int
number of trv reals to remove
dbp_real: int
number of dbp reals to remove
trv_fakes: int
number of trv fakes to be included in training
dbp_fakes: int
number of dbp fakes to be included in training

seed: int

pandas.Dataframe
Dataframe containing specified reals and fakes
df = self.bl.copy()
df ["fake"] = False
fakes_df = create_fakes_df (self.imgs_path, trv_fakes, dbp_fakes, seed=seed)

n_trv = df [(df .Brain_plane == "TRV") & ~df.Test] .shape[0]
assert n_trv - trv_real >= 0
n_dbp = df[(df .Brain_plane == "DBP") & ~df.Test].shape[0]

assert n_dbp - dbp_real >= 0O

trv_cond = {"column": "Brain_plane", "value": "TRV"}

A .4. replacement.py 63

dbp_cond = {"column": "Brain_plane", "value": "DBP"}

df = sample_by_condition(df, n_trv - trv_real, trv_cond, random_state=seed)

df

sample_by_condition(df, n_dbp - dbp_real, dbp_cond, random_state=seed)

return pd.concat([df, fakes_df!, ignore_index=True)

A.4 replacement.py

import pandas as pd

from .experiment import Experiment

from .utils import create_fakes_df, sample_by_condition

class ReplacementExperiment (Experiment) :

Class for replacement experiments. Overrides create_train_df method. The main
~— purpose is to perform experiments
replacing real images by fakes. All replacements are done over images not

— involved in GANs training.

def __init__(self, bl_name, experiment_path, train_params=None, setting_params=
— None) :

super () .__init__(bl_name, experiment_path, train_params, setting_params)

def create_train_df (self, trv_real_rep, dbp_real_rep, trv_fakes, dbp_fakes,
seed=19):

Parameters
trv_real_rep: int

number of trv reals to replace
dbp_real_rep: int

number of dbp reals to replace

64

Code

trv_fakes: int

number of trv fakes to be included in training
dbp_fakes: int

number of dbp fakes to be included in training

seed: int

Returns
pandas.Dataframe
Dataframe containing specified reals and fakes

bl = self.bl.copy()

if trv_real_rep == dbp_real_rep == trv_fakes == dbp_fakes == O:

return bl

n_trv = bl[(bl.Brain_plane == "TRV") & "bl.gan & “bl.Test].shape[0]
assert n_trv - trv_real_rep >= O
n_dbp = bl[(bl.Brain_plane == "DBP") & "bl.gan & “bl.Test].shape[0]
assert n_dbp - dbp_real_rep >= O

fakes_df = create_fakes_df (self.imgs_path, trv_fakes, dbp_fakes, seed=seed)
if not fakes_df.empty:
fakes_df ["gan"] = False

trv = {"column": "Brain_plane", "value": "TRV"}
dbp = {"column": "Brain_plane", "value": "DBP"}

no_gan = {"column": "gan", "value": False}

bl_df = sample_by_condition(bl, n_trv - trv_real_rep, trv, no_gan,
— random_state=seed)

bl_df = sample_by_condition(bl_df, n_dbp - dbp_real_rep, dbp, no_gan,
< random_state=seed)

bl_df["fake"| = False

df = pd.concat([bl_df, fakes_df], ignore_index=True)

assert df.shape[0] == bl.shapel[0] - trv_real_rep - dbp_real_rep + trv_fakes
< + dbp_fakes, \

A.5. results.py

65

f"{df.shape[0]} != {bl.shape[0] - trv_real_rep - dbp_real_rep + trv_fakes

< + dbp_fakes}"

return df

A.5

results.py

import

import

import

Cla

def

def

copy
pathlib

numpy

from experiments.utils import AttributeDict

class Result:

ss for results storage.

__init__(self, name=None):

self .name = name if name else "result"
self .valdidations = []

self .crs = [

self.cms = []

get_metrics(self):
s = AttributeDict({
"precision": [],
"recall": [],
"fi-score": [],
"support": []
1))
stats = AttributeDict({v: copy.deepcopy(s) for v in [’DBP’, ’TRV’, ’macro
— avg’, ’weighted avg’]})
stats["accuracy"] = []

for r in self.crs:

66

Code

for k, v in r.items():
if isinstance(v, dict):
for kk, vv in v.items():
stats k] [kk] .append (vv)
else:

stats k] .append(v)

return stats

def print_stats(self):
print (self.stats())

def stats(self):
stats = self.get_metrics()
ro= £
for k, v in stats.items():
if isinstance(v, dict):
r += f"{k}"
r += "\n"

for kk, vv in v.items():

r += £"\t{kk}: {numpy.mean(vv):.4f} (std: {numpy.std(vv):.4f})"

r += "\n"
else:
r += £"{k}: {numpy.mean(v):.4f} (std: {numpy.std(v):.4f})"
r += "\Il"
return r

class Report:

Simple class for reporting. Prints and write messages in given file.

def __init__(self, name=None, path="./"):

self .name
self .path = pathlib.Path(path)
self . fname = self.path / f"{self.name}.txt"

name if name else "experiment"

open(self.fname, ’a’).close()

A.6. baseline_classifier.py 67

def write(self, msg, print_console=True
if print_console
print (msg
with open(self.fname, "a") as f

f write(str(msg "\n"

A.6 Dbaseline_classifier.py

import torchvision

from fastai.vision.all import

import sklearn.metrics as skm

class ClassificationReport(ClassificationInterpretation
def __init__(self, dl, inputs, preds, targs, decoded, losses
super () .__init__(dl, inputs, preds, targs., decoded, losses
self .vocab = self.dl.vocab

if is_listy(self.vocab): self.vocab = self.vocab

def classification_report(self, output_dict=False
d, t = flatten_check(self.decoded, self.targs
return skm.classification_report(t, d, labels=list(self.vocab.o2i.values
target_names=[str(v) for v in self.vocab

— output_dict=output_dict

def run_classifier(train_df: pd.DataFrame, train_path: Union|str, Path|, classifier
<~ torchvision.models, epochs
freeze_epochs bs
da=True, cbs=None, label_col size all_planes=False

— save_model_path=None

nnn

Run resnetN classifier with default parameters and data augmentation, given a

— dataframe and a path containing the

68

Code

training images. train_df must contain at least three columns: Image,

< Brain_plane, Test.

Parameters
train_df: pandas.Dataframe
train Dataframe with at least columns: Image, Brain_plane, Test
train_path: str or Path
path where training images are located
classifier: torchvision.models
epochs: int
freeze_epochs: int
bs: int
da: bool
data augmentation
cbs: fastai.callback.tracker.TrackerCallback
callbacks
label_col: int
dataframe col where it is the label. By default 1
size: int
image size (square)
all_planes: bool
whether or not include all planes. By default only trv and dbp are included

save_model_path: str or Path

Returns

Tuple[Learner, ClassificationReport]

if not save_model_path:
save_model_path = train_path
batch_tfms = None
if da:
batch_tfms = aug_transforms(size=size) # default data augmentation
dls = ImageDataloaders.from_df (train_df, train_path / "images", label_col=
< label_col, valid_col="Test",
batch_tfms=batch_tfms, bs=bs)

A.7. generate.py 69

metrics accuracy, FlScore(average=’macro’
if all_planes

metrics.append(RocAuc
else

metrics.append(RocAucBinary
learn = cnn_learner(dls, classifier, path=save_model_path, metrics=metrics

print("training..."
learn.fine_tune(epochs, freeze_epochs=freeze_epochs, cbs=cbs

print("training done."
cr ClassificationReport.from_learner(learn

return learn, cr

def run_classifier_random_split(train_df, train_path, classifier, epochs
— freeze_epochs bs da=True, cbs=None
label_col size
batch_tfms = None
if da
batch_tfms aug_transforms(size=size
dls ImageDatal.oaders.from_df (train_df, train_path "images", label_col
— label_col

batch_tfms=batch_tfms, bs=bs

print("training..."

learn = cnn_learner(dls, classifier, path=train_path, metrics=laccuracy, FlScore
— (average=’macro’ RocAucBinary

learn.fine_tune(epochs, freeze_epochs=freeze_epochs, cbs=cbs

cr = ClassificationReport.from_learner(learn

return learn, dls, cr

A.7 generate.py

70 Code

import os

from data.utils import cd

PYTHON = "/home/alberto/anaconda3/envs/sg2/bin/python"
SG_ADA_PATH = "/home/alberto/Data/github/stylegan2-ada"

def generate_images(network: str, outdir: str, trunc: float, seeds: str, prefix=None

—):

Generate images from given GAN network, trained with styleGAN2-ada

Parameters
network: str
network snapshot used to generate images
outdir: str
folder where images are generated
trunc: float
truncation tpsi
seeds: str
seeds string, eg, 1-100
prefix:str

prefix to add to images name. By default they are named seed_n.png

with cd(SG_ADA_PATH) :
desc = f"{PYTHON} generate.py --network {network} --outdir {outdir} --seeds
— {seeds}"
if prefix:
desc += f" --prefix {prefix}"
if trunc:
desc += f" --trunc {truncl}"

os.system(desc)

	Abstract
	Contents
	List of Figures
	List of Tables
	Introduction
	Justification and motivation
	Research objectives
	Methodology
	Development methodology
	Research methodology
	Deep learning methodologies
	Software and hardware resources

	Planing
	Tentative timetable
	Implementation tasks

	State of the Art
	Introduction
	Generative Adversarial Networks
	Generative Adversarial Networks in Medical Imaging
	Unconditional GANs
	Semi-supervised GANs

	StyleGAN based architectures

	Methodology
	Experiment design
	Dataset
	GANs training and image generation
	Training
	GANs evaluation
	Fakes generation

	Classifiers
	Implementation details

	Experiments and Results
	Augmentation experiments
	Analysis

	Replacement experiments
	Analysis

	Discussion

	Project structure, design and implementation
	Project structure
	Design
	Packages description
	Examples

	Software and Hardware
	Software
	Hardware

	Conclusions
	Future work
	Bibliography
	Code
	experiment.py
	baseline.py
	augmentation.py
	replacement.py
	results.py
	baseline_classifier.py
	generate.py

