1q21.1 syndrome:

A perspective on structural variant detection & the evolutionary profile of associated protein domains

Final Master Project

Paula España Bonilla

Master in Bioinformatics and Biostatistics (UOC -UB)

Area 3 – Subarea 8: Analysis and integration of omics data

Cedric Boeckx

Andreu Paytuví

January, 2021

Evolution of sequencing techniques

Short vs Long reads

PacBio HiFi reads can sequence structural variants

PacBio sequencing DNA insert 1 -100 kb

Structural variants

Cong reads

99% accuracy

Hickey, 2017

1q21.1 syndrome

NBPF genes: implications in 1q21.1 syndrome

Research proposal

Specific gene affectation in patients

9 patients with microdeletion2 patients with microduplication

Changes in myomegalin sequence in evolution

- 1. To develop an analytic pipeline for PacBio data analysis of sample patients
 - a. To simulate patient genomes with SV regions and generate derived PacBio reads
 - b. To develop the bioinformatic pipeline for PacBio data analysis

- 2. To analyse the phylogeny of Olduvai domains among multiple species
 - a. To align Olduvai sequences from different species
 - b. To create a phylogenetic tree

Methods

Olduvai domain alignment

MUSCLE

Phylogeny of Olduvai domains

Phylogenetic tree

PhyML

Results I. Genomes simulation

SVGen Insert of SVs ----- Genome alignment to reference

Results I. Genomes simulation

Results II. Read simulation

Results I. Read mapping & structural variant call

Tes Ctarlf59

Results I. Read mapping & structural variant call

Inversion

H2BP2

Translocation

Results II. Olduvai domain in myomegalin

Results II. Olduvai domain in NBPF genes

Objective 1:

- SVGen was appropriate for structural variant simulation
- Wgsim produces PacBio reads can be improved
- Dot plots and IGV are suitable for visualisation of known SVs
- Read mapping is a cheap and effective option
- Structural variant call detected the inserted SVs

Objective 2:

- Myomegalin and Olduvai domains are highly conserved
- NBPF have diverged from their ancestral copy

Acknowledgements

Murielle Saade

Cedric Boeckx

Andreu Paytuví