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Aquest treball dissenya i implementa un algorisme de detecció d’objectes 
basat només en imatges amb l’objectiu de ser usat en conducció autònoma 
davant de situacions climatològiques adverses, tals com la neu, la boira o la 
pluja. 

S’emprarà la base de dades DENSE [4] tant per a l’entrenament com pel 
testeig dels models. 

Basat en l’arquitectura dels SSD [21], en primer lloc s’estudia la precisió 
obtinguda per cadascun dels sensors per separat, a continuació s’estudien 
diferents mètodes per a augmentar la precisió del model. Després es 
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millor ràtio entre precisió i rapidesa de detecció és el model basat amb la fusió 
intermèdia de les característiques. 
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Abstract (in English, 250 words or less): 

During this thesis an image-only object detection algorithm is designed and 
implemented. Its purpose is to be used on real-time situation as a detection 
algorithm for autonomous driving under adversarial weather conditions, such 
as snowstorms, fog or rain. 

The DENSE Dataset [4] is used to train and evaluate the model. 

Based in the SSD architecture [21], the precision of each sensor is studied. 
Then other methods are tried to increase the precision of the model. 

Then other models are designed, one for each of the image-fusion methods: 
pixel-fusion, sensor-fusion and feature-fusion. For the last method a halfway 
fusion and a late fusion model are implemented. 

All models are evaluated, and its results are compared. Optimising detection 
velocity and precision it is concluded, the best model is the one which applies 
the feature fusion with halfway fusion. 
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1. Introduction 
 
 

1.1. Context and justification of the thesis 
 
The interest for autonomous driving has been growing steadily during the 
past few years up to the point that, under favourable weather conditions, 
full automated driving is nowadays almost a reality. But it is still far for 
reaching its fully potential, mainly because there are still situations where 
an autonomous system is not completely reliable, especially those with 
adversarial weather conditions. While autonomous cars drive more 
kilometres, more experience may be gained, but the number of accidents 
in which an autonomous car is involved increases too, sometimes with 
fatal consequences such as injuries or even casualties. Despite it is 
already true that these systems are safer than human-driven ones, the 
technology still needs years of learning to mature. 
 
One of the most basic tasks of the autonomous driving consists in the 
detection and classification of objects. Seeing what surrounds the car is 
an important task because it may be necessary to use the brakes to 
avoid a collision. This is nowadays mainly achieved using cameras, 
whose accuracy is improved using radar and LIDAR (Laser Imaging 
Detection and Ranging) sensors. However, the purchase and installation 
of LIDAR in serial cars is extremely expensive, which may make it 
suitable as a standard equipment for premium-class vehicles only, but 
not for standard ones. Tesla, for instance, builds up its automated driving 
algorithm by relying only on the data from radar and cameras and aims 
not to use LIDAR to detect objects in serial vehicles. LIDAR may 
however remain in use mostly for data collecting and testing purposes. 
 
To train an object detection algorithm, a huge number of images is 
needed. Open datasets to be used as a basis are available and can be 
used for research purposes, like the KITTI [1], NuScenes [2] or the 
dataset from Udacity [3], to cite a few of them, which typically offer 
visible-spectrum images (RGB) and sometimes LIDAR data. They show 
interurban and urban scenes, mostly during daytime, and even if some of 
them include nightlight scenes as well, they mostly rely on clear weather 
conditions, meaning a sunny, cloud-free day. Perhaps in the sunny-
blessed coastline of California, Tesla’s homeland, it may not be 
necessary to train the model in other conditions than sunny ones, but in 
the rest of the world other weather conditions occur, such as fog, rain, 
snow or dust storms. An autonomous car needs to be ready to face all 
kind of weather situations and still be able to detect objects correctly if it 
wants to be named rightfully as autonomous. Here resides the 
importance of the selected dataset for the model training, as a biased 
one could induce to an algorithm which only works on specific conditions, 
like sunny days, but fails to detect objects during a snowstorm, because 
it has never been trained to detect objects under this new weather 
condition. 
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Taking advantage of the release of the DENSE dataset [4] with urban 
and interurban images taken under clear and adversarial weather 
conditions it came the idea to design an object detection algorithm 
trained using this data. Another major improvement of this dataset, in 
comparison to those previously mentioned, is the inclusion of images 
taken by near infrared (NIR) and far infrared (FIR) cameras. The 
publishers of the DENSE dataset trained an object detection model 
combining the data from the RGB, the NIR, radar and LIDAR, otherwise 
for this thesis another approach will be followed, in which only images will 
be combined: the NIR, the FIR and the RGB spectrums will be fused to  
build a more reliable model and to compensate the loss of the radar and 
LIDAR data as inputs. 
 

1.2. Main objectives 
 

The main objective of the thesis is to determine whether the radar and 
LIDAR input data can be dismissed for the object detection and 
classification under adversarial weather conditions tasks and if they can 
be replaced by the NIR and FIR images instead. To achieve it, an object 
detection algorithm exclusively based on images will be designed, trained 
and tested. 
 
The calculated precision results of the model will be compared with the 
ones obtained by the DENSE dataset researchers, a paper published by 
the University of Ulm, the University of Princeton in cooperation with 
Mercedes-Benz AG and Algolux researchers and available at the Arxiv 
portal [5]. As the only self-imposed constraint, the algorithm should work 
on real-time automated driving applications, hence speed should prevail 
above accuracy. 
 
The secondary objective of this project is to test which image fusion 
approach shows the best speed-accuracy ratio and to determine if a 
model trained using only clear weather images can be reused under 
other weather conditions as well and still be able to detect objects 
properly, implying it generalises correctly. 
 

1.3. Strategy and methodology 
 
The starting point is the analysis of the standalone contribution of each 
one of the image-spectrums sensors to determine which precision can be 
achieved by each sensor separately. Starting with the RGB-only model, 
the hyperparameters of the algorithm will be optimised and used for the 
rest of the models to facilitate the comparison of the results. Afterwards, 
a NIR-only model and a FIR-only model will be designed and trained. 
 
Once the contribution of each standalone image-spectrum is known, the 
fusion of the RGB, NIR and FIR cameras can start. There are three 
different ways to fuse images (explained in detail in the next chapter) and 
one model for each of the methods will be designed and tested. 
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The precision of each of the models will be calculated to determine which 
model achieve the better results. 
 
All the models will be trained from scratch to avoid possible biases of the 
loaded model. 

 
1.4. Thesis plan 

 
The most time-intensive part of the project is the training of the models, 
hence a GPU will be used to accelerate the calculations, specifically an 8 
GB GeForce GTX1070. 
 
All the images needed to feed the model are taken from the DENSE 
dataset and no extra images are added. Python has been chosen as the 
language used for the data preparation, the pipeline and for the model 
design and test, while Keras is the deep learning framework. Each part of 
the project has been written in separate Jupyter notebooks. 
 
The object detection algorithm is not designed from scratch. Following 
the recommendations from M. Elgendy [6] the SSD algorithm has been 
borrowed from P. Ferrari [7]. This detection algorithm works with images 
belonging to one source at each time and with three channels only, 
meaning it is necessary to adapt the code so it can also work with 
multichannel images and with multiple inputs. For the calculation of the 
precision the function from R. Padilla [8] is used. 
 
The project has been divided in seven parts. It began with the research 
phase, the documentation of interesting topics related to the deep 
learning and automated driving. It continued with the project definition 
and planning and the state-of-the-art documentation, task that had begun 
with the research phase. Parallelly the design and implementation phase 
started: the dataset was downloaded, its data was explored and 
prepared. The next step was the hyperparameter tuning and the design 
of the algorithm, task that took two months. During this phase the 
achievements and the steps descriptions were documented to accelerate 
the thesis write-up. The final steps were the project presentation and the 
project defence. 
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Figure 1: Gant project diagram 

Source: self-made 

 
1.5. Summary of the results 

 
During the data exploration phase, it was noticed that a tiny time offset 
between the FIR images and the other two spectrums existed. The time 
difference was small but big enough to allow the objects of the image to 
move to a different position, hence the fusion of images could be affected 
reducing the model precision. It was decided to dismiss the FIR images 
for this thesis, remaining only NIR and RGB in use. Only using two 
sensors, instead of the four used by the researcher’s solution could 
explain why the obtained precisions of this project are not as good as 
those published at the researcher’s paper [5]. If the FIR images have had 
no offset, this precision gap could have been reduced, but with the 
currently available dataset is not possible to prove it. This may explain 
the fact as well that the researcher’s paper dismisses the FIR data, 
although its reason is not mentioned in the paper itself. 
 
The fusion of images has proved to be a good approach to increase the 
precision of the detection algorithm in comparison to those approaches 
based on one-sensor-only. The best model has been uploaded to a 
Github repository as well as the “.h5” file and the instructions to use them 
[35]. The other trained models will not be uploaded because of save-
space limitations. Regarding the images from the DENSE dataset they 
will be neither uploaded because its licence specifies, they can only be 
used in scientific papers. Nevertheless, on chapter 3 is explained how to 
obtain the needed images. 
 

1.6. Summary of the rest of the chapters 
 
The second chapter explains the state of the art of the main topics of this 
project. First, the different kind of object detection algorithms will be 
explained, followed by the description of the metrics used to measure the 
algorithm effectiveness. Secondly, the sensor used for the autonomous 
driving will be listed. Then the theory about the image and the 
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wavelength of the light will be explained and, finally, some light will be 
shed on the three ways to achieve the image fusion. 
 
The third chapter presents the DENSE dataset and goes through the 
paper “Seeing Through Fog Without Seeing Fog: Deep Multimodal 
Sensor Fusion in Unseen Adverse Weather” published by the 
researchers [5]. On this chapter the researchers’ object detection 
algorithm approach will be described, and the achieved precision by 
model will be shown. 
 
The fourth chapter describes all the activities done previous the start of 
the algorithm design, then it describes and evaluates the models. The 
results will be commented in the fifth chapter. 
 
The conclusions and the future work are described in the sixth chapter. 
Followed by the glossary, the bibliography and the appendix. 
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2. State of the art 
 
 

2.1. The object detection algorithms 
 
Computer vision can be defined by its purpose, i.e. to replicate the work 
of the human eyes and brain to allow computers to see and understand a 
scene or image [13]. There are many activities from the autonomous 
driving which can be achieved using computer vision, such as “objection 
detection, object classification, lane detection and object tracking” [14] 
but in this thesis the focus will lay on the object detection. As explained in 
[15] “The problem definition of object detection is to determine where 
objects are located in a given image (object localization) and which 
category each object belongs to (object classification)”. 
 
The fundamental structure of the detector algorithm is the so-called 
backbone, which is tipically a deep learning network such as VGG16 [16] 
or ResNET [17] which extracts the features of the images, classifies them 
into one of the possible classes (or object targets) and locates the object 
within the image [18]. For each of the detections a confidence score is 
given, meaning how sure is the algorithm to have found an object as well 
as the class it belongs to. 
 
2.1.1. One stage and two stage detectors 
 
The algorithm detection model can be classified in two groups: the one-
stage and the two-stages detectors, depending on the number of phases 
used to accomplish the detection task. 
 
While one-stage detectors accomplish simultanously the localisation and 
classification of the object, the two-stage ones generate first regions of 
interest, i.e. regions where an object may be found, and then extract and 
classify these [18]. One-stage detectors are tipically faster but achieve 
lower precision rates than those obtained by two-stages ones. 
 
From the first group, the most well-known detectors are the YOLO [19] 
(with the fourth actualisation having been recently released [20]) and the 
SSD [21]. From the second group, the R-CNN [22], the Fast R-CNN [23] 
and the Faster R-CNN [24] stand out. 
 
The output of the detection algorithm can be either a bounding box 
surrounding the object location or a mask of the object, being the last 
option more common for image segmentation tasks, which are out of the 
scope of this thesis. 
 
2.1.2. Evaluation metrics 
 
The most common metrics of the object detection algorithms are the 
mean average precision (mAP) and the frame per second (FPS), which 
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combined determine not only how precise a detection is, but also how 
fast it can be calculated. For the use case of an object detection 
algorithm for automated driving purposes, a reasonable high precision 
using low computation time is needed. 
 
In order to calculate the mAP, the value intersection over union (IoU) 
needs to be obtained, which measures the overlap between the ground 
truth and the bounding box, i.e. the real location of the object and the 
predicted one. The determination of the real bounding boxes, as well as 
the class the detection belongs to (such as car, pedestrian, track, 
bicycle...) is a task called labelling which is human-manually performed 
and provided along each training dataset. 
 

 
Figure 2: IoU calculation 

Source: [6] 

 
The higher the area of overlap, the better the score of the IoU is, and, 
consequently, the higher precision the detection algorithm will have. The 
values of the IoU range from zero (no overlap) to one (perfect match 
between ground truth’s and prediction’s bounding boxes).  
 
To ensure a successful prediction score it is necessary to set a threshold 
to dismiss the predictions with a lower IoU, which is typically set to 50%, 
but higher values can also be used. If an object is correctly predicted, 
meaning that the prediction matches both ground truth and predicted 
class, is considered as a true positive (TP). The predicted objects with an 
IoU value below the threshold are considered as false positives (FP). The 
false detections, meaning the object has been correctly detected but not 
the class it belongs, will be considered as FP too. On the other hand, 
non-detected ground truths are called false negatives (FN). The detection 
algorithm gives a confidence value for each prediction, meaning how 
sure is the model that a detected object belongs to a specific class. It is 
common to dismiss the predictions with a lower confidence value and its 
consequences can be seen better in the Figure 4 and Figure 5. But to 
determine the perfect threshold for the model is first necessary to 
calculate its precision and recall values. 
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Given a certain confidence threshold, the precision of the prediction is 

calculated as follows: 

 

 
Equation 1: Precision formula 

Source: [8] 

 
On the other hand, the recall of the prediction is calculated with the 
following formula: 

 
Equation 2: Recall formula 

Source: [8] 

 
While the precision of the model indicates the percentage of the true 
positives within all the detections, the recall sets the relationship between 
the true positives and all the ground truths, hence expressing the quality 
of the model. The perfect model has both high precision and high recall 
values. 
 
In order to define the perfect threshold for a certain model the TP and FP 

values must be calculated, throughout all images and at different 

confidence thresholds independently for each one of the defined classes. 

The results can be graphically expressed in the so-called precision-recall 

curve, which represents the precision and recall of the object detector 

model at different thresholds. This chart will be drawn for each of the 

defined classes. 

 

 
Figure 3: Precision-recall curve 
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Source: self-made with [8] function 

 
To help to understand the curve and the confidence-threshold concept 
the following images may help. 
 

 
Figure 4: Object detections with a threshold of 0.01 

Source: self-made with a ground image from [4] 

 
On the previous image, it can be seen what happens when the 
confidence threshold is set too low, in that case, close to zero. The blue 
boxes represent the detected objects according to the model while the 
green ones are the original ground truths. Each of the blue boxes include 
the predicted object class (PassengerCar, LargeVehicle, Pedestrian or 
RidableVehicle) as well as the model detection confidence. With a lower 
confidence threshold all objects will be found, so the recall will achieve 
the rate of 100% because the FN will drop to zero, but the FP will 
increase too, reducing consequently the precision of the model, for 
example, the model sees pedestrian everywhere, even as part of the 
buildings or the road. 
 
On the contrary, if the threshold is set to a higher number like 0.3, the 
image gets clearer as the number of FP and TP drops, as only three 
objects are (correctly) detected while the rest of the objects remain 
unseen. 
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Figure 5: Object detections with a threshold of 0.30 

Source: self-made with a ground image from [4] 

 
A summary of TP, FP, Precision and Recall at different thresholds for the 
class PassengerCar from the last image can be seen in the next table. Of 
course, its results differ from those from the precision-recall curve 
previously seen, as the graph was calculated using the data from all 
images, not only one. 
 

Confidence 
threshold 

TP FP FN Precision Recall 

0.01 2 14 0 0.125 1 
0.3 1 0 1 1 0.5 
0.5 1 0 1 1 0.5 

0.75 1 0 1 1 0.5 
1 1 0 1 1 0.5 

 
Table 1: Example detection metrics 

Source: self-made 

 
In this case and for this class (PassengerCar), it could be concluded that 
any confidence threshold starting from 0.3 would be valid. 
 
The average precision (AP) for a specific class can be obtained by 
calculating the area under the precision-recall curve. If this step is 
performed for each of the classes the algorithm is designed to detect it 
will be obtained one of the most important metrics to define an object 
detection algorithm: the mean average precision (mAP), which indicates 
how good the algorithm is detecting along all the classes. 
 
The other most important metric is the frame per second (FPS), which 
shows how fast the algorithm is in detecting objects. The benefits of FPS 
depend on the use case of the algorithm, but for real time applications, 
the FPS is a decisive factor: as a perfectly high precision is useless if it 
provides the results too late. Considering a standard value for video 
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applications of 24 frames per second, this value will be set as the 
algorithm’s FPS lower-threshold frame rate. 
 
2.1.3. Algorithm comparison and selection 
 
In the Table 2 the comparison of the AP of 20 classes achieved by 
different object detection algorithms with the PASCAL VOC2007 dataset 
[25] is shown. 
 

 
Table 2: Comparative AP results on VOC2007 dataset 

Source: [15] 

 
Even if theoretically two-stage detectors deliver higher mAPs (see 
section 2.1.1), Table 2 shows that one-stage SSD detectors achieve 
bigger mAP values than the two-stage detectors such as the Faster R-
CNN or the R-CNN. 
 
When it comes to compare FPS values, as shown in the next table, the 
best results are as expected for the one-stage detectors, leading the 
classification the YOLO and the SSD300. 
 

 
Table 3: Comparative FPS results on VOC2007 dataset 

Source: [15] 

 
In conclusion and in order to achieve the best of both worlds, the 
SSD300 is the chosen architecture for this thesis. 
 
2.1.4. SSD Structure 
 
The SSD model uses a VGG16 [16] network as a backbone, truncated 
before the classification layers. After the truncation, two fully connection 
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layers are added as well as four convolutional blocks, each of them with 
two convolutional layers which decreases in size. The output of the last 
convolutional layers is used to feed the detection layer and finally a non-
maximum suppression is applied to output only the best results. 
 
 

 
Figure 6: SSD Structure 

Source: [21] 

 
The original SSD300 has four bounding boxes1 at the first and last two 
detection layers and for the rest of the layers it has six, resulting a total of 
8732 predictions per class. To obtain this number the output of each 
detection layer has to be computed and its result summed, for example, 
the first detection layer is the result of applying a 3x3 convolutional  to a 
38x38x512, and as said, this fist layer has four bounding boxes, this 
means for one class a total of 38x38x4 (5776) bounding boxes will be 
applied to look for each class specificaly. The rest of the layers will detect 
19x19x6 (2166), 10x10x6 (600), 5x5x6 (150), 3x3x4 (36) and 1x1x4 (4) 
boxes respectivaly, summing the output of the rest of the layers the 
number 8732 is obtained. The deeper layers are mainly used to detect 
the bigger objects. This limited number of bounding boxes is the main 
reason of the SSD model being faster than the two-stage detectors. 
 
Each detection describes the location of the bounding box, gives a 
confidence value of being an object and also a probability value for 
belonging to each of the classes. 
 

 

 
 
1 Technically is one bounding box with four different scaling factors, i.e. a new box after 
reducing or increasing the original width’s and high’s box. The bounding boxes are also 
known as anchor boxes. 
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Figure 7: Raw prediction output 
Source: [6] 

 
As for each location different scaling factors are applied, the same object 
can be multiple times detected, or may have been partially contained in 
the contiguous box too. Some of this detections may detect a half of the 
object, or only a small part of it. To eliminate those predictions and to 
keep only the best of them the non-maximum supression is applied. This 
step consist in sorting all the predictions and keeping those with the top 
scores only if in the same region no other prediction for the same class 
has been previously selected (because it could mean both predictions 
belong to the same object). The chosen threshold can affect the 
detection rate in images in which lot of objects are close to each other, 
for example, a face detection algorithm in a (pre-Covid-19) concert image 
or a car detection algorithm in a parking’s mall. 
 

2.2. Autonomous driving and sensors 
 
Autonomous driving systems relies mostly on data from cameras to 
detect objects, but other sensors can be helpful as object detectors and 
other tasks as well. Radars, nowadays a standard equipment sensor, are 
used to determine the exact distance to the surrounding objects and, if 
necessary, activate the emergency break. There are proximity sensors 
whose data feeds the parking assistance function and the GPS allows 
the position determination and the trajectory planning. Recently the use 
of the LIDAR has gained ground among some car companies. This 
sensor generates a 360 degrees points-cloud, which is a 3D reproduction 
of the surroundings of the car, a helpful information for object detection 
and for trajectory planning too. 
 
This thesis focusses on the object detection task, a well-studied field of 
autonomous driving that performs one of its basic activities: replace the 
human eyes and see what is in front of the car to drive safely. While 
under clear weather conditions this task can be easily done, detecting 
objects in adversarial weather conditions, like those experienced during a 
snow or dust storm, under heavy rain, with dense fog or at night, is a 
more difficult activity. Under those circumstances the camera, radar and 
LIDAR do not work in proper conditions and its data-output is degraded, 
as summarised in the next table. 
 

 
Table 4: Influences of adversarial weather conditions 

Source: [26] 
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Under adversarial weather circumstances, the visibility of the camera is 
generally degraded. Radars, on the other hand, can return noise as it 
confuses the snowflakes with objects, giving the wrong idea of an 
immediate collision; rain and fog can reduce the measurement distance 
of the sensor. The LIDAR output is also hard affected by those 
adversarial conditions, the reflectivity is degraded and the water splash 
and the snowflakes produce noise too, increasing the chance of false 
detections. 
 
Based on the previous information it can be concluded no sensor works 
in perfect conditions all the time; hence, it seems a good idea not to rely 
in one sensor only, but to use more sensors and with different features. 
There are multiple possible combinations but as cost is one decision-
making factor for automotive manufacturers, and as cameras are the 
cheapest of them, this thesis will work with the hypothesis of using only 
cameras to feed the object detection algorithm, concretely the designed 
model will be based on the information from light visible and the infrared 
cameras. 
 

2.3. Theory of the image 
 
Before starting with the image fusion explanation, it is necessary to stop 
first in the image itself. An image is a combination of pixels, which are 
commonly represented by a number from 0 to 255 depending on its pixel 
intensity, a number which can be stored using 8 bits (28). The closer the 
number to zero is, the more intense the colour and vice versa. 
Mathematically an image can be represented as a three-dimensional 
matrix, being the rows the width and the columns the height of it, while 
the third dimensional corresponds to the number of channels. A colour 
image has three channels, also known as red, green and blue channels 
or for its acronym RGB; on the contrary, a grayscale image has only one 
channel. Another way of representing the colours is the HSL or the HSB 
colour space, in the first case each pixel will be described by its hue, 
saturation and lightness while in the second case, its pixels will be 
described by the hue, saturation and brightness [9]. 
 
From the physics point of view the visible light, hence what humans can 
see, is an electromagnetic radiation whose wavelength lies between 390 
nm and 700 nm [10]. The smaller values correspond to the blues while 
the bigger ones are the orange and reds, in between there are the rest of 
the colours the human eyes can see. The electromagnetic spectrum 
region above the visible light is called the infrared region, which can also 
be divided in three subregions: named near infrared, mid-wave infrared 
and far infrared, depending on its wavelenght values [11]. The other 
electromagnetic spectrums can be seen in the next figure. 
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Figure 8: The electromagnetic spectrum 

Source: [11] 

 
While RGB cameras do work fairly well during daytime hours, the infarred 
ones are commonly used for night-vision, so its combination with image 
fusion techniques could produce a robust model, which could work in 
both clear and adversarial weather conditions. 
 

2.4. Image fusion 
 
In order to deliver precise results for autonomous driving under 
adversarial weather conditions, there are two alternatives to the image 
fusion, which are the domain adaptation and the data pre-processing [5]. 
The first alternative consists in using style-transferring techniques to 
convert, for example, an image taken on a sunny day to a foggy one, 
while the second alternative focus on removing the adversarial condition 
of the image, i.e. removing the droplets, the snowflakes or even the fog. 
Nevertheless, this project will focus on the image fusion and will not try 
those alternatives. 
 
The pedestrian detection is one of the mainly investigation lines of the 
multispectral image fusion, mostly involving the fusion of visible and 
infrared spectrums [27-32]. One main problem before the image fusion 
can be applied is the differences in the field of views (FoV) of the 
cameras, i.e. how much a camera can see, and that cameras are not 
placed in the exact same position, hence some angles and shapes may 
look different. To fix the first problem there is no other solution but to 
reduce the bigger FoV to equal the lowest one. As for the second 
problem, homography techniques are applied, i.e. the use of a 
transformation matrix to adapt the image plane. 
 
There are three methods to fuse the images. The first one is called 
sensor fusion and it consist in working separately with each of the 
sensors. That means, each sensor will be trained in its own detection 
network and the predictions of all of them will be used to produce a more 
robust model. In this kind of methods is also possible to assign variable 
weights, for example, RGB outputs could be downgraded during 
nightlight scenes and, on the contrary, during daylight scenes they would 
be preferred instead of the NIR or FIR outputs. 
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The second method is known as pixel fusion. As explained in the 
previous chapter, the RGB image has three channels, so the main idea 
of this method is to add more information adding extra channels. With a 
perfect homography transformation the RGB and infrared images match 
pixel-wise perfectly, therefore the name of “pixel fusion”. Other 
possibilities are adding the magnitude gradient or the histogram of 
oriented gradient; some studies [27] show the combination of the 
ACF+T+THOG2 channels increase the prediction power of the model. 
 
The last method is called the feature fusion and it is based on the fusion 
of each image stream inside the network itself, meaning the fusion of the 
feature maps. The SSD300 must be reworked to accept two inputs 
instead of one and to concatenate the streams as well. For that purpose, 
a concatenation layer is added as well as a Network in Network (NiN) 
layer [32]. This new layer after the concatenation is used to reduce the 
number of dimensions by stacking the output of multiple convolutional 
layers, as there have not been a second stream, favouring the reuse of 
the weights from pretrained models for the last layers of the network, 
thus accelerating the training. Depending on in which moment the 
streams are fused, the fusion will be baptised as early fusion, halfway 
fusion or late fusion. 
 

 
Figure 9: Two stream feature fusion model (halfway fusion) 

Source: [27] 

 
 
2 ACF: the three channels of the CIELUV colour space, plus the magnitude gradient (M) 
and the six-gradient histogram (O). 
T: thermal channel 
THOG: gradient histogram of the thermal channel 
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3. The DENSE Dataset 
 
 

3.1. Seeing through fog without seeing it 
 
The DENSE Dataset was released along with the paper “Seeing Through 
Fog Without Seeing Fog: Deep Multimodal Sensor Fusion in Unseen 
Adverse Weather” in 2019 and is the product of more than 10000 km of a 
two-months-driving across the northern part of Europe, starting from 
Germany and ending up in Scandinavia. The most important feature of 
the dataset, and what makes it different form other available datasets, is 
the inclusion of scenes in adversarial weather conditions, such as dense 
fog or snowing conditions. It consists of a multimodal dataset and it 
includes data from radar, LIDAR, and cameras with RGB, NIR and FIR 
spectrums. To download it is necessary to fill a registration form using 
the following link [12]. For this thesis is not necessary to download the 
whole 600 Gb dataset, but a small portion of it, concretely the following 
folders: cam_stereo_left_lut, fir_axis, gated0_rect8, gated1_rect8, 
gated2_rect8 and gt_labels. The first folder contains the RGB images, 
the second the FIR images, the next three folders include the NIR 
images and the last one contains the ground truth labels for the RGB and 
NIR images, unfortunately the FIR’s ground truths are not available. The 
dataset is split between train, validation and test, as well as its image 
weather indication, and it can be found in the researcher’s Github 
repository [36]. 
 

3.2. The sensors 
 
The vehicle was equipped with two RGB cameras, with a 1920×1024 
resolution and a FoV of 39.6°×21.7°; the NIR camera, here called gated, 
has a resolution of 1280×720 while its FoV is 31.1°×17.8° and captures 
the scenes in three different depth-ranges, adjusting the flash to 
illuminate the desired depth; the FIR camera has a resolution of 
640×480. The car is equipped with radar, LIDAR, a weather station and a 
road-friction sensor. 
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Figure 10: Vehicle setup 
Source: [5] 

 
3.3. The approach 

 
The model uses the data from radar, LIDAR and the RGB and NIR 
cameras, while the FIR data is put aside. The RGB images see its FoV 
reduced to match it with the NIR one, and afterwards homography is 
applied to transform the NIR into the same RGB planar image. 
 
The backbone of the model is a reworked VGG network, cut on the fourth 
convolutional block. Six layers are added to be used for the SSD 
detection layers, each of them decreasing in size. Each sensor has its 
own separate stream, and the entropy of the sensor is provided to steer 
the sensor-feature fusion. At each layer, the extracted features of the 
sensors are fused in the LIDAR-stream. 
 
 

 
Figure 11: DENSE architecture 

Source: [5] 

 
3.4. Other tested solutions 

 
The model was trained using only clear weather images and tested on 
clear and adversarial weather condition scenes. The dataset was split 
into train, validation and test assigning 3510, 779 and 8743 images to 
each group, respectively. To compare the obtained results other models 
were trained too, which maintain the same network architecture but use 
the data of one single sensor at each time. The average precisions for 
the car’s class under different weather conditions are shown in the table 
below. 
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Table 5: AP for cars on different weather conditions and algorithms 

Source: [5] 

 
The designed model outperforms the single-sensor models in almost all-
weather conditions. Providing the sensor entropy at each layer increases 
the precision of the model as well, especially in the harder conditions, like 
scenes with dense fog. In most of the weather situations the precision 
exceeds the 80% precision-threshold, hence the researchers have built a 
model which detects a high quote of TP, while maintaining the FP and 
FN low. 
 
Although the model had been trained using clear weather images only, 
there are almost no AP differences between the weather splits, proving 
that the model generalises sufficiently to predict unseen weather 
conditions. 
 
Those precision values, specially the RGB-only (referenced in the Table 
5 as Image-only SSD), the NIR-only (known as Gated-only SSD) and the 
Deep Fusion model, will be used as a reference to compare the own 
proposed model. Unfortunately, the publishers did not mention which 
hyperparameters have been used to obtain such results, it is even 
unknown which input size for the SSD have been used, hence AP 
differences are likely to occur, only its known, that the algorithm uses 21 
anchor boxes, but not the chosen aspect ratio. 
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4. Design and test of an image-only object 
detector algorithm 

 
 

4.1. The strategy 
 
The first step before building the model is the exploration of the dataset, 
cleaning the labelled data if necessary, and exploring the class 
distribution. Another important step is the ground truth size exploration: 
as mentioned in section 3.4, the publishers of the DENSE dataset did not 
provide the hyperparameters of its proposed model, so it is necessary to 
understand how the ground truths look like to design a better bounding 
boxes combination for the SSD model. 
 
Regarding the split between train, validation and test, this project will use 
the same split as the proposed on the paper, i.e. the model will be trained 
and validate using clear-weather images only. Additionally, the test split 
will be divided into daylight and nightlight scenes too, but the easy-
moderate-hard split shown in Table 5 will not be followed, as is not clear 
which parameters have been used to define those categories. 
 
Afterwards, the FoV between the three image spectrums will be equalled 
and homography transformations will be applied to match pixel-wise the 
RGB, NIR and FIR images. Finally, the first SSD model will be built to set 
the hyperparameters (which will be shared for all the models). Once they 
are settled, a single-sensor SSD model will be trained to know the 
precision each sensor can achieve separately. Then the three fusion 
models will be designed, and its results compared to determine which of 
the approaches show the best results. 
 

4.2. Exploring the dataset 
 
4.2.1. The classes 
 
According to the paper [5] only four classes are available, but it was 
discovered there are some more. As part of the data preparation the list 
of classes was simplified to four. 
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Table 6: Number of classes before the data cleaning 

Source: self-made 

 
In the following image it can be seen the class distribution of the RGB 
and NIR images. Its output differs because the NIR images have a 
reduced field of view, meaning the NIR image sees less scene as the 
RGB, hence less objects, but in both cases the homogeneity of the 
classes is maintained, being two classes overrepresented and two of 
them clearly underrepresented. In the distribution it can be seen as well, 
how the number of objects during the nightlight scenes is lightly reduced, 
compared to daylight images. 
 

 
Figure 12: Class distribution for RGB (left) and NIR (right) images 

Source: self-made 

 
A detailed class distribution for each of the weather conditions can be 
found at the appendixes. 
 
4.2.2. RGB, NIR and FIR images 
 
The cameras of the vehicle have a different resolution and FoV 
depending on the type of the output as it had been explained on section 
3.2. The only way to make the fusion of the three spectrums work 
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consists in reducing the shape of the images to the smaller one and then 
applying the homography transformation. 
 
During the image exploration, it has been discovered the FIR images 
have not been taken in the same instant as the RGB and NIR were. 
Looking closely in Figure 13, a minor time offset can be appreciated, 
which invalidates the premise of the three-spectrum pixel-wise fusion, as 
the homography will never be able to transform the images to the same 
planar, because the objects are not in the same location. 
 

 

 

 
Figure 13: Extract of the same image on FIR, RGB and NIR spectrum 

Source: self-made with a ground image from [4] 

 
On the previous image, it can be noticed how the legs of the man 
crossing the road show a different position depending on the image 
spectrum. While between RGB and NIR images there is no observable 
difference, the FIR and the rest show an offset. Therefore, regrettably 
the FIR spectrum will not be used. 
 
It has been previously commented in the section 3.2, the NIR camera 
had a flash to focus on different depths so at night, with low visibility, 
each of the images will illuminate a different part of the scene: the so-
called gated0, will focus the nearer objects, the gated1 the intermediate 
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and the gated2 the distant ones, in the Figure 41 in the appendix 9.7 it 
can be seen an example of how this variable focus looks like. 
 
Afterwards, all the images were resized to a 300×300 resolution, as this 
is the necessary input’s shape of the SSD300, and it can increase the 
model train velocity because the resize operation is saved. 

 
4.2.3. The ground truths 
 
As previously mentioned in section 2.1.4, the SSD algorithms does not 
make a massive exploration of all kind of bounding boxes everywhere, 
but it looks a limited number of them, hence, to increase the prediction 
score of the model it seems wise to know how exactly the ground truths 
of the dataset look like and then tune consequently the hyperparameters. 
 
But SSD300 models, as stays implicit in its name, use 300×300 images 
as input. That means there is no need of calculating the original ground 
truths because they are not really what the model will have as input, but 
something more deformed. The reason is the reduction the image goes 
through to pass from a 1920×1024 to a 300×300 in case of the RGB 
images (the NIR transformation goes from 1280×720 to 300×300). That 
means a RGB is reduced almost six times in its x-axis and four times in 
its y-axis and, as the reduction is not equal in both axes, the aspect ratios 
of the ground truths will be affected too, becoming a thinner version of 
them, of course, width and height will be reduced accordingly too. 
 
Visually is easier to understand how the shape reduction affects the 
image and the objects it contains. 
 

 
Figure 14: Image deformation before resizing 

Source: self-made with a ground image from [4] 
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Figure 15: Image deformation after resizing 

Source: self-made with a ground image from [4] 

 
Focusing on a specific it is noticeable the deformation of the ground 
truths because of the image shape reduction. 
 

  
Figure 16: Image deformation 

Source: self-made with a ground image from [4] 

 
In the following image is shown the ground truth sizes for each class. As 
each of them represent a different concept, the size of the ground truth 
varies too. 
 

 
Figure 17: Ground truth sizes 

Source: self-made 
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From the previous image it can be guessed the aspect ratios varies 
depending on the class. To see it more clearly the histogram of the 
ground truths has been represented. 
 

 
Figure 18: Aspect ratio distribution 

Source: self-made 

 
Vehicles, like passenger cars or large vehicles, have mainly a squared 
ground truth or a wider than taller one, but almost never twice the width-
height relation, sometimes its aspect ratio is below one, but remaining in 
close to it. On the other hand, pedestrians and ridable vehicles have 
always an aspect ratio below one, mostly with values below 0.5, like 0.3 
or 0.2, so the model needs to look to objects that are five times taller than 
wider to detect those targets. 
 
As part of the data cleaning, it was discovered some ground truth had a 
width or a height equal to zero, so they were removed from the dataset. 
 

4.3. Homography 
 
Instead of using a manually point matching between the RGB and NIR 
images, as done by the original paper and explained in the supplement 
material [34], to obtain the transformation matrix the library OpenCV has 
been used with an automatic point selection. Then the RANSAC 
optimisation has been applied, as the original paper does. 
 
Although this action has been repeated several times with different 
images to optimise the homography results, a perfect pixel-wise 
matching has never been obtained, and in some regions of the image the 
offset is visible. 
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Figure 19: Pixel-wise fusion of RGB and NIR after homography 

Source: self-made with a ground image from [4] 

 
In the previous image the area around the centre like the car, the bus or 
the church show no visible offset, the same can be said on the left part of 
the image. On the other hand, on the top part of the scene, like the 
buildings, or on the right, like the person cycling or the shop-sign this 
offset between the RGB and the NIR image is noticeable. This noise can 
cause a reduction of the predictions, but it is concentrated in small 
regions or places where no object or fewer objects are expected, 
therefore this project will continue even knowing a perfect homography 
has not been obtained. 
 
The homography will affect the ground truths and the aspect ratio 
distribution too, as the reduction from the original image to the 300×300 
input will now be not as severe as it used to be for the original RGB 
images, because the image has a size of 1240×6903 instead of 
1920×1024. 

 
 
3 The NIR size is 1280×720, but it had a black-margin offset which has been trimmed, 
hence the new size of 1240×690 
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Figure 20: Ground truth sizes after homography 

Source: self-made 

 

 
Figure 21: Aspect ratio distribution after homography 

Source: self-made 

 
4.4. Setting the hyperparameters 

 
The model has been trained without using any kind of image pre-
processing, the images have been taken from the dataset directly as they 
are. The following data augmentation techniques have been applied: 
random change of brightness, contrast and hue, but without adding new 
images, so the class distribution remains unaltered. 
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To set the hyperparameters several trials have been attempted, mainly 
regarding changes of the aspect ratios and the steps, i.e. aspect of the 
bounding boxes and the number of pixels between the centre of two 
consecutives boxes, respectively. This activity has been one of the most 
time-consuming tasks of the project, as with the available hardware the 
training time of the model, even with GPU, took more than 24 h. 
 
Finally, the values have been settled as follows. 
 

 

 

 
Figure 22: Hyperparameters for the SSD300 model 

Source: self-made 

 
The Adam function has been used as optimizer, instead of the SGD, 
because it was too unstable. The learning rate value has been settled to 
0.001, and its value have been reduced to one tenth once the model had 
stopped improving the validation loss. The number of epochs has been 
settled to 400, introducing an early stopping with 50 epochs non-
improvement margin. 
 
This model has more bounding boxes as the original one, hence the 
expected FPS will be lower as more bounding boxes will be used for the 
object detection, concretly with this hyperparameters a total of 13580 
different bounding boxes will be detected for each class, quite above the 
original SSD300 threshold. But even with this bounding box increase it is 
thought the 24-FPS-threshold can be exceeded. 
 
The anchor box neutral size is a square with 300×300 pixels, and the 
scale ratio of the first detection layer is 0.1, meaning the first bounding 
box will be a square with a size of 30×30 pixels, then the aspect ratios 
will be applied to increase the number and the forms of the bounding 
box. 
 

4.5. Analysing the contribution of each sensor 
 
4.5.1. The RGB 
 
The first RGB model has been trained using the original RGB images, i.e. 
without the homography transformation, and resizing the images from 
1920×1024 to 300×300. The pipeline structure can be seen in the next 
image. 
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Figure 23: RGB-only SSD300 model pipeline 

Source: self-made 

 
With the hyperparameters shown in Figure 22 the model obtained the 
best loss values at the 339th epoch: 

• Best epoch:  339 of 389 

• Train loss:  3.132 

• Validation loss: 3.217 
 

 CLEAR LIGHT FOG DENSE FOG SNOW  
 DAY NIGHT DAY NIGHT DAY NIGHT DAY NIGHT AP 

Passenger 
car 

59.03 61.20 66.22 62.38 65.79 65.24 58.58 62.88 62.67 

Large 
vehicle 

41.00 37.09 40.63 36.69 47.23 28.18 37.55 40.03 38.55 

Pedestrian 55.20 58.23 10.14 55.94 35.99 47.67 59.17 58.55 47.61 

Ridable 
vehicle 

34.59 15.71 0.00 28.72 52.33 3.10 22.29 24.18 22.62 

mAP 47.46 43.06 29.25 45.93 50.33 36.05 44.40 46.41 42.86 

Table 7: AP and mAP results of the RGB SSD300 model 
Source: self-made 

 
The precision of the classes follows suspiciously the same order as the 
class distribution shown in Figure 12. The detection of the cars scores 
the best precision values, while the ridable vehicle class mainly obtains 
the lower precisions, with some weather-exception. From the results is 
observable, this model generalises perfectly, as it can detect objects in 
unseen weather conditions and even scoring better results on adversarial 
weather conditions than on clear weather. One of the explanations the 
researchers of the DENSE dataset guessed [5], related the better 
precisions with the lower number of objects present during night scenes 
or foggy situations. Nevertheless, the precision values are below those 
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obtained by the researches and shown in Table 5 (the image-only SSD) 
even taking into consideration the hard-weather condition only, the 
obtained precision still relies seven to ten points below the researchers’ 
model. 
 
4.5.2. The NIRs 
 
The NIR model has been trained three times, each of them using a 
different depth-focus, i.e. near, intermediate and distant, it follows the 
same pipeline structure as shown in Figure 23. As each NIR illuminates 
different objects is expected to obtain different precision values. The 
resulted train and validation loss differ to each other too, as shown in the 
next table. 
 

 Near-NIR Inter-NIR Distant-NIR 

Best epoch  318 of 368 363 of 400 399 of 400 

Train loss 3.588 3.471 3.869 

Validation loss 3.714 3.547 3.788 
Table 8: Train parameters for NIR images 

Source: self-made 

 
The three NIR precisions are shown in the next tables: the near in the 
Table 9, the intermediate precision in Table 10 and the distant-NIR 
results in Table 11. 
 

 CLEAR LIGHT FOG DENSE FOG SNOW  
 DAY NIGHT DAY NIGHT DAY NIGHT DAY NIGHT AP 

Passenger 
car 

50.93 50.94 62.02 51.58 68.18 61.90 52.15 51.53 56.15 

Large 
vehicle 

37.96 39.99 41.60 39.15 48.78 19.68 35.52 38.04 37.59 

Pedestrian 46.91 45.19 12.80 42.72 41.35 62.30 43.71 42.04 42.13 

Ridable 
vehicle 

42.40 28.92 2.78 40.58 41.83 23.43 31.22 33.06 30.53 

mAP 44.55 41.26 29.80 43.51 50.03 41.83 40.65 41.17 41.60 

Table 9: AP and mAP results of the near-NIR SSD300 model 
Source: self-made 

 
 CLEAR LIGHT FOG DENSE FOG SNOW  
 DAY NIGHT DAY NIGHT DAY NIGHT DAY NIGHT AP 

Passenger 
car 

54.48 57.64 64.73 59.17 71.52 68.54 55.60 59.29 61.37 

Large 
vehicle 

33.19 47.18 38.58 46.94 46.55 26.59 34.37 45.93 39.92 

Pedestrian 47.27 51.58 15.01 50.56 42.60 66.87 44.90 47.44 45.78 

Ridable 
vehicle 

45.78 26.55 0.00 48.45 48.27 20.00 29.05 31.36 31.18 

mAP 45.18 45.74 29.58 51.28 52.23 45.50 40.98 46.01 44.56 

Table 10: AP and mAP results of the intermediate-NIR SSD300 model 
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Source: self-made 

 
 CLEAR LIGHT FOG DENSE FOG SNOW  
 DAY NIGHT DAY NIGHT DAY NIGHT DAY NIGHT AP 

Passenger 
car 

51.69 53.25 60.71 54.13 68.64 62.94 52.55 54.80 57.34 

Large 
vehicle 

32.71 42.27 37.39 34.78 43.80 19.65 31.60 40.03 35.28 

Pedestrian 42.13 36.07 7.85 30.92 28.25 13.02 38.79 28.18 28.15 

Ridable 
vehicle 

32.99 7.34 0.00 29.02 37.89 8.90 18.55 8.43 17.89 

mAP 39.88 34.73 26.49 37.21 44.65 26.13 35.37 32.86 34.67 

Table 11: AP and mAP results of the distant-NIR SSD300 model 
Source: self-made 

 
The distant NIR was still improving before it achieved the maximal 
epoch-threshold of 400 and the train and validation loss lye above the 
other NIRs, hence is not a coincidence it shows the worst precision 
values of the three NIR, as it needed more time to train properly. 
 
The intermediate NIR show the best precision values between the three 
NIR divisions, even better values than the previous RGB model are 
obtained, especially in night scenes and within the underrepresented 
classes. The ridable vehicle class, for example, obtains between 10 and 
20 points above the RGB precision of Table 7. 
 
Comparing the results with those obtained by the researchers “gated-
only SSD” model at Table 5, the intermediate-NIR equals the values of 
the hard-scenes and even those from the moderate ones in some 
weather circumstances. 
 

4.6. Precision improvement 
 
The mAP values previously shown look quite disappointing, especially 
those of the RGB spectrum, as they lye quite below the obtained 
precisions of the single-sensors models. 
 
There are some ways to improve the precision rate before starting with 
the fusion techniques: increasing the number of epochs, artificially 
increasing the size of the dataset to balance the class distribution, adding 
more bounding boxes, using the SSD512 instead of the SSD300, and so 
on, all those methods could increment the final precision of the model. In 
this section they will be checked and commented. 
 
4.6.1. Increasing the input shape: SSD512 
 
From the researchers’ paper is known the SSD algorithm is used, but not 
if is a SSD300, a SSD512 or even an ad hoc SSD model with a bigger 
input shape. An increment of the algorithm input image shape decreases 
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the FPS, hence the model could eventually not work in real time 
conditions as wished. 
 
The SSD512 model has an extra detection layer, therefore the total 
number of detected bounding boxes per class increase too, as the 
training time do. The model kept improving until the 400th epoch, 
obtaining a train loss of 2.682 and a validation loss of 2.812. 
 

 CLEAR LIGHT FOG DENSE FOG SNOW  
 DAY NIGHT DAY NIGHT DAY NIGHT DAY NIGHT AP 

Passenger 
car 

60.43 62.36 67.45 63.13 70.04 66.10 61.26 64.53 64.41 

Large 
vehicle 

48.78 49.71 42.78 46.62 48.65 48.57 44.02 51.37 47.56 

Pedestrian 62.58 65.35 19.93 61.06 48.97 55.65 66.37 65.01 55.62 

Ridable 
vehicle 

46.78 30.53 1.81 48.57 60.26 21.51 22.46 32.14 33.01 

mAP 54.64 51.99 32.99 54.85 56.98 47.96 48.53 53.26 50.15 

Table 12: AP and mAP results of the RGB SSD512 model 
Source: self-made 

 
The precision results of the previous table are clearly above those from 
Table 7 with the SSD300 model, and the difference would have been 
even bigger, if more time had been given to the model to be properly 
trained. 
 
4.6.2. Reducing the FoV 
 
Another possibility to increase the precision might be related to the object 
deformation due to the image reduction, using a smaller image, like the 
one obtained after applying the homography, instead of the original 
1920×1024 image could increase the precision too. Not only because the 
reduction of the objects is less severe, as it has been seen in the chapter 
4.3, but because less objects are visible due the field of view reduction. 
 
This model has been trained again with a SSD300 using the images 
resulting of the homography, meaning with an input image shape of 
1240×690. From now on, all the models will use this image size as the 
standard input (and then applying the 300×300 resizing). 
 
This model obtained the best results at the 240th epoch, early stopping 
50 epochs later, and it obtained a train loss of 3.275 and a validation loss 
of 2.523. 
 

 CLEAR LIGHT FOG DENSE FOG SNOW  
 DAY NIGHT DAY NIGHT DAY NIGHT DAY NIGHT AP 

Passenger 
car 

56.41 58.14 66.18 60.47 67.50 68.52 57.12 61.89 62.03 

Large 
vehicle 

44.08 46.83 42.39 45.05 55.83 61.20 42.73 45.06 47.90 
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Pedestrian 51.07 53.62 6.87 50.00 39.80 61.00 55.38 51.96 46.21 

Ridable 
vehicle 

42.21 18.74 0.00 45.82 33.29 15.83 25.42 22.07 25.42 

mAP 48.44 44.33 28.86 50.33 49.11 51.64 45.16 45.24 45.39 

Table 13: AP and mAP results of the RGB FoV SSD300 model 
Source: self-made 

 
Generally, this model shows a better precision results than those with the 
original 1920×1024 image size, hence the FoV reduction seems a good 
method to increase the model precision. 
 
4.6.3. Other options 
 
There are other methods which could increase the precision, one of them 
is the increase of the number of epochs, a clear example is the model 
SSD512 and the distant-NIR SSD300, which were still improving just 
before the 400-epoch threshold was achieved. The other models never 
shown a sign of overfitting, hence a combination of an increment of 
epochs and a reduction of the learning rate might have helped. 
 
Adding more bounding boxes (via increasing the number of aspect ratios 
or reducing the number of pixels between two consecutive bounding 
boxes) could affect positively the precision while reducing the FPS too. 
 
Artificially increasing the number of images, mainly adding more objects 
of the underrepresented classes could have a positive effect on the 
precision value of those classes. Other options would be incrementing 
the model depth, increasing the number of the detection layers, or even 
using another network backbone instead of the chosen VGG16. Still, 
none of these methods will be applied as they are out of the scope of the 
thesis. 
 

4.7. Pixel Fusion 
 
4.7.1. RGB and gradient magnitude (M) 
 
Inspired by the papers which focus on pedestrian detection, like [27, 30] 
it was decided to use more channels to increase the information given to 
the model, as an easy way of implementing the pixel fusion. 
 
The first step consists in adding a fourth channel to the RGB image, 
called the gradient magnitude. This new channel returns the silhouette of 
the objects, obtained calculating the pixel derivative in both axis. A bigger 
slope is produced by a bigger pixel-colour change, hence is likely to be 
related to the end of an object and the beginning of another one. 
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Figure 24: Gradient magnitude (left), corresponding RGB image (right) 

Source: self-made with a ground image from [4] 

 
The pipeline structure of this model differs from the one shown in Figure 
23 because of the channel-merging extra step. 
 

 
Figure 25: RGB + M FoV SSD300 model pipeline 

Source: self-made 

 
This model started overfitting at the 59th epoch and obtained a train loss 
of 3.145 and a validation loss of 5.450. 
 

 CLEAR LIGHT FOG DENSE FOG SNOW  
 DAY NIGHT DAY NIGHT DAY NIGHT DAY NIGHT AP 

Passenger 
car 

52.42 50.05 55.95 54.62 51.24 48.19 49.14 52.97 51.82 
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Large 
vehicle 

25.84 14.32 14.88 13.92 21.29 3.20 19.32 17.64 16.30 

Pedestrian 41.09 41.38 5.97 32.89 13.97 22.58 43.67 39.30 30.11 

Ridable 
vehicle 

20.00 2.87 0.03 10.82 19.20 0.50 6.45 5.71 8.20 

mAP 34.84 27.16 19.21 28.06 26.42 18.62 29.64 28.90 26.61 

Table 14: AP and mAP results of the RGB + M FoV SSD300 model 
Source: self-made 

 
It seems that this fourth channel has only added noise to the model and 
the precision has consequently dropped. As the obtained precision has 
not given the expected results, this line of investigation will be 
abandoned, and no more gradient-related channels will be added. In the 
following image it can be seen why the precision has dropped so much: 
this model sees incorrectly cars in the bushes at the left part of the 
image. 
 

 
Figure 26: Output of the RGB + M Pixel Fusion model 

Source: self-made with a ground image from [4] 

 
4.7.2. The three NIRs 
 
The second pixel fusion model is based on the fusion of the three NIR 
images, i.e. the near, intermediate and distant, its pipeline structure can 
be seen in the Figure 27, and is similar to the RGB + M pipeline. The 
main reason of this pixel fusion model is the creation of a model which 
sees the three ranges at the same time. 
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Figure 27: NIR FoV Pixel Fusion SSD300 model pipeline 

Source: self-made 

 
Each NIR input is in grayscale, so mathematically it can be described as 
one single channel. The fusion of the three NIR distances produce a 
three-channel image and is equivalent to assigning the red channel to the 
near-NIR, the green channel to the intermediate-NIR and the blue 
channel to the distant-NIR. Therefore, the output image will be 
grayscaled in those regions visible in the three channels but will be 
coloured if its pixels derived from only one or two of the NIR channels, 
being the colour red, blue, green or a combination of two of them 
depending of the input channel. 
 
The model obtains the best results in the 191th epoch, with a train loss of 
3.941 and a validation loss of 2.862. 
 

 CLEAR LIGHT FOG DENSE FOG SNOW  
 DAY NIGHT DAY NIGHT DAY NIGHT DAY NIGHT AP 

Passenger 
car 

51.67 55.22 63.71 57.33 70.30 68.46 53.58 58.30 59.82 

Large 
vehicle 

36.18 57.21 47.73 46.18 48.74 31.28 35.61 49.68 44.08 

Pedestrian 42.06 47.51 9.68 48.89 34.62 57.23 37.45 42.16 39.95 

Ridable 
vehicle 

41.01 21.36 0.00 45.00 42.64 21.78 23.71 29.54 28.13 

mAP 42.73 45.33 30.28 49.35 49.08 44.69 37.59 44.92 43.00 
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Table 15: AP and mAP results of the NIR FoV Pixel Fusion SSD300 model 
Source: self-made 

 
Except for the large vehicle class, the rest of the precisions lye below the 
obtained results of the NIR channels alone, so this fusion has not shown 
any improvement as expected. 
 
4.7.3. RGB and NIR 
 
An interesting approach is the fusion of both spectrums, the RGB and the 
three-channel NIR, to build a robust model which works in daylight and 
nightlight conditions, whose pipeline structure can be seen in the next 
image. 
 

 
Figure 28: RGB+NIR FoV Pixel Fusion SSD300 model pipeline 

Source: self-made 

 
This model has an input of six channels, three from the RGB and three 
additional ones from the NIR and has obtained the best loss values in the 
256th epoch, with a train loss of 2.878 and a validation loss of 2.372. 
 

 CLEAR LIGHT FOG DENSE FOG SNOW  
 DAY NIGHT DAY NIGHT DAY NIGHT DAY NIGHT AP 

Passenger 
car 

57.18 59.08 68.39 60.93 70.25 70.24 58.99 63.18 63.53 

Large 
vehicle 

43.80 47.30 34.42 39.80 50.26 45.93 37.53 43.05 42.76 

Pedestrian 49.82 53.33 8.17 50.11 39.02 58.05 54.51 52.88 45.74 

Ridable 38.39 13.33 0.00 36.84 51.22 18.84 21.81 22.68 25.39 
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vehicle 

mAP 47.30 43.26 27.74 46.92 52.69 48.26 43.21 45.45 44.35 

Table 16: AP and mAP results of the RGB+NIR FoV Pixel Fusion SSD300 model 
Source: self-made 

 
The results from the previous table show only an improvement with the 
passenger car class, almost equalling the value of the SSD512 model. 
The rest of the classes do not show a precision improvement. It is 
possible that the imperfect homography and the consequent pixel-offset 
has prevented the model to be trained to its full potential. 
 

4.8. Sensor Fusion 
 

The sensor fusion approach fusions the raw predictions of the models, 
i.e. the precision before the non-maximum suppression step is applied. 
Two models will be designed to check the quality of this method: the 
fusion of the three NIR channels and the fusion of the RGB and the NIR 
images. 
 
4.8.1. NIRs 
 
An alternative variant of the model explained in chapter 4.7.2 is the 
sensor fusion in which, instead of fusing the three NIR and feeding the 
model with this triple channel image, the precisions obtained separately 
by each model will be fused, as shown in the next figure. 
 

 
Figure 29: NIRs Sensor Fusion SSD300 model pipeline 

Source: self-made 

 
 CLEAR LIGHT FOG DENSE FOG SNOW  
 DAY NIGHT DAY NIGHT DAY NIGHT DAY NIGHT AP 

Passenger 
car 

52.16 55.53 61.22 56.54 70.23 65.74 53.24 56.80 58.93 

Large 
vehicle 

38.62 52.08 46.04 52.18 51.75 30.18 40.33 51.79 45.37 
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Pedestrian 46.47 48.88 11.71 46.42 40.74 58.72 42.61 42.99 42.32 

Ridable 
vehicle 

46.53 30.91 1.19 49.91 46.03 25.97 32.12 33.61 33.28 

mAP 45.95 46.85 30.04 51.26 52.19 45.16 42.08 46.30 44.98 

Table 17: AP and mAP results of the NIRs Sensor Fusion SSD300 model 
Source: self-made 

 

This method has outperformed the NIR pixel fusion variant, seen in the 
chapter 4.7.2, as well as simple models with the separate NIR channels 
from chapter 4.5.2. 
 
4.8.2. RGB and NIR  
 
The sensor fusion of the RGB and NIR results, as an alternative to the 
pixel fusion model designed at chapter 4.7.3, show again a better 
precision rate compared to the pixel fusion variant. Its structure differs 
from the one shown in Figure 28. 
 

 
Figure 30: RGB+NIR FoV Sensor Fusion SSD300 model pipeline 

Source: self-made 

 
 CLEAR LIGHT FOG DENSE FOG SNOW  
 DAY NIGHT DAY NIGHT DAY NIGHT DAY NIGHT AP 

Passenger 
car 

53.64 56.55 63.76 59.55 72.51 70.35 55.16 60.50 61.50 

Large 
vehicle 

43.86 59.97 50.91 49.73 53.53 57.10 42.02 52.67 51.22 
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Pedestrian 45.00 49.67 7.22 49.30 41.04 61.54 43.15 46.08 42.88 

Ridable 
vehicle 

45.24 24.47 0.00 48.94 32.68 21.81 28.14 30.92 29.03 

mAP 46.93 47.66 30.47 51.88 49.94 52.70 42.12 47.54 46.16 

Table 18: AP and mAP results of the RGB+NIR FoV Sensor Fusion SSD300 model 
Source: self-made 

 
The underrepresented classes, i.e. large and ridable vehicles, see its 
precision increased, while the other two classes loss its precision rate 
three points, but the general result remains positive. 
 

4.9. Features Fusion 
 
The third fusion method is the feature fusion. This version fuses the 
image spectrum, nor in the input adding more channels, neither in the 
output fusing the raw predictions, but inside the network. Two variations 
have been designed: the first one, called halfway fusion, fuse the 
features in the intermediate layers of the network, while the second 
model, called late fusion, fuse high-level features in the deeper layers. Its 
pipeline structure can be seen in the next image and it defines both, 
halfway and late fusion. 
 

 
Figure 31: RGB+NIR FoV Feature Fusion SSD300 model pipeline 

Source: self-made 

 
4.9.1. Halfway Fusion 
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The SSD network receives two streams, the first belonging to the RGB 
pipeline and the second to the NIR images. The first layers are 
duplicated until both streams are concatenated and its features fused, 
subsequently the network follows the same architecture as the original 
SSD300, with only one stream. The model architecture can be seen in 
the appendix in the Figure 37. 
 
This model obtains its best precision during the 283th epoch, with a train 
loss of 2.963 and a validation loss of 2.237. 
 

 CLEAR LIGHT FOG DENSE FOG SNOW  
 DAY NIGHT DAY NIGHT DAY NIGHT DAY NIGHT AP 

Passenger 
car 

56.09 58.60 67.18 61.01 69.71 70.18 58.61 62.62 63.00 

Large 
vehicle 

41.95 44.97 32.99 40.41 49.84 54.53 36.24 43.68 43.08 

Pedestrian 49.69 53.53 8.51 49.14 38.26 59.16 55.02 51.87 45.65 

Ridable 
vehicle 

42.03 18.31 7.03 39.89 44.71 11.07 22.13 24.08 26.16 

mAP 47.44 43.85 28.93 47.61 50.63 48.74 43.00 45.56 44.47 

Table 19: AP and mAP results of the RGB+NIR FoV Halfway Fusion SSD300 model 
Source: self-made 

 
The obtained precisions are equivalent with those obtained using other 
fusion methods outstanding specially in the passenger car’s class 
detection.  
 
4.9.2. Late Fusion 
 
To reduce the influence of the homography offset between the RGB and 
NIR images, a second feature fusion model has been designed with a 
later feature fusion. The idea behind is to fuse the map features at “a 
stage where spatial information is less relevant” [29]. Another reason to 
try this variation is to study the consequences of adding a new detection 
layer. As the stream concatenation is placed after the fifth convolutional 
block and the output of the fourth concatenation block is used to feed the 
first detection layer, this model will have a specific detection layer per 
each stream, while the other layers will be feed with the result of the 
feature concatenation of both streams. The model diagram can be seen 
in the appendix as Figure 39. 
 
This model obtains its best precision during the 273th epoch, with a train 
loss of 4.155 and a validation loss of 3.708, clearly above the previous 
designed models. 
 
 

 CLEAR LIGHT FOG DENSE FOG SNOW  
 DAY NIGHT DAY NIGHT DAY NIGHT DAY NIGHT AP 

Passenger 
car 

46.05 45.82 57.11 46.54 46.72 58.42 47.55 50.83 49.88 
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Large 
vehicle 

11.86 19.29 11.79 21.44 8.20 35.84 18.16 16.52 17.89 

Pedestrian 44.62 47.14 17.28 46.36 33.12 30.81 49.26 47.44 39.50 

Ridable 
vehicle 

15.32 12.12 11.65 21.38 3.17 17.62 6.05 9.64 12.12 

mAP 29.46 31.09 24.46 33.93 22.80 35.67 30.25 31.11 29.85 

Table 20: AP and mAP results of the RGB+NIR FoV Late Fusion SSD300 model 
Source: self-made 

 
The designed late-fusion model has not produced the expected precision 
improvement, the one-spectrum-only detection layer seems to have 
boycott the detection performance of the whole algorithm. 
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5. Results 
 
 
This chapter summarises the results seen in the previous chapter. It also 
provides relevant information regarding the model training time and its 
detection FPS value. 
 

Model name 
Epoch 

training time 
Best epoch Train loss 

Validation 
loss 

RGB 170 s 339 3.132 3.217 

Near-NIR 145 s 318 3.588 3.714 

Intermediate-NIR 145 s 363 3.471 3.547 

Distant-NIR 145 s 399 3.869 3.788 

RGB SSD512 510 s 400 2.682 2.812 

RGB FoV 155 s 240 3.275 2.523 

Pixel Fusion RGB+M 110 s 59 3.145 5.450 

Pixel Fusion NIR 150 s 191 3.941 2.862 

Pixel Fusion RGB+NIR 180 s 256 2.878 2.372 

Sensor Fusion NIR - - - - 

Sensor Fusion RGB+NIR - - - - 

Halfway Fusion RGB+NIR 320 s 283 2.963 2.237 

Late Fusion RGB+NIR 430 s 273 4.155 3.708 
Table 21: Model summary 

Source: self-made 

 
There is a significant difference within the value of the training time per 
epoch and the network architecture, as well as the image input, plays an 
important role, as it can be seen in the Table 21. The model SSD512 
needs the triple of time per epoch to be trained compared to its SSD300 
counterpart; more complex architectures, like those with feature fusion, 
needs the double of time to be trained compared to a model with pixel 
fusion. Therefore, it can be seen how time-consuming the training of the 
model can be and why is so important to use a GPU to accelerate the 
calculations. 
 
In the next table the AP, mAP and FPS of the model will be shown. 
 

Model name  
Passenger 

car 
Large 
vehicle 

Pedestrian 
Ridable 
vehicle 

mAP FPS 

RGB  62,67 38,55 47,61 22,62 42,86 33 

Near-NIR  56,15 37,59 42,13 30,53 41,60 33 

Intermediate-NIR  61,37 39,92 45,78 31,18 44,56 36 

Distant-NIR  57,34 35,28 28,15 17,89 34,67 36 

RGB SSD512  64,41 47,56 55,62 33,01 50,15 14 
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RGB FoV  62,03 47,90 46,21 25,42 45,39 33 

Pixel Fusion 
RGB+M 

 51,82 16,30 30,11 8,20 26,61 28 

Pixel Fusion NIR  59,82 44,08 39,95 28,13 43,00 43 

Pixel Fusion 
RGB+NIR 

 63,53 42,76 45,74 25,39 44,35 24 

Sensor Fusion NIR  58,93 45,37 42,32 33,28 44,98 10 

Sensor Fusion 
RGB+NIR 

 61,50 51,22 42,88 29,03 46,16 17 

Halfway Fusion 
RGB+NIR 

 63,00 43,08 45,65 26,16 44,47 32 

Late Fusion 
RGB+NIR 

 49,88 17,89 39,50 12,12 29,85 24 

Table 22: AP, mAP and FPS summary 
Source: self-made 

 
The model which achieves the higher precision among all the classes is 
the one trained with the SSD512 architecture and using only the RGB 
spectrum as input. But this model has a low FPS rate of only 14 FPS, 
clearly below the desired threshold of 24 frames per second to habilitate 
the model to work on real time. Other models with high precision rates 
like the sensor fusion variations have also an FPS below the 24 FPS 
threshold. 
 
The passenger car class is with huge difference the class with the better 
detection precision, there are mainly two possible reasons: the first one is 
because is the most represented class of the dataset, so the model has 
been able to generalise and understand how a car looks like, and the 
second possibility is its aspect ratio is more homogenous. If data 
augmentation techniques to increase artificially the representation of the 
other classes were used, the precision of them would increase too. 
Therefore, instead of comparing the mAP value of all classes it will be 
used the AP value of the passenger car class to determine with which 
model the best results are obtained. 
 
Ignoring those models with an FPS below the real-time threshold, the 
detection algorithms with the higher precision are the pixel fusion method 
and the feature fusion with halfway fusion, both using the RGB and NIR 
spectrums, with an AP above the 63%. To calculate the FPS value of the 
pixel fusion model the pre-processing step, i.e. the merging of the 
channels, has been ignored, so its value is in reality lower than those 
shown in Table 22. The halfway fusion version, however, seems to be 
the most promising method, because with an FPS rate of 32, there is still 
some margin to apply precision-improving techniques, like increasing the 
number of bounding boxes and/or the image input shape, two methods 
known known to affect positively the precision rate, until the 24 FPS-
threshold is obtained. 
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In the next image can be seen how the halfway-fusion model detects 
correctly almost all objects of the image in a nightlight urban scene with 
many objects. 
 

 
Figure 32: Ground truths (green boxes) and detections (blue boxes) of the Halfway 

Fusion model 
Source: self-made with a ground image from [4] 
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6. Conclusions and future work 
 
 
During this thesis an image-only object detection algorithm has been 
designed. This algorithm could be used on real-time automated driving, 
no matter the weather conditions experienced, a nice surprise 
considering it has been trained with clear weather images only. Three 
fusion techniques have been applied to study the impact in the precision 
rate. 
 
The models designed following the sensor fusion approach achieve the 
best prediction results but are unable to work on real time conditions, as 
they need more time to process and fuse the predictions. Pixel fusion 
and feature fusion models (with halfway fusion) show a similar precision 
rate, but the last method detects faster. 
 
The precision rates remain below those obtained by the researchers but 
ignoring all the hyperparameters used by the researchers’ model, like the 
FPS rate or even the input image of the SSD algorithm, a comparison 
between both models is impossible. The impossibility of using the FIR 
channel had possibly had a negative impact on the final precisions as 
well, as only two of the three image spectrums were used (while the 
researchers’ approach used the sensor data of four different sensors). 
 
During this project it has been noticed the importance of a well-balanced 
class distribution of the dataset in order to allow the model to fully learn 
the features of the objects. In that case, the classes with a lower 
representation have usually obtained a lower precision rate than the 
overrepresented classes. 
 
As a logical next step for this project is the proposal of an artificial 
increment of the dataset to balance all classes, this task is expected to 
increase the precision rate. The setting of the hyperparameters and the 
model training were the most time-consuming task, as all models were 
trained from scratch, hence it has been impossible to train all the desired 
architectures. Therefore, another step could be to try other feature fusion 
architectures, for example placing the streams-concatenate layer in other 
positions and experimenting with the deletion of the NiN layer. 
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7. Glossary 
 
 
Anchor box: predefined bounding box used by the detection algorithm to 
detect objects in an image in specific locations 
Aspect ratio: width-high image rate 
AP: Average Precision 
Bounding box: box surrounding an object in an image 
FIR: Far Infra-Red 
FN: False Negative 
FoV: Field of view 
FP: False Positive 
FPS: Frame per Second 
GPU: Graphics Processing Unit 
gt: ground truth, input label to train a detection algorithm, it provides the 
object location and its class assignment 
LIDAR: Laser Imaging Detection and Ranging 
mAP: mean Average Precision 
NiN: Network in Network 
NIR: Near Infra-Red 
RGB: Red-Green-Blue 
SSD300: single shot detector with 300×300 image shape input 
SSD512: single shot detector with 512×512 image shape input 
TP: True Positive 
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9. Appendix 
 
 

9.1. Class distribution original RGB 
 

 
Figure 33: Object distribution in RGB images 

Source: self-made 
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9.2. Class distribution original NIR 
 

 
Figure 34: Object distribution in NIR images 

Source: self-made 
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9.3. Model SSD300 
 

 
Figure 35: SSD300 model representation 

Source: self-made 
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9.4. Model SSD512 
 

 
Figure 36: SSD512 model representation 

Source: self-made 
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9.5. Model SSD300 Halfway Fusion 
 

 
Figure 37: Two streams halfway fusion representation4 

Source: self-made 

 

 
Figure 38: Total number of parameters of the halfway fusion model 

Source: self-made 

 
 
4 From conv4_1 onwards follows the same structure as the SSD300 model and it will 
not be represented 
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9.6. Model SSD300 Late Fusion 
 

 
Figure 39: Two streams late fusion representation5 

Source: self-made 

 

 
Figure 40: Total number of parameters of the late fusion model 

Source: self-made 

 
 
5 Before pool3_f1 and pool3_f2 its representation is equivalent to the previously showed 
SSD300 Halfway Fusion model, from fc6 onwards is equivalent to the SSD300 model 
and it will not be represented 
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9.7. The three NIRs 
 

 

 
Figure 41: From top to bottom, gated0, gated1 and gated2 

Source: [4] 

 


