

SandBox for IoT Malware analysis (Diseker)

Máster Universitario en Ciberseguridad y Privacidad

2020/2021

Autor: Oussama El Azizi
Dirigido por: Carlos Hernández Gañán
Fecha de entrega: diciembre 2020

Fecha del Trabajo

Título del Trabajo: Sandbox For IoT Malware (Diseker)

Nombre del Autor: Oussama El Azizi

Nombre del supervisor: Carlos Hernández Gañán

Fecha de entrega (mm/aa): 12/2020

Titulación: Máster Universitario en Ciberseguridad y

Privacidad

Área del trabajo final de máster: Seguridad en la internet of things

Idioma del trabajo Inglés

Palabras clave: Sandbox, malware, malware analysis, IoT

Abstract

Resum.

 El marcat dels dispositius del internet de les coses ha estat en augment continu i

ràpid els últims anys, afegint nou dispositius connectats a les nostres cases,

hospitals i ens ajuda controlar i supervisar la nostra salut i propietat. Però

l’augment dels dispositius connectats amb recursos limitats no es sempre positiu,

perquè la majoria dels dispositius al mercat han segut implementat amb sistemes

criptogràfic febles degut als recursos limitat del dispositiu, dispositius sense

estandardització en el recursos o configuració i més gran nombre de empreses

venen els dispositius sense un servei de instal·lació o gestió segura.

 Tots els punts negatius anteriors han fet que la superfície de atac sigues molt

gran y accessible, que al seu torn ha augmentat l’amenaça. Aquest situació va

crear un gran interès en la implementació de programés maliciosos per als

dispositius de les coses, el dispositius infectats són utilitzats en atacs com DDoS,

enviar correus spam o s’utilitzen per minar moneda digital.

 En aquest projecte se divulgarà la implementació de una Sandbox pera a

programes maliciosos dedicats als dispositius IoT, aquest Sandbox

proporcionarà una gran verbositat als analistes i els ajudarà entendre el

comportament del programari maliciós amb l’objectiu de mitigar possibles atacs.

Aquest Sandbox, nom Diseker, va ser capaç de extreure suficients detalls de una

mostra dels programes maliciós i establir un patró de comportament comú.

Resumen.

 El mercado de dispositivos del internet de las cosas ha estado aumentado de

forma rápido en los últimos años, añadiendo nuevos dispositivos conectados a

nuestras casas, hospitales y nos ayudan también a control nuestro estado de

salud. Pero el aumento de estos dispositivos conectados con recursos limitados

no es siempre positivo, ya que la industria opta a la producción y acabó

generando dispositivos con sistemas criptográficos pobres debido a lo recursos

limitados, ha creado muchos dispositivos con una falta de estandarización y

también optó a la desplegar dispositivos sin un servicio de instalación o gestión

seguro.

 Todos los puntos negativos anteriores han hecho que la superficie de ataque a

esos dispositivos sea muy grande lo que aumentó la amenazas que provocó

también un gran auge de programas maliciosos dedicados dispositivos con

recursos limitados, los dispositivos infectados acaban siendo utilizados en

ataques como DDoS, enviar correo no deseado o minar criptomonedas.

 En este proyecto se divulgará la implementación de una Sandbox para programas

maliciosos dedicados a dispositivos IoT, esta Sandbox va a proporcionar una

gran verbosidad a los analistas y les ayudará a entender el comportamiento del

código malicioso. Esta Sandbox con nombre Diseker, fue capaz de dar suficiente

detalle de los códigos maliciosos en este proyecto y se pudo establecer un patrón

de comportamiento de la muestra utilizada, lo que demuestra el potencial de una

herramienta parecida.

Resumen

Abstract.

The market of IoT devices has been increasing rapidly in the last few years,

adding new devices and tools to homes, adding new tools that can be managed

remotely to hospitals and allowing us to monitor our health and security very

closely by using wearables and installing cameras in our houses, but the fast and

rapid increase of those limited resource devices made the industry start

developing new devices without standardization, using weak cryptography

systems that can be easily broken due to the limited resources or by deploying

devices without the proper services to install them in houses or hospitals (such

as cameras and monitorization devices).

The lack of standardization, weak security configurations and outdated systems

used by the IoT devices in the market, has made the IoT devices an easy target

to threat actors which in turn increased the presence of IoT malware on the

internet. Those threat actors take advantage of the presence of such security weak

devices and use them for attacks such DDoS, mining or spamming.

In this project I will be discussing a readapted sandbox for IoT devices that will

help security analysts tun malicious code in it and understand it behaviour which

will help them extract IOCs and create signatures to protect network and devices

from being used maliciously. This sandbox with the name Diseker, was

successful of analysing multiple malware instances as well as helped established

a pattern performed by most of the malware in the dataset.

Index

Index

1 INTRODUCTION .. 1
1.1 STATE OF THE ART .. 2
1.2 OBJECTIVES .. 3
1.3 METHODOLOGY .. 3
1.4 EXPECTED TASKS ... 4
1.5 TIME PLAN .. 4

2 PROJECT REQUIREMENTS .. 6

3 DESIGN ... 7
3.1 CHALLENGES TO CONSIDER ... 7

3.1.1 Diversity .. 7
3.1.2 Library linking ... 7

3.2 ARCHITECTURE .. 8
3.3 DATA STRUCTURES .. 12
3.4 DATABASE DESIGN ... 14
3.5 SANDBOX COMPONENTS... 15

3.5.1 Virtual machine ... 16
3.5.2 Virtual IoT devices .. 16
3.5.3 Database ... 17

4 IMPLEMENTATION ... 18
4.1 MAIN SCRIPT (DISEKER) .. 18
4.2 ORCHESTRATION .. 19
4.3 STATIC ANALYSER .. 20
4.4 DYNAMIC ANALYSER ... 21

4.4.1 Preparing the environment .. 21
4.4.2 Starting the emulation ... 30
4.4.3 Extracting the logs ... 31

4.5 PARSING ... 32
4.5.1 Syscall parser .. 32
4.5.2 Network parser .. 33

4.6 REPORT GENERATION ... 34
4.7 NETWORK CONFIGURATION ... 36

5 TESTING ... 38
5.1 TESTING METHODOLOGY ... 39
5.2 TESTING USER-SANDBOX INTERACTION ... 39
5.3 TESTING SANDBOX ANALYSIS .. 41

5.3.1 Analysis of a tested sample .. 43

6 CONCLUSIONS AND FUTURE WORK .. 48

7 REFERENCES.. 49

Index

Tables Index

TABLE 1 USER-SANDBOX INTERACTION TESTS .. 40
TABLE 2 SAMPLES TESTED IN THE SANDBOX .. 41
TABLE 3 RESULTS OF TESTING THE SAMPLES ... 42

Index

Figures Index

FIGURE 1 DATA FLOW OF THE ANALYSIS PROCESS .. 3
FIGURE 2 TIMELINE OF THE PROJECT .. 5
FIGURE 3 FLOW DIAGRAM OF THE SANDBOX .. 8
FIGURE 4 ARCHITECTURE AND INTERACTION OF THE COMPONENTS OF THE STATIC AND DYNAMIC ANALYSERS 9
FIGURE 5 CLASS DIAGRAM FOR THE STATIC AND DYNAMIC ANALYSERS ... 11
FIGURE 6 INTERACTIVE SESSION BEHAVIOUR DIAGRAM .. 19
FIGURE 7 BUILDROOT MENU .. 22
FIGURE 8 FILESYSTEM CONFIGURATION IN BUILDROOT ... 22
FIGURE 9 TOOLCHAIN CONFIGURATION ... 23
FIGURE 10 SYSTEM CONFIGURATION ... 23
FIGURE 11 BUILDROOT TARGET PACKAGES .. 24
FIGURE 12 DIRECTORY TREE OF THE LOGS.. 29
FIGURE 13. HTML TEMPLATE OF THE REPORT ... 35
FIGURE 14. SAMPLES DISTRIBUTION IN THE DATASET .. 39
FIGURE 15 SAMPLE DETAILS PROVIDED BY THE SANDBOX ... 43
FIGURE 16 ENTROPY GRAPH OF THE SAMPLE ... 44
FIGURE 17 STRINGS SAMPLES FROM THE STATIC ANALYSER .. 44
FIGURE 18 NAMES OF BROWSER AGENTS AND ADDRESSES FOUND BY THE STATIC ANALYSER .. 45
FIGURE 19 SAMPLE OF FUNCTION NAMES EXTRACTED BY THE STATIC ANALYSER ... 45
FIGURE 20 PROCESS TREE OF THE MALWARE ... 46
FIGURE 21 STATE OF PROCESS EXECUTING IN THE DEVICE BEFORE AND AFTER THE MALWARE WAS EXECUTED 46
FIGURE 22 SAMPLE OF SYSTEM CALLS OF PID 268... 47
FIGURE 23 SYSTEM CALLS OF PID 270 ... 47
FIGURE 24 SYSTEM CALLS OF PID 271 ... 47

file:///C:/Users/pc/OneDrive%20-%20Universitat%20Oberta%20de%20Catalunya/OussamaElAzizi_terceraEntrega.docx%23_Toc60184319
file:///C:/Users/pc/OneDrive%20-%20Universitat%20Oberta%20de%20Catalunya/OussamaElAzizi_terceraEntrega.docx%23_Toc60184321
file:///C:/Users/pc/OneDrive%20-%20Universitat%20Oberta%20de%20Catalunya/OussamaElAzizi_terceraEntrega.docx%23_Toc60184322
file:///C:/Users/pc/OneDrive%20-%20Universitat%20Oberta%20de%20Catalunya/OussamaElAzizi_terceraEntrega.docx%23_Toc60184323
file:///C:/Users/pc/OneDrive%20-%20Universitat%20Oberta%20de%20Catalunya/OussamaElAzizi_terceraEntrega.docx%23_Toc60184329

Index

Code Index

CODE 1 SYSTEM CALL EVENTS JSON SCHEMA ... 13
CODE 2 NETWORK EVENTS JSON SCHEMA .. 14
CODE 3 DATABASE SCHEMA .. 15
CODE 4 SCRIPT USED TO APPLY AUDIT RULES TO THE OPERATING SYSTEM.. 27
CODE 5 SCRIPT USED TO EXECUTE THE MALICIOUS FILE, START NETWORK MONITORING AND SEARCH AUDIT LOGS 28
CODE 6 RECURSIVE SCRIPT USED TO GET LOGS FROM CHILD PROCESSES... 29
CODE 7 SCRIPT USED TO EXTRACT LOGS FROM IOT FILESYSTEM .. 31

Introduction

1

1 Introduction

Nowadays there is huge increase in the use of IoT devices in out day to day life, from

smartphones, smartwatches, cameras to lightbulbs, fridges, and microwaves, and they can

be classified in two types:

• General-purpose IoT devices: devices that help perform are day to day tasks,

and everyone uses them for simple household functions. These types can go

from a small sensor to heating, ventilation to complex air conditioning systems.

• Special-purpose IoT devices: These devices are mostly used by professionals

to help them achieve a goal, they are checked regularly and used very often

compared to the previous ones, these devices range from medical devices

installed in hospitals, to smartwatches to monitor heart rates, etc [12].

 All those devices are connected to some network of some sort, all of those added

elements to the internet is not an issue, the issue lies on the fact that the increase use of those

devices pushed the industry to create new products without having security standards,

producing poorly developed devices, poorly tested devices or just the lack of resources in

the devices which led to the usage of lightweight cryptosystems or validation tools, to all of

the previous reasons we need to add misconfiguration and use of default configuration by

the user which generally lead to exploitation.

The lack of security standards or just the misconfiguration of those devices made their

attack surface big enough to capture the attention of multiple threat actors, which lead to the

exploitation and use of those devices in malicious ways, those malicious uses go from

spaying, data theft to big attacks controlled by botnets such as Mirai, Hide and seek (HNS)

or Zollard, those botnets then use the devices for [12]:

• DDoS attacks

• Email spam campaigns

• Identity theft

• Cryptocurrency mining

• Click-fraud

It is common to consider that all the infections to IoT devices are related to botnets, that was

proven to be wrong since researchers from the cyber security firm Pen Test Partners were

able to successfully perform a ransomware attack against an IoT device and simulated it in

DefCon hacking conference [19], so the range of possible infections is increasing with the

technology and use of IoT devices. This idea of new and improved threats created a huge

interest in developing new tools and environments to analyse IoT malware through

conventional and reinvented malware analysis techniques.

 The big growth in IoT devices use and creation, and the growth in exploitation and

use by threat actors motivated me to get involved in developing a new easy to use system

that can analyse automatically different malware for IoT devices as well as generate reports

that can help security analyst extract indices of compromise and use them to improve their

monitoring systems and harden their devices from possible attacks. The tool I am interested

in developing is a sandbox for IoT malware, the sandbox will be called Diseker.

Introduction

2

1.1 State of the art

IoT sandboxes are something newly created, and it is difficult to set up an environment

that can emulate every IoT device in the market due to the high number of variety of devices

and configuration, which resulted in that most of the sandboxes implemented are either

specific to one type of IoT device or sandboxes that do not give the users enough details

about the malware being executed. For some IoT devices is almost impossible to emulate

because no emulation system supports their hardware yet.

 Most of the sandboxes I found in my research were either emulators or automated

emulators or were sandboxes, but they did not deliver enough information to the user to have

a clear idea about the behaviour of the binary being analyser. Some of the most relevant

sandboxes are:

• Detux: is a sandbox developed to do traffic analysis of Linux malware and capture

IOC1s, it uses the QEMU hypervisor to emulate Linux (Debian) for various CPU

architectures.

• LiSa (Linux Sandbox): an automated Linux malware analysis tool that supports

various CPU architectures, it does perform static and dynamic analysis, also

analyses network traffic to capture IOCs.

• IoT Sandbox to analyse IoT malware Zollard: the developers claim that it can be

used to analyse and emulate any type of IoT malware, but it has been only used to

analyse Zollard malware, it gave a great insight to the botnet and helped capture

multiple IOCs.

• V-Sandbox: sandbox specialized on dynamic analysis for IoT Botnets, the main goal

of this sandbox is creating an environment where the malware can run all its

functionalities by providing a simulated C&C 2server and capture system calls and

system health.

And there are many more, each sandbox has its own advantages and drawbacks, in the

case of Detux is very useful to grab network IOCs from the network capture and then

complement that information from the simple static analysis performed, for LiSa it captures

most of the behaviour intended in the design of our sandbox but creating and deploying new

images and architectures can be a problem since it uses SystemTap to capture system calls

which can be a problematic if the probing needs to be changed, IoT sandbox for Zollard

seem to be intended only for one type of botnet and finally V-Sandbox which is the most

1 IOC or Indexes of compromise is a term used in cybersecurity to refer to all the information that can

identify a malicious behaviour in a device. The information could name of files, IP addresses accessed by a

process or certain modifications to files.

2 C&C, CnC, C2 are synonyms to command-and-control server, which are nodes in a botnet network in

charge of management and control of the different infected hosts.

Introduction

3

complete one in the list but it does emulate the behaviour of the C&C server which is

something that can be easily avoidable by the malware developers in the future.

1.2 Objectives

The objectives of this project can be extended as much as needed, but I have narrowed

them to the main points that follow the malware analysis methodology:

• Create a secure environment where malware can be run without jeopardizing

the network or other devices.

• The environments must perform dynamic analysis

o The environment must mimic an IoT device as much as possible.

o The environment must be flexible with enough tools to allow the

malware to exhibit all its functionalities.

o The environment must log network traffic and system calls.

• The environment must perform static analysis.

• The environment must be able correlate the data obtained and help classify the

malware.

1.3 Methodology

The methodology used is based on the common malware analysis steps by analysing

the malware statically and getting all the details from the file and then grabbing the behaviour

of the malware by executing it and capturing the malware interaction with the system. To

simplify the idea, we can assume that the process will be following the diagram below.

Figure 1 Data flow of the analysis process

The line of thought to achieve this project is simple learning about the different

malware that can attack an IoT device, use the most generic IoT oriented emulation of a

device, set up an automated environment with multiple logging tools to extract the needed

information and finally create a representation format for the data extracted.

Introduction

4

1.4 Expected tasks

The tasks expected in this project are flexible enough in case a change required and

sufficient for this project to be complete:

1. Research and state of the art: perform a previous research and determent de

tools available and all the previous implemented Sandboxes if any.

2. Search for malware samples.

3. Environment preparation

a. Decide which CPU architectures to emulate

b. Decide which emulator to use for the IoT devices

c. Decide which application should the emulated IoT device contain

d. Decide the logging tools

4. Implementation of the sandbox

5. Test of the malware samples

a. Results study and future work

6. Results and summary

7. Theses writing

8. Video presentation

9. Theses defence

1.5 Time plan

For all the tasks listed above, the task dependency and the time required to finish the

project is expected to be as follow:

Introduction

5

Figure 2 Timeline of the project

Project Requirements

6

2 Project Requirements

This project can be extended in different directions, the main two ways you could

orient this project are by data presentation and accessibility of the tool or by deeper analysis

of the malware. In this implementation I focused more on system that can give a more

comprehensive analysis of the malware rather than how to use such tool in the market. To

fulfil such goal and the ones enumerated and the previous section, I have set the following

requirements for the sandbox:

R1. The Sandbox should be able to emulate multiple architectures.

R2. Each architecture image should contain multiple audit and monitoring tools.

R3. The Sandbox should be as fast as possible.

R4. The sandbox emulation phase should be able to capture system calls made by the

malware executed in it.

R6. The Sandbox emulation phase must monitor network and capture the traffic, most

importantly the traffic of the protocols Telnet, ICMP, DNS, RDP, NTP, FTP, IRC and

HTTP.

R7. Attach signatures to the traffic captured from the Sandbox (either by IDS or IPS)

that was recognized as malicious.

R8. The Sandbox should be able to remove HTTPS security and transform it to HTTP

either by using a proxy or other tool.

R9. The user most be allowed to choose between using emulated internet or connect

the emulator to the real internet.

R10. The user should be able to choose between using a proxy to decode HTTPS traffic

or not.

R11. Network logs and system calls logs need to be aggregated and correlated to create

a complete vision on the behaviour of the malware.

R11. The sandbox should be able to conduct static analysis to the binaries, that being

extracting strings, detecting binaries type, getting the malware hash, etc.

R12. The sandbox should be able to generate a report of the malware analysed based

on the data extracted from it.

R13. All the analysed malware needs to be stored in a database so futures analyses of

the same files can be extracted directly from the database instead of repeating the analysis

unless the user wants to forcefully emulate the binary.

R14. The sandbox should be able to handle more than one simulation at a time.

Design

7

3 Design

3.1 Challenges to consider

The diversity of the target is one of the main issues for a project based on emulation,

since it needs to consider as much variety as possible. The challenges related to the diversity

for the emulator do not rely only on the different architectures that the IoT malware targets,

but also the type of operating system, the type of libraries being loaded, and other libraries

linked to it. So, to continue with the design of the sandbox first we need to list the challenges

to face.

3.1.1 Diversity

The diversity is not only in terms of architectures or hardware that needs to be consider

when emulating a IoT system (which is an important part in this project), but it is also

important to consider that all the IoT devices use Linux based systems that provides high

variety and the executables generated, in this project we will be mainly focusing on the ELF

type files, but event for those there are different options depending on the platform that uses

the file:

• The ELF header is different for different platforms such us, Android, Linux or

BSD.

• The executables can be dynamically linked or statically linked, which requires

the OS to have certain interpreters to execute the file.

• ELF file loaders can change from one implementation to another.

And the diversity of possibilities will only grow, since the IoT world is just starting to

evolve.

3.1.2 Library linking

Libraries can be linked to an executable using one of two techniques, static linking or

dynamic linking, the first allows the executable to be self-contained since all the binaries

required are compiled with the resulting binary. The second type of linking takes, which is

dynamic linking, it uses a shared library in the target system to perform certain operations

or system calls, the dynamic linking generates smaller executables than the statically linked

ones.

 The challenge in this situation is to prepare the system to consider the two options of

execution, as well as the types of libraries being used, in the Linux operating systems there

are three main libraries to consider uClibc, musl and Glibc. The other challenge is related to

the statically linked binaries, as in [21] they detailed that the result binary does not rely on a

higher liver API that performs the system call, such as libc, instead those binaries interact

directly with the system calls which may lead for them to crash in runtime if the ABI of the

kernel is different from the one expected.

Design

8

3.2 Architecture

The sandbox architecture consists of two main steps that will help increase the speed

of the results, the first step when analysing a file is checking if the file has been already

analysed before and retrieve the results from database, if not execute the sandbox and update

the database with the new values, the flow diagram of the process is as follow:

Figure 3 Flow diagram of the sandbox

The second step is performing the emulation of an IoT device and running the malware

inside the sandbox. The sandbox can be splitted in two main sections based on the type of

Design

9

analysis performed over a binary file, which are the static and dynamic analysis. For the

static analysis, the sandbox performs simple operations over the file and sends the data to

report generator, while the dynamic analysis is responsible of executing the binary, monitor

its execution and retrieve the logs, the simplified vision of the architecture looks like the

following:

As you can see, there are three main parts I/O, Control, Simulation, Internet, the first

part is simple is the input/output section where the user can input the commands desire,d the

malware path and the path to the filesystem that will be emulated (this parameter is optional)

and after processing the users request the sandbox returns a report. The second part is Control

that is responsible of managing the different emulations and making sure that the logs have

been extracted, the report generator has been called and as well as the static analyser, it also

makes sure that all the processes related to a job have finished and been compiled into a

Figure 4 Architecture and interaction of the components of the static and dynamic analysers

Design

10

report, Control is also responsible of giving results to the user. The third part is Simulation,

this part contains all the tools, scripts and configuration needed so the emulation works.

Finally, Internet ̧ this part makes sure that the sandbox has access to the internet either

emulated or real.

The structure of the code that is going to manage the execution and data flow is

represented by class diagram at Figure (5). The classes Orchestrator and ReportGenerator

belong to the components in the Control section in Figure (4), which are responsible of

managing the execution and obtaining the logs and establishing connection with the database

by using MongoConnection singleton; each ReportGenerator object has one or multiple

parser that are made to parser logs that contain system calls or network traffic. There is also

the Unit class which is the object that the Orchestrator class uses to manage the analysis

process by calling the abstract class Analyser, which by polymorphism can execute either

the static or dynamic analyser by using StaticAnalyser or DynamicAnalyser respectively.

Due to the nature of the dynamic analysis, the class DynamicAnalyser will oversee and

control the emulation process by communicating with the virtual environment, sending

scripts and malicious files, and retrieving raw logs. All the classes involved with Unit are in

the Simulation section in Figure (4).

ReportGenerator is an associative class that can only be instantiated when the relation

between Orchestrator and Unit is fulfilled, this way the traceability of the reports and logs

is insured. The other important thing is that the singleton patter on MongoConnection insures

that along the entire program there is only one connection established in the database, which

allows concurrency and avoid corrupting data.

Design

11

Figure 5 Class diagram for the static and dynamic analysers

Design

12

3.3 Data structures

All the data obtained from the emulation needs to be parsed and grouped in a way that

maintains the timeline of events. The logs in this case will be grouped in two types, the

system call (syscall) logs and network logs; the logs are split this way because the parsing

of each type of log is different.

 The system call logs are very important since they give detailed information about

what the malware was trying to execute in the system, to ensure that all events related to the

execution of the malware are being extracted we need to get all the logs and assign every

syscall event to the process ID (PID) that executed it and reference the parent process ID

(PPID) to maintain the traceability. It also important to have fast access to the individual

PIDs in the data structure in case we need to extract the syscalls of o single PID. All the

required information of a syscall events is stored in the class AuditEvent in Figure (5), to

have fast access to the different PID a hash table will be used that uses the process PID as

key and a tuple of PPID and a list of syscall events sorted by time. This data structure is not

readable enough and will not help analyse the logs if it is required to be done manually, it is

also difficult to store and recover or send to other process to visualize the data such us

frontends or similar tools, to achieve that a transformation to JSON format following the

scheme is used:

Design

13

{

 “PID”: {

 EXEV: “Command”

 SYSCALLS: [

 { time: “time”

 name: “name”

 ownership: [uid, suid, euid]

 arg: [a0, a1, a2, a3]

 ítems: […]},

 .

 .

 .

],

 children: [

 {

 “PID”: {

 EXEV: “Command”

 SYSCALLS: [

 { time: “time”

 name: “name”

 ownership: [uid, suid, euid]

 arg: [a0, a1, a2, a3]

 items: […]},

 .

 .

 .

],

 children:[…]

},

.

.

.]

}

Code 1 System call events Json schema

Design

14

The scheme helps establish the execution tree as well as contain all the syscalls per process.

 In the case of network logs, same hash table is used but using the name of protocol

as key and a list of NetworkEvents sorted by time, this way is possible retrieve the network

events for each protocol individually and fast. The NetworkEvent class encapsulates all the

relevant information we need from the network logs, such us time, source address,

destination address, source port, destination port, protocol and payload or data. Network logs

also have a Json format that can be used, the scheme of the Json to be used for the network

logs is the following:

{

 PROTOCOL: [

 {

 Time: time,

 Src: source_address,

 Dst: destination_address,

 Sport: source_port,

 Dport: destination_port,

 Prot: protocol,

 Data: payload

 },

 .

 .

 .

]

}

Code 2 Network events Json schema

3.4 Database design

The database used in the project is NoSql because we do not have intricate relations

between entities, and we need fast access and relation between the ones to use. NoSql

databases also provides great flexibility between relations which can help in developing new

ways of associating the different malware by using graphs or other structures.

The database will contain the hash or signature value of the file analysed, the file name,

a scan count that must be increased every time a forced scan is conducted on the file, it

contains tags that classifies the files analysed, the path to the raw or json format logs and

finally the path to the generated report.

Design

15

The scheme of the database is as follows:

DB name: analysed_malware

{

 “_id”: objectID,

 “filename”: String,

 “scan_count”: Int,

 “tags”:[

 {

 “tag_id”:objectID,

 “name”: String,

 “description”: Text

 }

],

 “report_path”: String,

 “logs_path”: String

}

Code 3 Database schema

3.5 Sandbox components

The sandbox requires multiple components and tools to work properly and fast; most

of tools to be used are monitoring systems that will allow investigate the behaviour of the

binary being executed and know what exactly it does.

The main components of the sandbox are:

• Virtual machine that will host all the project.

• Virtual IoT devices units that will run the malware.

• Database that will contain the repots and logs of the analysed malware.

• Scripts to automatize the execution.

• Custom operating system for the emulated IoT devices with all the tools

required to monitor the execution of the malware.

Design

16

3.5.1 Virtual machine

The virtual machine will work as a host of the sandbox; we are using a VM because

we need to change the network configuration, the firewall rules and other elements of the

host operating system so the sandbox can work properly. In the future the sandbox will be

hosted in a container that has all the configuration needed and the tools as well, but in the

meantime, we are using a virtual machine.

The VM host is a Linux based operating system, this will allow create the virtual

switch in Simulation section of Figure (4) by using TAP interfaces and a bridge, this

operating system will also help perform some pre-parsing such us splitting the network

PCAP files in multiple files and filtering by protocol, this way is easier for the parser to

extract the information. The VM will also host the proxy server that is going to be used to

transform HTTPS and FTPS traffic to HTTP and FTP traffic, as well as the simulated internet

network (SIneT). The advantage of this configuration is that the emulated devices will access

the proxy server and the SIneT using the bridge interface used by the virtual switch as in

Figure (4). The only disadvantage is that the parser needs to be aware of the previous traffic

of each IoT emulator so requests from other emulators working simultaneously can be

ignored.

Finally, the VM will host the database of the information about all previous analysed

malware, as well as the logs and reports.

3.5.2 Virtual IoT devices

Qemu will be used to emulate the hardware or parts of the machines that host the IoT

device, this emulator is easy to use, there is extensive documentation and tutorials on how

to use it to emulate multiple devices and it is possible to emulate all the devices this project

will cover.

The main architectures to be emulated through Qemu are:

• ARM

• aarch64

• I386

• PowerPc

For this emulation to work, we need a Linux based operating system (OS) compiled

for each architecture, the diversity of files format for each architecture will also be

considered by compiling the operating systems for the two my C libraries, glibc and uClibc.

The OS will contain multiple monitoring tools that will allow set up the environment for the

analysis. The main tools to consider in the section are the following:

• Linux Kernel Audit Subsystem or Auditd: is going to be the tool used to

monitor system calls, this subsystem provides a secure logging framework that

allows capturing and recording security relevant events, this is achieved by

components which generates audit records based on system activity, the

logging is performed by a userspace daemon which logs these records to a local

file or remote aggregation server. The system activity to monitor es defined by

rules that the user needs to design to get comprehensive information from the

system activities as well as reduce the overheat of the logging.

Design

17

• For network monitoring TCPdump will be used, it is a simple and powerful

tool that captures all the traffic being sent and received through a network

interface and it stores result in a PCAP file or prints it in the standard output,

in this case it will be saving the captured data into a PCAP file.

3.5.3 Database

The database is going to be used in this project is MongoDB, due to the extensive

community and documentation in the web, as well as examples that help develop the

application needed. One of the main advantages in the fact that this database uses JSON

syntax to create database, establish schemes and save or retrieve data, which is suitable when

interacting with the database because most of the programming languages support Json.

Other interesting features of this database is the fact that it can support saving and

loading big files without compromising their integrity as well as the possibility of deploying

the database to be used as a service easily.

Implementation

18

4 Implementation

The implementation of this project is extensive and required multiple tools to achieve

the objectives set previously, to simplify the details of the implementation I will explain it

in the following key points:

• Main Script (Diseker)

• Orchestration

• Static Analyser

• Dynamic Analyser

• Parsing

• Report generation

• Network configuration

• Database configuration

This project is implemented in Python3, due to the simplicity of implementation and

the tools available. It would be interesting to implement this project in other fast languages

in the future to see the impact of it on the execution speed.

4.1 Main Script (Diseker)

The main script is the one that the users will call to start the sandbox, this main script

will manage the two operation modes of the sandbox, single execution, or interactive mode.

The single execution is when the user introduces the command to execute the sandbox only

once for one file and wait for the sandbox to return a result, while the interactive mode allows

the user to send files to emulate in parallel if there is a free thread, this process is managed

by the Orchestrator.

The main script also parses the parameters that the sandbox accepts, which are:

• -i : parameter to activate the interactive mode.

• --in : file to be executed

• --out: folder where the report will be saved

• -f, --force: forces the emulation of a file even if that file was found in the

database.

• -c, --config: configuration file to be used.

• -a, --arch: CPU architecture that the binary runs on, at this moment only one

of these options can be chosen, aarch64, ppc64, x86_64, x86 or arm.

• -b, --bits: bits of the file, either 32 or 64.

• -t, --time: execution time of the emulation, the default value is 120 seconds

• -e : exit, only works in interactive mode.

Implementation

19

To run the interactive console, it is required to run the command with the options -i

and -c or –config which are the main components that will not change along the interactive

session.

4.2 Orchestration

The orchestration is supported by the class Orchestrator which manages the execution

of the different emulations and controls the results of each one. It also runs the backend of

the interactive console of the sandbox.

For a single run without the interactive session, the orchestrator grabs the command

from the main script and starts the sandbox process and only returns when there is a result

or an error, but for the interactive console it runs an event loop and waits for users input

using the options above. To achieve this behaviour the class Orchestrator implements the

interactive functionality using threads, where a main thread reads the commands introduced

by the user in the interactive session and creates threads for each command, no more than a

certain parallel emulations can be run at the same time, this limit is controlled by the Job

thread reference queue, all the commands created by the user are added to a queue that is

consumed by the Jobs executer thread as in Figure (6), once the threads that run a job finish

they store the results in a queue that is consumed by the interactive session that shows the

results to the user.

This behaviour insures the interactive session and the delivery of the results in a

consistent manner.

Figure 6 Interactive session behaviour diagram

Implementation

20

The orchestration also makes sure that the connection to the database has been

established correctly and that the configuration file is the same for each emulation attempt.

The configuration file contains all the information about the CPU architectures supported by

the sandbox, the information that holds is the OS path (kernel and filesystem), location of

configuration files to start a Qemu instance correctly and the commands to run per OS

supported. The configuration file also contains the path to the dynamic analyser logs and

report schema or report template. The file itself is in YAML format, due to the ease of

manipulation, is human readable and the speed of loading it, and example of configuration

files is:

ppcp:

 64:

 path: /path/to/ppc64_pseries/

 kernel: /path/to/ppc64_pseries/kernel

 image: /path/to/ppc64_pseries/filesystem.ext2

 cmd: qemu-system-ppc and the rest of the command

tmp: /path/to/logs

schema_path: /path/to/report/schema/

It is important to maintain the same configuration file for an entire emulation session

with the interactive mode because the information of that file will establish how the network

is going to be used and how many concurrent tasks can be run at the same time.

4.3 Static analyser

The static analyser performs in depth data extraction from the file to get all the

information needed to identify the signature of the file, indices of compromise related to it

or understand if the executable has encrypted data or not. In the sandbox the static analyser

performs the following operations on an executable:

• Extracts all information from the header, such as the type of file, the CPU

architecture and the bits used. It also determents the size of the file and hash or

signature of the file.

• Extracts all the sections of the file, the size of each section and where does the

section start in the file. This can help give an idea about how many hardcoded

data is stored.

• Extracts all function names in the file, only functions that has a non-generic or

autogenerated name, it also extracts the size and the start address of each

function. This information used with syscalls logs can help the analyst guess

with high certainty parts of the behaviour of the executable.

• Extracts all the strings from the file, the strings extracted are bigger than 10

characters, it also checks for special strings that contain URLs, Domains, IPv4

and IPv6, those strings can be used as indices of compromise (IOC) for future

detections, it will also help link the file with known threats.

Implementation

21

• The static analyser also measures the entropy of the file for each 1024 bytes of

data, this measure determents the randomness of information which helps put

in context all the information above, higher randomness implies high number

of mixed strings and functions with unconventional names, which means that

the section is either compressed, obfuscated or encrypted. For the entropy, the

analyser uses Shannon entropy, which is a continuous function based on the

prediction of future appearance of an element of a set in a subset. Shannon

entropy formula is:

 Equation 1 Shannon entropy

To perform the analyses above I used Radare2, which is a complete framework for

reverse-engineering and analysing binaries, it supports multiple CPU architectures,

including the ones used in this project. To use Radare2 in python r2pipe was required, which

is a library implemented by Radare2 that emulates the interactive terminal of Radare2 using

python functions to use commands in Radare2.

4.4 Dynamic analyser

The dynamic analyser is much more complex than the static one, because the process

requires preparing the environment, starting the emulated environment, and executing the

binary, and finally extracting the data to a known location. For that to work multiple key

components had to be built in advanced such us the OS images and automation scripts.

4.4.1 Preparing the environment

This step consists of detailed explanation of the steps taken to achieve the OS and how

the tools were set to log the execution of the binary inside the emulation.

4.4.1.1 OS Building

The operating systems used in this sandbox are Linux based, compiled for different

architectures but containing the same tools. To build these images I used Buildroot, which

is a tool that applies patches and simplifies the process of building Linux environment for

embedded systems, it also uses cross-compilation hence the different architectures

supported.

The images built are based upon Linux and they use Busybox, which is a common

software suit between IoT devices since it contains a compact version of all the common

tools in a Linux environment, it has been used in Android devices and still being used in

most out Routers in the market.

To configure an OS, I started with a predefined configuration of an architecture I

wanted to use, let’s take as an example the X86 architecture, first we use that architecture as

follow in the folder of Buildroot:

$ make qemu_x86_defconfig

Implementation

22

That will populate the configuration file of Buildroot with all the information needed

to build the image with default configuration. Before starting to edit anything, we need to

set the max size of the file system to be used, this file system size needs to be slightly bigger

than the size of the tools that contains, this way we can add more documents and files without

crashing the system, to set the size of the filesystem we first need to start the configuration

menu:

$ make menuconfig

Which will start the following menu:

Figure 7 Buildroot menu

In the option “Filesystem images” we put the following configuration, selection the

the “ext” filesystem with the exact size of 1024M bytes.

Figure 8 Filesystem configuration in Buildroot

Then we need to set the toolchain3 to use to compile all the tools and packages, for that

you need to select the “Toolchain” option from Figure (7), then change the tool chain type

to “External Toolchains”, this will download the latest tool chain for the architecture you

3 A suite of tools used in a serial manner, used for developing software application and operating systems

Implementation

23

want to compile for with all the tool needed, you can set from where you want to download

the toolchain from in the option “Toolchain Origin”, finally you need to verify what “Bootlin

toolchain variant” to use, this option gives the user the possibility to compile the system with

Glibc, uClibc or musl libraries, in this case we will compile the same architecture with Glibc

and uClibc.

Figure 9 Toolchain configuration

The next step is to set the system configuration with the host name, password, banners,

as well as the device tables to use to create the drivers in the Linux, the file system, the Init

system, passwords and so one. The configuration chosen is the following:

Figure 10 System Configuration

The next option to configure and generate the operating system is “Target Packages”

at Figure (7), this option allows the user to choose which tools, libraries and controllers to

compile so they can be used one the system and running. It is important to note that not all

the tools will be available for all the architectures, since some tools may not have been

written to be compatible with every CPU that exists, which means that the tools that are

going to be used are as broad as possible as well as compliant with the objectives of the

project.

Implementation

24

Buildroot classifies the tools in the following types:

Figure 11 Buildroot target packages

 As you can see at Figure (11), all the tools going to be installed in the target are going

to be based on Busybox, which the toolbox that most of the IoT devices use, the same toolbox

was chosen to be the Init system at Figure (10). The busybox of the system will contain the

following tools based on the name provided by Buildroot at Figure (11).

• Compressors and Decompressors: The added compressors and decompressors are

broadly used, and they could be required by some malware to extract downloaded

packages, this is just a speculation is not based on any other findings

o Lzip

o Zip

• Debugging, profiling and benchmark: The following tools are mainly used for deeper

analyses of the malware in case the information extracted is not enough. The first

one is a debugger, and the second ones are program tracers4 to extract the function

calls made by the process.

o gdb / gdbserver

o ltrace

o strace

4 A tracer is a debugging program that is used to trace function calls made by a process, the trace is

different for statically or dynamically linked binaries, which means that different tools are used, ltrace is used

to debug dynamically linked binaries and strace is used for the statically linked ones.

Implementation

25

• Development tools: this are installed just in case a malware have them a dependency

due the vast use of them.

o Flex

o Libtool

• Interpreter languages and scripting: multiple malwares use the following

scripting languages to modify the system, as well as these scripting languages are

commonly used in Linux based systems as well.

o Luajit

o Python

• Network applications: The network applications will allow the proper configuration

and manipulation of the stat of the network interfaces, the also contain logging tools

and other interesting ones that the malware may need to contact with a command-

and-control server or just to establish a secure connection.

o Bind

o Dhcpcd

o Dnsmasq

o Dropbear

o Enthtool

o Ifupdown scripts

o Iproute2

o Iptables

o Lftp

o Pppd

o Rpcbind

o Tcpdump

o Traceroute

o Wpa_supplicant

o Wpan-tools

• Shell and utilities: these tools will be used for troubleshooting and testing the

malware in different contexts.

o File

o Sudo

• System tools: system tools will contain the auditing tools and complementary tools

that will allow good management of services running in the background.

o Audit

o Daemon

• Text editors and viewers

o nano

Busybox toolbox contains other tools as well that are more common in Linux systems

and they are not listed above. Once all the options are set correctly, the operating system

needs to be built, so first need to save the configuration and get out of the configuration

menu and then type:

$make -j4

The command starts the building process of the operating system with 4 threads to increase

speed by using concurrency. In this phase Buildroot will download all the packages needed

and compile the tools and the kernel using the Toolchain that was set before.

Implementation

26

The process above will have to be performed for all the other CPU architectures the

same way. This will generate all the images and operating systems needed for the sandbox

to cover the diversity of target.

4.4.1.2 Setting up the logging tools

You may have noticed that one of the required tools in the OS is Audit, which is a tool

developed by Redhat that is used to monitor the system behaviour based on a set of rules,

those rules can be set to capture system calls, reading, writing and access to files and folders,

and network traffic from the kernel space. In this project the set of rules that are going to be

used are designed to detect the execution of different commands, the creation of chilled

processes, reading and writing files, installation and removal of kernel modules and attempts

of connection through network traffic. The set of rules is:

Processes rules

-a always,exit -F arch=b32 -S kill -S execve -S fork -S getpid -S clone

-S execveat -F key=precess-interaction

-a always,exit -F arch=b64 -S kill -S execve -S fork -S getpid -S clone

-S execveat -F key=precess-interaction

Pipe stuff

-a always,exit -F arch=b32 -S pipe -S tee -F key=pipe-creation

-a always,exit -F arch=b64 -S pipe -S tee -F key=pipe-creation

Files rules

-a always,exit -F arch=b32 -S open -S creat -S link -S unlink -S symlink

-S mknod -S openat -S linkat -S unlinkat -S mknodat -F key=file-creation

-a always,exit -F arch=b32 -S rename -S renameat -F key=file-move

-a always,exit -F arch=b32 -S dup -F key=file-pipe

-a always,exit -F arch=b64 -S open -S creat -S link -S unlink -S symlink

-S mknod -S openat -S linkat -S unlinkat -S mknodat -F key=file-creation

-a always,exit -F arch=b64 -S rename -S renameat -F key=file-move

-a always,exit -F arch=b64 -S dup -F key=file-pipe

Kernel modification rules

The following syscalls does not exist in b32 kexec_load and

kexec_file_load

-a always,exit -F arch=b32 -S init_module -S delete_module -S add_key -

S request_key -S finit_module -F key=kernel-module

-a always,exit -F arch=b64 -S init_module -S delete_module -S add_key -

S request_key -S kexec_load -S finit_module -S kexec_file_load -F

key=kernel-module

Implementation

27

#Events and signals

-a always,exit -F arch=b32 -S signalfd -S eventfd -F key=events-fd

-a always,exit -F arch=b64 -S signalfd -S eventfd -F key=events-fd

Networking and sockets

-a always,exit -F arch=b32 -S socket -F a0=2 -F key=connections

-a always,exit -F arch=b64 -S socket -F a0=2 -F key=connections

-a always,exit -F arch=b32 -S socket -F a0=10 -F key=connections

-a always,exit -F arch=b64 -S socket -F a0=10 -F key=connections

accept syscall is not in arch 32

-a always,exit -F arch=b32 -S setdomainname -S connect -F key=connections

-a always,exit -F arch=b64 -S accept -S setdomainname -S connect -F

key=connections

To apply these rules when in the environment once the machine is running, I use the

following script with name “apply_rule.sh”.

#!/bin/bash

input="test-rules.rules"

while IFS= read line

do

 if [[$line != "#"* && $line != ""]]

 then

 auditctl $line

 fi

done <"$input"

Code 4 Script used to apply Audit rules to the operating system

The script above reads the rules from a file and applies them one by one, this is better

than having the rules load through audit automatically because this way there is no need to

implement different rules for different architectures auditctl5 will ignore any rule that is not

applicable for the system running instead of crashing, which is what happens when loading

the rules by the audit daemon.

5 Tool provided by Auditd to control the behaviour, get the status and add or remove rules from the

audit system

Implementation

28

Once the rules are set, the script stater.sh needs to be executed which will run the

binary and start the logging of the network traffic, filter and extract the data from the audit

logs as well as creating the directory tree of the logs to be extracted. This script also saves

the state of the machine before executing and after executing the malicious code by saving

the processes executing in it, this script can extract all suspicious processes dispatched after

the execution of the malicious code and then get all the system calls performed by those

processes. A process is suspicious if its PID is bigger than starter.sh and is not a child of

neither starter.sh nor the malicious code.

#! /bin/sh

BASE=$(pwd)

NAME=$1

SYSCALL_PATH=logs/syscalls

NET_PATH=logs/network

mkdir -p $NET_PATH

mkdir -p $SYSCALL_PATH

PRE_EXEC=logs/pre.state

POST_EXEC=logs/post.state

ps -o ppid,pid,user,comm,vsz,stat | awk '$4 != 0 && $5 !~ "Z"' > $PRE_EXEC

cat $PRE_EXEC | grep "starter.sh" -A 100 | grep -v "ps" | grep -v "grep"

> logs/dummy.state

tcpdump -nn -s0 -w $NET_PATH/net_logs.pcap &

TCPDUMP_PID="$!"

./$NAME >> logs/out.txt 2>> logs/out.txt &

APP_PID="$!"

echo "The pid of the process is $APP_PID"

sleep 1m

echo "First Analysis"

ausearch -i -p "$APP_PID" -m SYSCALL > $SYSCALL_PATH/$APP_PID.logs

./follower.sh $APP_PID $BASE/$SYSCALL_PATH

kill -15 $TCPDUMP_PID

Get the IRC traffic

tcpdump -nn -vA -r $NET_PATH/net_logs.pcap "port 6667" -w

$NET_PATH/irc_net.pcap

#Get NTP traffic

tcpdump -nn -vA -r $NET_PATH/net_logs.pcap port 123 -w

$NET_PATH/ntp_net.pcap

#Get ICMP traffic

tcpdump -nn -r $NET_PATH/net_logs.pcap icmp -w $NET_PATH/icmp_net.pcap

#Get DNS traffic

tcpdump -nn -r $NET_PATH/net_logs.pcap "port 53" -w

$NET_PATH/dns_net.pcap

#Get Telnet traffic

tcpdump -nn -r $NET_PATH/net_logs.pcap "port 23" -w

$NET_PATH/telnet_net.pcap

#Get HTTP/s traffic

tcpdump -nn -r $NET_PATH/net_logs.pcap port 80 or port 443 -w

$NET_PATH/http_net.pcap

ps -o ppid,pid,user,comm,vsz,stat | awk '$4 != 0 && $5 !~ "Z"' >

$POST_EXEC

Code 5 Script used to execute the malicious file, start network monitoring and search audit logs

Implementation

29

The script starter.sh also splits the logged network file in “net_logs.pcap” into the

different protocols supported which will help afterwards with parsing. The script starter.sh

also runs another script called follower.sh which is the one that extracts the logs of the

children processes logged in the audit logs recursively and save the results in the logs

directory tree, the script in question is:

#!/bin/bash

if ["$1" == ""]

then

 exit 0

fi

for pid in $(ausearch --ppid $1 -m SYSCALL | grep SYSCALL | cut -d ' '

-f 14 | cut -d '=' -f 2 | sort | uniq -d | tr '\r\n' ' ')

do

 ./follower.sh $pid $2

 ausearch -i -p "$pid" -m SYSCALL < /var/log/audit/audit.log >

$2/"$pid"."$1".logs

done

Code 6 Recursive script used to get logs from child processes

The directory tree that holds the logs is basically the following:

Dir: logs

File: out.txt

File: pre.state

File: post.state

Dir: syscalls

Dir: network

File: net_logs.pcap

File:
icmp_net.pcap

File:
telnet_net.pcap

File: ntp_net.pcap

File: dns_net.cap

File: http_net.pcap

File: irc_net.pcap

File:
snort_alerts.txt

Figure 12 Directory tree of the logs

Implementation

30

The “logs” folder will contain the file with the output (standard and error output) of

the malware as well as the before and after states of the machine in files “pre.state” and

“post.state” respectively; the “syscalls” folder will contain audit log files with PID of the

processes audited as names and the sequence of PID.PPID1.PPID2.PPIDn.logs if it’s a

chilled process. While in “network” folder will always contain the same files.

The scripts above are copied into the filesystem of each OS compiled using e2tools

with execution permissions, that will allow to run them directly once the emulation starts,

the command used for that is:

$e2cp file_to_copy filesystem.ext2:/path/to/folder/file

One of the logging tools used as well is Snort NIDS/NIPS (Network intrusion detection

system/ Network intrusion prevention system), which will analyse the captured traffic and

detected any possible alerts triggering, this tool is going to be used mainly to detected

scanning activities and common attacks to known vulnerabilities in the network. As you may

have already known, Snort is an engine that analyses traffic and uses a set of rules that

describe a certain malicious or noncompliant behaviour, a rule contains a header and a body,

the rule header contains the information about the packets that defines its type, the source

and destination as well as what action to take once the body of the rule matches a packet or

behaviour. There are 3 default actions in Snort, alert (generate an alert and log the packet),

log (log the packet without alerting) and pass (ignore the packet).

This tool is used due to the availability of rule sets provided by the community and ease of

implementation of those. In this case we have used the community rules form Snort website

plus some minor rules to detect different types of stealthy network scanning such as Xmas,

Scan Null, Scan fin, etc and general port scan, sample of the rules for scanning are:

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN XMAS";

flow:stateless; flags:SRAFPU,12; reference:arachnids,144; classtype:attempted-recon;

sid:625; rev:7;)

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"SCAN nmap XMAS";

flow:stateless; flags:FPU,12; reference:arachnids,30; classtype:attempted-recon;

sid:1228; rev:7;)

alert tcp any any -> $HOME_NET any (msg: “TCP Port Scanning”;

detection_filter:trackby_src, count 400, seconds 60; sid:100006; rev:2;)

Once the network traffic has been extracted from the emulated environment, it will be

run through Snort to see if any alert triggers and then we save the alerts for posterior

treatment.

4.4.2 Starting the emulation

Once the type of architecture has been determined either by the user or the static

analyser and the system confirms that it can be emulated, then the dynamic analyser copies

the filesystem of the OS to be used into the destination folder of the logs, which has been

specified in the configuration file, then it copies the executable into the root folder of the

filesystem of the OS using e2tools, the copied folder will have the name tobe_executed, next

Implementation

31

it loads the audit rules by executing the script apply_rules.sh, and executes the starter.sh file

with the executable as a parameter and finally waits as much as the execution time allows in

seconds. Once the timeout is reached, the copied filesystem is removed after retrieving the

logs and parsing process starts.

The interaction between Python and Qemu is done through Pexpect, which is an

automation tool for interactive applications, it is used to introduce the password for the user

once the image is loaded and it is also used for executing all the commands and files listed

in the other sections inside the Qemu emulation.

4.4.3 Extracting the logs

Once the emulation has finished a script is executed to get all the logs from the

filesystem used by Qemu before removing it, the script is

#!/bin/bash

if [$# -lt 2]

then

 echo "Usage: extract.sh filesystem dest_folder"

 exit 1

fi

SYSCALL=logs/syscalls

NET=logs/network

mkdir -p $2/$SYSCALL

mkdir -p $2/$NET

syscall_logs=$(e2ls $1:/root/$SYSCALL)

for fl in $syscall_logs

do

 e2cp $1:/root/$SYSCALL/$fl $2/$SYSCALL

done

net_logs=$(e2ls $1:/root/$NET)

for fl in $net_logs

do

 e2cp $1:/root/$NET/$fl $2/$NET

done

e2cp $1:/root/logs/out.txt $2/logs/out.txt

e2cp $1:/root/logs/pre.state $2/logs/pre.state

e2cp $1:/root/logs/post.state $2/logs/post.state

exit 0

Code 7 Script used to extract logs from IoT filesystem

The script will create a copy of the logs directory with all the files in the logs folder of

the host machine for posterior analysis. The entire extraction process is controlled by the

dynamic analyser and the logs path is the result of the dynamic analysis.

Implementation

32

4.5 Parsing

The objective of the parsing is extracting all the useful fields from the logs and group

them so they can be read and interpreted easily. The parsing as in the class diagram is done

for the network logs and the system logs separately; only the dynamic analyser logs get

parsed because the static analyser logs are getting parsed from the moment the binary is

analysed.

4.5.1 Syscall parser

This parser uses the information from the log path at “logs/syscalls/” and extracts all

the system calls that have been logged by the audit rules.

Audit logs have different types of entries for each event logged by a rule, there is an

extensive list of types that are being stored, but I was only interested in the following.

• EXCVE: triggered to record arguments of the execve(2) system call which

helps determent any commands that the binary has executed in the host.

• SOCKADDR: triggered to record socket address, it also contains the type of

address is being used and what address and port that the process is trying to

connect to.

• SYSCALL: triggered to record a call to the kernel. This will help get all the

information we need about the system calls being logged.

• PATH: triggered to record full path and file name that are being accessed by a

process, which helps get information about written and read files.

I found that by using the above types is more than enough to describe the behaviour of the

executable.

 The parsing process starts with reading chunks of the log files, which look like the

following:

type=PROCTITLE msg=audit(06/11/20 02:12:01.046:3750717) : proctitle=/bin/bash

./starter.sh ./Tests/correlation_test.sh

type=EXECVE msg=audit(06/11/20 02:12:01.046:3750715) : argc=2 a0=/bin/bash

a1=././Tests/correlation_test.sh

type=PATH msg=audit(06/11/20 02:12:01.046:3750717) : item=0 name=/lib/x86_64-

linux-gnu/libtinfo.so.5 inode=392485 dev=08:01 mode=file,644 ouid=root ogid=root

rdev=00:00 nametype=NORMAL cap_fp=none cap_fi=none cap_fe=0 cap_fver=0

type=CWD msg=audit(06/11/20 02:12:01.046:3750717) : cwd=/home/user/TFM/Diseker

type=SYSCALL msg=audit(06/11/20 02:12:01.046:3750717) : arch=x86_64

syscall=openat success=yes exit=3 a0=0xffffff9c a1=0x7f4cb5529dd0

a2=O_RDONLY|O_CLOEXEC a3=0x0 items=1 ppid=14650 pid=14654 auid=unset uid=root

gid=root euid=root suid=root fsuid=root egid=root sgid=root fsgid=root tty=pts1

ses=unset comm=correlation_tes exe=/bin/bash key=file-creation

type=PROCTITLE msg=audit(06/11/20 02:12:01.046:3750718) : proctitle=/bin/bash

./starter.sh ./Tests/correlation_test.sh

type=PATH msg=audit(06/11/20 02:12:01.046:3750718) : item=0 name=/lib/x86_64-

linux-gnu/libdl.so.2 inode=393055 dev=08:01 mode=file,644 ouid=root ogid=root

rdev=00:00 nametype=NORMAL cap_fp=none cap_fi=none cap_fe=0 cap_fver=0

Implementation

33

type=CWD msg=audit(06/11/20 02:12:01.046:3750718) : cwd=/home/user/TFM/Diseker

type=SYSCALL msg=audit(06/11/20 02:12:01.046:3750718) : arch=x86_64

syscall=openat success=yes exit=3 a0=0xffffff9c a1=0x7f4cb550c4d0

a2=O_RDONLY|O_CLOEXEC a3=0x0 items=1 ppid=14650 pid=14654 auid=unset uid=root

gid=root euid=root suid=root fsuid=root egid=root sgid=root fsgid=root tty=pts1

ses=unset comm=correlation_tes exe=/bin/bash key=file-creation

Where each event is separated with the line “----” and each event contains all the record

types that have triggered for the event. The goal of the parser is getting the events one by

one by using the separator and get the information only from the interesting record type.

All the data extracted from the logs need to be parsed to a data structure aligned with the

Json format designed previously, to achieve that all the information from the different events

is compiled and stored in the AuditEvent class which later can be transformed easily to a

Json format. The fields that are going to be extracted from the events are “audit” that contains

the timestamp and then the following fields in correspondence to the record type:

• From EXCVE the number of arguments of the command and reconstruct the

command going through the arguments in order.

• From SOCKADDR the “saddr” field that contains the addresses.

• From SYSCALL the fields “syscall”, “success”, the four arguments (a0, a1, a2,

a3) and finally the fields “uid”, “gid” and “suid” that get stored in ownership

attribute in the class AuditEvent.

• From PATH only the field “name” is extracted.

Parsing also maintains the relation between parent and child process by using the

naming of the log files extracted. That is important because that information is used to create

the process execution tree form the PID of the first execution to the last child created.

4.5.2 Network parser

The parsing process of the network logs starts with the logs in the network folder, and

since the network logs can be quite big, I decided to parse the logs using multithreading,

where each thread creates a list of NetworkEvents objects with all the information of a certain

protocol which when finished it gets added to a hash table where the key is the protocol

name. Once all the PCAP files were extracted the Snort alerts get parsed as well extracting

the name of the alerts generated in the file snort_alerts.txt.

To dissect the packets in the PCAP files I used the python library PyPacker, it is simple

to use and supports most of the protocols that this project intended to analyse, it also allows

the implementation of new protocols if needed.

 The information extracted from the network packets is, the time stamp, the source

and destination address, the source and destination port and finally the payload. The payload

format depends on what protocol being parsed, for the different protocol the following

information will be parser:

Implementation

34

• DNS: request and responses, including the type of request made.

• ICMP: only captures the ICMP code.

• NTP: it counts the number of NTP requests done in the spam of the emulation

• TELNET: we store the raw telnet data, with all the commands and results.

• IRC: we extract all the IRC commands the users, their destination, etc.

• HTTP: we get the http header with all its information.

4.6 Report generation

The reports generated will be based on a HTML template (Figure 13), the template

was developed based on Bootstrap framework, which give users dynamic control over

different components of page using multiple JavaScripts scripts that work like a framework

for web developers.

Report generation starts when the raw data from the dynamic analyser is obtained and

the data from the static analyser as well due to the relation defined in the class diagram in

the previous sections. The report is divided in four main parts:

1. Summary: this section contains all the details about the file, such us the file

hashes, the type of the file, the CPU architecture and finally the size of the file

and name of it.

2. Static Analyser: this section holds all the analysis don in the static analyser

section by representing the entropy with a graph and listing all the strings,

sections and functions in tables that can be hided.

3. Dynamic Analyser: this section contains some simple statistics about the files

read and written, and the amount of network traffic; the process tree and all the

system calls captured by the rules and grouped by process child, if any, that

has triggered them.

4. Network behaviour: this section will contain all the protocols being analysed

and the most significant information from their payload. It will also contain

Snort alerts that have triggered if any.

To be able to modify the template and add all the information listed above I used BS4

or beautiful Soup library which is normally used to pull data out from HTML and XML files,

but in this project, it was used to extract key tags with certain ID that were used to add more

tags and information to the template file and generate the report. Another tool that has been

used is Matplotlib plots to generate the entropy graph and save it in the report destination

folder.

The report is saved in a destination folder that the user specifies or just the project

folder.

Implementation

35

Figure 13. HTML template of the report

Implementation

36

4.7 Network configuration

The network configuration is based on the creation of a bridge interface and a group

of tap interfaces in the host which will be used by the Qemu instances when running to access

the network. For this project I will create four TAP interfaces that will be used by the

different parallel Qemu instances and the bridge will work as a switch between the TAP

interfaces and the network interface called eth0.

The tools needed to create this bridge are:

• dhclient: dhcpd client that requests an IP from the server

• sysctl: tool used to configure kernel parameters at runtime

• tun module: a module that allows the creation of TUN/TAP interfaces

First make sure to have the tools available in the host:

$ sudo apt-get update

$ modprobe tun

$ sudo apt-get install dhclient

To create a bridge interface with name br0 you need to use the command:

$ sudo ip link add br0 type bridge

br0 must be the master of all interfaces in the Qemu network, which means that we need to

make br0 master of eth0.

$ sudo ip link set eth0 master br0

To create a TAP interface and adding it to the bridge, the following command needs to be

executed:

$ sudo tuntap add dev tap0 mode tap

$ sudo ip link set tap0 master br0

This can be done as much as TAP interfaces needed, the only thing to change is the name of

the TAP interface. Once all the TAP interfaces have created and added br0 as a master

interface, the interface br0 needs to be bought up and then assigned an IP address.

$ sudo link set dev br0 up #bringing up the interface

$ sudo dhclient br0 # requesting IP address from dhcp server

Implementation

37

After that, an IP address needs to be assigned to the TAP interfaces under certain network,

which also implies that the host needs to be able to forward packets and translate addresses

since the TAP network will be different than the network of the host:

$ ip addr add 10.10.1.2/24 dev tap0 # Add the address to the TAP device

$ sudo sysctl -w net.ipv4.ip_forward=1 # Allow forwarding

$ sudo iptables -t -A POSTROUTING -s 10.10.1.0/24 -j MASQUERADE # Allow packet

translation

Testing

38

5 Testing

The testing dataset to be used in the testing is from three main sources that combined

we have obtained 5747 samples of malware of different types and architectures. The sources

used to obtain the samples are:

• IoTPot honeypot dataset: the data obtained is a random sample from malware

capture by the honeypot in between 2016 and 2017. All those malwares were

obtained by the IoT honeypot set by the Research Center for Information and

Physical security in Yokohama National University in Japan working together

with Saarland University in Germany. The honeypot consists of a backend that

contains different emulation systems of simple IoT devices of different

architectures (MIPS, ARM, PPC, etc) and a vulnerable frontend that al the

emulated systems share; this allows the attackers to take advantage of the

vulnerable frontend and then the malware gets trapped and analysed by the

honeypot.

• MalwareBazaar: It is a project operated by abuse.ch with the purpose of

collecting and sharing malware samples.

• Stratosphere Lab dataset: Stratosphere Lab was created to fill the security need

of civil organizations and NGOs with low budget and cannot afford spending

money on sophisticated security systems, to achieve that the lab started the

project Stratosphere which uses the latest academic achievement in the fields

of machine learning and security to create an opensource machine learning

based IPS6 that can be used to detect malicious traffic. In the process of this

project, the lab has released multiple samples of malware (including IoT

malware) and information about APT attacks that helped researchers and the

security community.

The dataset contains malware for most of the architectures that this project

implements, as well as other architectures that will not be tested because they were not

contemplated. But it is interesting to check the distribution of malware in the dataset (Figure

14), most samples in the public databases are mainly for ARM, MIPS or X86 architectures,

this distribution is directly related to the architectures mostly used in the market, being X86

mostly for PCs, ARM for smart devices for user interaction like Android or for demanding

hardware like high-speed routers, and finally MIPS which is the CPU architecture that most

of home routers or small smart devices use. The other CPU architectures are also used for

IoT devices or mostly devices that require low energy consumption and limited functionality.

6 Intrusion Prevention System

Testing

39

Figure 14. Samples distribution in the dataset

5.1 Testing methodology

The sandbox must be robust enough to determine the state of analysis and give a proper

response to any unexpected situation. To evaluate that, I will be testing the user-sandbox

interaction and then sandbox analysis phase individually, the first one will help understand

if the sandbox is able to cover all possible input by the user and if it returns a report clear

enough to give the user a clear idea about the process of emulation and execution of the

malware. The second testing will consist of executing as many varieties of malware as

possible (considering the dataset described above) and attempt to understand what has been

achieved and what are the next steps to follow in future updates.

 The testing process will not consider code and implementation, but rather logic, since

it is considered that the process of verification of the good implementation was performed

while coding.

5.2 Testing user-sandbox interaction

This test is done to make sure that the sandbox can evaluate the correctness of user

input and the correctness of the report generated. The do the testing I have chosen a one

sample of malware by CPU architecture supported and tested the following points:

Test Expected Result Success

Unique execution with

32 bits, arch X86 and

not forced

The malware executed and the

results were shown in the report,

no interpreter session was

opened

The results the same as expected,

the malware did not generate much

data to show in the report

Yes

Unique execution with

32 bits, arch arm and

not forced

The malware executed, the

reports was generated, and the

results were saved in the DB and

The output is the same as expected, Yes

0

100

200

300

400

500

600

700

800

900

1000

Number of samples

Distribution of samples over CPU architecture

ARM M68K MIPS PPC Sh SPARC X86 ARC Others

Testing

40

Unique execution with

32 bits, arch X86 and

not forced

Read from the results from the

DB since the execution is not

forced

The sandbox used the hash of the

file to read from the DB and did not

execute the malware

Yes

Unique execution with

32 bits, arch X86 and

forced

The file was found in the DB, but

all the sandbox was run anyway

because the user forced the

emulation

The emulation was performed, even

though the malware was found int

the DB, because the user forced the

execution

Yes

Unique execution with

32 bits, arch X86 and

not forced with a

malware that does not

generate dynamic logs

The Sandbox should generate a

report with an error message

explaining to the user the reason

why no details of the dynamic

analyser are being shown

The result report does not detail the

reason why the sandbox did not

generate logs for the dynamic

analyser, it only displays an error

message

Partial

Unique execution with

32 bits, arch MIPS

The sandbox should show an

error with the architecture

supported for this

implementation.

The sandbox shows an error and a

usage message with the options of

architecture that this

implementation supports

Yes

Unique execution with

64 bits, X86 and not

forced

The sandbox executed the

malware and returns results

The sandbox executed and returned

results

Yes

Unique execution with

16 bits, X86 and not

forced

The sandbox shows and error

message with the possible

options for architecture Bits that

can be used

The sandbox shows an error, a usage

message and the possible bits that

can be emulated.

Yes

Start an interactive

session, with

configuration file

The session starts and waits for

the user to introduce commands

The session starts and waits for the

user to introduce commands

Yes

Start an interactive

session without a

configuration file

The session should not start, and

an error message must be shown

to the user to ask him about the

configuration file

The session does not start, and an

error message is shown to the user

asking for the configuration file

Yes

Start an interactive

session and submit a

command for 32 bits,

X86 not forced for 200

seconds of execution

time

The session loads the command

executes it when a thread is

freed, it goes through the same

process as in the unique

execution and returns the results

when found.

The session loads the command

executes it when a thread is freed, it

goes through the same process as in

the unique execution and returns the

results when found.

Yes

Introducing a wrong

command in an

interactive session

The session shows an error with

a help message. Does not

execute or run any malware

The session shows an error with a

help message. Does not execute or

run any malware

Yes

Closing an interactive

session

Before closing it will print all the

analysis performed in the

session, waits for running jobs to

finish and then closes

It shows all the previous analysis

done in that session after waiting for

the running jobs to finish and then it

closes.

Yes

Running an interactive

session and introducing

too many commands

The system will store all the

commands in the waiting queue

informing the user about it. The

commands get executed every

time thread is freed

The commands get added to the

waiting queue and they get

consumed when a thread is freed.

Partial

Run a command with

files analysis was stored

in DB without forcing

The system should return the

result without emulation.

The system returns the results

without emulation

Yes

Table 1 user-sandbox interaction tests

Testing

41

5.3 Testing sandbox analysis

To perform this test, we have chosen a random limited number of malwares for the

different architectures that can be emulated. The number of samples will be low since I need

to verify that the sandbox was able to extract all the behaviour successfully. For a test to be

successful all the analysers and the traffic must capture the behaviour of the malware, the

test is partial if only one analyser return results and finally the test will be considered failure

in case of a lack of a tool or the inability of analysing the malware.

The samples to be used in the testing process are:

MD5 CPU arch Linkage C Library

1 dda3c47921bba43b4f33bf0ab27faa13 X86–32bits Dynamic uClibc

2 3ee5f6b919203c48f4512ae26a7dfc3f ARM–

32bits le

Dynamic uClibc

3 76b40918b492402a696f9c4ac760df31 ARM-

32bits le

Dynamic uClibc

4 b2b0c9f6cd2a5c9c7d367667739a2744 ARM-

32bits le

Dynamic uClibc

5 3951bc82b1e4487a85eaa3986b829c80 X86–32bits Dynamic Glibc

6 11166712561c5b463c08f49d5213c1e0 X86–32bits Static Glibc

7 62379511e6848cbd920c40dc4495b0ce X86-32bits Dynamic Glibc

8 868788ed5f594fb1de6dac82ae70a700 ARM-

32bits le

Static Glibc

9 b0efff0dafe3b234c177b28012c1161d ARM-

32bits le

Static Glibc

10 88a9ed5408f20300ea79dd9c9b219379 ARM-

32bits le

Static Glibc

11 7d07e6669ae4f63d08a34a2b3edcd72f X86-64bits Static Glibc

Table 2 Samples tested in the sandbox

All the files in the table above gave a result in the static analyser, which means that

the analyser was able to extract the entropy, extract strings, sections and functions from the

binary file. In the following table there is a small description of the behaviour captured by

the dynamic analyser for each sample of Table (2).

MD5 Success Observation

1 dda3c47921bba43b4f33bf0ab27faa13 Yes The execution went correctly, but the malware

seems to have not been successful with

establishing connection with the CnC. No

network traffic was captured.

2 3ee5f6b919203c48f4512ae26a7dfc3f Partial It did not execute the dynamic analyser because a

library was not found in the image.

Testing

42

3 76b40918b492402a696f9c4ac760df31 Yes The malware executed correctly and was able to

spawn a child that tried to connect to the CnC at

173.212.226.176, but it was not able to establish

connection with it.

4 b2b0c9f6cd2a5c9c7d367667739a2744 Yes The malware executed correctly and was able to

spawn a child that tried to connect to the CnC at

193.169.135.179, but it was not able to establish

connection with it.

5 3951bc82b1e4487a85eaa3986b829c80 Yes The execution went correctly, but the malware

seems to have not been successful with

establishing connection with the CnC. No

network traffic was captured.

6 11166712561c5b463c08f49d5213c1e0 Partial The file contained a very changing levels of entry

and the extracted stings were not always readable.

The sections of the file suggested that the

malware was written with GoLang which was

confirmed with the output from the malware.

From the output I found that the malware created

an HTTP server with a random name for a node

and stated to do discovery. It is important to note

that the IRC file of the traffic was not found

within the logs which means that the malware

stopped TCPDUMP from capturing the traffic.

7 62379511e6848cbd920c40dc4495b0ce Yes The execution went correctly, but the malware

seems to have not been successful with

establishing connection with the CnC

173.212.226.176:1664. No network traffic was

captured.

8 868788ed5f594fb1de6dac82ae70a700 Partial The static analyser was able to read all the strings

from the file and extract the functions names, but

the dynamic analyser was not able to capture the

behaviour of the malware. Further manual

analysis over the file showed that it does not

allows its analysis by using ltrace and strace

either.

9 b0efff0dafe3b234c177b28012c1161d Partial The malware executed and halted, without

executing. It is possible that the malware is

sleeping so it can be stealthy and avoid being run

in sandboxes, this hypothesis could be true since

the function “sleep” is present in the “sym”

section.

10 88a9ed5408f20300ea79dd9c9b219379 Yes The execution went correctly, but the malware

seems to have not been successful with

establishing connection with the CnC

89.34.97.132:48. No network traffic was

captured.

11 7d07e6669ae4f63d08a34a2b3edcd72f Yes The execution went correctly, but the malware

seems to have not been successful with

establishing connection with the CnC

50.115.165.132:13174. No network traffic was

captured.

Table 3 Results of testing the samples

Testing

43

The dynamic analyser in the other hand was not always successful. When testing the

sandbox (with the samples above and other not listed) I found that there are other binaries

that are able to spawn a malicious code in the memory from which Auditd was unable to

capture the system calls (similar behaviour to the one in sample #8 at Table 13), this issue

was mostly found when testing statically linked libraries. This gives the impression that the

malware can modify the audit configuration and avoid being analysed, because similar

statically linked binaries had their system calls correctly captured, another sample that was

successful with avoidance technique it was the sample #6, this sample did not allow

TCPDUMP from extracting IRC traffic, which may suggest that the malware itself uses that

protocol to get in contact with other malicious entities in internet which could be either a

Botnet or just an individual CnC.

All the previous analysis was done to ARM an X86 (32 bits and 64 bits), the other

CPU architectures that this sandbox was meant to support presented some issues, for PPC

(PowerPC) the auditing tool auditd crashed with segmentation fault for every combination

of Linux Kernel, toolchain or other configuration which means that I was not able to

dynamically analyse any of the malware executed in that instance, for the other hand for

Aarch64 architecture I was not able to find any malware sample that I could use to test it

with. But in general, the sandbox was able to disclose big part of the malware behaviour as

well as provide OSINT to detected future possible infections.

5.3.1 Analysis of a tested sample

This section consists of a step-by-step process of interpretation of the analysis results

of the sample 1 from Table (2) with MD5 hash dda3c47921bba43b4f33bf0ab27faa13. The

sample has the following details:

Figure 15 Sample details provided by the sandbox

All the details of the binary were exported successfully as in Figure (15), the other important

information that has been obtained as well is the entropy of the file, which seems to be low,

with section with lower amount uncertainty than others, this information can help make

sense of the strings extracted from the binary, in this case there is a dip of entropy in around

Testing

44

“.eh_fram, init_array and fini_array” sections, which means that that area is filled with the

same value.

Figure 16 Entropy graph of the sample

The static analyser was also able to extract all the string from the binary successfully

for this sample, the list of strings is big since I opted on extracting all the possible strings

from the binary. For this sample, multiple strings

Figure 17 Strings samples from the static analyser

Testing

45

The strings also contained information about the remote addresses that the device will

attempt to connect to or the browser agents that will be using:

Figure 18 Names of browser agents and addresses found by the static analyser

And more text related information, which is a very good OSINT source. The static analyser

was also able to extract some function names implemented in the file, which can give a

general idea about the possible interaction that the malware has with the device and the

internet. For this sample, the malware seems to be able to use HTTP, can send data to a

command and control sere as well as get the public IP of the device.

Figure 19 Sample of function names extracted by the static analyser

Testing

46

The dynamic analysis performed by the sandbox was successful for this malware, it

was able to extract all the behaviour possible, which is simple the installation of the malware

in the memory of the device and then attempt to contact with command-and-control server.

The malware generated two processes and one printed “BUILD GetWrecked” to the standard

output as in Figure (20).

Figure 20 Process tree of the malware

In Figure (20) we also observe that the malware executed with PID 268, generated a child

process with PID 270 and both seem to have finished, but the sandbox was able to capture

one suspicious process that has spawned after the malware has been executed on PID 271,

the suspicious PID can be seen added to the processes in execution after running the malware

in Figure (21).

Figure 21 State of process executing in the device before and after the malware was executed

Auditd was able to capture the system calls in the rule set that the processes detected

performed, which for the process with PID 268, the interesting system calls were getting its

PID, reading the files “/etc/rc.d/rc.local” and “ /etc/rc.conf”, establishing a connection with

the IP 8.8.8.8 over port 443, reading the file “/proc/net/route” then cloning itself.

Testing

47

Figure 22 Sample of system calls of PID 268

The last clone dispatched the child process at PID 270 which created another process with

PID 270.

Figure 23 System calls of PID 270

The final child, which is the suspicious process that was detected by the sandbox, was

attempting to establish a connection with the address “139.169.135.179” over port 1665 and

no attempt was successful.

Figure 24 System calls of PID 271

Conclusions and future work

48

6 Conclusions and future work

The field of malware analysis is never ending, due to the emerging new technologies

with wide attack surface or the sophisticated techniques that threat actors use to infect and

take advantage of victims. In this project I have discussed a readapted sandbox for IoT

devices that gives more verbosity to the analysts and supports multiple CPU architectures.

This sandbox (Diseker) can capture system calls, files accessed or modified as well as

attempts to establish traffic connections with CnC servers. When testing the sandbox, I found

that it was not infallible and there are some considerations that could be taken to improve its

efficiency, such us adding a tracing tool like ltrace or strace to the analysis pipeline, add a

network traffic analysis system based on deep packed analysis to detect the type of traffic

being sent and received without counting on TCP/UDP ports, which could be misleading,

add a flow based analyser to detect the involvement in DDoS attacks or similar attacks, and

finally support way more platforms and CPU architectures. It may be noted that this

implementation of the sandbox did not comply with all the requirements established for it,

to be specific these three R8, R9, R10 and some protocols that I was not able to implement

the parser for, either ways Diseker is a working tool that can be used to analyse most of the

IoT malware in the market at this moment.

Even though the sandbox can be improved a lot, it did help determine a common

pattern used by most of the malware tested in it, the common pattern detected can be

simplified in 4 steps which are:

1. Reconnaissance: the malware tests the network by connecting to a known

service, for example requesting connection to 8.8.8.8:443 or 8.8.8.8:53, to

verify the internet connect; the process of reconnaissance also includes the

attempt to opening system files such as “/etc/rc.conf | /etc/rc.d/rc.local” to gain

persistence or read system information from locations like “/proc/net/route”.

2. Despatch: after the malware has established the capabilities of the system it

either continues executing with the same first process or dispatches a child

process with different PPID to be running fileless in the system memory.

3. CnC beaconing: once the malware has well established its presence in the

device it starts beaconing traffic towards the CnC server confirming its

infection to a device.

4. Command-and-control: at this point the malware has established first

connection with the CnC and now it is performing the tasks asked to do.

The previous steps were inferred from the information provided by the static analyser

and the dynamic analyser as well, as well as the out put of the malware and the processes

executing in the system after running the malware.

The process of developing this sandbox was thrilling and this is only the first version,

it will be interesting to implement all the possible features listed above, as well as compare

the effectiveness of it with other implementations, as well as compare different monitoring

tools provided for each CPU architecture. I did not know what to expect when I have started

the project, but I do know now that the amount of work and research needed for such tool is

way more than what I was expecting, the research is extensive either due to the diversity in

the IoT world or the diversity in the malware to analyse, in either cases it is must to consider

all possibilities.

References

49

7 References

1. Sikorski, Michael and Andrew Honig. Practical Malware Analysis. San

Francisco : No Starch Press, Inc, 2012. 1-59327-290-1.

2. V.N. Parasram, Shiva. Digital Forensics with Kali Linux (Second Edition).

BIRMINGHAM : Packt Publishing Ltd, 2020. 978-1-83864-080-4.

3. G. Conrads, Jessica. DDoS Attack Fingerprint Extraction Tool: Making a Flow-

based Approach as Precise as a Packet-based. Enschede, The Netherlands : University of

Twente, 2019.

4. IoTCandyJar: Towards an Intelligent-Interaction Honeypot for IoT Devices. Luo,

Tongbo, et al. Palo Alto : Palo Alto Networks Inc., 2017.

5. IoTPOT: A Novel Honeypot for REvealing current IoT Threats. Yin Minn, Pa Pa,

et al. 3, s.l. : Journal of Information Processing, 2016, Vol. 24.

6. detuxsanbox. Detux: The Multiplatform Linux Sandbox. 2018.

7. Uhrıcek, Daniel. LiSa – Multiplatform Linux Sandbox for AnalyzingIoT Malware.

[Online] 2019. http://excel.fit.vutbr.cz/submissions/2019/058/58.pdf.

8. V-Sandbox for Dynamic Analysis IoT Botnet. HAI-VIET, LE and Guoc-Dung,

Ngo. s.l. : IEEE Access, 2020, Vol. 8. 2169-3536.

9. Buildroot. Buildroot. The Buildroot user manual. [Online]

https://buildroot.org/downloads/manual/manual.html.

10. Qemu. Qemu. QEMU System Emulation User's Guide. [Online] QEMU.

https://www.qemu.org/docs/master/system/index.html.

11. Hjelmvik, Erik. NETRESEC. Installing a Fake Internet with INetSim and

PolarProxy. [Online] 09 December 2019.

https://www.netresec.com/?page=Blog&year=2019.

12. Kambourakis, Georgios, et al. BOTNES: Architectures,Countermeasures, and

Challenges. New York : CRC Press, 2020. 978-0-367-19154-2.

13. Winward, Ron. IoT Attack Handbook: A Field Guide To Understanding IoT

Attacks from the Mirai Botnet to its Modern Variants. s.l. : Radware, 2018.

14. IoT sandbox: to analysis IoT malware Zollard. Chang, Kai-Chi , Tso, Raylin and

Tsai, Min-Chun. 4, Cambridge, United Kingdom : Association for Computing

MachineryNew YorkNYUnited States, March 2017. 978-1-4503-4774-7.

15. Towards Automated Dynamic Analysis for Linux-based Embedded Firmware.

Daming, D. Chen, et al. San Diego : s.n., 2017, NDSS Symposium 2017. 1-891562-41-X.

16. OpenWRT. OpenWRT. OpenWRT in QEMU. [Online] 09 11 2020.

https://openwrt.org/docs/guide-user/virtualization/qemu.

17. Python Software Foundation. The Python Standard Library. [Online] 05

December 2020. https://docs.python.org/3/library/index.html.

18. Stahn, Michael. GitLab. Pypacker. [Online] 2018.

https://gitlab.com/mike01/pypacker.

19. PenTestParteners. PenTestPartners: Security Consulting and Testing Services.

Thermostat Ransomware: a lesson in IoT security. [Online]

References

50

https://www.pentestpartners.com/security-blog/thermostat-ransomware-a-lesson-in-iot-

security/.

20. Dickson, Ben. IoT Security Foundation. The IoT ransomware threat is more

serious than you think. [Online] https://www.iotsecurityfoundation.org/the-iot-ransomware-

threat-is-more-serious-than-you-think/.

21. Understanding Linux Malware. Cozzi, Emanuele, et al. San Francisco : 2018

IEEE Symposium on Security and Privacy (SP), 2018.

