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Abstract

At the moment, urban mobility research and governmental initiatives are
mostly focused on motor-related issues, e.g. the problems of congestion and
pollution. And yet, we can not disregard the most vulnerable elements in
the urban landscape: pedestrians, exposed to higher risks than other road
users. Indeed, safe, accessible, and sustainable transport systems in cities are
a core target of the UN’s 2030 Agenda. Thus, there is an opportunity to ap-
ply advanced computational tools to the problem of traffic safety, in regards
especially to pedestrians, who have been often overlooked in the past. This
paper combines public data sources, large-scale street imagery and computer
vision techniques to approach pedestrian and vehicle safety with an auto-
mated, relatively simple, and universally-applicable data-processing scheme.
The steps involved in this pipeline include the adaptation and training of a
Residual Convolutional Neural Network to determine a hazard index for each
given urban scene, as well as an interpretability analysis based on image seg-
mentation and class activation mapping on those same images. Combined,
the outcome of this computational approach is a fine-grained map of haz-
ard levels across a city, and an heuristic to identify interventions that might
simultaneously improve pedestrian and vehicle safety. The proposed frame-
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work should be taken as a complement to the work of urban planners and
public authorities.

Keywords: Deep Learning, Google Street View, Mapillary, Pedestrian,
Traffic safety

1. Introduction1

In the last century, the accelerated growth of urban areas has given rise2

to challenges at a variety of levels. Among these, mobility stands out. The3

ability to efficiently move people and goods is critical to a city’s social and4

economic success [1–3]. It is unsurprising, then, the enormous amount of eco-5

nomic and engineering effort that urban planners have devoted to enhance6

the efficiency of road networks, bus lines, and metro systems [4]. Unlike7

transportation modes that operate in exclusive spaces, such as metro lines,8

the uncontrolled rise in urban automotive mobility has gone hand in hand9

with the degradation of other modes of transportation. Of all these alter-10

native modes, walking has suffered the most, due in large part to the fact11

that the amount of the streetscape allotted to vehicles invades and interferes12

with the pedestrian space. Nevertheless, cities exhibit a growing tendency to13

stop and reverse this process by fostering more active, citizen-friendly trans-14

portation modes –foot, bike and personal mobility vehicles, which compete15

for this public space [5].16

One logical consequence of this paradigm shift, is the increased level of17

interaction between pedestrians and motor vehicles, largely due to the over-18

lapping use of common (or adjacent) spaces such as roads, sidewalks, and19

zebra-crossings. Such increase gives rise to an important, negative side-effect:20

a growth in pedestrian injuries and fatalities. Data from the National High-21

way Traffic Safety Administration (NHTSA) of the United States indicate22

that the number of pedestrian fatalities per year is rising in the U.S. [6].23

After a steady decline from the mid-1990’s to a low in 2009, there has been24

a clear and consistent reversal until 2017 (the last year of available data),25

when pedestrian fatalities surpassed a previous 23-year high in 1995.26

Traditionally, pedestrian safety research has focused on the impact of27

structural factors (e.g. road lanes [7], traffic network structure [8, 9], ex-28

istence of direct line-of-sight between objects [10, 11], etc.). In addition,29

socio-behavioral factors may be concomitant, e.g. the change of individual30

behavior related to the use of new, distraction-causing technologies [12], in-31
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side and outside of vehicles, which is not likely to diminish in the future.32

Also, demographic variables (socio-economic status, race, gender) may play33

a role as well [13]. Nonetheless, crashes that involve motor vehicles and34

pedestrians are understudied, and, at the micro level, much less so outside35

intersections [14].36

Figure 1: Accident distribution in Barcelona. Relative concentration of accidents by
type (vehicle-to-pedestrian, vehicle-to-vehicle).

An enlightening example, built upon real accident data, is shown in Fig-37

ure 1. Quite clear even to the naked eye, accidents involving vehicles may38

happen throughout a city. However, when a distinction is introduced (vehicle-39

to-vehicle vs. vehicle-to-pedestrian), the spatial patterns where these acci-40

dents occur are mostly non-overlapping, suggesting that the configuration of41

the public space –the scene where the accident happens– matters, see as well42

Figure S1 in the Supplementary Information (SI). All in all, the strategies43
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for the safe coexistence of pedestrians and vehicles demand a separate and44

careful examination.45

The combination of increasingly available street-level imagery sources and46

city open data portals, together with advances in the field of computer vision47

and larger training datasets [15, 16], has opened up promising new oppor-48

tunities for facing challenges in urban science. Examples include the quan-49

tification of physical change and pattern identification in cities [17–19], road50

safety assessment [20], the prediction of human-perceived features of street51

scenes [21, 22], the automated estimation of demographic variables across52

the United States [23] and Great Britain [24], or the beautification of urban53

images through the generation of prototypes [25]. Turning to transportation54

research, however, computer vision has focused mostly on traffic control and55

surveillance [26], and automatic detection and collision prevention [27, 28] for56

autonomous vehicles. Outside scene analysis, the Deep Learning paradigm57

has been exploited mostly on motor traffic [29–33] , so far leaving aside its58

potential to tackle pedestrian safety.59

Here, we address the complexities of vehicle-to-pedestrian interaction60

combining the structural (scene elements) and perceptual (scene composi-61

tion) aspects of the problem. Overall, the contributions of the present work62

can be summarized as follows:63

1. Creating a dataset of urban street-level images labelled according to64

accidentality, based on open data municipal accident records.65

2. Developing a deep learning architecture, adapted from Deep Residual66

Networks (ResNet), for hazard index estimation in urban images, that67

works for both pedestrian and vehicle accidents, and is capable of pro-68

ducing city-wide hazard level landscapes at an unprecedented resolution69

of one value every 15-20 meters.70

3. Proposing a set of interpretability analyses to extract human meaning71

from the outputs of the classification, through customized implementa-72

tions of Pyramid Scene Parsing networks (PSPNet), Gradient-weighted73

class activation mapping (GradCam++), radar plots, and a new mea-74

sure of scene disorder.75

4. Designing a greedy heuristic to propose realistic urban interventions,76

based on scene segmentation, class activation mapping and k-nn algo-77

rithm, which constitutes an informed guide for planners to pedestrian78

safety improvements.79

Taken together, these points constitute a novel and comprehensive deep80
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learning pipeline for estimating vehicle and pedestrian hazard in urban scenes,81

and recommending feasible physical improvements to make those same scenes82

safer. The building blocks of the pipeline are tailored variants of differ-83

ent state-of-the-art deep learning/machine learning models and techniques84

(Deep Residual Networks (ResNet), Pyramid Scene Parsing network (PSP-85

Net), Gradient-weighted class activation mapping (GradCam++)).86

The remainder of the paper is organized as follows: in Section 2, data87

(collection, processing techniques and labelling) and methods (pipeline com-88

ponents) are described in detail; then, in Section 3, the results on the hazard89

index and landscape, its connection to scene composition, and intervention90

heuristic are presented and discussed. Finally, Section 4 summarizes the work91

and discusses possible gaps and lines of development.92

2. Materials and Methods93

In this Section we provide the details about the datasets and Deep Learn-94

ing methods that are used throughout the work. For an introduction to the95

Deep Learning paradigm, with a focus on transportation systems, we refer96

to Wang et. al. [32].97

2.1. Dataset collection and curation98

To feed the proposed framework, we use two types of real urban data:99

historical accident statistics and street-level urban imagery.100

In the case of Madrid and Barcelona, historical accident records for the101

years 2010-2018 are available from the open data portals of the respective102

municipal governments [34, 35]. For San Francisco, data was available from103

2015-2017 and it was filtered from the University of California, Berkeley’s104

Transport Injury Mapping System (TIMS) of California traffic accidents [36].105

In total, the Barcelona dataset was made up of 86,414 accidents, 10,240 be-106

ing pedestrian and 76,174 being vehicle accidents. The Madrid dataset had107

76,026 accidents (12,533 pedestrian, 63,492 vehicle). In San Francisco, the108

dataset was made up of 15,492 accidents (3331 pedestrian, 12,161 vehicle).109

All data points are geolocated with their corresponding GPS coordinates.110

Besides location, due the detonating causes may be different, we distinguish111

between accidents where a vehicle and a pedestrian were involved (simply112

‘pedestrian’, or P , onwards), from vehicle-to-vehicle accidents (simply ‘vehi-113

cle’, or V , onwards). The spatial distribution of empirical accident data for114

both vehicles and pedestrians can be seen in the SI Figure S1.115
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Street-level imagery was extracted from two data sources. The Google116

StreetView (GSV) [37] API was used for Barcelona and Madrid. In these117

dataset, images are, on average, 15 meters away from each other. As we118

wanted to capture the view of the driver, we limited our queries to images119

facing directly down the direction of traffic of the street. The result of this120

process was a comprehensive and homogeneous set of images for both cities.121

For the city of San Francisco, images were provided by Mapillary [38], a122

crowd-sourced alternative to GSV. With Mapillary, all user-uploaded images123

are available under the CC-BY-SA license. As images are uploaded by pri-124

vate individuals working with different equipment, different setup, different125

light conditions, different vehicles, and without central coordination, several126

distinct challenges were presented by this dataset. Firstly, for each point127

provided, usually a single image was available. Occasionally, this image did128

not fit our criteria of facing down the direction of traffic, and had to be dis-129

carded. Secondly, data was only available from a smaller part of the city,130

corresponding to the area covered by the Mapillary contributors. The part131

of San Francisco available in the dataset, consisting mostly of high-traffic132

streets, is shown in Figure S2 of the SI.133

Combining data from different sources (GSV and Mapillary) allows us to134

test the robustness of our methods when dealing with similar, but not equally135

distributed, data . All the collected images, both for GSV and Mapillary,136

contain GPS locations in their metadata, which allows us to assign each street137

image a binary accident category (“safe” vs. “dangerous”). We categorize a138

point as “dangerous” if one or more accidents have occurred with a 50 meter139

radius of its location. Otherwise, the point is categorized as “safe”. More140

details on the creation of the image dataset can be found in Section S1 of the141

SI, along with a more extended discussion of the trade-offs of using a radius142

to assign accidents to images in Section S4.143

The large collection of images tagged according to accident category was144

divided in 6 different datasets, resulting from the combination of the three145

targeted cities and two accident types (V and P ). The characteristics of each146

dataset (number of images per dataset and category) are detailed in Table 1.147

Notice that the San Francisco datasets are much smaller than Barcelona148

and Madrid datasets. For the 6 datasets, data was randomly split into train149

and test sets, containing 90% and 10% of the images respectively.150

2.2. Hazard index estimation with Deep Learning151
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Vehicle (V ) Pedestrian (P )

City Total Accident No accident Accident No accident

Barcelona 177645 61.8% 38.2% 48.1% 51.9%
Madrid 704950 48.3% 51.7% 29.1% 70.9%
San Francisco 162530 35.7% 64.3% 17.4% 82.6%

Table 1: Image dataset properties. Comparing the relative proportion of points with and
without accidents across the various cities. In all 3 cities, there is a higher proportion of
points with vehicle-to-vehicle accidents than vehicle-to-pedestrian accidents. Relatively
less accident points in San Francisco reflects the smaller amount of accident data for that
city.

A variety of Deep Learning architectures have shown to be remarkably152

effective for many computer vision tasks [39, 40]. In this work we use a153

Residual Neural Network (ResNet) [41], a particular architecture of Convo-154

lutional Neural Network (CNN), to estimate the hazard index (H) in new,155

unseen images. The main characteristic of ResNets is the implementation of156

“shortcut connections” that skip blocks of convolutional layers, allowing the157

network to learn residual mappings between layers that mitigate the vanish-158

ing gradients problem. For this critical step, all of the elements used were159

created from scratch – training and test datasets, weight learning stage, etc.160

– as is detailed in the following.161

We define our hazard index (H) as the probability that a target image162

is classified as ‘dangerous’ by the ResNet. For this objective, we train the163

ResNet to first classify images between the two defined accident categories:164

‘dangerous’ and ‘safe’. For each street-level image, the classifier delivers a165

value H in the range of [0, 1]. When H ≈ 1, the point where the image166

was taken is considered as dangerous. On the contrary, when H ≈ 0, the167

corresponding point is considered as safe. The hazard index is defined as the168

output of the Softmax activation function (between 0 and 1) of the last layer169

of the classifier architecture:170

H =
ezi∑K
j=0 e

zj
(1)

where z is the output logits of the last ResNet layer, i is the index of ‘dan-171

gerous’ class and K is the number of classes. H can be interpreted as the172

probability that the point related to a given image is hazardous.173

To successfully train our ResNet architecture for the required classifica-174
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tion task, we start with a pre-trained network that considers the Imagenet175

dataset [42], and then, via ’Transfer learning’ techniques, we fine-tune the176

network using our data. At this stage, we remove the connections from177

the last layer of the pre-trained ResNet model, replace it with a new layer178

with two outputs (categories dangerous and safe), and randomly initialize179

the layer’s weights. We re-trained (fine-tuned) this last layer, leaving the180

rest of the CNN static. To compensate for class imbalance during training181

stage, class weights were adjusted in the objective cross entropy loss function182

according to inverse class frequency:183

wi =
1

ln(c+ ri)
(2)

with wi as the weight assigned to each class, c is a parameter to control the184

range of the valid values, and ri is the ratio of the number of samples from185

each class respect the total of samples, and then186

Loss =
1

N

N∑
i=1

wi · (yi · log(ŷi) + (1− yi) · log(1− ŷi)) (3)

where N is the number of samples, and yi and ŷi are the true label and the187

prediction for i class, respectively. In accordance with the defined accident188

types (V and P ), we train our ResNet to estimate two subtypes of hazard189

index: HV and HP , corresponding to the hazard indices for vehicle-to-vehicle190

and vehicle-to-pedestrian accidents, respectively. Therefore, we end up train-191

ing 6 models in total, two per city.192

2.3. Hazard index interpretability193

One of the main shortcomings of Deep Learning techniques is (the lack194

of) interpretability. Certainly, deep neural networks can provide a high level195

of discriminative power, but at the cost of introducing many model vari-196

ables, which eventually hinders the interpretability of their black-box repre-197

sentations [43]. This difficulty is especially pertinent in our case: improving198

pedestrian safety sometimes demands changes in the urban landscape, the199

question being which changes are pertinent. Here, we address this by using200

two different interpretability techniques. The first, scene disorder, is used to201

assess image complexity and the second, Class Activation Mapping (CAM),202

to assess which areas are more informative for the estimation of the hazard203
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index. In particular, CAM methods have been recently shown to be suc-204

cessful for interpretability tasks in several fields [44–47], including medicine205

[48].206

2.3.1. Urban scene segmentation and scene disorder207

First, in order to identify what objects are in the scene, and where they208

are positioned, we use urban scene segmentation. The goal of the semantic209

image segmentation task is to assign a category label to each pixel of an210

image. Segmentation provides a comprehensive breakdown of the physical211

elements visible in the scene. It predicts the label, location and mask for212

each object. For this task, we used a high-performance method called Pyra-213

mid Scene Parsing Network (PSPNet) [49] architecture, pre-trained with the214

Cityscapes dataset [50]. PSPNet is a state-of-the-art deep learning model215

that exploits the capability of both global and local context information ag-216

gregation through several pyramid pooling layers. It has shown outstanding217

performance on several semantic segmentation benchmarks. Cityscapes is a218

real-world, vehicle-egocentric dataset for semantic urban scene understanding219

which contains 25K pixel-annotated images taken in different weather condi-220

tions. Images in Cityscapes are annotated with 30 urban object categories,221

but we used a subset of those (19) in our image repository segmentation –222

those that are common and relevant in driver-perspective scenes (e.g. “car”,223

“road”, “sidewalk”, “person”, “traffic light”, etc.; see right-most labels in224

Figure 4).225

On top of the image segmentation outcome, we propose a measure of scene226

disorder inspired by the gray-tone spatial-dependence matrix [51], also known227

as Gray-level co-occurrence matrix (GLCM), which captures the amount of228

transitions between adjacent pixels labelled with different categories. It is229

known that complex images (related to scene disorder) may cause a division230

of attention [52–55] and, as a consequence, reduce attention towards objects231

that are relevant to urban hazard.232

Originally, GLCM characterizes the texture of an image by calculating233

how often pairs of pixels with specific values are adjacent in a specified spatial234

configuration. In our measure of scene disorder, the frequency of pair of pixels235

of different values is calculated over the segmented image, where the value of236

a pixel corresponds to an urban object category, instead of a gray intensity237

like the usual GLCM. We perform the calculation as follows:238
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SD =
m∑
i=0

n∑
j=0

δ [I(i, j) 6= I(i+ ∆i, j + ∆j)] (4)

where δ[x] is the Kronecker delta, valued 1 if the condition x is met, and 0239

otherwise; and ∆i and ∆j represent an offset of 1, to compute the amount240

of pixel value transitions in two directions (right and below). With this241

definition, the measure SD is incremented by 1 for every pair of neighboring242

pixels that have differing values. Examples of scene disorder measures can243

be seen in Figure 2.244

Figure 2: Illustrating the concept of scene disorder. Segmented images with low
SD = 0.15 scene disorder (a); mild SD = 0.39 scene disorder (b); and high scene disorder
SD = 0.81 (c).

2.3.2. Interpretability through Activation Mapping245

Moving on to the second step of our interpretability process, Class Acti-246

vation Mapping (CAM) [56] and related techniques (e.g. gradient-weighted247

class activation mapping (GradCAM++) [57, 58]) are used to interpret, visu-248

ally, the patterns of images that are informative of a specific image category249

[43, 59], meaning, in our case, the regions that have influenced the most250

about the decision taken by the classifier for a certain class, in our case,251

classifying an image as ’dangerous’.252

GradCAM++ was used to identify the regions of the image that are dan-253

gerous. Given an input image and a our trained CNN model, GradCAM++254

generates a localization map by the use of the gradient information of the255

specific target class ’dangerous’ to compute the target class weights of each256
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feature map of the last convolutional layer of the CNN before the final clas-257

sification. The final localization map is synthesized from the aggregated258

sum of these target class weights. Generating a GradCAM++ map for the259

’dangerous’ class helps to visually identify the specific patterns and objects260

learned by the CNN in order to differentiate between ’safe’ and ’dangerous’261

scenes. Since the images have been fully segmented, we can retrieve the ob-262

jects that overlap with the dangerous regions. Analyzing frequencies, we can263

recover what object categories are more relevant to determine HV or HP .264

Figure 4 shows one example per city in the first column and visualizations265

of the described techniques in the other columns. In particular, second and266

third column display HP and HV , respectively, with the corresponding Class267

Activation Map. Areas in red color are those that are more relevant to the268

hazard index, that is, areas that strongly contribute to increase the hazard269

indexes. Last column shows the automatic segmentation of the images.270

2.4. A greedy heuristic to improve H271

The combination of the Class Activation Mapping and image segmen-272

tation described in the previous section gives us insight into which regions273

and objects of a scene contribute most to its estimated hazard level. While274

this information is already relevant, it provides users with no concrete rec-275

ommendations for structural changes to the scene that might make it safer.276

Accordingly, as a final step in the pipeline, we propose a strategy to exploit277

the large pool of images available in order to identify, for each scene, realistic278

and potentially low-cost physical alterations that would diminish HP and HV279

the most.280

Figure 3: Image hazard reduction flowchart. Processing pipeline to improve the most
hazardous parts of a street-level image i, comparing the new image with similar partner
images j, and arriving at a new HP and HV for the original image.
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To this end, we take advantage of the methodologies developed in the281

previous steps. On the one hand, the segmentation task allows us to iden-282

tify which objects among C categories are present in a given scene (and to283

what extent). On the other, CAM provides information regarding which re-284

gions of the scene contribute most to the estimated hazard score. With this285

information at hand, for every image i we build a vector of characteristics286

vi ∈ RC , containing information of the relative area of category C in i. For287

the target scene (the one for which we intend to reduce the hazard levels),288

we construct an additional surrogate vector of characteristics, ṽi, in which289

we discard those regions that contribute most to HP , i.e. we only consider290

regions of i where the class activation is mild-to-low (< 0.7), see first and291

second blocks in Figure 3. Next, we deploy an exhaustive search to find the292

five mirror images j for ṽi, with their respective vectors of characteristics vj,293

such that their hazard index is lower:294

argminj||ṽi − vj||2 (5)

Hj
P < H i

P

Hj
V < H i

V

In other words, we seek the most similar locations in the city that have295

smaller HP and HV than i, see Fig. 3 for a schematic representation of296

the process. The search for mirror images is limited to structurally similar297

scenes (compared to the original one), in order to promote simple and feasible298

interventions. We emphasize that this strategy is designed to be used in299

tandem with human users, who will be able to judge which recommendations300

are realistic. The choice of five images allows for some diversity in the range301

of interventions recommended.302

Finally, we remark that our approach is very similar to the regressive k-303

nearest neighbor (k-nn) algorithm [60], as opposed to a more sophisticated,304

Deep Learning-based mechanism for image “safe-fication” (following the con-305

cept of “beautification” in ref. [25]). These techniques lie beyond the scope306

of the present work.307

3. Experiments and Results308

3.1. Hazard index Estimation309

We begin the results section by assessing how well our trained ResNet310

performs the required classification task for the six datasets we have defined,311
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considering the cities of Barcelona, Madrid, and San Francisco. Images be-312

longing to the ‘dangerous’ class are defined as positive, while those belonging313

to the ‘safe’ class are defined as negative. In the training stage, the parame-314

ter c of the loss function was experimentally assigned as 1. For our results,315

we focus on the following measures: recall, precision and accuracy; and the316

indicators: FP (False positives), TP (True Positives), TN (True Negatives)317

and FN (False negatives). Recall refers to the fraction of samples detected318

as dangerous over the total number of dangerous samples in the dataset319

(TP over TP+FN). Precision is the fraction of the true dangerous points320

detected, over the number of points detected as dangerous by the ResNet321

(TP over TP+FP). Accuracy measures how good the system is at detecting322

dangerous points (TP+TN over all the samples).323

As we can see in Table 2, the obtained accuracy is outstanding for all324

datasets, considering that the CNN training stage relies only on visual in-325

formation, along with a binary tag indicating the occurrence (or not) of an326

accident within a 50m radius (sensitivity with respect to radii is discussed327

in Section S4.1 and Figure S7 of the SI). As illustrated examples of hazard328

index estimation, see the scores in the central columns of Figure 4.329

Recall Prec. Acc. FP TP TN FN

Barcelona P 0.86 0.72 0.75 17.8% 45.4% 29.8% 7%
Barcelona V 0.77 0.84 0.82 7.1% 37.9% 44.1% 10.9%

Madrid P 0.76 0.75 0.75 12.4% 37.5% 38% 12.1%
Madrid V 0.73 0.74 0.75 12% 35.2% 40.1% 12.7%

San Francisco P 0.63 0.81 0.76 6.6% 29% 47.7% 16.7%
San Francisco V 0.61 0.82 0.74 6.3% 30.1% 44.7% 18.9%

Table 2: Results of the Deep Learning approach for accident prediction, considering a 50
meters radius. Rows labelled as P and V correspond to pedestrian-to-vehicle and vehicle-
to-vehicle accident dataset, respectively. Results for other radii can be seen on Table S1
of the SI.

Additionally, we compared the performance of different ResNet and other330

state-of-the-art architectures against the Barcelona dataset. Metrics like F1-331

score, area under the Precision and Recall (PR) curve, and the area under the332

Receiver Operating Characteristic (ROC) curve were used for comparison as333

well. The F1-measure provides a balance between precision and recall in a334
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single score:335

F1 = 2 · precision · recall
precision+ recall

(6)

Whereas the PR curve represents the balance between the measures precision336

and recall through different thresholds between 0 and 1. The ROC curve337

plots the false positive rate versus the true positive rate through different338

thresholds, like the PR curve. The results presented in Table 3 show that339

the ResNet-v2-50 offers the highest performance for this particular image340

classification task.341

Discerning between safe and dangerous locations in a binary fashion might342

be limiting in several practical scenarios, such as the prioritization of urban343

interventions to improve pedestrian safety. To assess to what extent we344

can produce finer results, we have also implemented the method in [61] to345

learn an ordinal regressor. In this case, the Barcelona pedestrian dataset346

was divided in four rating classes: no-danger, mild-danger, danger and high-347

danger. Images tagged as ‘no-danger’, correspond those images where no348

accidents were observed. Images in the class ‘mild-danger’ had one accident349

nearby, images in class ‘danger’ have between 2 and 5 accidents nearby.350

Finally, images belonging to class ‘high-danger’ have more than 5 accidents in351

their vicinity. The dataset proportions were approximately 85k, 34k, 40k and352

17k images samples, respectively. The method in [61] relies on several binary353

classifiers. We used our same ResNet architecture for each of those binary354

classifiers. After training, we obtained a balanced accuracy of 0.47 (with a the355

dummy classifier accuracy of 0.25) which is comparable to the performance356

reported in [20] for a similar task. That is, the ResNet architecture can also357

provide competitive results for a finer assessment of pedestrian safety.358

3.2. Urban hazard landscape359

The first remarkable outcome of the described methodology (in particular,360

Section 2.2) is a fine-grained map of hazard indices throughout the cities361

under study. The Deep Learning approach, together with the short distance362

intervals between consecutive images, allows us to quantify the safety of all363

city locations at a microscopic level, i.e. every 15 meters approximately364

(see Figures S3 and S4 in the SI), independently of whether accidents have365

occurred at a given site or not.366

To give a complete picture of hazard for pedestrians and vehicles, and to367

highlight their differences, Figure 5 shows the spatial distribution of points368

that were identified as very hazardous for pedestrians (HP ≥ 0.66), but with369
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Model Acc. Prec. Rec.l F1-Score PR ROC

VGG16 [62] 0.61 0.58 0.96 0.72 0.78 0.59
VGG19 [62] 0.68 0.73 0.62 0.67 0.77 0.68
Inception-V3 [63] 0.70 0.70 0.75 0.72 0.79 0.70
Inception-V4 [64] 0.57 0.80 0.24 0.37 0.72 0.59
Mobilenet [65] 0.62 0.77 0.39 0.52 0.74 0.63
ResNet-v1-50 [66] 0.61 0.80 0.35 0.49 0.75 0.63
ResNet-v1-101 [66] 0.59 0.56 0.99 0.71 0.78 0.57
ResNet-v1-152 [66] 0.67 0.71 0.62 0.66 0.76 0.67
ResNet-v2-50 [41] 0.75 0.72 0.87 0.78 0.82 0.74
ResNet-v2-101 [41] 0.72 0.75 0.70 0.72 0.80 0.72
ResNet-v2-152 [41] 0.72 0.74 0.72 0.73 0.80 0.72

Table 3: Results of the Deep Learning approach for accident prediction, considering dif-
ferent classification architectures.

low-to-moderate hazard for vehicles (HV < 0.66), and vice-versa. As can be370

seen, in both Madrid and Barcelona, areas of high hazard for pedestrians371

alone are highly concentrated in the denser, older city centers. High levels of372

vehicle hazard tend to be distributed around arterial roads, as well as some373

distinct neighborhoods (e.g. Sant Mart́ı-Poble Nou, middle right corner in374

Barcelona). San Francisco presents an interesting case in which the two375

spatial distributions are nearly homogeneous. This can likely be explained376

by the bias towards residential, medium-density areas in our image coverage377

for the city (see Materials and Methods for further discussion). Notably,378

we lacked image coverage in high-density downtown San Francisco, as well379

as peripheral low-density districts. With the inclusion of such zones, it is380

possible that clearer spatial patterns would emerge, although they might be381

distinct from those of denser European cities like Barcelona and Madrid [67].382

Nevertheless, it should be noted that competitive levels of precision and383

accuracy were still achieved in San Francisco, indicating that our method384

is robust to relatively homogeneous training data. Furthermore, it shows385

that the classifier need not only be applied to comprehensive collections of386

images from an entire city, but can function well on sufficiently rich, spatially387

homogeneous samples of images. Separate visualizations for pedestrian and388

vehicle hazards are available in the SI, Figure S3.389

Worth highlighting, there has been no previous attempt to associate a390

given street image with traffic hazard levels –unlike other urban attributes391

15



Original Image

Ba
rc

el
on

a

Estimated HP and HV and corresponding CAM Segmentation
HP (pedestrian-to-vehicle) HV (vehicle-to-vehicle)

a)

HV (vehicle-to-vehicle)HP (pedestrian-to-vehicle)

M
ad

rid

b)

Sa
n 

Fr
an

ci
sc

o

c)
HV (vehicle-to-vehicle)HP (pedestrian-to-vehicle)

HP = 0,69 HV = 0,18

HP = 0,49 HV = 0,82

HP = 0,74 HV 

Road

Sidewalk

Building

Wall

Fence

Pole

Vegetation

Terrain

Sky

Person

Rider

Truck

Bus

Train

Motorcycle

Bicycle

Car

= 0,78

Figure 4: Deep Learning approach: classification, segmentation and inter-
pretability. The figures display image examples from Barcelona, San Francisco and
Madrid, one location per row. First column shows the original street view image. Second
and third columns correspond to the obtained CAM for pedestrian and vehicle datasets,
respectively. The last column corresponds to the outcome of the segmentation task. The
example in Barcelona location (top row) is classified as dangerous for pedestrians (note
the score in each picture), but safe for vehicles. The second example, corresponding to a
Madrid location, is classified as dangerous for vehicles, but safe for pedestrians. Finally,
the third example, corresponds to a San Francisco location. Notice that, in this last case,
the location is dangerous for both pedestrian and vehicle, but the CAM highlights dif-
ferent regions: areas increasing the hazard for pedestrians may not coincide with those
increasing hazard for vehicles. Images courtesy of Google, Inc. and Mapillary.

(e.g. beauty [17, 68], or security [21]). Here, we do so under the assump-392

tion that street-level imagery is a good proxy for both the structural and393

perceptual complexity of the city landscape. Typically, traffic-related risk394

is either aggregated to the macro-level (neighborhoods, census tracts, even395

counties)[7, 69, 70], or painstakingly micro-tailored to very specific settings396
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Figure 5: Spatial distribution of hazard index. Distribution of high-hazard points
for pedestrians and vehicles across all three cities of study. Points displayed are those for
which hazard is high for pedestrians (vehicles) but not for vehicles (pedestrians).
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(e.g. considering only zebra-crossings [71]). However, initiatives like Vi-397

sion Zero, involving governments and organizations worldwide, demand new398

streams of data and methodologies that help address the street safety chal-399

lenge at the finest level and at scale. This is achieved here combining images400

and accident data.401

3.3. Mapping safety to scene composition402

The second (segmentation) and third (Class Activation Mapping, CAM)403

processing steps complete the data analysis pipeline, linking hazard indices,404

HP and HV , to specific objects found in street-level images. In practice,405

such link is established combining the information in the central and right406

columns of Figure 4. Mapping each pixel label (e.g. “road”, “sidewalk”,407

etc.) to its corresponding activation level (heatmap in central columns of408

Figure 4) provides a quantification of the contribution of that pixel to the409

overall hazard score of the image. Thus, at the city level, we can obtain a410

global perspective of the categories that most contribute to the hazard index.411

Figure 6 (panels a and b) illustrates this for the central area of Barcelona.412

These radar plots show the level of object fixation of the CAM model for413

pedestrians (a) and cars (b). In both cases, the blue line represents safe414

scenes (H < 0.33), while dangerous ones (H > 0.66) are shown in red.415

Specifically, we plot the ratio between the amount of CAM fixation on a416

given category (in safe and dangerous scenes), with respect to the CAM fix-417

ation on that category across all the images of the dataset. Thus, values418

below 1 in the radar plots are underrepresented, while those above 1 are419

overrepresented. We would like to highlight that we have restricted the anal-420

ysis to the city center, to avoid an exaggeration of the presence of natural421

elements (vegetation and sky) in low accident risk images. Remarkably, the422

presence of people in a scene is correlated to a dangerous classification for423

both vehicle-to-pedestrian and vehicle-to-vehicle predictions. Low buildings424

and/or wide streets (tantamount to a clear vision of the sky) correlate to425

safer scenes for pedestrians, whereas the presence of buildings implies a safer426

environment for vehicles. Also, the absence of vegetation, such as trees, could427

be contributing to a safe classification for vehicles.428

Radar plots for Madrid (see SI, Fig. S5) show high resemblance to the429

Barcelona ones, while those for San Francisco (Fig. S6) show completely430

different patterns: for pedestrians, the presence of sidewalks –and not people–431

is identified as the strongest driver for high HP . Again, the distinct layouts432
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Figure 6: Hazard level interpretability. Top: Radar plots showing the level of ob-
ject fixation of the CAM model for pedestrian (a) and cars (b). For both, the blue area
corresponds to images classified as safe (H < 0.33), while scenes classified as dangerous
(H > 0.66) are mapped on the plot as red. To build these radars, each individual image is
mapped to the radar categories (a relevant subset of those detected by the segmentation
task), and the average of such mappings is shown. (c) The plot shows the triple relation-
ship between HP , HV and the color-coded level of disorder (adapted from [51]) –which
increases towards warmer colors as the levels of hazard increase. The plot corresponds to
Barcelona.

and walking habits of European and North American cities may be directly433

related to these emergent patterns.434

Moving further, we can relate hazard levels to the scene complexity. While435

the radar plots show interesting information, they are blind to specific scene436

compositions in urban scenes, i.e. whether categories appear in a clustered437

or fragmented way. To grasp this information, we quantify scene disorder438

(SD) as defined in Equation 4, see Methods above. Figure 6c shows an439

hexbin scatter plot of hazard indices (HV against HP ), with a color-coded440

third dimension that corresponds to scene disorder, normalized in the range441

[0, 1]. A first observation is that HP and HV are positively correlated. More442

interestingly, it is clear that more complex scenes (warmer colors) correspond443

to more dangerous ones. In Figure S5c of the SI, an even clearer trend is444

shown for Madrid. On the other hand, the level of disorder in San Francisco445

scenes is high when HP ≈ HV ≈ 1, but not clearly related to either HP446

or HV for the rest of values, see Figure S6c. All in all, the connection447

between image complexity and hazard (especially for vehicles) suggests that448

more research is needed in this direction. While certain distractions are449

very explicit (e.g. attending the mobile phone), the perils of scene disorder450

are subtle and implicit (in the sense that they are not obvious on visual451
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inspection).452

3.4. An informed guide to pedestrian safety improvements453

A precipitate analysis of Figure 6 may render unfeasible interventions:454

substitution of built space with larger green areas, building height reduction,455

or street widening would suffice to improve pedestrian safety, but they do not456

represent a realistic approach. Instead, we resort on the greedy strategy de-457

veloped in Section 2.4 to propose interventions conducive to scene alterations458

that diminish HP and HV most.459

Figure 7a shows the results of the application of this optimization to the460

set of images in Barcelona (Figure S8 in SI for Madrid and San Francisco).461

In some occasions the hazard index cannot be reduced (points near the (1, 1)462

coordinate). And yet, many locations present a potential to decrease the haz-463

ard levels, even observing, for some scenarios, extreme improvements (points464

near the (0, 0) coordinate). The grey intensity in Fig. 7a reflects the density465

of observations in that area. To provide a baseline for comparison, panel b466

shows alternative results considering a dummy k-nn regressor, that does not467

take our hazard index into account. Ratios larger than 1 indicate an increase468

in HV or HP , and ratios lower than 1 indicate a decrease. The average in469

both dimensions is close to zero, evidencing that, with a dummy regressor,470

we have no guarantee of reducing either pedestrian or vehicle hazard. Fig-471

ure 7c shows a selection of two targets and their most similar mirror image,472

illustrating some common interventions proposed by the heuristic (more ex-473

amples, for the three cities under study, can be found in Figure S9 of the SI).474

Visually, all of them seem to point at simplifications of the original image –475

mostly removing objects on sidewalks.476

Finally, Figure 7d provides a visual overview of the most frequent in-477

terventions predicted by our optimization scheme, in the case of Barcelona.478

The color of the link connecting two categories expresses the source of that479

link. The most notable changes point –perhaps unsurprisingly– to the need480

to reconfigure urban scenes towards greener and wider spaces: indeed, both481

categories ’road’ and ’building’ contribute largely to ’nature’, while the lat-482

ter does the same towards ’sky’. Madrid presents an almost identical trend,483

while San Francisco shows a less clear pattern (although the relevance of484

’nature’ and ’sky’ is still clear). Both diagrams are available in the SI, Fig-485

ure S10. Overall, the estimations and insights from the panels in Fig. 7 can486

provide initial indications to urban planners about achieving potential reduc-487

tions of a local hazard score, both in terms of which items could be removed488

20



Figure 7: Hazard reduction: results. (a) Expected improvement for pedestrian and
vehicle hazards, with respect to their original values. The horizontal axis corresponds to
the ratio between the improved and the original pedestrian hazard index, H̃P /HP ; while
the vertical axis represents the equivalent ratio for vehicles, H̃V /HV . Grey intensity rep-
resents the density of observations in a given area of the plot. (b) Expected improvement
of a dummy k-nn algorithm that only considers similarity between images. This can be
regarded as a baseline for results in panel (a) (c) Examples of original and mirror im-
ages in Barcelona and Madrid. (d) Chord diagram representing an aggregate overview
of proposed interventions in Barcelona. The most notable outcome from the diagram is
the propensity to reduce the space allotted to roads and buildings, exchanging it emptier,
greener scenes.

or relocated.489
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4. Discussion490

As cities become increasingly populated, the interactions among pedestri-491

ans and motorized vehicles become permanent. This translates into a growing492

number of pedestrian-vehicle accidents. Complementary to the efforts by ur-493

ban planners, public authorities and sensor technology designers, we present494

here an automated scheme that exploits a wide range of Computer Vision495

methods (classification, segmentation and interpretability techniques) to re-496

duce traffic-related fatalities. The proposed processing pipeline, conveniently497

fed with rich sources of open data, renders an holistic characterization of a498

city’s hazard landscape, capturing the physical (scene structure) and per-499

ceptual (scene complexity) characteristics from a car driver’s point of view.500

Beyond its informative value, the hazard landscape provides actionable in-501

sights to planners.502

The main strength of our proposal lies in its simplicity, and its potentially503

universal applicability out of a comprehensive street image collection and a504

rich accident dataset. Even crowd-sourced imagery, which is unavoidably505

diverse and often sparse, provides a solid starting point to quantify safety at506

a below-segment level. A global, automated, data-driven endeavour towards507

improving pedestrian safety is not out of reach, considering the advances in508

cities’ public data portals, and the wide coverage of proprietary services like509

Google Street View or open initiatives like Mapillary.510

Our approach opens a promising line of development. The hazard land-511

scape is defined at an unprecedented, sub-segment resolution level –roughly512

a hazard score every 15 meters– through an automated and scalable clas-513

sification process. This is well beyond macroscale approaches (e.g. crash514

hotspots), and extends the emphasis on intersections [14]. Such fine-grained515

map adds a valuable geoinformation layer to those already in use –traffic and516

pollution levels [72], land and underground transportation systems, crime,517

etc.– enabling better route design: safe paths, along with clean, beautiful, or518

shortest ones.519

Additionally, segmentation and interpretability methods unveil the re-520

lationship between potential danger and specific objects in urban scenes.521

What’s more, the disposition of those objects is related to hazard indices,522

adding a perceptual-attentional link to other possible concomitant variables523

that affect vehicle and pedestrian safety. Along this line, our work can be524

used in conjunction with other similar pipelines, such as [20], which auto-525

mates road safety assessment in terms of infrastructure and estimates road526
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attributes, or may contribute to more focused analysis, relating what a per-527

son pays attention to while driving [73]. Additionally, further information528

such as temporal accident data, or factors known to influence accident rate529

(e.g. weather, lighting condition, distraction, asphalt conditions, road signal-530

ing) could be included by using, for instance, a multi-branch convolutional531

neural network, to obtain a richer prediction model.532

On the other hand, the step from descriptive (hazard landscape) to ac-533

tionable insights paves the way to automatized, computer-aided prioritization534

of urban interventions. The proposed heuristic towards safety improvements535

can serve as a novel tool for planners and policy makers, and might trig-536

ger the development of more sophisticated approaches such as the use of537

Generative Adversarial Networks to produce virtual, plausible alternatives538

to target scenes (seeking for instance “safe-fication”, instead of “beautifica-539

tion” [25]). These techniques could be complemented with intervention cost540

quantification, considering as well cost-safety gain trade-offs.541
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