
Towards an Open Grid Marketplace Framework
for Resources Trade�

Nejla Amara-Hachmi1, Xavier Vilajosana2, Ruby Krishnaswamy1,
Leandro Navarro3, and Joan Manuel Marques2

1 France Telecom R&D
2 Universitat Oberta de Catalunya

3 Universitat Politècnica de Catalunya
{nejla.amarahachmi,ruby.krishnaswamy}@orange-ftgroup.com,

{xvilajosana,jmarquesp}@uoc.edu, leandro@ac.upc.edu

Abstract. A challenge of Grid computing is to provide automated sup-
port for the creation and exploitation of virtual organisations (VOs),
involving individuals and different autonomous organizations, to which
resources are pooled from potentially diverse origins. In the context of
the presented work, virtual organizations trade grid resources and ser-
vices according to economic models in electronic marketplaces. Thus in
this paper we propose GRIMP (Grid Marketplace), a generic framework
that provides services to support spontaneous creation of grid resources
markets on demand. We motivate the need for such framework, present
our design approach as well as the implementation and execution models.

1 Introduction

A main challenge of Grid computing is the creation of reliable and scalable virtual
organisations on demand in a dynamic and open environment. VOs are formed
of autonomous entities that are created to deliver a set of services. The formation
and maintenance of VOs within an open environment is still a difficult task. In
this paper we address one aspect of maintenance; on-demand resource capacity
expansion as a means to adapt to fluctuating needs for computational resources
in the life-time of a virtual organisation. Market based models are increasingly
being studied to address resource allocation. Our objective is to provide tools and
services to operate open Grid resource market places. A market based approach
has two benefits: provide incentives to resource owners to share their resources
and secondly provide efficient arbitration in conditions of fluctuations in supply
and demand.

The contribution of this paper is to propose an architecture for GRID re-
sources marketplace (GRIMP) that supports an environment characterised by
heterogeneity and diversity of resources, applications, application behaviours,
dynamicity, and scale.
� Work supported by MCYT-TSI2005-08225-C07-05 and Grid4All(IST-2006-034567).

R. Meersman and Z. Tari et al. (Eds.): OTM 2007, Part II, LNCS 4804, pp. 1322–1330, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Towards an Open Grid Marketplace Framework for Resources Trade 1323

2 Context

This section presents a representative scenario which illustrates the requirements
that drive the GRIMP framework. The scenario shows how the envisioned frame-
work is used by VOs to adapt to changes such as that of fluctuating resource
needs.

2.1 Scenario and Motivation

A community of vinyl record collectors creates a VO whose objective is to pre-
serve and share their legacy of rare records. The technical objective of the VO
is to execute applications that process the vinyl records. One application (A)
digitizes sound and transforms it to a computer-readable format. A second (B)
adds watermarks into each audio file to preserve copyrights, while the last and
popular application (C) is a real-time player that plays the records and diffuses
analogical sound formats to other VO members. The VO has a large member
subscription most of who contribute sporadically their resources. All the three
applications require processing time and the first requires storage resources as
well. While a few members contribute regularly their computational resources to
the VO, the majority provide them sporadically. They instead pay a subscrip-
tion fee to obtain this service. In this scenario, the focus of this paper is the
allocation of resources to the applications. We assume that all resources and ap-
plications of the VO are managed and the management logic takes appropriate
decisions to ensure that preset goals are met. If this decision triggers resource al-
location, then the self-configuration manager adopting the role of a buyer agent
negotiates at the market place to acquire resources. At a time any of the applica-
tions A, B, C may have load surges and require resources to match the required
quality of service. Application (A) requires both storage and processing time
since the music must be digitized and stored. The execution of the digitizer is
planned and scheduled by the VO administrator and hence resources are leased
in advance of time. The buyer agent decides to start a combinatorial auction
for processing and storage resources. Application (B) may have unplanned load
surges due to remote requests by VO members to watermark files. Allocation of
resources for this application is triggered by the load monitoring logic, but mem-
bers may be requested to wait. The buyer agent selects a double auction that
trades in processor cycles for usage within a time range provided by the applica-
tion. Application (C) is stringent in its resource requirements and cannot wait
for allocation. The buyer agent will select a continuously clearing double auction
trading in processing time for immediate usage. The GRIMP marketplace ad-
dresses these scenarios by providing services that allow actors to spontaneously
create mini and short-lived markets on demand. This places GRIMP in a design
space between a decentralized and a centralized architecture, which we believe
responds better to the targeted environment.

In this scenario, two different auction mechanisms to allocate computational
resources are used. Althought a vast range of applications require typically one
type of resource as is the case of the application B and C; many others are



1324 N. Amara-Hachmi et al.

elastic and tolerate varying quantities of resources. Hence applications such as
B and C are satisfied by mechanisms like k-double auction (a generalization
of the classic first price and 2nd price auction mechanisms) and do not need
computationally expensive mechanisms such as combinatorial auctions which
is required by the application A. The application A needs imperatively both
computational and storage resources for correct execution. Combinatory auction
mechanisms though computationally expensive are required to ensure that such
applications may allocate resources without confronting the exposure problem.

2.2 Requirements

From the scenario we derived a set of requirement for the GRIMP framework.

Generic Infrastructure: Instantiation of market services on need and co-
habitation of multiple instances. This implies mechanisms for initiators to in-
stantiate and configure markets when needed.
Support for multiple market mechanisms: Choice of different types of
market mechanisms such as, combinatorial, double, English or other iterative
auctions. This implies a flexible framework and tool-kit that facilitates rapid
prototyping of new allocation mechanisms.
Open architecture: Open Grid systems are exposed to heterogeneity and con-
stant evolution that suggests use of semantic descriptions of resources and mar-
kets to facilitate matching and discovery.
Standardization and Interoperability: The use of flexible standards and
interoperable interfaces to facilitate interaction with external infrastructure ser-
vices is required.

2.3 Related Work

The last years have seen a number of approaches based on economic based re-
source allocation within the context of Grid computing. OCEAN [1] and CAT-
NETS [2] focus on a completely decentralized system based on direct negotia-
tions between peers. Both systems demonstrate the need to provide support for
multiple market mechanisms; however the aspect of interoperability of agents in
the face of multiple market negotiation protocols is not addressed. Furthermore,
electronic marketplaces have been extensively studied. AuctionBot [3], provides
support for multiple auction mechanisms by means of configurable policies. How-
ever their approach is neither extensible nor interoperable. Rolli et.al [4] propose
to break down market processes into services in order to foster flexibility. Further-
more, their framework allows the configuration and extension of market services
and provides a description auction language that facilitates the development of
new market mechanisms. Besides, mechanisms flow is guided by means of an
orchestration language like BPEL4WS. GRIMP aims to propose an open, inter-
operable architecture for the trading of Grid resources, open APIs and layered
software architecture. Moreover, an open market place for Internet level Grids
needs to address both in terms of development and run-time co-habitation of
multiple market mechanisms.



Towards an Open Grid Marketplace Framework for Resources Trade 1325

3 The GRIMP Architecture

This section addresses the requirements and design principals of the GRIMP
framework. As part of design process, we identify common domain specific ele-
ments of an auction market so as to facilitate design and implementation of
different market behaviours. The goals of the framework are reusability, extensi-
bility, rapid prototyping of new market mechanisms. Extensibility and flexibility
is addressed one the one hand by the provision of generic interfaces that allow the
definition of specific mechanism following a well defined template. Customization
is addressed by a protocol factory that provides functionalities to instantiate mar-
kets (given the model, type and structure based on initiator needs) and functional-
ities to add new market templates and new implementations (see Fig. 1a). In order
to deal with complexity, the market framework is developed following a compo-
nent based approach that promotes modular design, distributed and autonomous
development, and reuse of the developed components. This helps saving efforts
when designing new market mechanisms and higher level market applications and
services. Components may be composed and assembled based on domain specific
rules that constrain the composition. Besides, components encapsulate distinct
aspects of the market so they can be customized and replaced independently.

One of the problems of a component based approach concerns interoperability
with external services since trading sessions not only rely on the market mech-
anism itself but they need to interoperate with other infra-structure services
such as information services for dissemination of market situations, discovery
services, payments, agreement, etc. For that reason, the market process is en-
capsulated following a service-oriented approach. The advantage of combining
both approaches is manifold, particularly as web services provide the means for
software components to communicate with each other on the web using plat-
form and language independent means, components provide a suitable approach
to cope with market complexity. Buyers and sellers, need to discover such mar-
ket services so as to participate within and conclude trades. To publish and
discover traded Grid resources, market participants need a formal and semantic
description of resources. This description should ensure a common understand-
ing among peers and provide services to select and match (to discover markets,
resource availability, etc.). [5] describes the ontology that has been developed for
this purpose. This ontology provides information concerning a) the types and
characteristics of the resources, b) the properties related to the specific offers
and requests via which the specific resources are being traded, c) the specific
properties of the markets to which orders are placed.

3.1 Zoom on the Mediator Process Architecture

In this section we focus on the component-based architecture of the mediator
process that we will henceforth simply refer to as market. It represents a central
part in the GRIMP framework (see Fig 1b) that provides common and spe-
cific elements of the market process (economic and system tasks) allowing to
implement different market behaviors.



1326 N. Amara-Hachmi et al.

(a) Grid Marketplace architecture (b) Functional components of
market process

Fig. 1. Grimp framework architecture and functional components

The Market Process

We define the Market process as the mediating process that implements a market
mechanism, and based on the received bids from its participants determines the
final outcome of trade between the buyers and sellers. It is created by some
Trading agent wishing to buy or sell some Grid resource. The trading is guided
by the rules of the negotiation mechanism encapsulated by an Auction composed
of one or more rounds. During each round, the objective bids are received and
stored in a local structure; at the end of the round the current set of winning
allocations and the current prices of the resources are determined. Subsequently,
the prices to be paid are determined after applying a Discount policy. At the end
of the market process, an Agreement object is created: these associates matching
pairs of bids (from seller and buyer) that have won.

Functional Architecture

In the mediator process architecture, there principally three types of compo-
nents: market specific, system specific, and finally business platform specific.
System specific components covers aspects such as registration, communication,
business specific components cover aspects such as establishment of agreements,
and the market specific components cover trading rules and algorithms. The Ac-
cess Control component identifies and authorizes participants to register at the
market. This configurable component allows the market initiator to select con-
trol policies such as limiting maximum number of traders. The Bid Management
composite is a sub-component of Market and encapsulates rules governing the
bidding activity. Incoming bids are validated for conformance and either stored



Towards an Open Grid Marketplace Framework for Resources Trade 1327

in waiting for clearance or dispatched to the clearing component. This composite
offers interfaces that allow pre-processing of incoming bids to match the specific
trading conditions of the market.

The Auction composite encapsulates the three main components: Clearing
that is triggered by the Auction activity controller and matches the bids and
offers that it retrieves from the Bid Manager, PricingPolicy that calculates final
prices that will be paid by winners, and InformationFeedback that generates
feedback quotes. The separation of clearing and discount policy permits flexibil-
ity in selection of pricing policies. This may be deferred even until deployment
through adequate selection of the component contents through programmatic
control. The feedback component may be independently configured by initiators
of market processes to set the auction and system specific policies that govern
visibility. Once the Auction component has determined the matched allocations,
the Agreement component is invoked by the Market activity controller. Its role
is to dispatch generated agreement records to the Agreement Manager such that
contracts may be established between the matched of buyers and sellers. The sep-
aration of interfaces to the Agreement Manager allows for flexible deployment of
the market mediator. The market designer (or also initiator) may select an ap-
propriate agreement manager and establish the component bindings at run-time
by using the flexible binding semantics provided by the component model.

Three additional components have been specified to store different data han-
dled in the market such as bids and agreements. The BidBook component provides
interfaces to store and retrieve bids and offers. The AgreementBook component
provides interfaces to store and retrieve matching allocations decided by the Auc-
tion composite. These components may even be shared (the AgreementBook may
be shared by the Clearing component and the Agreement component) between
multiple components as shared state to enhance performance in particular when
all sharing components are co-located on the same physical node.

Composition, Deployment and Execution

Components can be bound following a straightforward approach consisting of a
static specification through the ADL (Architecture Description Language) that
describes the system composition and binding of sub-components. ADL enables
also to decouple functional program development from the tasks needed to de-
ploy, run and control the components. With this assumption, assembly may be
looked upon as an off-line issue through a static fixed ADL. Nevertheless, this
fixed binding of the market components is not flexible and may not be adapted to
different market types and mechanisms. Two immediate alternatives can be ei-
ther providing only interfaces of the framework components so that the designer
has to handle by himself composition problems; or provide a meta-composition
language in addition to the corresponding patterns and tools for searching and
obtaining components from the components repository.

After the GRIMP framework is composed, its deployment is managed at run-
time over an underlying infrastructure. Deployment can be managed by a ded-
icated service within or by a management layer of overlay services like the one



1328 N. Amara-Hachmi et al.

proposed in [6] that offers self-configuration, self-healing, self-tuning and self-
protection functionalities. The Fractal API provides tools to instantiate compo-
nents from ADL specifications allowing such VO service to manage and deploy
components at runtime.

Deployment for a specific market mechanism is held by the initialization
phase; this phase includes the configuration and the start-up of components.
The activity period starts when the Market is configured and ready to accept
events (registration of participants, information queries, submission of bids).
This information exchange between the market and the negotiating entities is
held through the external interfaces exposed by the market framework as Web
Services. When the auction/negotiation has been determined to terminate ac-
cording to the auction/negotiation rules, the termination phase prepares the
agreements, ensures house-keeping activities and terminates the market.

A Specific Implementation

In order to test the suitability of the GRIMP framework, a k-Double Auction
(k-DA) mechanism has been developed. The k-DA mechanism implements the
generic interfaces provided by the mediator process such as the Auction compo-
nent specific interfaces and provides new functionalities to the BidManagement
component. Once implemented, the K-DA lifecycle executes as follows:

Initialization: The GRIMP’s Market factory is used to start the market. The
initiator configures the market to implement a double auction with a k-pricing
policy ( k-DA.) that initially trades in some quantity of one particular item for
a period of time. Finally its creation is advertised at the SIS.

Activity period: Once registered to the SIS the k-DA is prepared to receive
bids. Bidders first, consult a Market Information Service (MIS) to get dynamic
information about market, e.g current prices, etc... Authorization is required by
the Access Control component of the Mediator process before allowing a bid
submission. The Bid Management component validates and stores bids until the
termination of the auction. The Bid Management component preprocesses bids
to fulfil any required format. At clearing time, the Auction component executes
the DetermineWinner operation of the k-DAWinnerDetermination component
that computes the winning bids. The k-DAPricingPolicy and VolumeDiscount
are applied to compute final prices. Once the set of winners is known, the Agree-
ment Management component notifies the agreement to winning buyers and
sellers.

Termination: The k-DA is terminated after the agreement is notified to both
sellers and buyers. This action is also announced to the MIS.

4 Conclusions and Future Work

he paper proposes an architecture for a Grid resource market place that fo-
cuses on support for multiple auction formats by proposing a framework where



Towards an Open Grid Marketplace Framework for Resources Trade 1329

market rules, algorithms, and activities are encapsulated as components. We
have started prototyping of this framework using the Fractal [7] model. Fractal
provides the means to assemble complex markets from a set of configurable com-
ponents. Several useful Fractal controllers are used in the design: The Attribute
controller is used for configuration of the market, the Life-cycle controller to
hierarchically start/stop components, and the Content controller to add/remove
content to the sub-components. At the actual state of work, we are implemen-
tating two auction mechanisms: a combinatory auction model and a k-DA based
auction both of them adapted to leasing of Grid resources. Our first objective is
to maximize the reuse of components and limit the coding of market mechanism
specific algorithms.

In parallel we recognize the need to focus on methodologies and tools for
the design of rules of interaction. The market place consists of actors assuming
different roles such as traders of Grid resources (buyers, sellers, and 3rd party
mediators), auction services, agreement managers, and payment services, each of
which executes a given role in the negotiation and that invoke each other through
established interfaces. The interactions or conversations between the different
roles are themselves guided and confined by the rules of a given negotiation
protocol (such as the K-DA auction protocol).

In an open world, where functional and semantic heterogeneities exist, it is
not realistic to assume that all actors converse with only one or a limited set
of protocols; however being developed independently there is neither a reason
to assume that any two actors of complementary roles speak the same protocol.
This guides us to focus support from two points of view, firstly that of trading
participants, and secondly that of designers of protocols and mechanisms. The
GRIMP platform requires a Market factory of protocols that allows (a) par-
ticipants (buyers/sellers/mediators) to retrieve protocol skeletons for a selected
market mechanism or even verify if their own protocol is compatible with a se-
lected mechanism and (b) developers to rapidly prototype new market protocols
through protocol modelling tools that facilitate the design process and allows
the designer to focus on the rules of the market mechanism.

The technological approach that fits our requirements is that of service ori-
ented architecture. Each role in the market place enacts a business process link-
ing components (or Web Services). BPEL processes are also Web Services and
their interfaces are described using WSDL (footnote: in fact we need to consider
OWL-S to be able to enhance semantically the description of capabilities). For
example, in the case of the auction service the WSDL specifies the operations
that may be invoked (such as SubmitBid, Register, Query, etc.). We are evalu-
ating WS-CDL to specify top-down the choreography that will serve to generate
role behaviour descriptions as BPEL processes. A technical issue that we face
in the architecture is that of bridging the gap between the component based
market framework and that of execution of the service as a business process.

Our plans for future work are driven in the following main directions: (a)
achieve the design of several auctions and market protocol formats within the
framework to validate the architecture (b) provide tools to assemble components



1330 N. Amara-Hachmi et al.

implementing a specific set of market rules (c) address compatibility checking
and adaptation of participant behaviours to active market instances.

References

1. Padala, P., Harrison, C., Pelfort, N., Jansen, E., Frank, M., Chokkareddy, C.: Ocean:
The open computation exchange and arbitration network, a market approach to
meta computing (2003)

2. Eymann, T., Reinicke, M., Ardaiz, O., Artigas, P., Freitag, F., Navarro, L.: Decen-
tralized resource allocation in application layer networks. ccgrid 00, 645 (2003)

3. Wurman, P.R., Wellman, M.P., Walsh, W.E.: The Michigan Internet AuctionBot:
A configurable auction server for human and software agents. In: Proceedings of the
2nd International Conference on Autonomous Agents (1998)

4. Rolli, D., Luckner, S., Momm, C., Weinhardt, C.: A framework for composing elec-
tronic marketplaces from market structure to service implementation. In: WeB 2004.
Proceedings of the 3rd Workshop on eBusiness, Washington D.C. (2004)

5. Kotis, K., Vouros, G., Valarakos, A., Papasalouros, A., Vilajosana, X., Krish-
naswamy, R., Amara-Hachmi, N.: The grid4all ontology for the retrieval of traded
resources in a market-oriented environment. (submitted to: Service Matchmaking
and Resource Retrieval in the Semantic Web Workshop Korea) (November 2007)

6. Brand, P., Hoglund, J., Popov, K., de Palma, N., Boyer, F., Parlvanzas, N., Vlassov,
V., Al-Shishtawy, A.: The role of overlay services in a self- managing framework
for dynamic virtual organizations. In: CoreGRID Workshop on Grid Programming
Model Grid, P2P Systems Architecture, Greece (June 12-13, 2007)

7. http://fractal.objectweb.org/

http://fractal.objectweb.org/

	Towards an Open Grid Marketplace Frameworkfor Resources Trade
	Introduction
	Context
	Scenario and Motivation
	Requirements
	Related Work

	The GRIMP Architecture
	Zoom on the Mediator Process Architecture

	Conclusions and Future Work



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




