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Shared Feature Extraction for Nearest
Neighbor Face Recognition

David Masip and Jordi Vitria

Abstract—In this paper, we propose a new supervised linear
feature extraction technique for multiclass classification problems
that is specially suited to the nearest neighbor classifier (NN).
The problem of finding the optimal linear projection matrix is
defined as a classification problem and the Adaboost algorithm
is used to compute it in an iterative way. This strategy allows
the introduction of a multitask learning (MTL) criterion in the
method and results in a solution that makes no assumptions about
the data distribution and that is specially appropriated to solve
the small sample size problem. The performance of the method
is illustrated by an application to the face recognition problem.
The experiments show that the representation obtained following
the multitask approach improves the classic feature extraction
algorithms when using the NN classifier, especially when we have
a few examples from each class.

Index Terms—Face recognition, feature extraction, multitask
learning (MTL), nearest neighbor -classification (NN), small
sample size problem.

1. INTRODUCTION

HE integration of computers in our everyday life is in-
T creasing every day as technology evolves, making feasible
new applications deal with automatic face classification prob-
lems; among them we can find face recognition applied to se-
curity, biometrics, and design of more user-friendly interfaces.
Face images are captured as high-dimensional feature vectors,
being usually a necessary dimensionality reduction process.

According to the literature, the dimensionality reduction
techniques can be classified in two categories: feature selection
and feature extraction. In the feature selection [1]-[4] approach,
only a subset from the original feature vector is preserved. In
feature extraction, the original features are combined or trans-
formed into the new extracted features. In this paper, we will
deal with linear feature extraction methods, considering the
feature selection problem as a special case of feature extraction
where the selected features have coefficient 1 in the projection
matrix P, and O in the other features.

Classification algorithms receive as an input a set of training
samples each one represented as a feature vector. In the statis-
tical pattern recognition literature, we can find two important
reasons to reduce the number of features [5]: 1) alleviate the
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Fig. 1. Example of classification accuracy as a function of the number of
training samples using the NN classifier and some of the state-of-the-art feature
extraction algorithms. The ARFace database has been used for this experiment.

curse of dimensionality problem, improving the parameter esti-
mation of the classifier [6] and 2) reduce the storage and com-
putational needs. These advantages are crucial in face recogni-
tion applications, where the feature extraction process can miti-
gate the effect of the noise present in natural images, and also in
order to find invariant characteristics of the individual, making
the later classification step more robust to changes in illumina-
tion or partial occlusions.

Typically, in face recognition problems, the number of images
from each class is considerably limited: only one or two faces
can be acquired from each person. Under this assumption, most
of the traditional feature extraction methods suffer a significant
performance drop. Fig. 1 shows an example of the evolution
of the classification accuracy when applying different feature
extraction algorithms with different number of training samples.
This phenomenon is known as the small sample size problem.

In addition, in face recognition problems, the dimensionality
of the input space is rather large. In this context, many statis-
tical classifiers fail in the density estimation task, making the
nonparametric classifiers a good alternative. In this paper, we
focus on the nearest neighbor classification rule (NN), which
is one of the most used in spite of its simplicity. Assuming the
NN classifier, the main motivation of this work is to provide a
multiclass feature extraction method that performs no specific
distribution assumptions on the data, and that can improve the
results of the NN classification even when only a few samples
per class are available.

The first contribution of this paper is to propose a new itera-
tive feature extraction method for multiclass classification under
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1) Calculate the criterion matrix M.

2) Compute the eigenvalues and the corresponding eigenvectors of M
3) Sort the eigenvalues of M and take the eigenvectors corresponding to
the M largest eigenvalues to build the projection matrix.

Fig. 2. General procedure for linear feature extraction.

the NN classification rule. Usually, feature extraction algorithms
have been used as a previous and independent step when training
a classifier, but recent studies show that this process can be con-
sidered during classifier construction, resulting in very strong
classifiers [7].

In this paper, we propose to reverse the problem and not to
use feature extraction for classification but classification for ex-
tracting features, that is, to define the feature extraction as a
classification problem. This approach is based on a previous
work [8], which was restricted to two-class problems. In [9], it
was experimentally shown that Adaboost-based feature extrac-
tion is specially suited to high-dimensional data, which is the
case of face recognition problems. Our proposal is to extend this
method to the multiclass case to allow full face recognition using
feature extraction and the NN classifier. We make no specific
assumptions on the class distribution of the data, and incremen-
tally build the supervised projection matrix that enhances the
most the extra-class separability at each step. In order to extend
the original algorithm to the multiclass case, we use the gentle-
boost algorithm [10] with the Adaboost.MH cost function [11].

The second contribution of this paper is the use of a multitask
learning (MTL) approach in the feature extraction task [12]. The
MTL approach learns from different tasks in parallel, obtaining
improved classification rates given that the “knowledge” learned
for one task can help in learning about the other tasks. Inductive
transfer [13] and MTL disciplines have been subject of research
during the recent years, and they have been focused on classifi-
cation tasks.

The term MTL was first introduced by Caruana in [12]. His
work on predicting the best possible steering direction on road
images is one of the first applications of MTL on the computer
vision field. Intrator and Edelman [14] also applied the MTL ap-
proach to image classification tasks. Torralba et al. [15] adapted
the multitask approach to the Adaboost classifier. They pro-
posed a joint boosting algorithm for an object detection problem
with background and multiple objects involved. Their results
show an improvement on the accuracies, obtaining faster clas-
sifiers, and also requiring less training data.

More concretely, in this paper, we propose to introduce
the MTL approach into the feature extraction task. A linear
projection matrix is obtained selecting 1-D feature extractors
shared among the different classification problems, using the
multiclass extension of the Adaboost-based feature extraction
algorithm [9]. This approach is applied to a face recognition
problem where we use few training images from each class.
Under these assumptions, the performed experiments show
improved accuracies in comparison to the classic feature extrac-
tion techniques using the NN classifier. Moreover, given that
our approach makes no specific density assumptions relatively
to the data distribution and supposing that the initial data set is
diverse enough, we have the following two hypothesis: 1) the
learned features that are shared among existing classes will be

also useful when new classes are added to the system and 2)
classification performance should not degrade after the addition
of a new person in the biometric system.

In Section II, we review some of the state-of-the-art linear
feature extraction algorithms applied to the NN face recog-
nition, and the importance of the small sample size problem.
Section III introduces the MTL paradigm, and the proposed
shared boosting feature extraction algorithm. Then, some
experimental results on three face databases are shown, and
finally, we end with the conclusions and future work.

II. MACHINE LEARNING AND FACE RECOGNITION

In the last decades, a plethora of face recognition methods
have been developed. A first approach to a high-level categoriza-
tion [16] divides the algorithms into the following: 1) holistic
methods where the whole face region is used as araw input to the
recognition system and 2) structural matching methods, where
local features location or statistics are computed in certain parts
of the face, and their geometry is used in a structural classifier.
Also, hybrid methods have been developed. In contrast to the
case of object detection and general object recognition, most
of the actual state-of-the-art face recognition algorithms use the
appearance-based holistic approach [17], taking a previous fea-
ture extraction step to reduce the data dimensionality and pre-
serve the most discriminant information.

These strategies have been shown to be successful in the lit-
erature, assuming that enough training samples for each face
are available. Nevertheless, in many of the real-world applica-
tions such as law enforcement or document identification, the
number of training samples is reduced, being that the global per-
formance is considerably diminished [18]. In this section, we re-
view some of the most often used feature extraction techniques
in the face recognition literature, and the last contributions made
to the small sample size problem.

A. Feature Extraction

Linear feature extraction methods can be expressed as a ma-
trix product that performs the mixture and selection of the orig-
inal features. Given a data set X = [xT,xZ, ... x%], the goal of
the linear feature extraction is to find a transformation from the
original to a reduced space F : RY — RM usually (M < D),
that can be expressed as y; = Px;. There are plenty of linear
feature extraction methods, which can be classified into unsu-
pervised (when there is no prior information about the data class
membership) and supervised.

The best known linear unsupervised feature extraction tech-
nique is the principal component analysis (PCA) [19] that opti-
mizes the linear projection minimizing the mean square recon-
struction error criterion. Gaussian distribution is assumed when
finding the axis that retains the maximum variance. Fig. 2 shows
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the general procedure to find the linear projection P. In the case
of PCA, the covariance matrix is used as the criterion matrix M.
On the other hand, independent component analysis (ICA)
[20]-[23] performs no second-order assumptions on the data,
obtaining a linear combination of independent sources. Other
feature extraction techniques have been developed for spe-
cial cases such as nonnegative matrix factorization (NMF)
[24]-[27], which adds the positivity constraint to the projection
matrix and extracted features, obtaining sparse feature sets.
Supervised feature extraction [28] methods use the labels of
the data (C1, . .., Ck) to find the most discriminatory features.
The best known supervised method is Fisher linear discriminant
analysis (FLD), which maximizes the separability measure

J = tr ((PSy*PT) (PSEPY)). (1)

The between-class scatter (S ) and the within-class (Syy ) ma-
trices are defined as

| K
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where S is the class-conditional covariance matrix for the
class C, my is the class-conditional sample mean, and my is
the global sample mean. The linear projection is found using
S‘TVlS B as M in Fig. 2. There is a Gaussian assumption on the
class distribution, being that the algorithm is blind beyond the
second-order statistics.

Fukunaga and Mantock [29], [30] propose a method to over-
come the main drawbacks of an FLD, the nonparametric dis-
criminant analysis (NDA). The between-class scatter matrix is
computed as an average of local covariance matrices. Similarly,
Bressan and Vitria [31] introduced a nonparametric approach
for the within-class scatter matrix. More recently, Loog and
Duin [32] have introduced an extension for the FLD formula-
tion for the case of heteroscedastic data; they use the Chernoff
criterion achieving improved results.

Each of these techniques has its own limitations, depending
on the assumption it makes. For example, FLD projection is
F :RP - ®M (M = K — 1), where K is the number
of different classes. This is a very restrictive condition when
dealing with high-dimensional data. Moreover, its assumption
about Gaussian distribution of data makes this technique not
suitable for multimodal class distributions.

Recently, a new linear feature extraction methodology to ex-
tract discriminant features has been proposed [9]. The method is
based on the iterative computation of the projection matrix by
following a boosting strategy. The proposal tries to overcome
the two main drawbacks of the classic discriminant analysis:
the limitation about feature dimensionality and the specific den-
sity assumptions on the data. The algorithm incrementally finds
the projection matrix using a modified Adaboost algorithm [33],
[34]. At each boosting step, a pool of linear projections from the
original to the 1-D space is generated. The best projection is se-
lected according to the classification error using the Adaboost
weights at the current step. The evaluation of the best projection
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is performed by constructing a decision stumps classifier on the
projected training data [10]. The Adaboost weights are adjusted
according to the classification error at each step. Each single 1-D
projection is selected to be a column vector of the final projec-
tion matrix that performs the linear feature extraction. The Ad-
aboost weight adjustment ensures diverse enough projections,
obtaining a projection matrix that does not make specific den-
sity assumptions on the training data distributions. The experi-
ments performed in previous works [9] show improved accura-
cies in high-dimensional data sets, where usually the Gaussian
assumptions are not met. Nevertheless, the method is limited to
the two-class problem case, not being suitable for general face
recognition.

B. Face Recognition and Small Sample Size Problem

Appearance-based methods have been the dominant tech-
niques in the face recognition field since the 1990s. Neverthe-
less, the performance of this methods is heavily affected by the
number of training samples for each face [35]. The proposed
solutions to this problem can be grouped into the following
three categories.

* Methods based on regularizing the problem using an alge-
braic approach or an unsupervised preprocess of the data
[36], [37]. In addition, kernel methods have been applied
to the problem [38].

e Methods that use a priori information of the problem to
synthetically increase the number of samples [39]—-[41].

* Methods that propose to share the knowledge among sim-
ilar problems to obtain more robust decision rules. This
strategy has been successfully applied in the generic object
recognition field [15], [42]-[45] but, to our knowledge, it
has been only used in the face classification field in [46].
This method includes a priori information on the intra-
class scatter matrix by adding faces from other subjects,
assuming that human faces share a common structure. In
the second step, the method applies a Fisher criterion to
find the projection matrix.

In Section III, we propose a new method that follows the sharing
knowledge strategy, the multitask boosted discriminant projec-
tions (MBDP), preserving the advantages of the linear discrimi-
nant feature extraction methods successfully used in face recog-
nition.

III. BOOSTED SHARED LINEAR DISCRIMINANT FEATURES

As explained in Section II, linear discriminant analysis tech-
niques usually maximize a specific criterion based on some as-
sumptions made on the training data. Nevertheless, the boosted
feature extraction method proposed in [9] makes no statistical
assumptions on the data, being exclusively a classifier-driven
feature extraction method. We propose to extend this method in
two directions: define a formulation that can afford the multi-
class case and allow the use of shared features to increase the
reliability in presence of the small sample size problem.

To introduce the sharing information procedure in the feature
extraction framework, we follow the MTL paradigm. The MTL
approach is a new classifying methodology based on jointly
training multiple related problems and named tasks, and it takes
advantage of its relationship to improve the learning process of
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1) Given the matrix X containing data samples x;, and the vector ¢ with the corresponding labels ¢; €

{C1,Cy,...,Ck}(i=1...N)
2) Initialize a set of weights: W¢(1) = 1.
3) Fort=1...M:

a) For all the possible ways of grouping the classes in binary problems n = 1,...,2%:

i) Generate P projections from the original space to an 1—dimensional subspace.

ii) Project the training data into the space defined by the projections py, ..

PP

iii) Learn the shared regression stumps classifier on the projected data, obtaining the hypothesis:

j . I
B (s, €) = { ad(x] > 60)+ p, when C; € Positive(n)

ke,

- @
when C; ¢ Positive(n)

Denoting by x{ the j-th feature of the projected sample x;, where the decision stumps classifier obtains

the maximum accuracy on the training data.

iv) Compute the weighted error for the class grouping as:

K N
Errp(n) =YY WE(bE — h}(xi,0))%. )

c=1i=1

where b$ € {—1, +1} is the binary class label assigned to the class C; in the n-th binary grouping.
b) Find the binary grouping of classes m with minimum Err),:

m = argming Errp(n) 6)

¢) Update the data weights:

WE(E+ 1) = WE(t)exp B0 4 =1 N. ™

d) Find the projection m associated to the feature where the decision stumps obtained the minimum training

error.

e) Store m as the t-th projection in the projection matrix P.

4) Output the projection matrix P, built using the vectors selected at each boosting step as columns.

Fig. 3. Scheme of the shared boosted feature extraction algorithm (MBDP).

the individual classification tasks. The previous works on MTL
show interesting improvements at two different levels: the accu-
racies of the methods increase (parallel transfer) when problems
are jointly trained, and the number of samples needed to train re-
liable classifiers decreases (sequential transfer). The advantages
of MTL have been experimentally validated in the first works
of Thrun [47] and Baxter [48]. The following two different ap-
proaches to MTL can be identified in the recent literature:

* A functional approach, where the tasks share the hypoth-
esis space [13], [49]. A typical example are the multitask
support vector machines (M-SVM) [50], [51].

* A structural approach, where the representation of the data
is supposed to share a common generative process that can
be used in the hypothesis selection [12], [14], [52].

The applications of MTL on computer vision are still not
deeply explored, but it seems a priori that the second approach
can be the most suitable for the face recognition tasks. We con-
sider the case where only a few examples from each class are
available, which usually is the case of face recognition prob-
lems, and most of them will suffer from illumination changes.
The MTL applied to feature extraction can be a useful tool to
focus the projection vectors on the general recognition task, dis-
carding the intravariations due to illumination. Torralba et al.

[15] followed this approach but applied it to a direct classifica-
tion scheme.

A. MBDP Algorithm

The general algorithm of the proposed method is shown in
Fig. 3. In this section, we explain the details of the final imple-
mentation.

As in the two-class version, the algorithm takes as input
the NV training samples X (D x N) and the corresponding
labels C; € {C4,...,Ck}. We perform M boosting rounds in
order to obtain one 1-D projection at each step, being that the
output of the algorithm is the projection matrix P (D x M)
made by placing the local projections at each step as columns.
At each boosting step, the multiclass problem is transformed
into multiple binary problems by grouping the classes in a
positive and a negative cluster. The algorithm should find the
best grouping according to the training error. Nevertheless,
the number of possible groupings grows exponentially with
the number of classes O(2%). This fact makes the problem
computationally unfeasible in face recognition tasks where
usually the number of classes is large enough. In this paper, we
have followed the best first search O(K?) as in [15], grouping
the classes as follows.
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1) Train a degenerated decision tree classifier [15] using a

single class as positive.

2) Select the class with minimum classification error as the

initial positive cluster.

3) For the remaining K — 1 classes

 train a classifier using the previous positive cluster but
adding another class from the negative cluster;

* add to the previous positive cluster the class from the
negative cluster only if the joint selection improves the
previous classification error.

At each boosting step, a new grouping may be selected in
order to reduce the weighted general error. The class grouping
allows to share knowledge among classes, being that the ex-
tracted features are less specific. For each possible grouping,
a set of candidate p1, ..., pp projections is trained in the gen-
eral case. The training data is projected according to p;, and
a decision stumps classifier is trained in order to construct the
classification hypothesis h}(x;, ¢) for the grouping n. The re-
gression stumps parameters are found as in [15]

ZcePositivo(n) Zz chbfé (Xi < 0) (8)
p= -

ZcGPositive(n) Zz ché (Xf < 9)
ZcEPositive(n) Ei chbfts (Xg > 9)
a+p= : )
ZcePositivc(n) 21 ché (Xi > 6)

- WEb¢
k¢ = 2 Wil if ¢ & Positive(n) (10)

SoWE

where k€ acts as a constant to prevent a class from being more
frequently selected due to an imbalanced training set.

The class grouping with lowest training error is selected, and
the weights W are adjusted according to the multiclass gen-
tleboost algorithm. The projection vector that generated the se-
lected minimum error feature in the decisions stumps classifica-
tion is selected as the next column of the projection matrix P.
Notice that the partial classifiers are discarded, and the output
of the algorithm is a single projection matrix; the result of the
ensemble on the training set is discarded.

Step 3ai) in Fig. 3 defines how the local projections of each
boosting step are generated. Depending on the algorithm used to
obtain these projections different methods can be derived from
the original solution. Previous works suggest the use of pseudo-
random or local projections, or simply to sample the training set
and use a classic discriminant analysis algorithm on the binary
grouping (the reader can find more details on the stability of this
approaches in two-class problems in [9]). In this paper, we use
a single FLD projection obtained from the binary problem, al-
though many variations of the algorithm could be used given the
proper feature extraction algorithm.

IV. EXPERIMENTS

In this paper, we have used the proposed feature extraction
method on a face recognition problem, where only a few training
images are available from each person. We have used the NN
as a classification rule on the extracted features. To validate
our proposal, we have performed a set of experiments using
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TABLE 1
SUMMARY OF THE MAIN CHARACTERISTICS OF THE TESTING DATA SETS

[ Database || Dimensionality | Number of samples [ Number of classes |

FRGC 2272 x 1074 3772 275
ARFace 768 X 576 4000 126
ORL 92 x 112 400 40

a representative amount of feature extraction techniques: the
classic FLD, the NDA, and the unsupervised PCA. In addition,
the more recent kernel PCA (KPCA) algorithm was used in
the comparison, and the kernel LDA (KLDA) method from Lu
et al. [38] has been used as the reference technique from the re-
cent literature. The goal of the experimental section is to verify
whether our MBDP proposed method outperforms the classic
and the state-of-the-art feature extraction techniques. Moreover
the classification accuracies using directly the NN rule on the
original space have been used for comparison, to validate the
usefulness of the feature extraction techniques as a previous step
to the NN classification.

The experiments performed use three different databases: the
face recognition grand challenge data set (FRGC) [53], the AR
face database [54], and the ORL database [55]. The original
FRGC 1.0 database has 3772 samples from 275 different sub-
jects, between four and 32 high-quality images (typically 2272
pixels x 1704 pixels) per person can be found depending on
the subject. The AR face database contains over 4000 images
acquired in two sessions under different conditions. For each
person and session, we have one neutral image, one smiling,
one anger, one screaming, three images with strong light arti-
facts, three images with occlusions due to sun glasses and illu-
mination changes, and three images with scarf occlusions and
illumination changes. The ORL database contains ten images
(92 pixels x 112 pixels) from 40 distinct subjects (400 samples
in total) acquired in the AT&T Laboratories, Cambridge, U.K.
Table I summarizes the main characteristics of each data set.

In all the cases, a previous preprocessing has been performed,
given the illumination variability of most of the samples.

A. Preprocessing

To extract the internal features of the face image, the fol-

lowing normalizing steps have been followed.

» The images were converted from RGB to grayscale.

* A light normalization based on anisotropic filtering on the
original image resolution was performed [56].

* Then, we performed a geometric normalization using the
coordinates of each eye. Images have been rotated and
scaled according to the intereye distance, in such a way
that the center pixel of each eye coincided in all the im-
ages. The samples were then cropped obtaining a 37 x 33
thumbnail, so only the internal region of the faces was pre-
served. No hair information was used in the classification
task.

* In order to avoid the remaining data in the external face re-
gion, the thumbnails were masked using an elliptical mask.

* A histogram equalization in the nonmasked pixels as done
in [57] were performed.

 Finally, the pixels have been normalized to have zero mean
and standard deviation of one.
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Fig. 4. Example of some face images used in the experiments. (a) Original faces. (b) Normalized version of the faces.

TABLE II
BEST MEAN RECOGNITION RATES WITH THE CONFIDENCE INTERVALS AND THE DIMENSIONALITY WHERE THEY ARE ACHIEVED

[ Algorithm || FRGC | AR face } ORL [[ Average Ranks |
PCA 0.8446 £ 0.014(98) 0.7325 £ 0.023(99) | 0.8162 £ 0.011(79) 17
NDA 0.8132 £ 0.019(45) 0.7100 £ 0.020(30) | 0.7948 £ 0.025(39) 7.0
FLD 0.8659 + 0.015(49) 0.7645 + 0.018(49) 0.8459x £ 0.009(39) 2.3
KPCA 0.8495 £ 0.015(97) 0.7325 £ 0.023(99) | 0.8181 £ 0.012(79) 13
KLDA 0.8797 £ 0.018(49) | 0.7850 £ 0.016(48) | 0.8284 £ 0.008(39) 23
MBDP 0.9109x + 0.018(100) | 0.8566x + 0.002(93) 0.8290 £ 0.012(93) 1.3
NN 0.8446 £ 0.045(—) 0.7325 £ 0.072(—) 0.8081 £ 0.045(—) 6.0

Exceptionally, in the case of the ORL face database, the orig-
inal 92 x 112 samples have been used omitting the scaling step.
The reduced nature of the ORL data set computationally allows
us to test the different feature extraction methods in the original
high-dimensional subspace.

Fig. 4 shows some examples of the face images and the nor-
malized version used to train the feature extraction task.

B. Classification Results

The experiments have been repeated 100 times and only the
mean of the experiments is shown. At each repetition of the al-
gorithms, 50 out of the total number of classes from each data-
base are randomly taken (40 in the case of the ORL data set). The
six feature extraction algorithms are trained using only two sam-
ples from each class (the minimum number of samples needed
for discriminant analysis techniques as shown in Section IT). The
rest of the samples were used for testing. The feature extraction
algorithms have been trained to extract up to 100 features (al-
though there are no theoretical bounds in the subspace dimen-
sionality obtained using the shared boosted method). Using the
classic discriminant analysis techniques, the number of features
is limited to 49. In the NDA approach, a previous dimension-
ality reduction using PCA preserving the 95% of the variance
has been performed. It has been shown that this previous step
improves significantly the accuracies obtained, as the NDA can
be considerably affected by the noise components [31].

In Table II, we show the mean recognition rates using each
method and the best dimensionality where they are achieved.
Also, the 95% confidence intervals are shown. The best per-
forming algorithm is marked with the “x” for each data set, and
the algorithms whose confidence intervals overlap with the best

performing method are marked in bold face. Ranks have been
assigned to each method, where rank 1 is the best performing
method, and rank 7 is the worst. The last column of the table
shows the average ranks along the three data sets of the different
feature extraction algorithms.

The proposed MBDP method obtains the best average rank,
being the best method in two out of the three data sets. More-
over, the three supervised dimensionality reduction techniques
(MBDP, KLDA, and LDA) seem to outperform the rest of the
feature extraction techniques. To statistically test the stability
of these results, the nonparametric Friedman test variant of the
analysis of variance (ANOVA) has been performed. For more
details on the use of appropriate statistical test on classification
performances the reader can see [58]. Briefly, the Friedman tests
goal is to reject the null hypothesis that advocates that the algo-
rithms are equivalent, and the performance differences observed
can be considered merely random. First, the Friedman statistic
is computed as

» 12N ) k+1)

=D ZR = (1n
_ (N_l)XF

FENGE-D - 2

where N is the number of data sets, k is the number of classifi-
cation methods, and I; is the average rank of the algorithm j.
The FF is distributed according to an F'-distribution with & — 1
and (k — 1)(V — 1) degrees of freedom. According to a pre-
fixed confidence p-value, a critical value of the F'r statistic can
be found on the F'-distribution table. In our case, the tabulated
critical value for F(k—1,(K—1,N—1)) = F(6,12) = 4.821
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TABLE III
RESULTS OF THE BONFERRONI-DUNN Post Hoc STATISTICAL TEST
PERFORMED. THE MBDP ALGORITHM IS USED AS A CONTROL
CLASSIFIER FOR COMPARISON. THE TERM SE STANDS

FOR +/(k(k +1)/6N)
i | Algorithm | z = (Ro — R;)/SE) | p-value | a/(k —1)
1 NDA 3.2127 0.0013 0.0083
2 NN 2.6458 0.0081 0.0100
3 PCA 1.8898 0.0588 0.0125
4 KPCA 1.7008 0.0890 0.0167
5 FLD 0.5669 0.5708 0.0250
6 KLDA 0.5669 0.5708 0.0500
TABLE IV

RESULTS OF THE BONFERRONI-DUNN Post Hoc STATISTICAL TEST PERFORMED
USING THE NN CLASSIFICATION ON THE ORIGINAL SPACE AS A CONTROL
METHOD FOR COMPARISON

i | Algorithm | z = (Ro — R;)/SE) | p-value | a/(k —1)
1 MBDP 2.6458 0.0081 0.0083
2 FLD 2.0788 0.0376 0.0100
3 KLDA 2.0788 0.0376 0.0125
4 KPCA 0.9449 0.3447 0.0167
5 PCA 0.7559 0.4497 0.0250
6 NDA 0.5669 0.5708 0.0500

is lower than the Fr = 29.5 obtained, therefore we reject the
null hypothesis, reporting significance on the results.

Moreover, once the statistical significance of the results is
assured, we seek a statistical evidence to check whether an al-
gorithm outperforms the rest. For this propose, a post hoc sig-
nificance test has been performed, using the proposed MBDP
method as a control classifier. To compare each classifier with
the MBDP, the z-statistic has been used

__(BRj—R))

(%)

which is normally distributed. The ordered p-values
p1 < py < < pg—1 of each comparison have been
computed in Table III, following the Bonferroni—-Dunn proce-
dure, and the critical values for the &« = 0.05 confidence are
also shown. Only the p-values under the a/(k — ¢) critical
threshold can be rejected, assuring statistical significance. The
reader can find more details on this procedure in [58]. Using
this restrictive statistic, we can assure that MBDP improves the
performance of the NN on the original space and the subspace
defined by NDA. No more inferences can performed, being
that the post hoc test is not precise enough to detect other
nonoverlapping significant differences among other methods.

Nevertheless, additional information can be extracted from
these results. The main goal of any feature extraction algorithm
is to improve the classification results of the posterior classi-
fier by reducing the complexity of the input data. We propose
the hypothesis that the six methods used in the test improve the
NN rule directly on the original space, and test its significance
by performing a second post hoc test following the same Bon-
ferroni—-Dunn procedure, using the NN on the original space as
a control method. Table IV summarizes the p-values obtained.
The hypothesis can be assured only in the first case (using the
MBDP proposed).

(13)
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Fig. 5 shows the mean accuracies as a function of the number
of extracted features. Notice that different subspace dimension-
ality is plotted depending on the method, and the classic dis-
criminant approaches only obtain dimensionality subspaces of
up to 49 (39 in the case of the ORL data set). Nevertheless,
our boosted feature extraction approach is not upper bounded.
Moreover, to facilitate a better interpretation of the results, as a
horizontal line, we plot the accuracy of the NN classifier applied
directly in the original space.

In the case of the FRGC data set, the proposed MBDP fea-
ture extraction method outperforms the other techniques from
the 65th feature extracted. As it was expected, our method fares
worse than FLD in the lower dimensional subspaces, given that
the first features extracted are a direct application of FLD on a
binary relabeled data set. Notice also that the performance of the
nonsupervised PCA technique is asymptotically close to the one
obtained directly using the NN classifier on the original space
as the number of extracted features increases. Nevertheless, our
approach significantly increases the performance as the dimen-
sionality increases, considerably improving the NN on the orig-
inal space. This suggests the possibility of the usefulness of our
approach in dimensionality augmentation problems.

Similarly, in the AR face case, the proposed method gradu-
ally outperforms the other feature extraction techniques, being
the best choice as the number of extracted features increases.
Notice that accuracy of the shared method using 100 features is
10% higher than directly applying the NN to the original space
(using 1221 features). Nevertheless, the accuracy of the shared
approach slightly increases as more features are extracted. A
second experiment has been performed extracting up to 500 fea-
tures [Fig. 5(d)], obtaining an accuracy of 0.87 (2% higher).

C. Shared Projections and Class Sampling

The main algorithm proposed in this paper can be computa-
tionally demanding in the training phase, while the testing phase
has exactly the same computational cost as any other linear fea-
ture extraction method. The most costly step is the computation
of the best class grouping, given that an O( K ?) combinations of
groupings must be analyzed to find the best projection. In prob-
lems where the number of classes is large (K > 1000), it is
computationally unfeasible to obtain the linear projection in a
reasonably bounded amount of time. To solve this problem we
propose a modification on the algorithm. The pool of classes
available in step 3a) in the general algorithm from Fig. 3 has
been limited to a fixed number. At each iteration, we sample
K’ classes from the original K, and the possible groupings are
selected according to these K’ classes. At each boosting step,
the sampled class pool changes, given that the sampling is per-
formed according to the distribution of the normalized weight
of each class on the boosting process. The experiments shown
in this paper have been performed with class sampling using
K’ = 10. The same experiment was repeated using the original
50 classes, and the mean accuracies obtained were only 1.7%
better.

This modification allows to compute the projection matrix in
an approximately constant computational time, independently
of the number of classes.
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Fig. 5. Accuracy in the FRGC, AR face, and ORL data sets as a function of the dimensionality reduction of the PCA, NDA, FLD, KPCA, KLDA, and MBDP
and the horizontal line that shows the performance of the NN using the original space. In (d) the MBDP has been applied to the AR Fface data base extracting up
to 500 features. (a) FRGC data set. (b) ORL data set. (c) AR face data set. (d) MBDP on the AR face data set using up to 500 features.

V. CONCLUSION

In this paper, we have introduced a new feature extraction al-
gorithm based on applying a modified Adaboost algorithm. The
method performs no specific assumptions on the data to clas-
sify, and it incorporates the MTL theory extending the previous
work to deal with multiclass face recognition problems. The al-
gorithm has been applied to a problem of face recognition from
small sample size sets outperforming the classic feature extrac-
tion methods based on an analytic discriminant criterion.

The method proposed in this paper obtains an interesting per-
formance in high-dimensional databases, validated using non-
parametric statistical tests. This tests show significance in ap-
plying the feature extraction method to reduce the complexity
of the original space using the NN classifier. Nevertheless, some
future works can be done. The diversity on the projection selec-
tion in the main step of the algorithm depends on the grouping
performed, and it seems the key part of the algorithm. The re-

sults as a function of the extracted features indicate that the ac-
curacy of the method increases slower than classic discriminant
analysis techniques in the first steps of the algorithm, obtaining
a constant grow in the later steps. This fact is related to the di-
versity of the projections obtained on the first iterations that are
only guided for the Adaboost weights. Some explicit diversity
measure could be applied in order to speed up the increase on
the accuracy and to avoid possible redundant projections.

We also have seen that most of the feature extraction tech-
niques based on eigendecomposition obtain a performance that
is asymptotically close to the NN on the original space. How-
ever, the accuracy of the proposed method increases as more
features are added. This facts suggests the study of dimension-
ality augmentation instead of the reduction using the boosted
approach.

The main drawback of the algorithm is the computational cost
in the training phase. We have suggested a modification to re-
duce this cost by performing a sampling on the class pool, being
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that the final accuracies are only slightly reduced. Nevertheless,
its use in testing time is exactly the same as any other linear fea-
ture extraction method.

Also, the MTL model is not completely developed for the face
classification task. Other independent tasks could be added to
the learning process in order to share more information between
the different “subproblems.” For example, a task dealing with
gender or race recognition would help the recognition problem.
The addition of face classification subtasks different from direct
person recognition is the most immediate future research line.
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