

Screening Chest X-rays for Covid-19 with Deep
Learning

Eric Robert Gill

Computer Engineering

Artificial Intelligence

Professor responsable de l’assignatura: Joan Arnedo Moreno

Consultor: Joan M. Nuñez Do Rio

13/06/21

Aquesta obra està subjecta a una llicència de
Reconeixement-NoComercial-
SenseObraDerivada 3.0 Espanya de Creative
Commons

http://creativecommons.org/licenses/by-nc-nd/3.0/es/
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
http://creativecommons.org/licenses/by-nc-nd/3.0/es/
http://creativecommons.org/licenses/by-nc-nd/3.0/es/

i

 FITXA DEL TREBALL FINAL

Títol del treball:
Screening Chest X-rays for Covid-19 with
Deep Learning

Nom de l’autor: Eric Robert Gill

Nom del consultor/a: Joan M. Nuñez Do Rio

Nom del PRA: Joan Arnedo Moreno

Data de lliurament
(mm/aaaa):

06/2021

Titulació o programa: Enginyera Informàtica

Àrea del Treball Final: Intel·ligència Artificial

Idioma del treball: Anglès

Paraules clau
COVID-19, X-rays, Convolutional Neural
Network

 Resum del Treball (màxim 250 paraules): Amb la finalitat, context
d’aplicació, metodologia, resultats i conclusions del treball

El nou Coronavirus ha provocat una pandèmia global amb alts costos
econòmics i socials. La naturalesa emergent de la malaltia associada del
Coronavirus, Covid-19, ha trobat moltes nacions mal preparades per controlar
la seva propagació, resultant en altes taxes d'infecció i pressió en els sistemes
de salut.

La detecció ràpida i la subsegüent quarantena de persones infectades és la
mesura més eficaç contra la propagació del virus amb l'excepció de la
vacunació. Generalment, el diagnòstic es porta a terme amb tests de Polímer
invertit o antígens que poden ser cars i no sempre fàcilment disponibles.
Aquests mètodes requereixen personal especialitzat i contacte físic amb el
pacient, així com temps per processar els resultats.

Les màquines de raigs X estan disponibles en hospitals arreu del món en
països de gairebé totes les situacions econòmiques. La radiografia s'ha
utilitzat en molts casos d'ús de cribatge i diagnòstic i hi ha una investigació
àmplia sobre la seva aplicabilitat a la pandèmia de Coronavirus.

Aquest projecte investiga la viabilitat de l'ús de Xarxes Neurals Convolucionals
per detector símptomes de Covid-19 en imatges radiogràfiques de pulmons.
Els rajos X són massivament disponibles, econòmics i no invasius. Els
resultats mostren que les Xarxes Neurals Convolucionals poden classificar les
imatges de raigs X en classes de Covid, Normal i Pneumonia Viral amb alts
nivells de Precisió i Sensitivitat.

ii

 Abstract (in English, 250 words or less):

The novel Coronavirus has caused a global pandemic with high economic and

social costs. The emergent nature of the Coronavirus’ associated disease,

Covid-19, found many nations ill-prepared to control its spread, leading to high

rates of infection and strain on health systems.

Rapid detection and the subsequent quarantine of infected people is the most

effective measure against the spread of the virus outside of vaccination.

Diagnosis is generally carried out by Reverse Polymer or antigens tests which

can be expensive and not always readily available. These methods require

specialised staff and physical contact with the patient, as well as time to

process results.

X-ray machines are available in hospitals across the world in countries of

nearly all economic situations. Radiography has been used in many screening

and diagnostic use cases and there is wide-spread investigation into its

applicability in the Coronavirus pandemic.

This project investigates the viability of employing Convolutional Neural

Networks to screen radiographic images of lungs for symptoms of Covid-19.

X-rays are massively available, economical, and non-invasive. The results

show that Convolutional Neural Networks can classify x-ray images into Covid,

Normal and Viral Pneumonia classes with high levels of Precision and Recall.

iii

Index

1. – Introduction ... 1

1.1 - Context and Justification of the Project ... 1

1.2 - Project Objectives .. 2

1.2.1 - General Objectives ... 2

1.2.2 - Specific Objectives ... 2

1.3 - Focus and Method Followed.. 3

1.4 - Planning the Project ... 4

1.5 - Summary of the products obtained ... 5

1.6 - Brief descriptions of the other chapters in the bachelor’s thesis 5

2. – Medical Context .. 7

2.1 – Covid-19 .. 7

2.2 – Imaging in Diagnosis of Lung Problems ... 7

2.3 – Machine Learning in Diagnosis ... 8

2.4 – Covid-19 detection with Deep Learning in Chest X-rays 9

3. – Machine Learning ... 10

3.1 – Introduction .. 10

3.2 – Supervised Learning ... 11

3.2.1 – Loss function .. 11

3.2.2 - Overfitting .. 11

3.2.3 – Validation techniques ... 11

3.3 – Artificial Neural Networks .. 13

3.3.1 – The Multilayer Perceptron ... 13

3.3.2 – Activation Functions ... 14

3.3.3 – Backpropagation .. 15

3.3.4 – Hyperparameters ... 15

3.4 – Overview of Convolutional Neural Networks .. 16

3.5 – The Layers of a CNN .. 17

3.5.1 - The Input Layer ... 17

3.5.2 - The Convolutional Layer .. 17

3.5.3 - The Pooling Layer... 18

3.5.4 - The Fully Connected Layer .. 19

3.6 – Techniques to Improve CNN performance ... 20

3.6.1 - Introduction ... 20

iv

3.6.2 – Data Augmentation .. 20

3.6.3 – Batch Normalization ... 20

3.6.4 – L2 Regularization ... 21

3.6.5 – Dropout... 21

3.6.6 – Transfer Learning and ResNet18 .. 22

3.7 – Metrics to Evaluate Performance.. 24

4. – Methodology ... 26

4.1 – The data .. 26

4.1.1 - COVID-19 Class ... 27

4.1.2 – Normal Class.. 27

4.1.3 – Viral Pneumonia Class .. 27

4.1.4 – Further Details ... 28

4.1.5 – Data exploration ... 28

4.2 – Training, Validation and Testing Set Preparation 29

4.3. – Experiments.. 31

4.3.1 – Experiment 1 Architecture and Configuration 31

4.3.2 – Experiment 2 Architecture and Configuration 33

4.3.3 – Experiment 3 Architecture and Configuration 34

4.3.4 – Experiment 4 Architecture and Configuration 36

4.3.5 – Experiment 5 Architecture and Configuration 37

4.3.6 – Experiment 6 Architecture and Configuration 39

5. – Results .. 40

5.1 – Introduction .. 40

5.2 – Experiment 1 ... 40

5.2.1 – Training .. 40

5.2.2 – Evaluation .. 41

5.3 – Experiment 2 ... 43

5.3.1 – Training .. 43

5.3.2 – Evaluation .. 44

5.4 – Experiment 3 ... 45

5.4.1 – Training .. 45

5.4.2 – Evaluation .. 46

5.5 – Experiment 4 ... 47

5.5.1 – Training .. 47

5.5.2 – Evaluation .. 48

v

5.6 – Experiment 5 ... 49

5.6.1 – Training .. 49

5.6.2 – Evaluation .. 50

5.7 – Experiment 6 ... 51

5.7.1 – Training .. 51

5.7.2 – Evaluation .. 52

5.8 – Metrics by Experiment... 54

6. – Discussion .. 56

7. – Conclusions .. 58

8. – Glossary .. 59

9. – Bibliography .. 62

vi

Table of Figures

Figure 1: COVID-19 Impact on Markets (bbc.com/news). 1

Figure 2: Gantt Chart of Project Plan .. 4

Figure 3: K-folds [34]. .. 12

Figure 4: LOOCV [34]. ... 12

Figure 5: Random Subsampling [34]. ... 13

Figure 6: Sigmoid and ReLU [35]. ... 14

Figure 7: The layers of CNN and their functions [37]. .. 16

Figure 8: ANN vs CNN [38]. .. 17

Figure 9: Filtering in Convolutional Layer [39]. ... 18

Figure 10: Output volume [38]... 18

Figure 11: MAX Pooling [38]. .. 19

Figure 12: Fully Connected Layer with Soft-max [40]. 19

Figure 13: Dropout [42]. .. 22

Figure 14: A Residual Block [45]. .. 23

Figure 15: Identity Block [46]... 23

Figure 16: Conv Block [46]. ... 23

Figure 17: Classes of images.. 29

Figure 18: Training, Validation and Testing Set Distribution. 30

Figure 19: Experiment 1 Losses. .. 40

Figure 20: Experiment 1 Accuracies. .. 41

Figure 21: Experiment 1 Confusion Matrix. .. 41

Figure 22: Experiment 2 Losses. .. 43

Figure 23: Experiment Accuracies. ... 43

Figure 24: Experiment 2 Confusion Matrix. .. 44

Figure 25: Experiment 3 Losses. .. 45

Figure 26: Experiment 3 Accuracies. .. 45

Figure 27: Experiment 3 Confusion Matrix. .. 46

Figure 28: Experiment 4 Losses. .. 47

Figure 29: Experiment 4 Accuracies. .. 47

Figure 30: Experiment 4 Confusion Matrix. .. 48

Figure 31: Experiment 5 Losses. .. 49

/Users/ericgill/Documents/UOC/TFG-pacs/Gill_Eric_TFG.docx#_Toc74593115
/Users/ericgill/Documents/UOC/TFG-pacs/Gill_Eric_TFG.docx#_Toc74593116

vii

Figure 32: Experiment 5 Accuracies. .. 50

Figure 33: Experiment 5 Confusion Matrix. .. 50

Figure 34: Experiment 6 Losses. .. 51

Figure 35: Experiment 6 Accuracies. .. 52

Figure 36: Experiment 6 Confusion Matrix. .. 53

Figure 37: Metrics by Experiment. .. 54

/Users/ericgill/Documents/UOC/TFG-pacs/Gill_Eric_TFG.docx#_Toc74593151

viii

Table of tables

Table 1: Project Timeline Table. ... 4

Table 2: Comparison of imaging techniques in diagnosis [19] 8

Table 3: Gradient Descent Variants. ... 15

Table 4: Dataset dimensions... 26

Table 5: COVID-19 Class Images Sources. ... 27

Table 6: Normal Class Image Sources. .. 27

Table 7: Viral Pneumonia Class. ... 27

Table 8: Set dimensions. ... 29

Table 9: Dimensions of Subsets. .. 30

Table 10: Experiment 1 Architecture .. 31

Table 11: Experiment 1 Configuration .. 32

Table 12: Experiment 2 Configuration .. 33

Table 13: Experiment 3 Architecture .. 34

Table 14: Experiment 3 Configuration .. 35

Table 15: Experiment 4 Configuration .. 36

Table 16: Experiment 5 Architecture .. 37

Table 17: Experiment 5 Configuration .. 38

Table 18: Experiment 6 Configuration .. 39

Table 19: Experiment 1 Classification Report .. 42

Table 20: Experiment 2 Classification Report .. 44

Table 21: Experiment 3 Classification Report .. 46

Table 22: Experiment 4 Classification Report .. 48

Table 23: Experiment 5 Classification Report .. 51

Table 24: Experiment 6 Classification Report .. 53

 1

1. – Introduction

1.1 - Context and Justification of the Project
Since its identification on the 7th of January 2020, the novel Coronavirus and its
associated disease, Covid-19, have gone on to disrupt economic, logistical, and
medical systems around the globe. Although the modern world has experienced
outbreaks of viruses that have threatened the security and health of many people
(SARS, MERS, Ebola), a virus has not made such an impact since the
emergence of HIV/AIDS at the beginning of the 1980s [1] .

According to the European Centre for Disease Prevention and Control, since 31st
December 2019 and as of 2nd June 2021, a total of 167,547,945 cases of Covid-
19 (in accordance with the applied case definitions and testing strategies in the
affected countries) have been reported, including 3,467,722 deaths [2].

As a result of this rapid and extensive spread, measures of varying severity were
taken throughout the world’s nations. Many economies were negatively affected
by this, with market performance in the US severely affected [3]. In the United
Kingdom, the FTSE dropped by 14.3 percent, its worst performance in a calendar
year since the economic crisis of 2008 (31.3%) [4] as illustrated in figure 1.

Away from Britain, although an upturn in markets has been seen since the
announcement of vaccines, not all economies have recaptured pre-pandemic
levels.

Health systems have also been massively affected. Despite the best efforts of
medical professionals, the death toll is still rising. As well as the loss of human
life, Covid-19 has forcibly isolated vulnerable people who are at greater risk [5]
due to underlying conditions, propensity to lung and heart problems, and
advanced age.

Figure 1: COVID-19 Impact on Markets (bbc.com/news).

2

Many strategies used to prevent the spread of Covid-19 employed quick
detection, contact tracing and the subsequent isolation of those exposed or
infected. This project intends to lend itself to these strategies.

Diagnoses are generally carried out via PCR (Polymerase chain reaction) or
antigen rapid tests. Both have been shown to be very effective [6, 7] however,
they can be considered expensive [8].

To reduce costs and diversify methods, researchers have incorporated the use
of both radiological (x-ray) and computed tomography (CT) scans in the
identification of symptoms consistent with COVID-19 infection [9]. The available
literature indicates that applying deep learning to this question is of great interest
clinically. X-ray images have been documented as showing visual indexes
correlated with Covid-19 [10]. X-rays are appropriate for this exercise due to their
massive availability, low-cost and the speed in which they can be produced.
There has been work on using deep learning models to identify Covid-19
symptoms in radiographic images with high levels of accuracy [9, 11, 12].

In this project we will attempt to screen radiographical images of lungs for
symptoms of Covid-19 and Viral Pneumonia using Convolutional Neural
Networks (CNNs). Models employing different techniques to improve
performance (see section 3.5) will be developed and the results obtained
compared. These results will be discussed and conclusions about the viability of
using CNNs to screen patients for these illnesses will be drawn from them.

1.2 - Project Objectives

1.2.1 - General Objectives

• Use deep learning to classify images of lungs into one of three classes:
Covid-19, Normal or Viral Pneumonia.

• Investigate Convolutional Neural Networks and techniques to increase
performance and compare results with baseline results found in literature.

• Investigate feasibility of application of deep learning to this kind of medical
screening.

• Compare results obtained with results from a pretrained model using
transfer-learning to fine-tune its parameters.

1.2.2 - Specific Objectives

• Research supervised deep learning, convolutional neural networks (CNN)
and their application to medical image classification.

• Investigate state of the art deep learning frameworks and libraries such as
Keras, TensorFlow and PyTorch and decide which is the best candidate
to carry out this project.

• Use the official documentation to familiarize myself with the chosen library.

• Design and implement a basic CNN and use it as a starting point for
investigation of different techniques to improve performance such as
transfer learning and data augmentation.

3

• Employ the performance-improving techniques to extend the simple
pipeline and isolate the influence of each on the results.

• Compare results obtained using the various techniques with baseline
clinical levels available in literature.

• Use these results and comparisons as basis to discuss whether
radiography could be applicable in screening patients for COVID-19.

1.3 - Focus and Method Followed
The environment used to develop and test the various convolutional neural
networks was Google Colab [13], an online platform which provides access to
GPU and CPU powered machine learning in the Cloud. This service allows
projects to be developed in Python using virtually all the major libraries for
constructing deep learning projects.

Machine learning models are run in the popular Jupyter Notebooks program
available in Python. This format allows for programs to be developed in steps and
is particularly useful for projects of this type given that data and metrics can be
studied and displayed during development.

The library chosen to develop this project is Pytorch [14], an open-source
machine learning library based on the Torch library, used for applications such
as computer vision and natural language processing, primarily developed by
Facebook's AI Research lab. Pytorch supports GPU usage for the training of deep
learning models. This technique is common in modern machine learning as it
allows for the execution of calculations in parallel.

The dataset employed (see section 4.1) consists of three classes: Normal, Covid-
19 and Viral Pneumonia. Convolutional Neural Networks will be used to classify
these images. The evaluation of the models will consider metrics such as
Accuracy, Precision, Recall and F1 score. A full explanation of these metrics is
found in chapter 3.

4

1.4 - Planning the Project
This subject is made up of 4 continuous evaluation tests, a presentation, and a
public defence.

Title Start date End date Duration (days)

PAC0 17/02/2021 01/03/2021 9

PAC1 - Work Plan 02/03/2021 16/03/2021 11

PAC2 - Work
development Phase 1

17/03/2021 19/04/2021 24

Configure environment in
Google Colab

17/03/2021 18/03/2021 2

Analysis of Data 19/03/2021 22/03/2021 2

Research X-Ray
processing with CNN

23/03/2021 26/03/2021 4

Revision of Pytorch
documentation

27/03/2021 09/04/2021 10

Construction of first
simple CNN model

10/04/2021 15/04/2021 4

Report progress in PAC2
deliverable

16/04/2021 18/04/2021 1

PAC3 - Work
development Phase 2

20/04/2021 17/05/2021 20

Hyperparameter
investigation and tuning

20/04/2021 26/04/2021 5

Tests with Data
Augmentation

27/04/2021 29/04/2021 3

Tests with Batch
Normalization

30/04/2021 01/05/2021 1

Tests with Dropout 02/05/2021 03/05/2021 1

Use of pre-trained model
to assess Transfer-
learning

04/05/2021 12/05/2021 7

Report progress in PAC3
Deliverable

13/05/2021 17/05/2021 3

PAC 4 - Redaction of
Bachelor's Thesis

18/05/2021 08/06/2021 16

Complete First Draft 18/05/2021 26/05/2021 7

Revise and Second Draft 27/05/2021 02/06/2021 5

Final Version 03/06/2021 08/06/2021 4

Record Presentation 09/06/2021 13/06/2021 3

Public Defence 16/06/2021 23/06/2021 6

Table 1: Project Timeline Table.

5

The distribution of tasks can be seen in figure 2.

Figure 2: Gannt Diagram.

1.5 - Summary of the products obtained
The product obtained by this project will be an investigation and exploration of
solutions to the three class (Covid-19, Normal and Pneumonia) classification
problem.

A full explanation of the methodology and techniques applied, along with a
comparative study of their results. A pre-trained neural network will be fine-tuned
on the x-ray images to compare this project’s results with the state of the art.

1.6 - Brief descriptions of the other chapters in the bachelor’s
thesis
The second chapter of this bachelor’s thesis will give the medical context of the
project. It will cover the use of medical imaging in diagnosis, the use of deep-
learning in concert with medical imagery and a brief examination of the state of
the art using deep-learning and X-rays to diagnose and screen for covid-19.

The third chapter is a general explanation of machine learning with a focus on
CNNs. This chapter explains CNNs in terms of the techniques employed in this
project and serves to contextualise why this specific type of machine learning
techniques were chosen.

The fourth chapter outlines the methodology employed. It features an explanation
and exploration of the dataset, the different architectures and configurations
employed, the techniques used to improve performance and the metrics used to
evaluate this same performance.

The fifth chapter presents the results obtained by the various models constructed
and the pre-trained model used. This chapter compares the models in terms of
the metrics explained in the previous chapter exposing the strengths and
weaknesses of the individual models.

6

Chapter six is a discussion of the results obtained. It will compare the results in
the context of the techniques employed in each experiment, examining the
influence of each, and referencing similar results in available literature where
applicable.

The final chapter contains the conclusions exposed. It considers the results
obtained in this study along with the baseline clinical results available in literature
to determine if radiography could be a useful tool in the medical screening Covid-
19 patients.

The document ends with a glossary and bibliography.

7

2. – Medical Context

2.1 – Covid-19
The effects of Covid-19 were first detected as pneumonia of an unknown source
in Wuhan City, Hubei Province of China in December 2019 [15]. It was rapidly
shown to be caused by a novel coronavirus that is structurally related to the virus
that causes severe acute respiratory syndrome (SARS) [16].

As early into the crisis as May 2020, Covid-19 was shown to be highly
transmissible. It was shown that, in cities with similar transmission conditions to
Wuhan, the Coronavirus had a 50% chance of establishing itself within the
population once four independent cases had been introduced [17].

Detection of Covid-19 is usually carried via reverse PCR and antigens tests that,
while effective [6, 7], can be expensive [8]. These characteristics have led to
investigation into other forms of diagnosis of Covid-19 [18].

2.2 – Imaging in Diagnosis of Lung Problems
Imaging techniques such chest radiographies (CXR), computed tomography (CT)
scans and magnetic resonance imaging (MRI) can all be used in the diagnosis of
issues such as pneumonia, bronchial carcinoma, pulmonary hypertension, cystic
fibrosis, and pulmonary fibrosis [19].

Each technique has advantages and disadvantages in terms of precision,
availability and exposure to radiation as can be seen in table 2.

8

 CXR CT MRI

Advantages Widely available.

Exploratory first
study.

High spatial

Resolution.

High sensitivity.

High speed

workflow.

Intermediate spatial
resolution.

High contrast resolution.

High temporal resolution.

No radiation exposure.

Disadvantages Low sensitivity.

Low specificity.

Allergy to contrast agent.

Contraindications:
impaired renal function,
thyroid function.

Availability.

Study acquisition time.

Allergy to contrast agent.

Contraindications:
implants.

Indications Pneumonia,
Bronchial
carcinoma
(detection),

Pulmonary
hypertension,

COPD

Cystic fibrosis,

Fibrosis.

Complicated pneumonia,
pneumonia in at-risk
patients,

Bronchial carcinoma
(staging),

Acute pulmonary
embolism,

Pulmonary hypertension,

COPD,

Fibrosis.

Bronchial carcinoma,

Pulmonary hypertension,

Cystic fibrosis.

Remuneration EBM
points GöA rate
(basic)

430

€26.23

1865; + 645 with contrast
agent

€134.06; with contrast
agent €151.55 +
additional consumables

3430; + 1260 with
contrast agent

€250.64; with contrast
agent €326.42

+ additional consumables

Dose [20] 0.1 mSv Low-dose-CT 0.2–1 mSv
Routine now 1–5 mSv
Routine 10 years ago 10
mSv

None

Number Performed
(Germany) [21, 22]

15 million/year

Total estimated 2
million/year

Inpatient 830000/year

Inpatient 12000/year

Table 2: Comparison of imaging techniques in diagnosis [19].

CXR has a wide range of applications, is cheaper than the other options, delivers
a lower dose of radiation and is carried out far more frequently. CXR’s low cost
has led to it being studied as a detection tool for acute respiratory infection in
children in the developing world [23].

2.3 – Machine Learning in Diagnosis

The utilization of machine learning (ML) in medical diagnosis is common. It has
been applied in the diagnosis and treatment of neurodegenerative diseases, the
prediction and prognosis of cancer, research into diabetes and a host of other
medical uses [24–27].

The application of ML, specifically deep learning (DL), to classifying medical
images is also well researched [28]. Studies have made use of DL techniques in
areas as diverse as neuro, retinal, pulmonary, digital pathology, breast, cardiac,
abdominal, and musculoskeletal investigation/diagnosis [29].

Among these imaging techniques, deep learning in the form of CNN have been
shown to be effective in the detection of pneumonia in CXR images [30, 31]. This
success in pneumonia detection indicates that CNN could be used to detect the
effects of the coronavirus in radiographies.[9, 10, 32]

9

2.4 – Covid-19 detection with Deep Learning in Chest X-rays
The type of pneumonia caused by Covid-19 has been shown to manifest similar
features to other types of viral pneumonia in radiographic images [9, 10, 32],
which has led researchers to apply DL to CXR to detect and screen Covid-19.

Some of the leading studies have achieved admirable results, Kedia et al [11]
achieved an overall accuracy of 98.28% on classification of Covid, Pneumonia
and Normal images with F1 scores of 0.99, 0.98 and 0.98 respectively.

Due to the Coronavirus novel status, dataset size has been limited. Many papers
focus on mitigating the issues that small datasets imply. Transfer learning and
data augmentation are used in papers by Chowdhury et al [9] and Minaee et al
[12] to achieve sensitivities of up to 97.94 and 98% respectively.

This project will investigate the same three-class classification problem as Kedia
et al. Here we start from a base model and progressively apply techniques to
improve performance to contribute to this body of work. In parallel with work by
Chowdhury et al and Minaee et al, this project evaluates the effectiveness of data
augmentation and transfer learning to mitigate the technical limitations of small
datasets.

10

3. – Machine Learning

3.1 – Introduction
The first formal study of Artificial Intelligence (AI) was carried out by ten scientists
in Dartmouth College in Hanover, New Hampshire, in 1956 [33]. In the proposal
for this summer project, themes as wide-ranging as natural language processing,
neural networks, the theory of computation, abstraction, and creativity were
mentioned.

Machine Learning (ML) is a subset of AI, it is concerned with a computer system’s
ability to acquire domain knowledge. More concretely, ML is the study of
algorithms’ ability to improve automatically through experience and the use of
data. The aim of machine learning is that a computer system can learn from data,
identify patterns, and make decisions with minimal human intervention.

The way computers can be made to act without receiving explicit instructions
depends on what kind of problem is to be solved. The four main machine learning
techniques are Supervised Learning, Unsupervised Learning, Semi-Supervised
Learning and Reinforcement Learning. This project employs supervised learning
and thus will be the focus of our explanation, but a brief overview of the other
techniques is included for context.

Unsupervised Learning

Unsupervised learning is a type of machine learning in which the system is
expected to discover patterns and information that were previously unknown.
Clustering is one such technique, it is focused on finding a structure or pattern in
uncategorized data.

Data used in unsupervised learning is known as unlabelled data as we do not
provide information a priori to the computer system about the type or category of
the data. It is the responsibility of the system to categorize that data and group
samples together based on correlations it detects. Unlabelled data is inexpensive
to assemble, and unsupervised learning algorithms can be useful in identifying
correlations in high-dimensional data.

Semi-supervised Learning

Semi-supervised learning is a technique that combines concepts from
unsupervised and supervised learning. A small amount of labelled data (data
whose category of type is pre-defined, usually manually by humans) is combined
with a large amount of unlabelled data.

The labelled data serves as a reference point in the grouping of the unlabelled
data. The cost of manually categorizing large amounts of data may render
constructing large, labelled datasets unfeasible. Semi-supervised learning
intends to mitigate this problem by leveraging small amounts of labelled data to
categorize large amounts of unlabelled data.

Semi-supervised learning may be transductive learning or inductive learning. The
goal of transductive learning is to infer the labels for the provided unlabelled data
using the labelled data as reference. The goal of inductive learning is to infer the
correct mapping of unlabelled data to the labels provided.

11

Reinforcement Learning

Reinforcement learning is the area of machine learning which studies how
intelligent agents should take actions in an environment to maximise reward. The
purpose of reinforcement learning is for the agent to learn an optimal, or nearly
optimal, policy regarding decision making that maximizes a reward function or
other type of human-designed reinforcement signal that accumulates from the
immediate rewards.

There are many approaches which define the reward function, but it can generally
be understood as a function which will return higher values when an action that
is more favourable to the policy of the system is taken. As the system explores
and compares possible actions, it should identify those which will provide the
highest reward and learn to follow these actions.

3.2 – Supervised Learning

Supervised learning works on the basis that an algorithm can be trained to
perform more accurately by being fed labelled data and continuously adjusting its
parameters according to its performance on each sample. This technique is used
for classification and regression tasks.

3.2.1 – Loss function

In supervised learning for classification, an algorithm is trained using labelled
data. Given a sample of data, the algorithm must predict its class. A loss function
that quantifies the difference between the prediction and the actual label is used
to express the quality of the prediction. The parameters of the algorithm are then
adjusted to minimise this loss function. As this process is repeated, the idea is
that as the loss function is reduced, the quality of the predictions improves.

3.2.2 - Overfitting

One of the great challenges of supervised learning is to train algorithms in such
a way that they generalise well to new data. An algorithm that performs well on
the training data but poorly on the new, unseen data is said to have overfit: it has
learned the characteristics of the training data and not the shared characteristics
of further domain data. We will study methods to identify and avoid overfitting in
the following sections.

To properly assess classification algorithms, it is not acceptable to simply drive
down the loss function on training data and assume that the model generalises
well to data that it has never seen. A subset of data must be withheld during
training so that the model can be evaluated rigorously. Techniques defining how
data is withheld and a model evaluated are known as validation techniques.

3.2.3 – Validation techniques

There are several techniques to calculate the loss function of a supervised
learning algorithm so its parameters can be adjusted. Each technique attempts
to evaluate the quality of the model on data that has not been used to train the
model to avoid overfitting. Some of the main methods are explained below:

12

The hold-out method

Data is split into three subsets: training, validation, and testing. The training set
is the largest and it is used, as the name suggests, to train the algorithm. The
format of the training data is an input-output pair. A loss function is calculated for
samples in this set by feeding the input sample into the algorithm and comparing
the algorithm’s output with the output sample. The parameters of the model are
subsequently adjusted to minimize the loss function.

The validation data has the same input-output format and is data that has not
been included in the training set and is, therefore, unseen by the algorithm. A loss
function is also calculated on the validation set, but it is not used to adjust the
parameters of the model, it is strictly for evaluation purposes during training.

The test set is unseen labelled data that is used to evaluate the adjustment of the
hyperparameters carried out during the training phase. Once training is finished,
the model is evaluated using the test set.

K-Fold Cross Validation

In this technique, k-1 subsections (folds) are used for training, and one for testing
as seen in the figure 3.

Figure 3: K-folds [34].

The average of the error rate of each iteration is taken to calculate the overall
average.

Leave-One-Out Cross-Validation (LOOCV)

In this method, every data-item except one sample is used for training, the left-
out record is then used for testing. This technique uses every sample for training
and evaluation and takes the average error of each iteration as the final overall
error. A depiction of this technique can be seen in figure 4.

Figure 4: LOOCV [34].

13

Random Subsampling

In this technique, a randomly selected subset of data is selected to make up the
test set in each iteration. An average error is taken to calculate an overall score
at the end of training. This technique is depicted in figure 5.

Figure 5: Random Subsampling [34].

3.3 – Artificial Neural Networks

3.3.1 – The Multilayer Perceptron

To understand the concept of the multi-layer perceptron (MLP), we must first
establish what a perceptron is and what limitations it has. A perceptron is an
algorithm for supervised learning of binary classifiers. A binary classifier is a
learning algorithm called a threshold function; a function that maps X (a matrix)
to an output value f(x) that is a binary value.

𝑓(𝑥) = {
1 𝑖𝑓 𝑤 · 𝑥 + 𝑏 > 0

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Where w is a weight, x is an element of the vector and b is the bias. The bias
defines the distance between the function the origin. As w·x is the dot product, if
b is negative, the sum with weight of all inputs must result in a positive value
greater than |b| to exceed threshold 0. In terms of dimensional space, the bias
alters the position of the decision boundary.

The limitation of perceptrons is that they can solve only linearly separable
problems. A classic example of this limitation is the impossibility of modelling
XOR with a single perceptron. Both the AND and OR functions are basic Boolean
operations, and linearly separable. XOR on the other hand is formed of three
basic Boolean operations:

(p v q) ^ ¬(p ^ q)

This behaviour cannot not be modelled by a single perceptron and must be
handled by a multi-layer perceptron. Multi-layer perceptrons have their roots in
the need to add perceptual layers to solve more complex problems.

A multi-layer perceptron layer consists of at least three layers; the input layer, the
hidden layer, the output layer, and the connections between perceptrons (also
called units or neurons).

An MLP consisting of at least these three layers is an Artificial Neural Network
(ANN). The term deep learning (DL) comes from using many layers to extract
features from data. A standard ANN is made of fully connected layers. That is,
every node in a layer is connected to each in the next and previous layers.

14

The behaviour of an ANN can be generally said to be the following:

• Input units receive values from the outside, and will be activated (i.e.,
produce a certain value in the output) or not based on the input received.

• The outputs of the input layer are, in turn, the inputs of the hidden layer,
these units receive a set of inputs to which they will react. To do this, each
unit of the hidden layer has a vector of weights, a value for each incoming
connection, which combines with the corresponding signals and causes
the output of each hidden unit to be activated or not.

• Finally, the output layer units receive the signals from the hidden layer,
perform an operation with these signals and their own weight vectors,
calculating their own output, which will be the result of the network.

As we have seen in the simple perceptron, the output z is calculated from the
inputs X with the weights W (in the input and hidden inputs) as:

𝑧 = 𝑊𝑇𝑋 + 𝑏

As we have mentioned, if b is negative, the output z will be positive only if the
result of the dot product between WTX is greater than the absolute value of b.
This value is fed forward into the next layer through an activation function.

3.3.2 – Activation Functions

The activation function serves to determine the output of a model as well as
adding non-linearity into the ANN. There are many types of functions, choosing
which to use depends on the specific use case. Two common activations are
ReLU and Sigmoid, as seen in figure 6.

Figure 6: Sigmoid and ReLU [35].

In terms of the output layer, the activation function depends on the desired output
type. For example, if this is a real value, for example in a regression, the output
is linear. In a case of binary classification, the Sigmoid function. For multiclass
values, a function known as the Softmax function is used. Softmax on the other
hand, assigns decimal probabilities to each class in a multi-class problem. Those
decimal probabilities must add up to 1.

15

3.3.3 – Backpropagation

ANN parameter adjustment in supervised learning situations is done via
backpropagation. For every node, W and b are initialised with random values
between 0 and 1. Training examples are then fed into the ANN and the result
generated compared with the desired result. We express the difference between
the result obtained and the expected result through a loss function C. The goal of
training is to reduce the values of this function.

This reduction is obtained by using the method of gradient descent, calculating
the loss gradient with respect to the weights and output biases:

𝑤ℎ𝑒𝑟𝑒 𝑊̂ = {𝑊, 𝑏}

Calculating this derivative, we find the optimal 𝑊̂ to reduce C. However, if we
apply this only to the output layer, this only affects the output unit(s) and we have
not modified the weight or bias of any hidden layer. This is where the process of
backpropagation is applied: once the output layer is adjusted, the hidden layer is
set by the same procedure, and so the layers are adjusted from the output to the
input.

There are three variants of gradient descent as shown in table 3.

 Batch Gradient
Descent

Stochastic
gradient descent

Mini-batch
gradient descent

Technique Use all training
samples at the
same time

Use samples one
by one

Executes samples
in blocks

Advantages Good results Fast Reduces variance

Disadvantages Computationally
expensive

High variance High computational
cost than
Stochastic gradient
descent

Table 3: Gradient Descent Variants.

3.3.4 – Hyperparameters

The parameters of an ANN are the weights and the biases. Apart from these
parameters, however, there are further configurations we can make to the models
that will affect its behaviour.

Some examples of algorithm hyperparameters are:

• Learning Rate: When applying gradient descent, the parameters (weights
and biases) are adjusted according to the cost function. The learning rate

16

defines how much these settings are adjusted. If it's too large we can
overshoot the local minimum and if it's too small, it can take a long time to
reach.

• Momentum: Momentum serves to indicate the direction of the next step
(of the descent) to avoid oscillations.

• Number of epochs: The number of times the training data is inserted into
the network.

• Batch size: The number of examples the algorithm should study before
setting the parameters.

3.4 – Overview of Convolutional Neural Networks
Convolutional Neural Networks (CNN) are a type of Artificial Neural Network
(ANN) designed for the classification of images. The first proposal for a neural
network of this type was made by Dr. Kunihiko Fukushima in 1980. In the same
paper, Dr Fukushima claimed that, once trained, the network has a structure like
the hierarchy model of the visual nervous system proposed by Hubel and Wiesel
[36]. According to Hubel and Wiesel’s model, individual neurons respond to
stimuli only in a restricted region of the visual field known as the Receptive Field.
A collection of such fields overlap to cover the entire visual area. As we will see,
this structure is emulated by CNNs.

Like the ANN seen earlier, a CNN is made up of three fundamental parts: the
input layer, the hidden layers, and the output layer. The input serves as an
entrance for visual information. The hidden layers generally consist of one of
three main types, convolutional, pooling and fully connected, and is the
information processing engine of the CNN. The output layer produces a signal
that expresses the CNN’s classification of the image. A basic structure of a CNN
is shown in figure 7.

Figure 7: The layers of CNN and their functions [37].

The input layer is a single vector with one position for each input value. In the
case of colour images, there would be a total of ℎ ∗ 𝑤 ∗ 3, where ℎ and 𝑤 are the
height and width in pixels respectively, multiplied by 3 to consider the 3 layers of
an RGB image.

Each hidden layer is made up of neurons or nodes. Each of these neurons can
be semi or fully connected to all neurons in the previous layer and function
completely independently of other neurons in the same layer. The last fully
connected layer is called the “output layer” and in classification settings it
represents the class scores. These class scores are compared with the labelled

17

data used in training to calculate a loss function and train parameters using
backpropagation. Each neuron has learnable weights and biases, which are
adjusted during backpropagation. Each neuron receives some inputs, performs
a dot product with the weights, sums the bias, and optionally follows it with a non-
linearity.

The advantage that CNNs have over standard ANNs in image processing is that
the layers are made up of 3D volumes; neurons arranged in width, height and
depth. As we saw in section 3.3.1, standard ANNs have fully connected layers,
meaning each neuron is connected to each neuron of the next layer and has a
weight and bias for each connection. An ANN, therefore, given a colour image of
200 pixels in height and width would have to manage 200 ∗ 200 ∗ 3 = 120,000
weights in its first fully connected input layer. As we will see, CNNs leverage the
3D volumes of its layers to allow neurons to be connected to only a region of
neurons in the next layers as opposed to every single one [38]. This reduces this
type of dimensionality in weights and allows for more efficient computation. A
visual representation of this can be seen in the figure 8.

Figure 8: ANN vs CNN [38].

3.5 – The Layers of a CNN

3.5.1 - The Input Layer

A CNN makes use of an combination of different types of layers to extract
features, reduce dimensionality, avoid overfitting, and activate signals in such a
way that classification can be expressed. The first layer is obviously the input
layer. This layer receives one input for every pixel value in every layer of the
image and passes it to the first convolutional layer.

3.5.2 - The Convolutional Layer

The convolutional layer applies filters to the input to extract features. Every filter
is small spatially (along width and height) but extends through the full depth of
the input volume. This format allows the convolutional layer to avoid the massive
amounts of connections that traditional ANNs would have.

An image of size 𝑁𝑋 𝑥 𝑁𝑌 pixels and 𝑁𝐶 color channels is usually represented by
a data array of dimension 𝑁𝑋 𝑥 𝑁𝑌 𝑥 𝑁𝐶. A convolution layer applies a set of 𝑁𝐹
filters to the volume of the input image. Each filter consists of an array of weights
of a certain size 𝑀 𝑥 𝑀 𝑥 𝑁𝐶. The spatial extent of the 𝑀 𝑥 𝑀 filter is known as the
receptive field of a given neuron. Applying the operation for each pixel of the input
image and each filter of the convolutional layer, we end up having a result in the
form of volume of dimensions (𝑁𝑋 − 𝑀 + 1)𝑥 (𝑁𝑌 − 𝑀 + 1)𝑥 𝑁𝐹 [38]. This

operation is represented visually in figure 9.

18

Figure 9: Filtering in Convolutional Layer [39].

The dimensions of the output volume are defined by the three hyperparameters
of the convolutional layer: the depth, stride, and padding.

• The depth corresponds to the number of filters we would like to use, each
learning to look for something different in the input.

• The stride is the number of pixels at a time we slide the filter across the
image. A stride of one means moving the entire filter one pixel.

• Padding (also known as zero padding) is the technique of lining the image
with values of zeros. This padding alters the dimensioning effect of the
filter. Zero padding is used to control the spatial sizes of the output
volumes.

The spatial size of the output volume as a function of the input volume size (𝑊)

can be calculated as follows. Considering the receptive field size of the
convolutional layer neurons (𝐹), the stride with which they are applied (𝑆), and
the amount of zero padding used (𝑃) on the border, the spatial size of the output

is given by (𝑊 − 𝐹 + 2𝑃)/𝑆 + 1. We can see this effect in figure 10.

Figure 10: Output volume [38].

On the left side, 𝑊 = 5, 𝑃 = 1, 𝐹 = 3 𝑎𝑛𝑑 𝑆 = 1 giving (5 − 3 + 2 ∗ 1)/1 + 1 =
5. Similarly, the right has values such that (5 − 3 + 2 ∗ 1)/2 + 1 = 3.

3.5.3 - The Pooling Layer

Pooling layers are typically inserted between successive convolutional layers in
a CNN. Their function is to progressively reduce the spatial size of the
representation of the image to reduce the number of parameters and computation
in the network. This spatial reduction is also useful in controlling overfitting. The

19

pooling layer does not change the depth of the input, operating independently on
each slice and resizing it spatially, typically using either the MAX or AVG
operation. In figure 11 we can see a 2𝑥2 MAX pooling filter applied with a stride
of 2.

Figure 11: MAX Pooling [38].

3.5.4 - The Fully Connected Layer

The fully connected layer is used to learn non-linear combinations of the high-
level features that are represented by the output of a previous convolutional layer.
Neurons in a fully connected layer have full connections to all activations in the
previous layer, as seen in fully connected ANNs. Their activations can therefore
be computed with a matrix multiplication followed by a bias offset.

The input to the fully connected layer is the output from the final Pooling or
Convolutional Layer, which is flattened and then fed into the fully connected layer.
The output of this layer is fed into a layer which uses an activation function such
as Soft-max to generate a class prediction as seen in figure 12.

Figure 12: Fully Connected Layer with Soft-max [40].

20

3.6 – Techniques to Improve CNN performance

3.6.1 - Introduction

This section serves to introduce the techniques and methods employed in the
attempts to improve performance.

3.6.2 – Data Augmentation

As we have seen, deep learning algorithms would ideally dispose of large
amounts of data to train on. In practice, large amounts of data are not always
readily available. To mitigate this issue, data augmentation can be applied to data
sets to re-use data while minimising the possibility of over-fitting.

In the context of image data, data augmentation consists of altering the images
in such a way that they can be re-used in training without simply repeating the
exact same image. Pytorch’s TorchVision library offers a set of functions,
Transforms, which can be applied to images on the fly. Generally, they are
probabilistic and are applied to a sub-set of images in each batch. Some common
transformations and those used in this project are described below.

RandomRotation

Given degrees as a parameter, this function rotates the image by a random value
with the range of [-degrees, +degrees].

RandomVerticalFlip

Vertically flip the image randomly with the given probability.

RandomHorizontalFlip

Horizontally flip the image randomly with the given probability.

RandomGrayscale

Randomly convert image to grayscale with a probability passed as a parameter.

3.6.3 – Batch Normalization

Deep learning models are generally formed by various layers with each one
receiving an input, applying some computations, and passing the result on to the
next layer as output. As the model is trained, the intention is that each layer
becomes progressively better at fitting the input data distribution.

In practice, each batch of data will contain variations in its input distribution, which
will not only be more challenging to fit, but also lead the model to adjust to that
specific distribution. As well as the input distributions changing, as the model is
changed and parameters adjusted, the distribution of a layer’s input will be altered
and modified by adjustments made to the parameters in the prior layer. As a
result, the model is faced with the challenge of extrapolating the underlying
distributions of the data from batch distributions which are in constant flux, a
phenomenon known as internal covariate shift.

Batch Normalization seeks to alleviate these issues by scaling the output of each
layer [41]. It does so by standardizing the activations of each input variable per
batch, such as the activations of nodes from the previous layer. Standardizing the

21

activations of the prior layer means that assumptions the subsequent layer makes
about the spread and distribution of inputs during the weight update will not
change dramatically. The desired effect is the stabilizing and speeding-up of the
training process of deep neural networks.

3.6.4 – L2 Regularization

L2 regularization is a method for preventing overfitting. It works by penalising
complex models by regularizing the weights of the features. If we consider model
complexity as a function of weights, a feature weight with a high absolute value
is more complex than a feature weight with a low absolute value.

We can quantify complexity using the L2 regularization formula, which defines
the regularization term as the sum of the squares of all the feature weights:

𝐿2 𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚 = ‖𝑤‖2
2 = 𝑤1

2 + 𝑤2
2 + 𝑤3

2 + ⋯ + 𝑤𝑛
2.

Given this formula, low weights will have little effect on model complexity while
larger outlier weights will have a large affect. L2 regularization helps drive outlier
weights (those with high positive or low negative values) closer to 0.

The loss function of a model including L2 regularization is:

𝐿𝑜𝑠𝑠 = 𝑒𝑟𝑟𝑜𝑟(𝑦, 𝑦̂) + 𝜆 ∑ 𝑤𝑖
2

𝑁

𝑖=1

Where lambda is the regularization rate. L2 regularization has the following
effects on a model:

• Encourages weight values toward 0 (but not exactly 0)

• Encourages the mean of the weights toward 0, with a normal (bell-shaped
or Gaussian) distribution.

3.6.5 – Dropout

Dropout is a computationally inexpensive technique for avoiding overfitting. The
key idea is to randomly drop nodes (along with their connections) from the neural
network during training [42].

In Pytorch, a layer is added with a probability of nodes being zeroed. In a layer
with 100 nodes, a probability of 0,5 would result in roughly 50 nodes being
ignored in the forward and backwards passes of training. A visual representation
of dropout is seen in figure 13.

22

Figure 13: Dropout [42].

The process in the training phase is the following: for each hidden layer, for each
training sample, for each iteration, zero out a random fraction, p, of nodes (and
corresponding activations) and calculate the loss without the influence of those
zeroed nodes.

3.6.6 – Transfer Learning and ResNet18

Transfer Learning is the technique of taking advantage of already trained models
to solve new problems. It consists of adapting the models already created so that
they work with the new scenario. Therefore, the problem for which the original
model was created and the new problem to be solved must be related. We call
the model from what we want to learn ‘source model’ and the model we want to
teach from the source model ‘target model’.

In this project, a pretrained ResNet18 model from Pytorch will be used. In section
3.3.3 we commented on backpropagation. During the backpropagation stage, the
error is calculated, and gradient values are determined. The gradients are sent
back to hidden layers and the weights are updated accordingly. This process of
gradient calculation and weight adjustment is calculated until the input layer is
reached.

As more layers are added to a neural network, backpropagation through many
layers of very deep models can lead to gradient vanishing or explosion [43, 44].
Gradient vanishing is the process in which the gradients calculated get
progressively smaller as they are passed through the layers until the adjustments
made to weights become negligible. This leads to weights not being adjusted
sufficiently in shallow layers of the model, and convergence either taking a very
long time, or simply becoming impossible. Gradient explosion is essentially the
opposite problem. Here, gradients accumulate, and weights are over-adjusted. In
either case, very deep models can be hard to train.

To combat this effect, He et al proposed a residual learning framework to ease
the training of networks that are substantially deeper than those used previously
[45]. The idea is that instead of letting layers learn the underlying mapping, let
the network fit the residual mapping. Instead of learning the initial mapping 𝐻(𝑥),

let the network fit 𝐹(𝑥) = 𝐻(𝑥) − 𝑥 which gives 𝐻(𝑥) = 𝐹(𝑥) + 𝑥. The
approach involves adding an identity connection allowing data to pass
uninterrupted, skipping weighted layers, as well as through the same weighted
layers [46] as seen in figure 14.

23

Figure 14: A Residual Block [45].

In the paper by He et al, the built a 34-layer ResNet. In this project, an 18-layer
version is used. The construction of this model used two blocks. The first block is
the identity block as seen in figure 15. The identity block is the standard block
used in ResNet and corresponds to the case where the input activation has the
same dimension as the output activation.

Figure 15: Identity Block [46].

The second block is the Conv Block as seen in figure 16. The conv block serves
to modify and restructure the incoming data so that the output of the first layer
matches dimensions of the third layer.

Figure 16: Conv Block [46].

Using this structure, the authors won 1st place in ILSVRC and COCO 2015
competition in ImageNet Detection, ImageNet localization, Coco detection and
Coco segmentation.

This project uses Pytorch’s ResNet 18 model: the same structure but made up of
only 18 layers. The model employed is pre-trained on the ImageNet data set and
will be fine-tuned on the radiological images from this study’s dataset.

24

3.7 – Metrics to Evaluate Performance
To measure the ability of a model’s ability to classify samples, many metrics can
be used. In this section, the metrics used in this project are outlined.

Accuracy

Accuracy is the expresses the number of correct classifications. It is the number
of correct classifications divided by the total number of samples to classify,
generally expressed as a percentage.

This metric, while useful, does not give a nuanced idea of the model’s
performance. If a dataset is imbalanced, for example, high accuracies can be
achieved despite misclassifying many samples from the small class. To fully
evaluate models, other metrics must also be considered.

Precision, Recall and F1

In a classification problem, we can define predictions as positives and
negatives. For example, in this multi-class classification problem with classes
Covid, Normal and Viral Pneumonia, a sample classified as Covid would be
considered a positive prediction for Covid, and negative for Normal and Viral
Pneumonia.

Given this definition for positive and negative predictions, we can define a true
positive (TP) as a positive prediction that was in fact positive in the predicted
class. For example, a correctly identified Viral Pneumonia sample is a true
positive in that class and a true negative (TN) in the other classes. On the other
hand, an image from the Covid class that is incorrectly classified as Normal is a
false positive (FP) of the Normal Class, and a false negative (FN) of the Covid
class.

Precision, also known as positive predictive value, is the proportion of correct
positive predictions. It can be expressed as a decimal number less than one, or
indeed as a percentage. The formula is the following:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

Recall, also known as sensitivity, is the proportion of actual positives that were
correctly identified. It can be expressed in the same format as precision and is
defined in the following way:

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Both metrics are useful in evaluating a model. For example, in the case of an
infectious disease like Covid-19, recall is useful in measuring how many positive
samples are undetected.

The F1 score is the harmonic mean of the precision and recall, it allows us to get
a balanced understand of a model’s performance on a class. The F1 score
informs us of the balance between the precision and recall and allows us to
evaluate by class. The formula is the following:

25

𝐹1 = 2 ·
𝑃𝑟𝑒𝑐𝑠𝑖𝑜𝑛 · 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

Weighted and Macro Averages

For each of the three metrics in the last section (Precision, Recall and F1), we
will calculate a weighted and macro average for each one. As the scores are
calculated by class, these averages express the score in general terms.

The weighted average considers the dimension of each class and weights its
contribution to the average accordingly. The formula is the following:

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑠𝑐𝑜𝑟𝑒 =
%𝑤𝑒𝑖𝑔ℎ𝑡(𝑐𝑙𝑎𝑠𝑠0)

100
· 𝑠𝑐𝑜𝑟𝑒(𝑐𝑙𝑎𝑠𝑠0) +

%𝑤𝑒𝑖𝑔ℎ𝑡(𝑐𝑙𝑎𝑠𝑠1)

100
· 𝑠𝑐𝑜𝑟𝑒(𝑐𝑙𝑎𝑠𝑠1)+. . +

%𝑤𝑒𝑖𝑔ℎ𝑡(𝑐𝑙𝑎𝑠𝑠𝑛)

100
· 𝑠𝑐𝑜𝑟𝑒(𝑐𝑙𝑎𝑠𝑠𝑛)

Where the %weight proportion is the proportion that class represents.

The macro average does not consider the weights of the classes, instead each
class score contributes equally to the average:

𝑚𝑎𝑐𝑟𝑜𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑠𝑐𝑜𝑟𝑒 =
𝑛𝑢𝑚𝑏𝑒𝑟𝐶𝑙𝑎𝑠𝑠𝑒𝑠

100
· 𝑠𝑐𝑜𝑟𝑒(𝑐𝑙𝑎𝑠𝑠0) +

𝑛𝑢𝑚𝑏𝑒𝑟𝐶𝑙𝑎𝑠𝑠𝑒𝑠

100
· 𝑠𝑐𝑜𝑟𝑒(𝑐𝑙𝑎𝑠𝑠1)+. . +

𝑛𝑢𝑚𝑏𝑒𝑟𝐶𝑙𝑎𝑠𝑠𝑒𝑠

100
· 𝑠𝑐𝑜𝑟𝑒(𝑐𝑙𝑎𝑠𝑠𝑛)

26

4. – Methodology

4.1 – The data
This project employs a dataset of 15,153 radiographic images containing three
classes: COVID-19, Normal and Viral Pneumonia. The classes are of the
dimensions shown in table 4.

Class Number of images Percentage of Total

COVID-19 3,616 23.86%

Normal 10,192 67.26%

Viral Pneumonia 1,345 8.88%

Table 4: Dataset dimensions.

This dataset is a subset of the publicly available COVID-19 Radiography
database [47]. Each image is either AP (anterior to posterior) or PA (posterior to
anterior) picturing the thorax including the lungs. Every image employed in this
project was collected by researchers in universities in Pakistan, Bangladesh,
Malaysia, and Qatar. The dataset was assembled as part of a study by
Chowdhury et al [9] and is available publicly on Kaggle [48].

In the following sections, the sources used by the researchers to compile the data
are listed along with the number of images taken from each.

27

4.1.1 - COVID-19 Class

The images in this class were taken from six different sources. In each, patients
were confirmed as positive for the coronavirus by either PCR or antigens test.
The sources of this class can be seen in table 5.

Source Number of images taken

SIRM, The Italian Society of Medical
and Interventional Radiology [49]

199

COVID-19 Image Repository
(Github) – Hannover Medical School
[50]

183

EuroRad - European Society of
Radiology [51]

258

COVID-CXNet - Github [52]

400

Covid ChestXray Dataset - Github
[53]

182

BIMCV - Medical Imaging Databank
of the Valencia Region [54]

2474

Table 5: COVID-19 Class Images Sources.

4.1.2 – Normal Class

The normal lung image set is made up of a total of 10,192 X-rays taken from two
sources as seen in table 6.

Source Number of images taken

RSNA Pneumonia Detection
Challenge - Kaggle [55]

8,851

Chest X-Ray Images (Pneumonia)
[56]

1,341

Table 6: Normal Class Image Sources.

4.1.3 – Viral Pneumonia Class

The Viral Pneumonia folder contains a total of 1345 images all of which come
from the same source as noted in table 7.

Source Number of images taken

Chest X-Ray Images (Pneumonia)
[56]

1,345

Table 7: Viral Pneumonia Class.

28

4.1.4 – Further Details

According to the researchers, the COVID-19 Radiography database [47] has
been published on Kaggle as part of an effort to make clinically useful COVID-19
imagery widely available. The authors request the citation of their two papers that
have used this set [9, 58]. The cited studies have used the previous iterations of
this dataset, which is currently on version 4.

It is important to note that, although the data was published online by the same
researchers responsible for compiling the data used in the papers [9, 58], the
images used in our study are distinct from those currently available in the Kaggle
dataset. At the time of publication of these papers, there were less images
available. The dataset compiled by the authors, therefore, consisted of less
images despite being made up of data from the same sources listed above. This
project uses the data which is currently available to capitalize on the
methodological benefits that this increased sample size affords. The author
considers that, while the larger quantity of images may make comparisons
between results obtained in this project and those of published papers less direct,
the flux in dimensions reflects the nature of a pandemic where both the situation
and the available data are in constant evolution.

4.1.5 – Data exploration

All the images are in Portable Network Graphics (PNG) file format and have been
resized to a resolution of 299·299 pixels. Each image is either PA or AP, no lateral
images have been included.

Three images of each class are displayed in each row in figure 17:

29

Figure 17: Classes of images.

4.2 – Training, Validation and Testing Set Preparation

The dataset was split into training, validation and testing sets with a proportion of
79%, 15% and 6% respectively. This resulted in the dimensions in table 8.

Training set 11,964 images 79%

Validation set 2,279 images 15%

Training set 910 images 6%

Table 8: Set dimensions.

Splitting the dataset into the three subsets indicated in table 7 was not a as
straightforward as simply dividing the images in the proportions indicated. The
dataset is considerably imbalanced as seen in figure 18. Images of the Normal
class make up 67.26% of the total, while the Covid and Viral Pneumonia classes
account for 23.86% and 8.88% respectively.

Apart from this imbalance, the images of the Normal and Covid classes were
collected from various repositories. If images from a single repository were to

30

share a characteristic owing to the repository (average age of patient of the
hospital where the images were taken, calibration of radiographic machine used
to capture images, etc), inadvertently grouping images from the same repository
in the same subset may accidently introduce similarities into the set. To avoid
this, we must ensure that the subsets created are not only proportional to the
original class imbalance, but also shuffled randomly to minimise the inadvertent
characteristic effect described above.

To solve these problems, the Scikit-learn [59] library was used in conjunction with
Pytorch’s TorchVision ImageFolder to create three directories of images, each
containing a subset of images the classes. Images were added to these folders
in a shuffled manner to avoid images of the same source being grouped together
as much as possible. The distribution of these subsets can be seen in figure 18.

Figure 18: Training, Validation and Testing Set Distribution.

The exact numbers of each subset are shown in table 9.

Set Covid Normal Viral Pneumonia

Training 2,856 8,048 1,063

Validation 545 1,534 203

Testing 217 612 81

Table 9: Dimensions of Subsets.

31

4.3. – Experiments
For the original experiments at the beginning of the project, several simple
architectures were tested before a sufficiently performant model was chosen as
a starting point. As the project progressed, both the model and the data were
modified in the attempt to improve results. The following sections outline these
modifications and the theory underlying them.

4.3.1 – Experiment 1 Architecture and Configuration

The base model used in this project is a simple architecture consisting of three
convolutional layers, each followed by a ReLU activation layer and a pooling
layer. The output of the third pooling layer is flattened, the output of which is the
input to a fully connected layer. The output of this first fully connected layer is the
input to a second fully connected layer, the output layer. The input to this
architecture is 299x299x3.

The size of the kernel in each of the convolutional layers is 5, with a stride of 1
and no padding. The pooling layers use a filter of size 2x2 and a stride of 1. We
can visualize this architecture more clearly in the form of a table:

Layer type Output Kernel/Filter Stride Padding

Convolutional (295,295,32) 5 1 0

ReLU (295,295,32) N/A N/A N/A

Max Pooling (147,147,32) 2x2 1 0

Convolutional (138,138,64) 5 1 0

ReLU (138,138,64) N/A N/A N/A

Max Pooling (69,69,64) 2x2 1 0

Convolutional (50,50,128) 5 1 0

ReLU (50,50,128) N/A N/A N/A

Max Pooling (25,25,128) 2x2 1 0

Flatten (80,000, 1) N/A N/A N/A

Fully Connected (128, 1) N/A N/A N/A

Output (3, 1) N/A N/A N/A

Table 10: Experiment 1 Architecture.

This base architecture is used to obtain the results of the first experiment and,
excluding experiment 6 which uses a ResNet architecture, is the foundation upon
which all posterior experiments are built. This experiment is simple and will serve
the purpose of being a baseline for the rest of the experiments.

32

The configuration of the model can be seen in table 11.

Image shape 299·299 pixels

Transformed to tensor yes

Normalized yes

Total Epochs trained: 20

Lowest Validation Loss Epoch: 20

Loss Function Cross Entropy Loss

Optimizer Stoic Gradient Decent

Learning rate 0.0001

Momentum 0.9

Batch Size 32

Data Augmentation No

Transfer learning No

Batch Normalization No

L2 Regularization No

Drop Out No

Table 11: Experiment 1 Configuration.

33

4.3.2 – Experiment 2 Architecture and Configuration

This experiment uses the same architecture as experiment 1, the only change is
in the preparation of the data. Here we apply data augmentation to simulate a
larger data set. The configuration of this experiment is the following:

Image shape 299·299 pixels

Transformed to tensor yes

Normalized yes

Total Epochs Trained 40

Lowest Validation Loss Epoch 32

Loss Function Cross Entropy Loss

Optimizer Stoic Gradient Decent

Learning rate 0.0001

Momentum 0.9

Batch Size 32

Data Augmentation Yes

RandomGrayscale 0.05 probability

RandomVerticalFlip 0.08 probability

RandomRotation 10 degrees

Transfer learning No

Batch Normalization No

L2 Regularization No

Drop Out No

Table 12: Experiment 2 Configuration.

These transformations, although not extreme, serve to allow the model to be
trained for more epochs without overfitting. This allows us to emulate experiments
seen in the literature in which data augmentation is used to improve results
despite the limited number of clinical Covid-19 X-ray images available.

34

4.3.3 – Experiment 3 Architecture and Configuration

This experiment investigates the effect of batch normalization (section 3.6.3)
used in conjunction with data augmentation.

Three batch normalization layers are added to the architecture employed in
experiment 1 as well as maintaining the use of data augmentation from
experiment 2. A batch norm layer is added after each convolutional layer. The
first batch normalization layer has a momentum of 0.04, while the second and
third have a momentum of 0.06 each. This architecture can be visualized in the
form of a table:

Layer type Output Kernel/Filter Stride Padding

Convolutional (295,295,32) 5 1 0

BatchNorm
(0.04)

(295,295,32) N/A N/A N/A

ReLU (295,295,32) N/A N/A N/A

Max Pooling (147,147,32) 2x2 1 0

Convolutional (138,138,64) 5 1 0

BatchNorm
(0.06)

(138,138,64) N/A N/A N/A

ReLU (138,138,64) N/A N/A N/A

Max Pooling (69,69,64) 2x2 1 0

Convolutional (50,50,128) 5 1 0

BatchNorm
(0.06)

(50,50,128) N/A N/A N/A

ReLU (50,50,128) N/A N/A N/A

Max Pooling (25,25,128) 2x2 1 0

Flatten (80,000, 1) N/A N/A N/A

Fully Connected (128, 1) N/A N/A N/A

Output (3, 1) N/A N/A N/A

Table 13: Experiment 3 Architecture.

35

The configuration of this experiment can be seen in table 14.

Image shape 299·299 pixels

Transformed to tensor yes

Normalized yes

Total Epochs Trained 25

Lowest Validation Loss Epoch 25

Loss Function Cross Entropy Loss

Optimizer Stoic Gradient Decent

Learning rate 0.0001

Momentum 0.9

Batch Size 124

Data Augmentation Yes

RandomGrayscale 0.05 probability

RandomVerticalFlip 0.08 probability

RandomRotation 10 degrees

Transfer learning No

Batch Normalization Yes

L2 Regularization No

Drop Out No

Table 14: Experiment 3 Configuration.

36

4.3.4 – Experiment 4 Architecture and Configuration

Experiment 4 investigates the effect that L2 regularization (section 3.6.4) can
have when used in conjunction with the techniques employed in experiment 3.

In this experiment, the architecture from experiment 3 was recycled and L2
regularization was also employed. To achieve L2 regularization in Pytorch, weight
decay must be added to the optimizer used [60]. The weight decay was set to a
value of 1−6. The configuration for this experiment is shown in table 15.

Image shape 299·299 pixels

Transformed to tensor yes

Normalized yes

Total Epochs Trained 30

Lowest Validation Loss Epoch 24

Loss Function Cross Entropy Loss

Optimizer Stoic Gradient Decent

Learning rate 0.0001

Momentum 0.9

Batch Size 124

Data Augmentation Yes

RandomGrayscale 0.05 probability

RandomVerticalFlip 0.07 probability

RandomRotaton 8 degrees

Transfer learning No

Batch Normalization Yes

L2 Regularization Yes

Drop Out No

Table 15: Experiment 4 Configuration.

37

4.3.5 – Experiment 5 Architecture and Configuration

Experiment 5 investigates another type of regularization effect, in this case using
dropout (section 3.6.5). The architecture employed in this experiment includes
batch normalization and data augmentation is also used. Two dropout layers are
added to the architecture, after the second and third batch normalization layers.

As explained in section 3.6.5, these layers are given a probabilistic value to define
how many nodes are zeroed out, 0.08 in the first dropout layer, 0.10 in the
second. We can appreciate this structure visually in table 16.

Layer type Output Kernel/Filter Stride Padding

Convolutional (295,295,32) 5 1 0

BatchNorm
(0.04)

(295,295,32) N/A N/A N/A

ReLU (295,295,32) N/A N/A N/A

Max Pooling (147,147,32) 2x2 1 0

Convolutional (138,138,64) 5 1 0

BatchNorm
(0.06)

(138,138,64) N/A N/A N/A

Dropout (0.08) (138,138,64) N/A N/A N/A

ReLU (138,138,64) N/A N/A N/A

Max Pooling (69,69,64) 2x2 1 0

Convolutional (50,50,128) 5 1 0

BatchNorm
(0.06)

(50,50,128) N/A N/A N/A

Dropout (0.10) (50,50,128) N/A N/A N/A

ReLU (50,50,128) N/A N/A N/A

Max Pooling (25,25,128) 2x2 1 0

Flatten (80,000, 1) N/A N/A N/A

Fully Connected (128, 1) N/A N/A N/A

Output (3, 1) N/A N/A N/A

Table 16: Experiment 5 Architecture.

38

The configuration of this experiment can be seen in the following table:

Image shape 299·299 pixels

Transformed to tensor yes

Normalized yes

Total Epochs Trained 30

Lowest Validation Loss Epoch 26

Loss Function Cross Entropy Loss

Optimizer Stoic Gradient Decent

Learning rate 0.0001

Momentum 0.9

Batch Size 124

Data Augmentation Yes

RandomGrayscale 0.05 probability

RandomVerticalFlip 0.07 probability

RandomRotaton 8 degrees

Transfer learning No

Batch Normalization Yes

L2 Regularization No

Drop Out Yes

Table 17: Experiment 5 Configuration.

39

4.3.6 – Experiment 6 Architecture and Configuration

In this experiment the ResNet18 architecture described in section 3.6.6 is used.
The pretraining of this model was carried out on ImageNet [61], a dataset of more
than 14 million images.

Here, we change the last layer so that it has three outputs and fine tune its
parameters over our images for 20 epochs. It is also necessary to normalise the
inputs with the following means and standard deviations:

- Means: 0.485, 0.456, 0.406
- Standard Deviations: 0.229, 0.224, 0.225

The configuration for this experiment is shown in table 18.

Image shape 299·299 pixels

Transformed to tensor Yes

Normalized Yes

Epochs 20

Loss Function Cross Entropy Loss

Optimizer Stoic Gradient Decent

Learning rate 0.0001

Momentum 0.9

Batch Size 124

Data Augmentation No

Transfer learning Yes

Batch Normalization No

L2 Regularization No

Drop Out No

Table 18: Experiment 6 Configuration.

40

5. – Results

5.1 – Introduction
This section is a summary of the results obtained in each iteration of the project.
Graphics show the evolution of loss and accuracy in the training and validation
sets during the training of the model. The pipeline is such that the state of the
model at the point of the lowest validation loss is saved, and the test results are
obtained from that model.

There will also be a summary of the performance of the model on the testing set
using the metrics mentioned in section 3.7.

5.2 – Experiment 1

5.2.1 – Training

In figure 19, we can see the evolution of the two loss functions over the epochs
of training. The training loss is used to modify the parameters of the CNN through
back propagation while the validation loss is simply an evaluation of the network’s
performance over time. By saving the model’s state at the lowest validation loss,
we can ensure that we have the most performant state at the end of the
experiment.

Figure 19: Experiment 1 Losses.

In figure 20 we can see the accuracy with which the training and validation images
have been classified over the 20 epochs.

41

Figure 20: Experiment 1 Accuracies.

5.2.2 – Evaluation

In figure 21 we can see the confusion matrix of the predictions made by the
trained model.

Figure 21: Experiment 1 Confusion Matrix.

42

The classification report can be seen in table 19.

 Precision Recall F1-score Support

COVID 84.85% 77.42% 80.96% 217

Normal 91.52% 95.26% 93.35% 612

Pneumonia 97.33% 90.12% 93.59% 81

Accuracy 90.55% 910

Macro avg 91.23% 87.60% 89.30% 910

Weighted avg 90.45% 90.55% 90.42% 910

Table 19: Experiment 1 Classification Report.

824 of 910 images have been classified correctly resulting in an accuracy of
90.55%. Table 19 shows metrics by class and the macro and weighted
averages mentioned in the methodology section.

43

5.3 – Experiment 2

5.3.1 – Training

This experiment is the base model with augmented data. The expectation is that
the variance introduced in each epoch slows down overfitting. In figure 22, we
see that the validation loss falls until almost the last epoch.

Figure 22: Experiment 2 Losses.

Consistent improvements in both the training and validation accuracies can also
be observed in figure 23.

Figure 23: Experiment Accuracies.

44

5.3.2 – Evaluation

In figure 24 we can see the confusion matrix for this model:

Figure 24: Experiment 2 Confusion Matrix.

Looking along the diagonal, we can see that the model has correctly classified
838 of 910 images, giving an accuracy of 92.08%. Further metrics can be seen
in table 20.

 Precision Recall F1-score Support

COVID 81.70% 88.48% 84.96% 217

Normal 95.62% 92.81% 94.20% 612

Pneumonia 96.30% 96.30% 96.30% 81

Accuracy 92.09% 910

Macro avg 91.21% 92.53% 91.82% 910

Weighted avg 92.36% 92.09% 92.18% 910

Table 20: Experiment 2 Classification Report.

This experiment has yielded high percentages in the pneumonia class.
Percentages above 90% are also achieved on the Normal class, while the COVID
class achieves, 81, 88 and 95 percent in precision, recall and F1 respectively.

45

5.4 – Experiment 3

5.4.1 – Training

In figure 25 we can see the loss of this model during training:

Figure 25: Experiment 3 Losses.

Two erratic peaks can be seen roughly around the 12th and 17th epochs, but
the two functions re-converge for the last several. The accuracy functions
present similar tendencies as seen in figure 26:

Figure 26: Experiment 3 Accuracies.

Here the validation accuracy presents some erratic behaviour in the same epochs
but reconverges with the training accuracy in the last number of epochs.

46

5.4.2 – Evaluation

An accuracy of 95% was achieved on the testing set, classifications can be seen
in the confusion matrix in figure 27:

Figure 27: Experiment 3 Confusion Matrix.

In this case, 869 of 910 images have been classified correctly, 95.49%. In table
21 further performance metrics can be seen:

 Precision Recall F1-score Support

COVID 92.56% 91.71% 92.13% 217

Normal 96.43% 97.22% 96.83% 612

Pneumonia 96.15% 92.59% 94.34% 81

Accuracy 95.49% 910

Macro avg 95.05% 93.84% 94.43% 910

Weighted avg 95.49% 95.49% 95.49% 910

Table 21: Experiment 3 Classification Report.

This model has performed well on each class. Both the precision and recall on
the covid class are above 90%, meaning very few false negatives and positives.

47

5.5 – Experiment 4

5.5.1 – Training

Figure 28 shows the training and validation losses during training.

Figure 28: Experiment 4 Losses.

The validation loss seems to destabilize in the last 5 epochs. A similar trend is
seen in the accuracies in figure 29:

Figure 29: Experiment 4 Accuracies.

48

5.5.2 – Evaluation

The confusion matrix of this model can be seen in figure 30:

Figure 30: Experiment 4 Confusion Matrix.

In figure 30 we see that 868 of 910 images have been correctly classified, giving
an accuracy of 95.38%. We can have a closer look at the rest of the metrics in
table 22.

 Precision Recall F1-score Support

COVID 93.81% 90.78% 92.27% 217

Normal 96.43% 97.06% 96.74% 612

Pneumonia 91.67% 95.06% 93.33% 81

Accuracy 95.38% 910

Macro avg 93.97% 94.30% 94.12% 910

Weighted avg 95.38% 95.38% 95.37% 910

Table 22: Experiment 4 Classification Report.

49

We can see that this model has also performed well across the three classes.
Both precision and recall are high across classes, although the COVID class is
just above 90%.

5.6 – Experiment 5

5.6.1 – Training

This experiment employs data augmentation, batch normalization and drop-out,
drop-out layers were used, as detailed in section 4.3.5.

The losses during training can be seen in figure 31.

Figure 31: Experiment 5 Losses.

Notably, from epoch 26 onwards, there is a large growth in validation loss. The
accuracy trends show similar patterns as seen in figure 32.

50

Figure 32: Experiment 5 Accuracies.

5.6.2 – Evaluation

The confusion matrix of this model on the testing data is in figure 33.

Figure 33: Experiment 5 Confusion Matrix.

Here 94.95% of images have been classified correctly. Briefly, we can see that
while the recall of the Covid class will be quite high, the precision has suffered

51

somewhat in comparison with the previous model. Further metrics can be found
in table 23.

 Precision Recall F1-score Support

COVID 89.82% 93.55% 91.65% 217

Normal 96.71% 96.08% 96.39% 612

Pneumonia 96.05% 90.12% 92.99% 81

Accuracy 94.95% 910

Macro avg 94.20% 93.25% 93.68% 910

Weighted avg 95.01% 94.95% 94.96% 910

Table 23: Experiment 5 Classification Report.

This model presents recall of Covid-19 with 94%, only 14 COVID images
misclassified. It also remains strong in other categories, maintaining precision of
0.90 in Covid and performing well on the other classes, although it does produce
8 false negatives on the Pneumonia class.

5.7 – Experiment 6

5.7.1 – Training

This experiment involves the fine tuning of the a pretrained ResNet18 [62] model
as detailed in section 4.3.6.

The losses of this training process can be seen in figure 34:

Figure 34: Experiment 6 Losses.

A steady reduction in loss can be observed in both the both the training and
validation calculations. The inverse trends can be seen in figure 35:

52

Figure 35: Experiment 6 Accuracies.

Here we can see a steady increase in accuracy across the epochs. It can also be
observed that the validation accuracy, although increasing, had flattened
somewhat. Further epochs would surely lead to overfitting.

5.7.2 – Evaluation

Figure 36 presents the results of the evaluation on the training set in a confusion
matrix:

53

Figure 36: Experiment 6 Confusion Matrix.

In is not difficult to see that this model has performed extremely well; only 11
images have been misclassified giving an overall accuracy of 98.79%. Further
metrics can be observed in the table 24.

 Precision Recall F1-score Support

COVID 98.18% 99.54% 98.86% 217

Normal 99.34% 98.86% 99.10% 612

Pneumonia 96.30% 96.30% 96.30% 81

Accuracy 98.79% 910

Macro avg 97.94% 98.23% 98.08% 910

Weighted avg 98.80% 98.79% 98.79% 910

Table 24: Experiment 6 Classification Report.

54

5.8 – Metrics by Experiment

Figure 37: Metrics by Experiment.

55

Figure 37 shows the metrics from the experiments side by side. It is easy to
visualize the effects that the techniques employed in each experiment have had
on the results. There is a score for each class for each experiment: light
represents the Covid class, the darker shade of blue representing Normal, and
green representing Viral Pneumonia.

The first diagram contains the F1 scores. The F1 scores are the harmonic means
of the Precision and Recall. The F1 scores of the Normal Class are above 96%
in 4 out of 6 experiments. The Viral Pneumonia class is also consistently above
92%. The Covid class’ F1 scores improve across the experiments. A difference
of almost 18 percentage points can be observed between experiment 1 and
experiment 6.

The second diagram depicts the precision. As can be seen, precision on the Viral
Pneumonia class is quite uniform across the models except for Experiment 4,
where it falls below 96% for the first time. The precision on the Normal class for
experiment 1 is the lowest, but improves in the other experiments, the maximum
score being 99.34% in experiment 6.

The precision in the Covid class varies more. Experiment 1 and 2 are 84.85%
and 81.70% each. The remaining experiments, however, do achieve scores in
the 90th percentile, with experiments 3, 4 and 6 achieving 92.56%, 93.81% and
98.18% respectively.

Recall measures a model’s ability to avoid false negatives. The Covid class in
experiment 1 achieves the lowest score, with 77.42% of positive cases correctly
identified. The other models perform well on Covid, with Experiment 6 achieving
a 99.54%, a considerable improvement.

Each experiment performs well on the Normal class. The set being imbalanced
in the Normal Class’ favour probably helps this high performance. Each model
avoids false negatives in the Viral Pneumonia class quite well with experiments
2 and 6 achieving scores of 96.30%.

56

6. – Discussion

Experiment 1 is considered the baseline model of this project. It involves no
techniques other than the standard layers of a CNN. Experiment 1 achieves
scores of 93% in both the Normal and Pneumonia classes, but only 80.69% in
the Covid class. The precision scores for each class are 84, 91 and 97 percent
for Covid, Normal and Viral Pneumonia respectively. In total, only 8 Viral
Pneumonia images were misclassified.

The recall in the Covid-19 class is 77.42%. This means that only 77.42% of actual
Covid-19 positives we identified correctly. As such, while the precision and recall
of the Normal and Pneumonia classes are quite high, this model fails to identify
a high number of the Covid-19 cases. These results can be taken as a benchmark
to study the effects of the techniques used in the other experiments.

Experiment 2 uses the same architecture, augmenting the data. The expectation
is that this technique will allow us to emulate a larger data set. This means that
we should be able to train the model for more epochs, extracting more features
that are useful while avoiding overfitting.

We can see that the F1 score has improved for each class in this experiment with
respect to experiment 1. The precision on the Normal and Viral Pneumonia
classes are 95.62% and 96.30% respectively. The precision on the Covid class
drops slightly with respect to experiment 1 to 81.70%. The recall on the Covid
class has increased by more than 10%, producing 10% less false negatives.

Kedia et al [11] and Minaee et al [12] also applied data augmentation to the data
in their paper. Here is appears that data augmentation has allowed our model to
better identify the features of each class, coinciding with a considerable
improvement in the Covid class’ F1 score.

Experiment 3 adds batch normalization layers which appear to have improved
the performance of the model. In theory, batch normalization helps models
converge more quickly and stabilises the results. We see here an improvement
with respect to experiment 2.

In experiment 3, the F1 scores for Covid, Normal and Viral Pneumonia are 92.13,
96.83 and 94.34 percent respectively. This represents an improvement on the
Covid and Normal classes with respect to experiment 2 and is the first experiment
that achieves F1 above 90 for the Covid class. The Precision in the three classes
have improved with respect to experiment 2, whereas the recall improved for the
Covid and Normal classes. Batch normalization appears to have helped reduce
the disparity between performance on Covid with respect to the other two classes.

Experiment 4 makes use of L2 regularization as described in section 4.3.4. The
F1 scores of this experiment are similar those of experiment 3, with a slight
increase in the Covid class, and small drops in the Normal and Viral Pneumonia
classes. This experiment achieves the highest precision on the Covid class that
we have seen so far with 93.81%. The Normal class stays the same as
experiment 3 while the viral pneumonia precision falls to 91.67%. The viral
pneumonia recall increases to 95.06% while the same metric on Covid is 90.78%.

57

The L2 regularization appears to not have had a very large effect on the results
with numbers that a very similar to the previous experiment. It did achieve the
best precision results on Covid and has not obviously adversely affected the
results.

Experiment 5 makes use of drop out layers to prevent overfitting as detailed in
section 4.3.5. Drop out is a simple technique that can have powerful results. Here
we see that the F1 scores for Covid, Normal and Viral Pneumonia are 91.65,
96.39 and 92.99 percent respectively. These scores are comparable to those of
experiment 4 and are achieved simply randomly zeroing out nodes during
training. The precision in the Normal and Viral Pneumonia classes are 96.71 and
96.05 percent respectively.

Precision in Covid has fallen with respect to experiment 4 to 89.82%. However,
this experiment achieves the highest recall on the Covid class so far at 93.55%.
This means very few false negatives and, in the context of screening for covid, is
a positive.

Experiment 6 makes use of transfer learning using a pretrained ResNet18 model.
The expectation is that this pretrained model can be fine-tuned using our dataset
and leverage the image-classifying capacity achieved through pretraining.

The F1 scores are 98.86%, 99.10% and 96.30% for Covid, Normal and Viral
Pneumonia. These are the highest scores of any experiment. It is obvious that
the pretrained model has been successfully fine-tuned. The recall on the Covid
class is 99.54% meaning almost no false negatives were produced. The precision
scores on the Normal and Covid classes are above 98%.

Of the techniques employed, transfer learning on a pretrained ResNet18 model
achieves the best results. This result reflects findings in Minaee et al [12] where
pretrained models were compared in effectiveness of identifying Covid-19 in x-
rays. Given that Covid-19 x-ray image data is not massively available, transfer
learning appears to present an interesting opportunity.

Screening patients is not equivalent to diagnosing patients with illnesses. The
intention of this system is not to say, without doubt, that a patient has or does not
have Covid-19. The intention is to classify, within reasonable certainty, of the
people who come to a health centre, who should be tested and/or quarantined.

This use case will lay specific demands on the model chosen, it will not be
enough, for example, to correctly identify many true positives and achieve high
precision score while performing poorly on recall and false negatives. In the
context of a pandemic, it is much more damaging to tell someone who is positive
for Covid-19 that they are healthy and can go home to their family than it is to
spend a PCR test on a healthy patient.

With this mind, a model which successfully meets the criteria for this use case
will have a high recall score on Covid-19. This means minimising false negatives
and avoiding inadvertent spread for the virus. We will also value high precision in
the Normal and Viral Pneumonia classes. Correctly identifying healthy people is
obviously favourable and will allow medical professionals to use PCR and
antigens tests on people who need them. Viral Pneumonia, while not the cause
of the current pandemic, is a serious disease and must be treated.

58

7. – Conclusions

The results have shown that there is a compelling argument to be made in favour
of using radiographic images in the screen of patients for Covid-19. We have
seen that both pretrained models and more basic models following good practices
can achieve impressive results.

The high scores in Recall in the Covid and Viral Pneumonia classes to prevent
inadvertent spread of the Coronavirus and failure to treat pneumonia along with
the high precision scores in the Normal class suggest viability in practice.

As discussed, X-rays are cheap and massively available. They can be produced
quickly and do not necessarily put machine operators at risk. These reasons
suggest that radiographical imagery could play an important part in the
management of the remainder of the pandemic. The high F1 scores of
experiments 3 to 6 indicate that the models could indeed play a part in the control
and prevention of Covid-19 in practice.

It is also necessary to recognise the limitations of this project. The dataset is
15,153 images in total 67% of which were images of healthy lungs. Due to the
nature of the pandemic, medical institutions simply have not had time to produce
and anonymise sufficient images. The approval to use these techniques in clinical
settings should follow further investigation with bigger datasets to avoid problems
like over-fitting. However, the results on this dataset are encouraging.

A continuation of this project would be to explore the features of the images which
gave us our results. This project has been limited exclusively to quantitative
results, meaning we have explored viability and results exclusively numerically.
It would be of much interest to explore which specific features allowed the models
to classify the images. These features could be validated by medical
professionals, eliminating the possibility that the results have been influenced by
characteristics of the machines taking the images or other noise.

Overall, the results of the investigation are compelling. Transfer learning and data
augmentation both proven useful in the given use case and helped mitigate the
issues that small datasets pose. Across the experiments, the metrics have shown
that CNNs can differentiate healthy lungs from those affected by Covid-19 and
Viral Pneumonia. As more images become available, more robust models can be
developed and hopefully put to work for the medical professionals working to
protect people during this pandemic.

59

8. – Glossary

Accuracy: The number of correct classifications divided by total number of

classifications, usually expressed as percentage. .. 24

Activation Function: Defines the output of that node given an input or set of
inputs. ... 14

Artificial Intelligence: Field of study concerning computer systems developing
intelligence. .. 10

Artificial Neural Network: A multi-layer perceptron consisting of at least input,
hidden and output layers. .. 13

Backpropagation: Process by which layers of ANN are adjusted using the loss
function. .. 14

Batch Normalization: Scaling the output of each convolutional layer to avoid

internal covariate shift. ... 20

Batch size: Number of samples shown to algorithm before adjustments to
parameters. .. 16

Bias: Defines distance between function and origin. ... 13

Computed tomography: A computerized x-ray imaging procedure 2

Convolutional Neural Networks: Type of ANN specialised in images. 16

Coronavirus: Novel virus identified 7th January 2020 .. 1

Covid-19: Associated disease of Coronavirus ... 1

Data Augmentation: Process of applying transformations to artificially increase
size of dataset. ... 20

Deep Learning: An artificial neural network that uses multiple layers to extract
high level features from data.

Dropout: Method to prevent overfitting by randomly dropping nodes during
training.. 21

Epoch: Full set of training data shown to algorithm. .. 15

F1 score: The harmonic mean of the precision and recall. 25

False negative (FN): Sample incorrectly classified as not being of a class. 24

False positive (FP): Sample incorrectly classified as being of a class. 24

Flter/Kernel: In Convolutional layer, applies spatial operations to extract
features from data. ... 17

Fully connected layer: Layer used to learn non-linear combinations of high-
level features. ... 19

60

Google Colab: Cloud-based machine learning environment 3

Gradient descent: Process of finding minima in loss function. 15

Hyperparameters: Configuratons of ANN affecting its behaviour. 15

Imbalanced: A dataset is said to be imbalanced when the proportions of

classes are not equal. .. 29

Internal covariate shift: Distribution of data changing with each batch. 20

L2 Regularization: Method which penalises complex models to avoid
overfitting. ... 21

Learning Rate: Rate by which changes to parameters of ANN are made during
backpropogration. .. 15

Loss function: Quantifies difference between prediciton and desired result in

supervised learning. ... 11

Machine Learning: Computer system's ability to aquire domain knowledge. .. 10

Macro average: Each class score contirubtes to the macro average equally. . 25

Magnetic resonance imaging: imaging techniques that uses strong magnetic
fields, magnetic field gradients, and radio waves to generate images of the
organs in the body. .. 7

Momentum: Direction of next step in gradient descent to avoid oscillations. ... 15

Multilayer Perceptron: Multiple layer of fully connected perceptrons for solving
non-linear problems. .. 13

Overfitting: Process in which a machine learning algorithm learns features of
training set and generallises poorly to new, unseen data. 11

Perceptron: Learning algorithm for binary classification. 13

Polymerase chain reaction: Chemical process used in Coronavius testing 2

Pooling Layer: Layer used to reduce spatial size of representation and number
of parameters in CNN. ... 18

Precision: Proportion of correct positive predictions. .. 24

Python: Programming language .. 3

Pytorch: Machine learning library available in Python .. 3

Recall: Proportion of actual positives that were correctly identified. 25

Supervised Learning: Machine learning by way of labelled examples. 10

The Convolutional Layer: Layer of CNN that extracts fatures using a

fiter/kernel. ... 17

The Input Layer: Layer through which data is fed into ANN. 17

61

TorchVision: Module of Pytorch for image processing. 30

Transfer Learning: Technique of taking advantage of already trained models to
solve new problems. It consists of adapting the models already created so

that they work with the new scenario. ... 22

True negative (TN): Sample correctly identified as not being of a class. 24

True positive (TP): Sample correctly identified as a class. 24

Validation techniques: Techniques by which data is presented to ML algorithm

to ensure correct learning process. ... 11

Weight: Value used to augment or decreased input value................................ 13

Weighted average: Considers the dimension of each class and weights its
contribution to the average accordingly. ... 25

X-ray: Imaging using certain wavelengths to penetrate body 2

62

9. – Bibliography

[1] J. Feehan and V. Apostolopoulos, “Is COVID-19 the worst pandemic?,”
Maturitas, pp. S0378-5122(21)00018–9, Feb. 2021, doi:
10.1016/j.maturitas.2021.02.001.

[2] ECDC, “COVID-19,” https://www.ecdc.europa.eu/, 2021.
https://www.ecdc.europa.eu/ (accessed Mar. 04, 2021).

[3] A. S. Baig, H. A. Butt, O. Haroon, and S. A. R. Rizvi, “Deaths, panic,
lockdowns and US equity markets: The case of COVID-19 pandemic,”
Finance Research Letters, vol. 38, p. 101701, Jan. 2021, doi:
10.1016/j.frl.2020.101701.

[4] D. Jones, Lora; Palumbo, Daniele; Brown, “Coronavirus: How the
pandemic has changed the world economy,” BBC News, 2021. .

[5] B. Gallo Marin et al., “Predictors of COVID-19 severity: A literature review,”
2020, doi: 10.1002/rmv.2146.

[6] S. Wacharapluesadee et al., “Evaluating the efficiency of specimen pooling
for PCR-based detection of COVID-19 This paves the way for large-scale
population screening, allowing for assured policy,” 2020, doi:
10.1002/jmv.26005.

[7] M. Pavelka et al., “The impact of population-wide rapid antigen testing on
SARS-CoV-2 prevalence in Slovakia,” Science, p. eabf9648, 2021, doi:
10.1126/science.abf9648.

[8] A. M. Neilan et al., “Clinical Impact, Costs, and Cost-effectiveness of
Expanded Severe Acute Respiratory Syndrome Coronavirus 2 Testing in
Massachusetts,” Clinical Infectious Diseases, 2020, doi:
10.1093/cid/ciaa1418.

[9] M. E. H. Chowdhury et al., “Can AI Help in Screening Viral and COVID-19
Pneumonia?,” IEEE Access, vol. 8, pp. 132665–132676, 2020, doi:
10.1109/ACCESS.2020.3010287.

[10] J. P. Kanne, B. P. Little, J. H. Chung, B. M. Elicker, and L. H. Ketai,
“Essentials for Radiologists on COVID-19: An Update—Radiology
Scientific Expert Panel,” Radiology, vol. 296, no. 2, pp. E113–E114, 2020,
doi: 10.1148/radiol.2020200527.

[11] P. Kedia, Anjum, and R. Katarya, “CoVNet-19: A Deep Learning model for
the detection and analysis of COVID-19 patients,” Applied Soft Computing,
vol. 104, p. 107184, Jun. 2021, doi: 10.1016/j.asoc.2021.107184.

[12] S. Minaee, R. Kafieh, M. Sonka, S. Yazdani, and G. Jamalipour Soufi,
“Deep-COVID: Predicting COVID-19 from chest X-ray images using deep
transfer learning,” Medical Image Analysis, vol. 65, p. 101794, Oct. 2020,
doi: 10.1016/j.media.2020.101794.

63

[13] Google, “Google Colab Pro,” 2021.
https://colab.research.google.com/signup#.

[14] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep
Learning Library,” in Advances in Neural Information Processing Systems
32, Curran Associates, Inc., 2019, pp. 8024–8035.

[15] “WHO | Pneumonia of unknown cause.” 2020, Accessed: Apr. 28, 2021.
[Online]. Available: https://www.who.int/csr/don/05-january-2020-
pneumonia-of-unkown-cause-china/en/.

[16] A. S. Fauci, H. Clifford Lane, and R. R. Redfield, “Covid-19-Navigating the
Uncharted,” 2020, doi: 10.1056/NEJMoa2002032.

[17] Q. Li et al., “Early Transmission Dynamics in Wuhan, China, of Novel
Coronavirus–Infected Pneumonia,” New England Journal of Medicine, vol.
382, no. 13, pp. 1199–1207, 2020, doi: 10.1056/nejmoa2001316.

[18] T. A. Harahwa, T. H. Lai Yau, M.-S. Lim-Cooke, S. Al-Haddi, M. Zeinah,
and A. Harky, “The optimal diagnostic methods for COVID-19,” Diagnosis,
vol. 7, no. 4, pp. 349–356, 2020, doi: doi:10.1515/dx-2020-0058.

[19] M. O. Wielpütz, C. P. Heußel, F. J. F. Herth, and H. U. Kauczor,
“Radiologische diagnostik von lungenerkrankungen: Beachtung der
therapieoptionen bei wahl des verfahrens,” Deutsches Arzteblatt
International, vol. 111, no. 11. pp. 181–187, 2014, doi:
10.3238/arztebl.2014.0181.

[20] F. A. J. Mettler, W. Huda, T. T. Yoshizumi, and M. Mahesh, “Effective doses
in radiology and diagnostic nuclear medicine: a catalog.,” Radiology, vol.
248, no. 1, pp. 254–263, Jul. 2008, doi: 10.1148/radiol.2481071451.

[21] Statistisches Bundesamt, “Fallpauschalenbezogene Krankenhausstatistik
(DRG-Statistik) Operationen und Prozeduren der vollstationären
Patientinnen und Patienten in Krankenhäusern - Ausführliche Darstellung
-,” 2013. [Online]. Available:
https://www.statistischebibliothek.de/mir/servlets/MCRFileNodeServlet/DE
Heft_derivate_00012373/5231401127014.pdf.

[22] Bundesamt für Strahlenschutz, “Strahlenexposition durch Medizinische
Maßnahmen,” 2013. [Online]. Available:
https://www.bfs.de/SharedDocs/Downloads/BfS/DE/fachinfo/ion/medizin.p
df?__blob=publicationFile&v=1.

[23] K.-C. Chen et al., “Diagnosis of common pulmonary diseases in children by
X-ray images and deep learning,” 2020, doi: 10.1038/s41598-020-73831-
5.

[24] N. Caballé, J. Castillo-Sequera, J. A. Gomez-Pulido, J. Gómez, and M.
Polo-Luque, “Machine Learning Applied to Diagnosis of Human Diseases:
A Systematic Review,” Applied Sciences, vol. 10, p. 5135, Jul. 2020, doi:
10.3390/app10155135.

[25] I. Kavakiotis, O. Tsave, A. Salifoglou, N. Maglaveras, I. Vlahavas, and I.
Chouvarda, “Machine Learning and Data Mining Methods in Diabetes

64

Research,” Computational and Structural Biotechnology Journal, vol. 15.
Elsevier B.V., pp. 104–116, Jan. 01, 2017, doi: 10.1016/j.csbj.2016.12.005.

[26] J. A. Cruz and D. S. Wishart, “Applications of machine learning in cancer
prediction and prognosis.,” Cancer informatics, vol. 2, pp. 59–77, Feb.
2007.

[27] M. A. Myszczynska et al., “Applications of machine learning to diagnosis
and treatment of neurodegenerative diseases,” Nature Reviews Neurology,
vol. 16, no. 8, pp. 440–456, 2020, doi: 10.1038/s41582-020-0377-8.

[28] J. Ker, L. Wang, J. Rao, and T. Lim, “Deep Learning Applications in Medical
Image Analysis,” IEEE Access, vol. 6, pp. 9375–9389, 2018, doi:
10.1109/ACCESS.2017.2788044.

[29] G. Litjens et al., “A survey on deep learning in medical image analysis,”
Medical Image Analysis, vol. 42. Elsevier B.V., pp. 60–88, Dec. 01, 2017,
doi: 10.1016/j.media.2017.07.005.

[30] N. M. Elshennawy and D. M. Ibrahim, “Deep-Pneumonia Framework Using
Deep Learning Models Based on Chest X-Ray Images,” Diagnostics, vol.
10, no. 9, 2020, doi: 10.3390/diagnostics10090649.

[31] T. Rahman et al., “Transfer learning with deep Convolutional Neural
Network (CNN) for pneumonia detection using chest X-ray,” Applied
Sciences (Switzerland), vol. 10, no. 9, 2020, doi: 10.3390/app10093233.

[32] S. Salehi, A. Abedi, S. Balakrishnan, and A. Gholamrezanezhad,
“Coronavirus Disease 2019 (COVID-19): A Systematic Review of Imaging
Findings in 919 Patients,” American Journal of Roentgenology, vol. 215,
pp. 1–7, Mar. 2020, doi: 10.2214/AJR.20.23034.

[33] J. McCarthy, M. L. Minsky, N. Rochester, and C. E. Shannon, “A Proposal
for the Dartmouth Summer Research Project on Artificial Intelligence,
August 31, 1955,” AI Magazine, vol. 27, no. 4 SE-Articles, p. 12, Dec. 2006,
doi: 10.1609/aimag.v27i4.1904.

[34] A. Kumar, “Machine Learning: Validation Techniques,” 2018. .

[35] S. Sagar, “Activation Functions in Neural Networks.” .

[36] K. Fukushima, “Neocognitron: A self-organizing neural network model for a
mechanism of pattern recognition unaffected by shift in position,” Biological
Cybernetics, vol. 36, no. 4, pp. 193–202, 1980, doi: 10.1007/BF00344251.

[37] A. Vo, “Deep Learning – Computer Vision and Convolutional Neural
Networks,” 2018. .

[38] Stanford, “Convolutional Neural Networks (CNNs / ConvNets),” 2021.
https://cs231n.github.io/convolutional-networks/.

[39] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep
learning,” ArXiv e-prints, Mar. 2016.

[40] S. Saha, “A Comprehensive Guide to Convolutional Neural Networks —
the ELI5 way,” 2018. https://towardsdatascience.com/a-comprehensive-
guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53.

65

[41] S. Ioffe and C. Szegedy, “Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift,” CoRR, vol. abs/1502.0,
2015, [Online]. Available: http://arxiv.org/abs/1502.03167.

[42] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R.
Salakhutdinov, “Dropout: A Simple Way to Prevent Neural Networks from
Overfitting,” Journal of Machine Learning Research, vol. 15, no. 56, pp.
1929–1958, 2014, [Online]. Available:
http://jmlr.org/papers/v15/srivastava14a.html.

[43] X. Glorot and Y. Bengio, “Understanding the difficulty of training deep
feedforward neural networks,” Journal of Machine Learning Research -
Proceedings Track, vol. 9, pp. 249–256, 2010.

[44] Y. Bengio, P. Simard, and P. Frasconi, “Learning long-term dependencies
with gradient descent is difficult,” IEEE Transactions on Neural Networks,
vol. 5, no. 2, pp. 157–166, 1994, doi: 10.1109/72.279181.

[45] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2016, vol. 2016-Decem, pp.
770–778, doi: 10.1109/CVPR.2016.90.

[46] R. Nandepu, “Understanding and implementation of Residual
Networks(ResNets),” Medium.com. .

[47] T. Rahman et al., “COVID-19 Chest Radiography Database,” 2020.
https://www.kaggle.com/tawsifurrahman/covid19-radiography-database.

[48] Kaggle, “Kaggle.” .

[49] Società Italiana di Radiologia Medica e Interventistica, “COVID-19
DATABASE,” 2021. https://sirm.org/.

[50] B. C. Winther, Hinrich B. and Laser, Hans and Gerbel, Svetlana and
Maschke, Sabine K. and B. Hinrichs, Jan and Vogel-Claussen, Jens and
Wacker, Frank K. and Höper, Marius M. and Meyer, “COVID-19 Image
Repository,” figshare, 2020. https://figshare.com/articles/dataset/COVID-
19_Image_Repository/12275009/1.

[51] Eurorad, “Eurorad.” https://www.eurorad.org/.

[52] A. Haghanifar, M. M. Majdabadi, and S. Ko, “COVID-CXNet: Detecting
covid-19 in frontal chest x-ray images using deep learning,” arXiv. 2020,
[Online]. Available: https://sirm.org/category/senza-categoria/covid-19/.

[53] J. P. Cohen, P. Morrison, and L. Dao, “COVID-19 image data collection,”
arXiv 2003.11597, 2020, [Online]. Available:
https://github.com/ieee8023/covid-chestxray-dataset.

[54] BIMCV, “BIMCV-COVID-19,” 2020. https://bimcv.cipf.es/bimcv-
projects/bimcv-covid19/.

[55] RSNA, “RSNA Pneumonia Detection Challenge,” Kaggle, 2018.
https://www.kaggle.com/c/rsna-pneumonia-detection-challenge/data.

66

[56] P. Mooney, “Chest X-Ray Images (Pneumonia),” Kaggle, 2018.
https://www.kaggle.com/paultimothymooney/chest-xray-pneumonia.

[57] M. Kermany, Daniel; Zhang, Kang; Goldbaum, “Labeled Optical Coherence
Tomography (OCT) and Chest X-Ray Images for Classification,” Mendely
Data, 2018.

[58] T. Rahman et al., “Exploring the effect of image enhancement techniques
on COVID-19 detection using chest X-ray images,” Computers in Biology
and Medicine, vol. 132, p. 104319, 2021, doi:
https://doi.org/10.1016/j.compbiomed.2021.104319.

[59] F. Pedregosa et al., “Scikit-learn: Machine Learning in Python,” Journal of
Machine Learning Research, vol. 12, no. 85, pp. 2825–2830, 2011,
[Online]. Available: http://jmlr.org/papers/v12/pedregosa11a.html.

[60] Pytorch, “TORCH.OPTIM.” https://pytorch.org/docs/stable/optim.html
(accessed May 01, 2021).

[61] J. Deng, W. Dong, R. Socher, L. Li, K. Li, and L. Fei-Fei, “ImageNet: A
large-scale hierarchical image database,” in 2009 IEEE Conference on
Computer Vision and Pattern Recognition, 2009, pp. 248–255, doi:
10.1109/CVPR.2009.5206848.

[62] PyTorch, “ResNet PyTorch Vision.” .

	1. – Introduction
	1.1 - Context and Justification of the Project
	1.2 - Project Objectives
	1.2.1 - General Objectives
	1.2.2 - Specific Objectives

	1.3 - Focus and Method Followed
	1.4 - Planning the Project
	1.5 - Summary of the products obtained
	1.6 - Brief descriptions of the other chapters in the bachelor’s thesis

	2. – Medical Context
	2.1 – Covid-19
	2.2 – Imaging in Diagnosis of Lung Problems
	2.3 – Machine Learning in Diagnosis
	2.4 – Covid-19 detection with Deep Learning in Chest X-rays

	3. – Machine Learning
	3.1 – Introduction
	3.2 – Supervised Learning
	3.2.1 – Loss function
	3.2.2 - Overfitting
	3.2.3 – Validation techniques

	3.3 – Artificial Neural Networks
	3.3.1 – The Multilayer Perceptron
	3.3.2 – Activation Functions
	3.3.3 – Backpropagation
	3.3.4 – Hyperparameters

	3.4 – Overview of Convolutional Neural Networks
	3.5 – The Layers of a CNN
	3.5.1 - The Input Layer
	3.5.2 - The Convolutional Layer
	3.5.3 - The Pooling Layer
	3.5.4 - The Fully Connected Layer

	3.6 – Techniques to Improve CNN performance
	3.6.1 - Introduction
	3.6.2 – Data Augmentation
	3.6.3 – Batch Normalization
	3.6.4 – L2 Regularization
	3.6.5 – Dropout
	3.6.6 – Transfer Learning and ResNet18

	3.7 – Metrics to Evaluate Performance

	4. – Methodology
	4.1 – The data
	4.1.1 - COVID-19 Class
	4.1.2 – Normal Class
	4.1.3 – Viral Pneumonia Class
	4.1.4 – Further Details
	4.1.5 – Data exploration

	4.2 – Training, Validation and Testing Set Preparation
	4.3. – Experiments
	4.3.1 – Experiment 1 Architecture and Configuration
	4.3.2 – Experiment 2 Architecture and Configuration
	4.3.3 – Experiment 3 Architecture and Configuration
	4.3.4 – Experiment 4 Architecture and Configuration
	4.3.5 – Experiment 5 Architecture and Configuration
	4.3.6 – Experiment 6 Architecture and Configuration

	5. – Results
	5.1 – Introduction
	5.2 – Experiment 1
	5.2.1 – Training
	5.2.2 – Evaluation

	5.3 – Experiment 2
	5.3.1 – Training
	5.3.2 – Evaluation

	5.4 – Experiment 3
	5.4.1 – Training
	5.4.2 – Evaluation

	5.5 – Experiment 4
	5.5.1 – Training
	5.5.2 – Evaluation

	5.6 – Experiment 5
	5.6.1 – Training
	5.6.2 – Evaluation

	5.7 – Experiment 6
	5.7.1 – Training
	5.7.2 – Evaluation

	5.8 – Metrics by Experiment

	6. – Discussion
	7. – Conclusions
	8. – Glossary
	9. – Bibliography

