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  Resum del Treball (màxim 250 paraules): Amb la finalitat, context 
d’aplicació, metodologia, resultats i conclusions del treball 

El nou Coronavirus ha provocat una pandèmia global amb alts costos 
econòmics i socials. La naturalesa emergent de la malaltia associada del 
Coronavirus, Covid-19, ha trobat moltes nacions mal preparades per controlar 
la seva propagació, resultant en altes taxes d'infecció i pressió en els sistemes 
de salut. 

La detecció ràpida i la subsegüent quarantena de persones infectades és la 
mesura més eficaç contra la propagació del virus amb l'excepció de la 
vacunació. Generalment, el diagnòstic es porta a terme amb tests de Polímer 
invertit o antígens que poden ser cars i no sempre fàcilment disponibles. 
Aquests mètodes requereixen personal especialitzat i contacte físic amb el 
pacient, així com temps per processar els resultats. 

Les màquines de raigs X estan disponibles en hospitals arreu del món en 
països de gairebé totes les situacions econòmiques. La radiografia s'ha 
utilitzat en molts casos d'ús de cribatge i diagnòstic i hi ha una investigació 
àmplia sobre la seva aplicabilitat a la pandèmia de Coronavirus. 

Aquest projecte investiga la viabilitat de l'ús de Xarxes Neurals Convolucionals 
per detector símptomes de Covid-19 en imatges radiogràfiques de pulmons. 
Els rajos X són massivament disponibles, econòmics i no invasius. Els 
resultats mostren que les Xarxes Neurals Convolucionals poden classificar les 
imatges de raigs X en classes de Covid, Normal i Pneumonia Viral amb alts 
nivells de Precisió i Sensitivitat. 
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  Abstract (in English, 250 words or less): 

The novel Coronavirus has caused a global pandemic with high economic and 

social costs. The emergent nature of the Coronavirus’ associated disease, 

Covid-19, found many nations ill-prepared to control its spread, leading to high 

rates of infection and strain on health systems.  

Rapid detection and the subsequent quarantine of infected people is the most 

effective measure against the spread of the virus outside of vaccination. 

Diagnosis is generally carried out by Reverse Polymer or antigens tests which 

can be expensive and not always readily available. These methods require 

specialised staff and physical contact with the patient, as well as time to 

process results.  

X-ray machines are available in hospitals across the world in countries of 

nearly all economic situations. Radiography has been used in many screening 

and diagnostic use cases and there is wide-spread investigation into its 

applicability in the Coronavirus pandemic. 

This project investigates the viability of employing Convolutional Neural 

Networks to screen radiographic images of lungs for symptoms of Covid-19. 

X-rays are massively available, economical, and non-invasive. The results 

show that Convolutional Neural Networks can classify x-ray images into Covid, 

Normal and Viral Pneumonia classes with high levels of Precision and Recall. 
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1. – Introduction  

1.1 - Context and Justification of the Project 
Since its identification on the 7th of January 2020, the novel Coronavirus and its 
associated disease, Covid-19, have gone on to disrupt economic, logistical, and 
medical systems around the globe. Although the modern world has experienced 
outbreaks of viruses that have threatened the security and health of many people 
(SARS, MERS, Ebola), a virus has not made such an impact since the 
emergence of HIV/AIDS at the beginning of the 1980s [1] . 

According to the European Centre for Disease Prevention and Control, since 31st 
December 2019 and as of 2nd June 2021, a total of 167,547,945 cases of Covid-
19 (in accordance with the applied case definitions and testing strategies in the 
affected countries) have been reported, including 3,467,722 deaths [2].  

As a result of this rapid and extensive spread, measures of varying severity were 
taken throughout the world’s nations. Many economies were negatively affected 
by this, with market performance in the US severely affected [3]. In the United 
Kingdom, the FTSE dropped by 14.3 percent, its worst performance in a calendar 
year since the economic crisis of 2008 (31.3%) [4] as illustrated in figure 1. 

 

 

Away from Britain, although an upturn in markets has been seen since the 
announcement of vaccines, not all economies have recaptured pre-pandemic 
levels. 

Health systems have also been massively affected. Despite the best efforts of 
medical professionals, the death toll is still rising. As well as the loss of human 
life, Covid-19 has forcibly isolated vulnerable people who are at greater risk [5] 
due to underlying conditions, propensity to lung and heart problems, and 
advanced age.  

Figure 1: COVID-19 Impact on Markets (bbc.com/news). 
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Many strategies used to prevent the spread of Covid-19 employed quick 
detection, contact tracing and the subsequent isolation of those exposed or 
infected. This project intends to lend itself to these strategies.  

Diagnoses are generally carried out via PCR (Polymerase chain reaction) or 
antigen rapid tests. Both have been shown to be very effective [6, 7] however, 
they can be considered expensive [8]. 

To reduce costs and diversify methods, researchers have incorporated the use 
of both radiological (x-ray) and computed tomography (CT) scans in the 
identification of symptoms consistent with COVID-19 infection [9]. The available 
literature indicates that applying deep learning to this question is of great interest 
clinically. X-ray images have been documented as showing visual indexes 
correlated with Covid-19 [10]. X-rays are appropriate for this exercise due to their 
massive availability, low-cost and the speed in which they can be produced. 
There has been work on using deep learning models to identify Covid-19 
symptoms in radiographic images with high levels of accuracy [9, 11, 12].  

In this project we will attempt to screen radiographical images of lungs for 
symptoms of Covid-19 and Viral Pneumonia using Convolutional Neural 
Networks (CNNs). Models employing different techniques to improve 
performance (see section 3.5) will be developed and the results obtained 
compared. These results will be discussed and conclusions about the viability of 
using CNNs to screen patients for these illnesses will be drawn from them.  

1.2 - Project Objectives 

1.2.1 - General Objectives 

• Use deep learning to classify images of lungs into one of three classes: 
Covid-19, Normal or Viral Pneumonia.  

• Investigate Convolutional Neural Networks and techniques to increase 
performance and compare results with baseline results found in literature. 

• Investigate feasibility of application of deep learning to this kind of medical 
screening. 

• Compare results obtained with results from a pretrained model using 
transfer-learning to fine-tune its parameters. 

1.2.2 - Specific Objectives 

• Research supervised deep learning, convolutional neural networks (CNN) 
and their application to medical image classification. 

• Investigate state of the art deep learning frameworks and libraries such as 
Keras, TensorFlow and PyTorch and decide which is the best candidate 
to carry out this project. 

• Use the official documentation to familiarize myself with the chosen library. 

• Design and implement a basic CNN and use it as a starting point for 
investigation of different techniques to improve performance such as 
transfer learning and data augmentation. 
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• Employ the performance-improving techniques to extend the simple 
pipeline and isolate the influence of each on the results. 

• Compare results obtained using the various techniques with baseline 
clinical levels available in literature. 

• Use these results and comparisons as basis to discuss whether 
radiography could be applicable in screening patients for COVID-19. 

 

1.3 - Focus and Method Followed 
The environment used to develop and test the various convolutional neural 
networks was Google Colab [13], an online platform which provides access to 
GPU and CPU powered machine learning in the Cloud. This service allows 
projects to be developed in Python using virtually all the major libraries for 
constructing deep learning projects.  

Machine learning models are run in the popular Jupyter Notebooks program 
available in Python. This format allows for programs to be developed in steps and 
is particularly useful for projects of this type given that data and metrics can be 
studied and displayed during development. 

The library chosen to develop this project is Pytorch [14], an open-source 
machine learning library based on the Torch library, used for applications such 
as computer vision and natural language processing, primarily developed by 
Facebook's AI Research lab. Pytorch supports GPU usage for the training of deep 
learning models. This technique is common in modern machine learning as it 
allows for the execution of calculations in parallel.  

The dataset employed (see section 4.1) consists of three classes: Normal, Covid-
19 and Viral Pneumonia. Convolutional Neural Networks will be used to classify 
these images. The evaluation of the models will consider metrics such as 
Accuracy, Precision, Recall and F1 score. A full explanation of these metrics is 
found in chapter 3. 
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1.4 - Planning the Project 
This subject is made up of 4 continuous evaluation tests, a presentation, and a 
public defence.  

Title Start date End date Duration (days) 

PAC0 17/02/2021 01/03/2021 9 

PAC1 - Work Plan 02/03/2021 16/03/2021 11 

PAC2 - Work 
development Phase 1 

17/03/2021 19/04/2021 24 

Configure environment in 
Google Colab 

17/03/2021 18/03/2021 2 

Analysis of Data 19/03/2021 22/03/2021 2 

Research X-Ray 
processing with CNN 

23/03/2021 26/03/2021 4 

Revision of Pytorch 
documentation 

27/03/2021 09/04/2021 10 

Construction of first 
simple CNN model 

10/04/2021 15/04/2021 4 

Report progress in PAC2 
deliverable 

16/04/2021 18/04/2021 1 

PAC3 - Work 
development Phase 2 

20/04/2021 17/05/2021 20 

Hyperparameter 
investigation and tuning 

20/04/2021 26/04/2021 5 

Tests with Data 
Augmentation 

27/04/2021 29/04/2021 3 

Tests with Batch 
Normalization 

30/04/2021 01/05/2021 1 

Tests with Dropout 02/05/2021 03/05/2021 1 

Use of pre-trained model 
to assess Transfer-
learning 

04/05/2021 12/05/2021 7 

Report progress in PAC3 
Deliverable 

13/05/2021 17/05/2021 3 

PAC 4 - Redaction of 
Bachelor's Thesis 

18/05/2021 08/06/2021 16 

Complete First Draft 18/05/2021 26/05/2021 7 

Revise and Second Draft 27/05/2021 02/06/2021 5 

Final Version 03/06/2021 08/06/2021 4 

Record Presentation 09/06/2021 13/06/2021 3 

Public Defence 16/06/2021 23/06/2021 6 

Table 1: Project Timeline Table. 
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The distribution of tasks can be seen in figure 2. 

Figure 2: Gannt Diagram. 

 

1.5 - Summary of the products obtained 
The product obtained by this project will be an investigation and exploration of 
solutions to the three class (Covid-19, Normal and Pneumonia) classification 
problem.  

A full explanation of the methodology and techniques applied, along with a 
comparative study of their results. A pre-trained neural network will be fine-tuned 
on the x-ray images to compare this project’s results with the state of the art. 

1.6 - Brief descriptions of the other chapters in the bachelor’s 
thesis 
The second chapter of this bachelor’s thesis will give the medical context of the 
project. It will cover the use of medical imaging in diagnosis, the use of deep-
learning in concert with medical imagery and a brief examination of the state of 
the art using deep-learning and X-rays to diagnose and screen for covid-19. 

The third chapter is a general explanation of machine learning with a focus on 
CNNs. This chapter explains CNNs in terms of the techniques employed in this 
project and serves to contextualise why this specific type of machine learning 
techniques were chosen. 

The fourth chapter outlines the methodology employed. It features an explanation 
and exploration of the dataset, the different architectures and configurations 
employed, the techniques used to improve performance and the metrics used to 
evaluate this same performance.  

The fifth chapter presents the results obtained by the various models constructed 
and the pre-trained model used. This chapter compares the models in terms of 
the metrics explained in the previous chapter exposing the strengths and 
weaknesses of the individual models. 
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Chapter six is a discussion of the results obtained. It will compare the results in 
the context of the techniques employed in each experiment, examining the 
influence of each, and referencing similar results in available literature where 
applicable.  

The final chapter contains the conclusions exposed. It considers the results 
obtained in this study along with the baseline clinical results available in literature 
to determine if radiography could be a useful tool in the medical screening Covid-
19 patients. 

The document ends with a glossary and bibliography.  
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2. – Medical Context  

2.1 – Covid-19  
The effects of Covid-19 were first detected as pneumonia of an unknown source 
in Wuhan City, Hubei Province of China in December 2019 [15]. It was rapidly 
shown to be caused by a novel coronavirus that is structurally related to the virus 
that causes severe acute respiratory syndrome (SARS) [16]. 

As early into the crisis as May 2020, Covid-19 was shown to be highly 
transmissible. It was shown that, in cities with similar transmission conditions to 
Wuhan, the Coronavirus had a 50% chance of establishing itself within the 
population once four independent cases had been introduced [17].  

Detection of Covid-19 is usually carried via reverse PCR and antigens tests that, 
while effective [6, 7], can be expensive [8]. These characteristics have led to 
investigation into other forms of diagnosis of Covid-19 [18]. 

2.2 – Imaging in Diagnosis of Lung Problems 
Imaging techniques such chest radiographies (CXR), computed tomography (CT) 
scans and magnetic resonance imaging (MRI) can all be used in the diagnosis of 
issues such as pneumonia, bronchial carcinoma, pulmonary hypertension, cystic 
fibrosis, and pulmonary fibrosis [19].  

Each technique has advantages and disadvantages in terms of precision, 
availability and exposure to radiation as can be seen in table 2. 
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 CXR CT MRI 

Advantages Widely available. 

Exploratory first 
study. 

High spatial 

Resolution. 

High sensitivity. 

High speed 

workflow. 

Intermediate spatial 
resolution. 

High contrast resolution. 

High temporal resolution. 

No radiation exposure. 

Disadvantages Low sensitivity. 

Low specificity. 

Allergy to contrast agent. 

Contraindications: 
impaired renal function, 
thyroid function. 

Availability. 

Study acquisition time. 

Allergy to contrast agent. 

Contraindications: 
implants. 

Indications Pneumonia, 
Bronchial 
carcinoma 
(detection), 

Pulmonary 
hypertension, 

COPD 

Cystic fibrosis, 

Fibrosis. 

Complicated pneumonia, 
pneumonia in at-risk 
patients, 

Bronchial carcinoma 
(staging), 

Acute pulmonary 
embolism, 

Pulmonary hypertension, 

COPD, 

Fibrosis. 

Bronchial carcinoma, 

Pulmonary hypertension, 

Cystic fibrosis. 

Remuneration EBM 
points GöA rate 
(basic) 

430 

€26.23  

1865; + 645 with contrast 
agent 

€134.06; with contrast 
agent €151.55 + 
additional consumables 

3430; + 1260 with 
contrast agent 

€250.64; with contrast 
agent €326.42 

+ additional consumables 

Dose [20] 0.1 mSv  Low-dose-CT 0.2–1 mSv 
Routine now 1–5 mSv 
Routine 10 years ago 10 
mSv 

None 
 

Number Performed 
(Germany) [21, 22] 

15 million/year 
 

Total estimated 2 
million/year  

Inpatient 830000/year 

Inpatient 12000/year 

Table 2: Comparison of imaging techniques in diagnosis [19]. 

CXR has a wide range of applications, is cheaper than the other options, delivers 
a lower dose of radiation and is carried out far more frequently. CXR’s low cost 
has led to it being studied as a detection tool for acute respiratory infection in 
children in the developing world [23].  

2.3 – Machine Learning in Diagnosis 

The utilization of machine learning (ML) in medical diagnosis is common. It has 
been applied in the diagnosis and treatment of neurodegenerative diseases, the 
prediction and prognosis of cancer, research into diabetes and a host of other 
medical uses [24–27]. 

The application of ML, specifically deep learning (DL), to classifying medical 
images is also well researched [28]. Studies have made use of DL techniques in 
areas as diverse as neuro, retinal, pulmonary, digital pathology, breast, cardiac, 
abdominal, and musculoskeletal investigation/diagnosis [29].  

Among these imaging techniques, deep learning in the form of CNN have been 
shown to be effective in the detection of pneumonia in CXR images [30, 31]. This 
success in pneumonia detection indicates that CNN could be used to detect the 
effects of the coronavirus in radiographies.[9, 10, 32] 
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2.4 – Covid-19 detection with Deep Learning in Chest X-rays 
The type of pneumonia caused by Covid-19 has been shown to manifest similar 
features to other types of viral pneumonia in radiographic images [9, 10, 32], 
which has led researchers to apply DL to CXR to detect and screen Covid-19.  

Some of the leading studies have achieved admirable results, Kedia et al [11] 
achieved an overall accuracy of 98.28% on classification of Covid, Pneumonia 
and Normal images with F1 scores of 0.99, 0.98 and 0.98 respectively.  

Due to the Coronavirus novel status, dataset size has been limited. Many papers 
focus on mitigating the issues that small datasets imply. Transfer learning and 
data augmentation are used in papers by Chowdhury et al [9] and Minaee et al 
[12] to achieve sensitivities of up to 97.94 and 98% respectively. 

This project will investigate the same three-class classification problem as Kedia 
et al. Here we start from a base model and progressively apply techniques to 
improve performance to contribute to this body of work. In parallel with work by 
Chowdhury et al and Minaee et al, this project evaluates the effectiveness of data 
augmentation and transfer learning to mitigate the technical limitations of small 
datasets. 
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3. – Machine Learning  

3.1 – Introduction 
The first formal study of Artificial Intelligence (AI) was carried out by ten scientists 
in Dartmouth College in Hanover, New Hampshire, in 1956 [33]. In the proposal 
for this summer project, themes as wide-ranging as natural language processing, 
neural networks, the theory of computation, abstraction, and creativity were 
mentioned.  

Machine Learning (ML) is a subset of AI, it is concerned with a computer system’s 
ability to acquire domain knowledge. More concretely, ML is the study of 
algorithms’ ability to improve automatically through experience and the use of 
data. The aim of machine learning is that a computer system can learn from data, 
identify patterns, and make decisions with minimal human intervention.  

The way computers can be made to act without receiving explicit instructions 
depends on what kind of problem is to be solved. The four main machine learning 
techniques are Supervised Learning, Unsupervised Learning, Semi-Supervised 
Learning and Reinforcement Learning. This project employs supervised learning 
and thus will be the focus of our explanation, but a brief overview of the other 
techniques is included for context. 

Unsupervised Learning 

Unsupervised learning is a type of machine learning in which the system is 
expected to discover patterns and information that were previously unknown. 
Clustering is one such technique, it is focused on finding a structure or pattern in 
uncategorized data.  

Data used in unsupervised learning is known as unlabelled data as we do not 
provide information a priori to the computer system about the type or category of 
the data. It is the responsibility of the system to categorize that data and group 
samples together based on correlations it detects. Unlabelled data is inexpensive 
to assemble, and unsupervised learning algorithms can be useful in identifying 
correlations in high-dimensional data. 

Semi-supervised Learning 

Semi-supervised learning is a technique that combines concepts from 
unsupervised and supervised learning. A small amount of labelled data (data 
whose category of type is pre-defined, usually manually by humans) is combined 
with a large amount of unlabelled data.  

The labelled data serves as a reference point in the grouping of the unlabelled 
data. The cost of manually categorizing large amounts of data may render 
constructing large, labelled datasets unfeasible. Semi-supervised learning 
intends to mitigate this problem by leveraging small amounts of labelled data to 
categorize large amounts of unlabelled data. 

Semi-supervised learning may be transductive learning or inductive learning. The 
goal of transductive learning is to infer the labels for the provided unlabelled data 
using the labelled data as reference. The goal of inductive learning is to infer the 
correct mapping of unlabelled data to the labels provided. 
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Reinforcement Learning 

Reinforcement learning is the area of machine learning which studies how 
intelligent agents should take actions in an environment to maximise reward. The 
purpose of reinforcement learning is for the agent to learn an optimal, or nearly 
optimal, policy regarding decision making that maximizes a reward function or 
other type of human-designed reinforcement signal that accumulates from the 
immediate rewards. 

There are many approaches which define the reward function, but it can generally 
be understood as a function which will return higher values when an action that 
is more favourable to the policy of the system is taken. As the system explores 
and compares possible actions, it should identify those which will provide the 
highest reward and learn to follow these actions.  

3.2 – Supervised Learning 

Supervised learning works on the basis that an algorithm can be trained to 
perform more accurately by being fed labelled data and continuously adjusting its 
parameters according to its performance on each sample. This technique is used 
for classification and regression tasks.  

3.2.1 – Loss function 

In supervised learning for classification, an algorithm is trained using labelled 
data. Given a sample of data, the algorithm must predict its class. A loss function 
that quantifies the difference between the prediction and the actual label is used 
to express the quality of the prediction. The parameters of the algorithm are then 
adjusted to minimise this loss function. As this process is repeated, the idea is 
that as the loss function is reduced, the quality of the predictions improves. 

3.2.2 - Overfitting 

One of the great challenges of supervised learning is to train algorithms in such 
a way that they generalise well to new data. An algorithm that performs well on 
the training data but poorly on the new, unseen data is said to have overfit: it has 
learned the characteristics of the training data and not the shared characteristics 
of further domain data. We will study methods to identify and avoid overfitting in 
the following sections. 

To properly assess classification algorithms, it is not acceptable to simply drive 
down the loss function on training data and assume that the model generalises 
well to data that it has never seen. A subset of data must be withheld during 
training so that the model can be evaluated rigorously. Techniques defining how 
data is withheld and a model evaluated are known as validation techniques. 

3.2.3 – Validation techniques 

There are several techniques to calculate the loss function of a supervised 
learning algorithm so its parameters can be adjusted. Each technique attempts 
to evaluate the quality of the model on data that has not been used to train the 
model to avoid overfitting. Some of the main methods are explained below: 
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The hold-out method 

Data is split into three subsets: training, validation, and testing. The training set 
is the largest and it is used, as the name suggests, to train the algorithm. The 
format of the training data is an input-output pair. A loss function is calculated for 
samples in this set by feeding the input sample into the algorithm and comparing 
the algorithm’s output with the output sample. The parameters of the model are 
subsequently adjusted to minimize the loss function. 

The validation data has the same input-output format and is data that has not 
been included in the training set and is, therefore, unseen by the algorithm. A loss 
function is also calculated on the validation set, but it is not used to adjust the 
parameters of the model, it is strictly for evaluation purposes during training. 

The test set is unseen labelled data that is used to evaluate the adjustment of the 
hyperparameters carried out during the training phase. Once training is finished, 
the model is evaluated using the test set.  

K-Fold Cross Validation 

In this technique, k-1 subsections (folds) are used for training, and one for testing 
as seen in the figure 3. 

 

Figure 3: K-folds [34]. 

The average of the error rate of each iteration is taken to calculate the overall 
average. 

Leave-One-Out Cross-Validation (LOOCV)  

In this method, every data-item except one sample is used for training, the left-
out record is then used for testing. This technique uses every sample for training 
and evaluation and takes the average error of each iteration as the final overall 
error. A depiction of this technique can be seen in figure 4. 

 

Figure 4: LOOCV [34]. 
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Random Subsampling 

In this technique, a randomly selected subset of data is selected to make up the 
test set in each iteration. An average error is taken to calculate an overall score 
at the end of training. This technique is depicted in figure 5. 

 

Figure 5: Random Subsampling [34]. 

3.3 – Artificial Neural Networks 

3.3.1 – The Multilayer Perceptron 

To understand the concept of the multi-layer perceptron (MLP), we must first 
establish what a perceptron is and what limitations it has. A perceptron is an 
algorithm for supervised learning of binary classifiers. A binary classifier is a 
learning algorithm called a threshold function; a function that maps X (a matrix) 
to an output value f(x) that is a binary value. 

𝑓(𝑥) = {
1 𝑖𝑓 𝑤 · 𝑥 + 𝑏 > 0 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Where w is a weight, x is an element of the vector and b is the bias. The bias 
defines the distance between the function the origin. As w·x is the dot product, if 
b is negative, the sum with weight of all inputs must result in a positive value 
greater than |b| to exceed threshold 0. In terms of dimensional space, the bias 
alters the position of the decision boundary. 

The limitation of perceptrons is that they can solve only linearly separable 
problems. A classic example of this limitation is the impossibility of modelling 
XOR with a single perceptron. Both the AND and OR functions are basic Boolean 
operations, and linearly separable. XOR on the other hand is formed of three 
basic Boolean operations: 

(p v q) ^ ¬(p ^ q) 

This behaviour cannot not be modelled by a single perceptron and must be 
handled by a multi-layer perceptron. Multi-layer perceptrons have their roots in 
the need to add perceptual layers to solve more complex problems.  

A multi-layer perceptron layer consists of at least three layers; the input layer, the 
hidden layer, the output layer, and the connections between perceptrons (also 
called units or neurons).  

An MLP consisting of at least these three layers is an Artificial Neural Network 
(ANN). The term deep learning (DL) comes from using many layers to extract 
features from data. A standard ANN is made of fully connected layers. That is, 
every node in a layer is connected to each in the next and previous layers.  
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The behaviour of an ANN can be generally said to be the following: 

• Input units receive values from the outside, and will be activated (i.e., 
produce a certain value in the output) or not based on the input received. 

• The outputs of the input layer are, in turn, the inputs of the hidden layer, 
these units receive a set of inputs to which they will react. To do this, each 
unit of the hidden layer has a vector of weights, a value for each incoming 
connection, which combines with the corresponding signals and causes 
the output of each hidden unit to be activated or not. 

• Finally, the output layer units receive the signals from the hidden layer, 
perform an operation with these signals and their own weight vectors, 
calculating their own output, which will be the result of the network. 

As we have seen in the simple perceptron, the output z is calculated from the 
inputs X with the weights W (in the input and hidden inputs) as: 

𝑧 = 𝑊𝑇𝑋 + 𝑏 

As we have mentioned, if b is negative, the output z will be positive only if the 
result of the dot product between WTX is greater than the absolute value of b. 
This value is fed forward into the next layer through an activation function. 

3.3.2 – Activation Functions 

The activation function serves to determine the output of a model as well as 
adding non-linearity into the ANN. There are many types of functions, choosing 
which to use depends on the specific use case. Two common activations are 
ReLU and Sigmoid, as seen in figure 6. 

 

Figure 6: Sigmoid and ReLU [35]. 

In terms of the output layer, the activation function depends on the desired output 
type. For example, if this is a real value, for example in a regression, the output 
is linear. In a case of binary classification, the Sigmoid function. For multiclass 
values, a function known as the Softmax function is used. Softmax on the other 
hand, assigns decimal probabilities to each class in a multi-class problem. Those 
decimal probabilities must add up to 1.  
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3.3.3 – Backpropagation  

ANN parameter adjustment in supervised learning situations is done via 
backpropagation. For every node, W and b are initialised with random values 
between 0 and 1. Training examples are then fed into the ANN and the result 
generated compared with the desired result. We express the difference between 
the result obtained and the expected result through a loss function C. The goal of 
training is to reduce the values of this function. 

This reduction is obtained by using the method of gradient descent, calculating 
the loss gradient with respect to the weights and output biases: 

 
𝑤ℎ𝑒𝑟𝑒 �̂� = {𝑊, 𝑏} 

Calculating this derivative, we find the optimal �̂� to reduce C. However, if we 
apply this only to the output layer, this only affects the output unit(s) and we have 
not modified the weight or bias of any hidden layer. This is where the process of 
backpropagation is applied: once the output layer is adjusted, the hidden layer is 
set by the same procedure, and so the layers are adjusted from the output to the 
input. 

There are three variants of gradient descent as shown in table 3. 

 Batch Gradient 
Descent 

Stochastic 
gradient descent 

Mini-batch 
gradient descent 

Technique Use all training 
samples at the 
same time 

Use samples one 
by one  

Executes samples 
in blocks 

Advantages Good results Fast Reduces variance 

Disadvantages  Computationally 
expensive 

High variance High computational 
cost than 
Stochastic gradient 
descent  

Table 3: Gradient Descent Variants. 

3.3.4 – Hyperparameters 

The parameters of an ANN are the weights and the biases. Apart from these 
parameters, however, there are further configurations we can make to the models 
that will affect its behaviour.  

Some examples of algorithm hyperparameters are: 

• Learning Rate: When applying gradient descent, the parameters (weights 
and biases) are adjusted according to the cost function. The learning rate 
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defines how much these settings are adjusted. If it's too large we can 
overshoot the local minimum and if it's too small, it can take a long time to 
reach. 

• Momentum: Momentum serves to indicate the direction of the next step 
(of the descent) to avoid oscillations. 

• Number of epochs: The number of times the training data is inserted into 
the network.  

• Batch size: The number of examples the algorithm should study before 
setting the parameters.  

3.4 – Overview of Convolutional Neural Networks 
Convolutional Neural Networks (CNN) are a type of Artificial Neural Network 
(ANN) designed for the classification of images. The first proposal for a neural 
network of this type was made by Dr. Kunihiko Fukushima in 1980. In the same 
paper, Dr Fukushima claimed that, once trained, the network has a structure like 
the hierarchy model of the visual nervous system proposed by Hubel and Wiesel 
[36]. According to Hubel and Wiesel’s model, individual neurons respond to 
stimuli only in a restricted region of the visual field known as the Receptive Field. 
A collection of such fields overlap to cover the entire visual area. As we will see, 
this structure is emulated by CNNs. 

Like the ANN seen earlier, a CNN is made up of three fundamental parts: the 
input layer, the hidden layers, and the output layer. The input serves as an 
entrance for visual information. The hidden layers generally consist of one of 
three main types, convolutional, pooling and fully connected, and is the 
information processing engine of the CNN. The output layer produces a signal 
that expresses the CNN’s classification of the image. A basic structure of a CNN 
is shown in figure 7. 

 

Figure 7: The layers of CNN and their functions [37]. 

The input layer is a single vector with one position for each input value. In the 
case of colour images, there would be a total of ℎ ∗ 𝑤 ∗ 3, where ℎ and 𝑤 are the 
height and width in pixels respectively, multiplied by 3 to consider the 3 layers of 
an RGB image.  

Each hidden layer is made up of neurons or nodes. Each of these neurons can 
be semi or fully connected to all neurons in the previous layer and function 
completely independently of other neurons in the same layer. The last fully 
connected layer is called the “output layer” and in classification settings it 
represents the class scores. These class scores are compared with the labelled 
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data used in training to calculate a loss function and train parameters using 
backpropagation. Each neuron has learnable weights and biases, which are 
adjusted during backpropagation. Each neuron receives some inputs, performs 
a dot product with the weights, sums the bias, and optionally follows it with a non-
linearity. 

The advantage that CNNs have over standard ANNs in image processing is that 
the layers are made up of 3D volumes; neurons arranged in width, height and 
depth. As we saw in section 3.3.1, standard ANNs have fully connected layers, 
meaning each neuron is connected to each neuron of the next layer and has a 
weight and bias for each connection. An ANN, therefore, given a colour image of 
200 pixels in height and width would have to manage 200 ∗ 200 ∗ 3 =  120,000 
weights in its first fully connected input layer. As we will see, CNNs leverage the 
3D volumes of its layers to allow neurons to be connected to only a region of 
neurons in the next layers as opposed to every single one [38]. This reduces this 
type of dimensionality in weights and allows for more efficient computation. A 
visual representation of this can be seen in the figure 8. 

 

Figure 8: ANN vs CNN [38]. 

3.5 – The Layers of a CNN 

3.5.1 - The Input Layer 

A CNN makes use of an combination of different types of layers to extract 
features, reduce dimensionality, avoid overfitting, and activate signals in such a 
way that classification can be expressed. The first layer is obviously the input 
layer. This layer receives one input for every pixel value in every layer of the 
image and passes it to the first convolutional layer. 

3.5.2 - The Convolutional Layer 

The convolutional layer applies filters to the input to extract features. Every filter 
is small spatially (along width and height) but extends through the full depth of 
the input volume. This format allows the convolutional layer to avoid the massive 
amounts of connections that traditional ANNs would have.  

An image of size 𝑁𝑋 𝑥 𝑁𝑌 pixels and 𝑁𝐶 color channels is usually represented by 
a data array of dimension 𝑁𝑋 𝑥 𝑁𝑌 𝑥 𝑁𝐶. A convolution layer applies a set of 𝑁𝐹 
filters to the volume of the input image. Each filter consists of an array of weights 
of a certain size 𝑀 𝑥 𝑀 𝑥 𝑁𝐶. The spatial extent of the 𝑀 𝑥 𝑀 filter is known as the 
receptive field of a given neuron. Applying the operation for each pixel of the input 
image and each filter of the convolutional layer, we end up having a result in the 
form of volume of dimensions (𝑁𝑋 −  𝑀 +  1)𝑥 (𝑁𝑌 −  𝑀 +  1)𝑥 𝑁𝐹 [38]. This 

operation is represented visually in figure 9.  
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Figure 9: Filtering in Convolutional Layer [39]. 

The dimensions of the output volume are defined by the three hyperparameters 
of the convolutional layer: the depth, stride, and padding. 

• The depth corresponds to the number of filters we would like to use, each 
learning to look for something different in the input.  

• The stride is the number of pixels at a time we slide the filter across the 
image. A stride of one means moving the entire filter one pixel.  

• Padding (also known as zero padding) is the technique of lining the image 
with values of zeros. This padding alters the dimensioning effect of the 
filter. Zero padding is used to control the spatial sizes of the output 
volumes. 

The spatial size of the output volume as a function of the input volume size (𝑊) 

can be calculated as follows. Considering the receptive field size of the 
convolutional layer neurons (𝐹), the stride with which they are applied (𝑆), and 
the amount of zero padding used (𝑃) on the border, the spatial size of the output 

is given by (𝑊 − 𝐹 + 2𝑃)/𝑆 + 1. We can see this effect in figure 10. 

  
Figure 10: Output volume [38]. 

On the left side, 𝑊 =  5, 𝑃 =  1, 𝐹 =  3 𝑎𝑛𝑑 𝑆 =  1 giving (5 − 3 + 2 ∗ 1)/1 + 1 =
5.  Similarly, the right has values such that (5 − 3 + 2 ∗ 1)/2 + 1 = 3.   

3.5.3 - The Pooling Layer 

Pooling layers are typically inserted between successive convolutional layers in 
a CNN. Their function is to progressively reduce the spatial size of the 
representation of the image to reduce the number of parameters and computation 
in the network. This spatial reduction is also useful in controlling overfitting. The 
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pooling layer does not change the depth of the input, operating independently on 
each slice and resizing it spatially, typically using either the MAX or AVG 
operation. In figure 11 we can see a 2𝑥2 MAX pooling filter applied with a stride 
of 2. 

 

Figure 11: MAX Pooling [38]. 

3.5.4 - The Fully Connected Layer 

The fully connected layer is used to learn non-linear combinations of the high-
level features that are represented by the output of a previous convolutional layer. 
Neurons in a fully connected layer have full connections to all activations in the 
previous layer, as seen in fully connected ANNs. Their activations can therefore 
be computed with a matrix multiplication followed by a bias offset.  

The input to the fully connected layer is the output from the final Pooling or 
Convolutional Layer, which is flattened and then fed into the fully connected layer. 
The output of this layer is fed into a layer which uses an activation function such 
as Soft-max to generate a class prediction as seen in figure 12. 

 

Figure 12: Fully Connected Layer with Soft-max [40]. 
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3.6 – Techniques to Improve CNN performance 

3.6.1 - Introduction 

This section serves to introduce the techniques and methods employed in the 
attempts to improve performance.  

3.6.2 – Data Augmentation 

As we have seen, deep learning algorithms would ideally dispose of large 
amounts of data to train on. In practice, large amounts of data are not always 
readily available. To mitigate this issue, data augmentation can be applied to data 
sets to re-use data while minimising the possibility of over-fitting. 

In the context of image data, data augmentation consists of altering the images 
in such a way that they can be re-used in training without simply repeating the 
exact same image. Pytorch’s TorchVision library offers a set of functions, 
Transforms, which can be applied to images on the fly. Generally, they are 
probabilistic and are applied to a sub-set of images in each batch. Some common 
transformations and those used in this project are described below. 

RandomRotation 

Given degrees as a parameter, this function rotates the image by a random value 
with the range of [-degrees, +degrees].  

RandomVerticalFlip 

Vertically flip the image randomly with the given probability.  

RandomHorizontalFlip 

Horizontally flip the image randomly with the given probability. 

RandomGrayscale 

Randomly convert image to grayscale with a probability passed as a parameter.  

3.6.3 – Batch Normalization 

Deep learning models are generally formed by various layers with each one 
receiving an input, applying some computations, and passing the result on to the 
next layer as output. As the model is trained, the intention is that each layer 
becomes progressively better at fitting the input data distribution.   

In practice, each batch of data will contain variations in its input distribution, which 
will not only be more challenging to fit, but also lead the model to adjust to that 
specific distribution. As well as the input distributions changing, as the model is 
changed and parameters adjusted, the distribution of a layer’s input will be altered 
and modified by adjustments made to the parameters in the prior layer. As a 
result, the model is faced with the challenge of extrapolating the underlying 
distributions of the data from batch distributions which are in constant flux, a 
phenomenon known as internal covariate shift.  

Batch Normalization seeks to alleviate these issues by scaling the output of each 
layer [41]. It does so by standardizing the activations of each input variable per 
batch, such as the activations of nodes from the previous layer. Standardizing the 
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activations of the prior layer means that assumptions the subsequent layer makes 
about the spread and distribution of inputs during the weight update will not 
change dramatically. The desired effect is the stabilizing and speeding-up of the 
training process of deep neural networks. 

3.6.4 – L2 Regularization 

L2 regularization is a method for preventing overfitting. It works by penalising 
complex models by regularizing the weights of the features. If we consider model 
complexity as a function of weights, a feature weight with a high absolute value 
is more complex than a feature weight with a low absolute value.  

We can quantify complexity using the L2 regularization formula, which defines 
the regularization term as the sum of the squares of all the feature weights: 

𝐿2 𝑅𝑒𝑔𝑢𝑙𝑎𝑟𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑡𝑒𝑟𝑚 =  ‖𝑤‖2
2 = 𝑤1

2 + 𝑤2
2 + 𝑤3

2 + ⋯ + 𝑤𝑛
2. 

Given this formula, low weights will have little effect on model complexity while 
larger outlier weights will have a large affect. L2 regularization helps drive outlier 
weights (those with high positive or low negative values) closer to 0. 

The loss function of a model including L2 regularization is: 

𝐿𝑜𝑠𝑠 = 𝑒𝑟𝑟𝑜𝑟(𝑦, �̂�) + 𝜆 ∑ 𝑤𝑖
2

𝑁

𝑖=1

 

Where lambda is the regularization rate. L2 regularization has the following 
effects on a model: 

• Encourages weight values toward 0 (but not exactly 0) 

• Encourages the mean of the weights toward 0, with a normal (bell-shaped 
or Gaussian) distribution. 

3.6.5 – Dropout 

Dropout is a computationally inexpensive technique for avoiding overfitting. The 
key idea is to randomly drop nodes (along with their connections) from the neural 
network during training [42]. 

In Pytorch, a layer is added with a probability of nodes being zeroed. In a layer 
with 100 nodes, a probability of 0,5 would result in roughly 50 nodes being 
ignored in the forward and backwards passes of training. A visual representation 
of dropout is seen in figure 13. 
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Figure 13: Dropout [42]. 

The process in the training phase is the following: for each hidden layer, for each 
training sample, for each iteration, zero out a random fraction, p, of nodes (and 
corresponding activations) and calculate the loss without the influence of those 
zeroed nodes. 

3.6.6 – Transfer Learning and ResNet18 

Transfer Learning is the technique of taking advantage of already trained models 
to solve new problems. It consists of adapting the models already created so that 
they work with the new scenario. Therefore, the problem for which the original 
model was created and the new problem to be solved must be related. We call 
the model from what we want to learn ‘source model’ and the model we want to 
teach from the source model ‘target model’. 

In this project, a pretrained ResNet18 model from Pytorch will be used. In section 
3.3.3 we commented on backpropagation. During the backpropagation stage, the 
error is calculated, and gradient values are determined. The gradients are sent 
back to hidden layers and the weights are updated accordingly. This process of 
gradient calculation and weight adjustment is calculated until the input layer is 
reached.  

As more layers are added to a neural network, backpropagation through many 
layers of very deep models can lead to gradient vanishing or explosion [43, 44]. 
Gradient vanishing is the process in which the gradients calculated get 
progressively smaller as they are passed through the layers until the adjustments 
made to weights become negligible. This leads to weights not being adjusted 
sufficiently in shallow layers of the model, and convergence either taking a very 
long time, or simply becoming impossible. Gradient explosion is essentially the 
opposite problem. Here, gradients accumulate, and weights are over-adjusted. In 
either case, very deep models can be hard to train. 

To combat this effect, He et al proposed a residual learning framework to ease 
the training of networks that are substantially deeper than those used previously 
[45]. The idea is that instead of letting layers learn the underlying mapping, let 
the network fit the residual mapping. Instead of learning the initial mapping 𝐻(𝑥), 

let the network fit 𝐹(𝑥)  =  𝐻(𝑥) − 𝑥 which gives 𝐻(𝑥)  =  𝐹(𝑥)  +  𝑥. The 
approach involves adding an identity connection allowing data to pass 
uninterrupted, skipping weighted layers, as well as through the same weighted 
layers [46] as seen in figure 14. 
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Figure 14: A Residual Block [45]. 

In the paper by He et al, the built a 34-layer ResNet. In this project, an 18-layer 
version is used. The construction of this model used two blocks. The first block is 
the identity block as seen in figure 15. The identity block is the standard block 
used in ResNet and corresponds to the case where the input activation has the 
same dimension as the output activation. 

 
Figure 15: Identity Block [46]. 

The second block is the Conv Block as seen in figure 16. The conv block serves 
to modify and restructure the incoming data so that the output of the first layer 
matches dimensions of the third layer. 

 
Figure 16: Conv Block [46]. 

Using this structure, the authors won 1st place in ILSVRC and COCO 2015 
competition in ImageNet Detection, ImageNet localization, Coco detection and 
Coco segmentation. 

This project uses Pytorch’s ResNet 18 model: the same structure but made up of 
only 18 layers. The model employed is pre-trained on the ImageNet data set and 
will be fine-tuned on the radiological images from this study’s dataset.  
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3.7 – Metrics to Evaluate Performance 
To measure the ability of a model’s ability to classify samples, many metrics can 
be used. In this section, the metrics used in this project are outlined. 

Accuracy 

Accuracy is the expresses the number of correct classifications. It is the number 
of correct classifications divided by the total number of samples to classify, 
generally expressed as a percentage. 

This metric, while useful, does not give a nuanced idea of the model’s 
performance. If a dataset is imbalanced, for example, high accuracies can be 
achieved despite misclassifying many samples from the small class. To fully 
evaluate models, other metrics must also be considered.  

Precision, Recall and F1 

In a classification problem, we can define predictions as positives and 
negatives. For example, in this multi-class classification problem with classes 
Covid, Normal and Viral Pneumonia, a sample classified as Covid would be 
considered a positive prediction for Covid, and negative for Normal and Viral 
Pneumonia.  

Given this definition for positive and negative predictions, we can define a true 
positive (TP) as a positive prediction that was in fact positive in the predicted 
class. For example, a correctly identified Viral Pneumonia sample is a true 
positive in that class and a true negative (TN) in the other classes. On the other 
hand, an image from the Covid class that is incorrectly classified as Normal is a 
false positive (FP) of the Normal Class, and a false negative (FN) of the Covid 
class.  

Precision, also known as positive predictive value, is the proportion of correct 
positive predictions. It can be expressed as a decimal number less than one, or 
indeed as a percentage. The formula is the following: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall, also known as sensitivity, is the proportion of actual positives that were 
correctly identified. It can be expressed in the same format as precision and is 
defined in the following way: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 
Both metrics are useful in evaluating a model. For example, in the case of an 
infectious disease like Covid-19, recall is useful in measuring how many positive 
samples are undetected.  

The F1 score is the harmonic mean of the precision and recall, it allows us to get 
a balanced understand of a model’s performance on a class. The F1 score 
informs us of the balance between the precision and recall and allows us to 
evaluate by class. The formula is the following: 
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𝐹1 =  2 ·
𝑃𝑟𝑒𝑐𝑠𝑖𝑜𝑛 · 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

Weighted and Macro Averages 

For each of the three metrics in the last section (Precision, Recall and F1), we 
will calculate a weighted and macro average for each one. As the scores are 
calculated by class, these averages express the score in general terms. 

The weighted average considers the dimension of each class and weights its 
contribution to the average accordingly. The formula is the following: 

𝑤𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑠𝑐𝑜𝑟𝑒 =
%𝑤𝑒𝑖𝑔ℎ𝑡(𝑐𝑙𝑎𝑠𝑠0)

100
· 𝑠𝑐𝑜𝑟𝑒(𝑐𝑙𝑎𝑠𝑠0) + 

%𝑤𝑒𝑖𝑔ℎ𝑡(𝑐𝑙𝑎𝑠𝑠1)

100
· 𝑠𝑐𝑜𝑟𝑒(𝑐𝑙𝑎𝑠𝑠1)+. . +

%𝑤𝑒𝑖𝑔ℎ𝑡(𝑐𝑙𝑎𝑠𝑠𝑛)

100
· 𝑠𝑐𝑜𝑟𝑒(𝑐𝑙𝑎𝑠𝑠𝑛) 

Where the %weight proportion is the proportion that class represents. 

The macro average does not consider the weights of the classes, instead each 
class score contributes equally to the average: 

𝑚𝑎𝑐𝑟𝑜𝐴𝑣𝑒𝑟𝑎𝑔𝑒𝑠𝑐𝑜𝑟𝑒 =  
𝑛𝑢𝑚𝑏𝑒𝑟𝐶𝑙𝑎𝑠𝑠𝑒𝑠

100
· 𝑠𝑐𝑜𝑟𝑒(𝑐𝑙𝑎𝑠𝑠0) + 

𝑛𝑢𝑚𝑏𝑒𝑟𝐶𝑙𝑎𝑠𝑠𝑒𝑠

100
· 𝑠𝑐𝑜𝑟𝑒(𝑐𝑙𝑎𝑠𝑠1)+. . +

𝑛𝑢𝑚𝑏𝑒𝑟𝐶𝑙𝑎𝑠𝑠𝑒𝑠

100
· 𝑠𝑐𝑜𝑟𝑒(𝑐𝑙𝑎𝑠𝑠𝑛) 
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4. – Methodology  

4.1 – The data 
This project employs a dataset of 15,153 radiographic images containing three 
classes: COVID-19, Normal and Viral Pneumonia. The classes are of the 
dimensions shown in table 4. 

Class Number of images Percentage of Total 

COVID-19 3,616 23.86% 

Normal 10,192 67.26% 

Viral Pneumonia 1,345 8.88% 

Table 4: Dataset dimensions. 

This dataset is a subset of the publicly available COVID-19 Radiography 
database [47]. Each image is either AP (anterior to posterior) or PA (posterior to 
anterior) picturing the thorax including the lungs. Every image employed in this 
project was collected by researchers in universities in Pakistan, Bangladesh, 
Malaysia, and Qatar. The dataset was assembled as part of a study by 
Chowdhury et al [9] and is available publicly on Kaggle [48].  

In the following sections, the sources used by the researchers to compile the data 
are listed along with the number of images taken from each. 
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4.1.1 - COVID-19 Class 

The images in this class were taken from six different sources. In each, patients 
were confirmed as positive for the coronavirus by either PCR or antigens test. 
The sources of this class can be seen in table 5. 

Source Number of images taken 

SIRM, The Italian Society of Medical 
and Interventional Radiology [49] 
 

199 

COVID-19 Image Repository 
(Github) – Hannover Medical School 
[50] 
 

183 

EuroRad - European Society of 
Radiology [51] 
 

258 

COVID-CXNet - Github [52] 
 

400 

Covid ChestXray Dataset - Github 
[53] 
 

182 

BIMCV - Medical Imaging Databank 
of the Valencia Region [54] 

2474 

Table 5: COVID-19 Class Images Sources. 

4.1.2 – Normal Class 

The normal lung image set is made up of a total of 10,192 X-rays taken from two 
sources as seen in table 6. 

Source Number of images taken 

RSNA Pneumonia Detection 
Challenge - Kaggle  [55] 

8,851 

Chest X-Ray Images (Pneumonia) 
[56] 

1,341 

Table 6: Normal Class Image Sources. 

4.1.3 – Viral Pneumonia Class 

The Viral Pneumonia folder contains a total of 1345 images all of which come 
from the same source as noted in table 7. 

Source Number of images taken 

Chest X-Ray Images (Pneumonia) 
[56] 

1,345 

Table 7: Viral Pneumonia Class. 
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4.1.4 – Further Details 

According to the researchers, the COVID-19 Radiography database [47] has 
been published on Kaggle as part of an effort to make clinically useful COVID-19 
imagery widely available. The authors request the citation of their two papers that 
have used this set [9, 58]. The cited studies have used the previous iterations of 
this dataset, which is currently on version 4.  

It is important to note that, although the data was published online by the same 
researchers responsible for compiling the data used in the papers [9, 58], the 
images used in our study are distinct from those currently available in the Kaggle 
dataset. At the time of publication of these papers, there were less images 
available. The dataset compiled by the authors, therefore, consisted of less 
images despite being made up of data from the same sources listed above. This 
project uses the data which is currently available to capitalize on the 
methodological benefits that this increased sample size affords. The author 
considers that, while the larger quantity of images may make comparisons 
between results obtained in this project and those of published papers less direct, 
the flux in dimensions reflects the nature of a pandemic where both the situation 
and the available data are in constant evolution. 

4.1.5 – Data exploration 

All the images are in Portable Network Graphics (PNG) file format and have been 
resized to a resolution of 299·299 pixels. Each image is either PA or AP, no lateral 
images have been included.   

Three images of each class are displayed in each row in figure 17: 
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Figure 17: Classes of images. 

4.2 – Training, Validation and Testing Set Preparation 

The dataset was split into training, validation and testing sets with a proportion of 
79%, 15% and 6% respectively. This resulted in the dimensions in table 8. 

Training set 11,964 images 79% 

Validation set 2,279 images 15% 

Training set 910 images 6% 

Table 8: Set dimensions. 

Splitting the dataset into the three subsets indicated in table 7 was not a as 
straightforward as simply dividing the images in the proportions indicated. The 
dataset is considerably imbalanced as seen in figure 18. Images of the Normal 
class make up 67.26% of the total, while the Covid and Viral Pneumonia classes 
account for 23.86% and 8.88% respectively. 

Apart from this imbalance, the images of the Normal and Covid classes were 
collected from various repositories. If images from a single repository were to 
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share a characteristic owing to the repository (average age of patient of the 
hospital where the images were taken, calibration of radiographic machine used 
to capture images, etc), inadvertently grouping images from the same repository 
in the same subset may accidently introduce similarities into the set. To avoid 
this, we must ensure that the subsets created are not only proportional to the 
original class imbalance, but also shuffled randomly to minimise the inadvertent 
characteristic effect described above. 

To solve these problems, the Scikit-learn [59] library was used in conjunction with 
Pytorch’s TorchVision ImageFolder to create three directories of images, each 
containing a subset of images the classes. Images were added to these folders 
in a shuffled manner to avoid images of the same source being grouped together 
as much as possible. The distribution of these subsets can be seen in figure 18. 

 

Figure 18: Training, Validation and Testing Set Distribution. 

The exact numbers of each subset are shown in table 9. 

Set Covid Normal Viral Pneumonia 

Training 2,856 8,048 1,063 

Validation 545 1,534 203 

Testing 217 612 81 

Table 9: Dimensions of Subsets. 
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4.3. – Experiments 
For the original experiments at the beginning of the project, several simple 
architectures were tested before a sufficiently performant model was chosen as 
a starting point. As the project progressed, both the model and the data were 
modified in the attempt to improve results. The following sections outline these 
modifications and the theory underlying them. 

4.3.1 – Experiment 1 Architecture and Configuration 

The base model used in this project is a simple architecture consisting of three 
convolutional layers, each followed by a ReLU activation layer and a pooling 
layer. The output of the third pooling layer is flattened, the output of which is the 
input to a fully connected layer. The output of this first fully connected layer is the 
input to a second fully connected layer, the output layer. The input to this 
architecture is 299x299x3. 

The size of the kernel in each of the convolutional layers is 5, with a stride of 1 
and no padding. The pooling layers use a filter of size 2x2 and a stride of 1. We 
can visualize this architecture more clearly in the form of a table: 

Layer type Output Kernel/Filter Stride Padding 

Convolutional (295,295,32) 5 1 0 

ReLU (295,295,32) N/A N/A N/A 

Max Pooling (147,147,32) 2x2 1 0 

Convolutional (138,138,64) 5 1 0 

ReLU (138,138,64) N/A N/A N/A 

Max Pooling (69,69,64) 2x2 1 0 

Convolutional (50,50,128) 5 1 0 

ReLU (50,50,128) N/A N/A N/A 

Max Pooling (25,25,128) 2x2 1 0 

Flatten (80,000, 1) N/A N/A N/A 

Fully Connected (128, 1) N/A N/A N/A 

Output (3, 1) N/A N/A N/A 

Table 10: Experiment 1 Architecture. 

This base architecture is used to obtain the results of the first experiment and, 
excluding experiment 6 which uses a ResNet architecture, is the foundation upon 
which all posterior experiments are built. This experiment is simple and will serve 
the purpose of being a baseline for the rest of the experiments.  
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The configuration of the model can be seen in table 11. 

Image shape 299·299 pixels 

Transformed to tensor yes 

Normalized yes 

Total Epochs trained: 20 

Lowest Validation Loss Epoch: 20 

Loss Function Cross Entropy Loss 

Optimizer Stoic Gradient Decent 

Learning rate 0.0001 

Momentum 0.9 

Batch Size 32 

Data Augmentation No 

Transfer learning No 

Batch Normalization No 

L2 Regularization No 

Drop Out No 

Table 11: Experiment 1 Configuration.   



33   

4.3.2 – Experiment 2 Architecture and Configuration 

This experiment uses the same architecture as experiment 1, the only change is 
in the preparation of the data. Here we apply data augmentation to simulate a 
larger data set. The configuration of this experiment is the following: 

Image shape 299·299 pixels 

Transformed to tensor yes 

Normalized yes 

Total Epochs Trained 40 

Lowest Validation Loss Epoch 32 

Loss Function  Cross Entropy Loss 

Optimizer  Stoic Gradient Decent 

Learning rate  0.0001 

Momentum  0.9 

Batch Size  32 

Data Augmentation  Yes 

RandomGrayscale 0.05 probability 

RandomVerticalFlip 0.08 probability 

RandomRotation 10 degrees 

Transfer learning  No 

Batch Normalization  No 

L2 Regularization  No 

Drop Out  No 

Table 12: Experiment 2 Configuration. 

These transformations, although not extreme, serve to allow the model to be 
trained for more epochs without overfitting. This allows us to emulate experiments 
seen in the literature in which data augmentation is used to improve results 
despite the limited number of clinical Covid-19 X-ray images available. 
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4.3.3 – Experiment 3 Architecture and Configuration 

This experiment investigates the effect of batch normalization (section 3.6.3) 
used in conjunction with data augmentation.  

Three batch normalization layers are added to the architecture employed in 
experiment 1 as well as maintaining the use of data augmentation from 
experiment 2. A batch norm layer is added after each convolutional layer. The 
first batch normalization layer has a momentum of 0.04, while the second and 
third have a momentum of 0.06 each. This architecture can be visualized in the 
form of a table: 

Layer type Output Kernel/Filter Stride Padding 

Convolutional (295,295,32) 5 1 0 

BatchNorm 
(0.04) 

(295,295,32) N/A N/A N/A 

ReLU (295,295,32) N/A N/A N/A 

Max Pooling (147,147,32) 2x2 1 0 

Convolutional (138,138,64) 5 1 0 

BatchNorm 
(0.06) 

(138,138,64) N/A N/A N/A 

ReLU (138,138,64) N/A N/A N/A 

Max Pooling (69,69,64) 2x2 1 0 

Convolutional (50,50,128) 5 1 0 

BatchNorm 
(0.06) 

(50,50,128) N/A N/A N/A 

ReLU (50,50,128) N/A N/A N/A 

Max Pooling (25,25,128) 2x2 1 0 

Flatten (80,000, 1) N/A N/A N/A 

Fully Connected (128, 1) N/A N/A N/A 

Output (3, 1) N/A N/A N/A 

Table 13: Experiment 3 Architecture. 
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The configuration of this experiment can be seen in table 14. 

Image shape 299·299 pixels 

Transformed to tensor yes 

Normalized yes 

Total Epochs Trained 25 

Lowest Validation Loss Epoch 25 

Loss Function Cross Entropy Loss 

Optimizer Stoic Gradient Decent 

Learning rate 0.0001 

Momentum 0.9 

Batch Size 124 

Data Augmentation Yes 

RandomGrayscale 0.05 probability 

RandomVerticalFlip 0.08 probability 

RandomRotation 10 degrees 

Transfer learning No 

Batch Normalization Yes 

L2 Regularization No 

Drop Out No 

Table 14: Experiment 3 Configuration.   
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4.3.4 – Experiment 4 Architecture and Configuration  

Experiment 4 investigates the effect that L2 regularization (section 3.6.4) can 
have when used in conjunction with the techniques employed in experiment 3. 

In this experiment, the architecture from experiment 3 was recycled and L2 
regularization was also employed. To achieve L2 regularization in Pytorch, weight 
decay must be added to the optimizer used [60]. The weight decay was set to a 
value of 1−6. The configuration for this experiment is shown in table 15. 

Image shape 299·299 pixels 

Transformed to tensor yes 

Normalized yes 

Total Epochs Trained 30 

Lowest Validation Loss Epoch 24 

Loss Function Cross Entropy Loss 

Optimizer Stoic Gradient Decent 

Learning rate 0.0001 

Momentum 0.9 

Batch Size 124 

Data Augmentation Yes 

RandomGrayscale 0.05 probability 

RandomVerticalFlip 0.07 probability 

RandomRotaton 8 degrees 

Transfer learning No 

Batch Normalization Yes 

L2 Regularization Yes 

Drop Out No 

Table 15: Experiment 4 Configuration. 
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4.3.5 – Experiment 5 Architecture and Configuration 

Experiment 5 investigates another type of regularization effect, in this case using 
dropout (section 3.6.5). The architecture employed in this experiment includes 
batch normalization and data augmentation is also used. Two dropout layers are 
added to the architecture, after the second and third batch normalization layers.  

As explained in section 3.6.5, these layers are given a probabilistic value to define 
how many nodes are zeroed out, 0.08 in the first dropout layer, 0.10 in the 
second. We can appreciate this structure visually in table 16. 

Layer type Output Kernel/Filter Stride Padding 

Convolutional (295,295,32) 5 1 0 

BatchNorm 
(0.04) 

(295,295,32) N/A N/A N/A 

ReLU (295,295,32) N/A N/A N/A 

Max Pooling (147,147,32) 2x2 1 0 

Convolutional (138,138,64) 5 1 0 

BatchNorm 
(0.06) 

(138,138,64) N/A N/A N/A 

Dropout (0.08) (138,138,64) N/A N/A N/A 

ReLU (138,138,64) N/A N/A N/A 

Max Pooling (69,69,64) 2x2 1 0 

Convolutional (50,50,128) 5 1 0 

BatchNorm 
(0.06) 

(50,50,128) N/A N/A N/A 

Dropout (0.10) (50,50,128) N/A N/A N/A 

ReLU (50,50,128) N/A N/A N/A 

Max Pooling (25,25,128) 2x2 1 0 

Flatten (80,000, 1) N/A N/A N/A 

Fully Connected (128, 1) N/A N/A N/A 

Output (3, 1) N/A N/A N/A 

Table 16: Experiment 5 Architecture. 
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The configuration of this experiment can be seen in the following table: 

Image shape 299·299 pixels 

Transformed to tensor yes 

Normalized yes 

Total Epochs Trained 30 

Lowest Validation Loss Epoch 26 

Loss Function Cross Entropy Loss 

Optimizer Stoic Gradient Decent 

Learning rate 0.0001 

Momentum 0.9 

Batch Size 124 

Data Augmentation Yes 

RandomGrayscale 0.05 probability 

RandomVerticalFlip 0.07 probability 

RandomRotaton 8 degrees 

Transfer learning No 

Batch Normalization Yes 

L2 Regularization No 

Drop Out Yes 

Table 17: Experiment 5 Configuration. 
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4.3.6 – Experiment 6 Architecture and Configuration 

In this experiment the ResNet18 architecture described in section 3.6.6 is used. 
The pretraining of this model was carried out on ImageNet [61], a dataset of more 
than 14 million images.  

Here, we change the last layer so that it has three outputs and fine tune its 
parameters over our images for 20 epochs. It is also necessary to normalise the 
inputs with the following means and standard deviations: 

- Means: 0.485, 0.456, 0.406 
- Standard Deviations: 0.229, 0.224, 0.225 

The configuration for this experiment is shown in table 18. 

Image shape  299·299 pixels 

Transformed to tensor  Yes 

Normalized  Yes 

Epochs  20 

Loss Function  Cross Entropy Loss 

Optimizer  Stoic Gradient Decent 

Learning rate  0.0001 

Momentum  0.9 

Batch Size  124 

Data Augmentation  No 

Transfer learning  Yes 

Batch Normalization  No 

L2 Regularization  No 

Drop Out  No 

Table 18: Experiment 6 Configuration. 
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5. – Results  

5.1 – Introduction 
This section is a summary of the results obtained in each iteration of the project. 
Graphics show the evolution of loss and accuracy in the training and validation 
sets during the training of the model. The pipeline is such that the state of the 
model at the point of the lowest validation loss is saved, and the test results are 
obtained from that model. 

There will also be a summary of the performance of the model on the testing set 
using the metrics mentioned in section 3.7. 

5.2 – Experiment 1 

5.2.1 – Training 

In figure 19, we can see the evolution of the two loss functions over the epochs 
of training. The training loss is used to modify the parameters of the CNN through 
back propagation while the validation loss is simply an evaluation of the network’s 
performance over time. By saving the model’s state at the lowest validation loss, 
we can ensure that we have the most performant state at the end of the 
experiment. 

 

Figure 19: Experiment 1 Losses. 

In figure 20 we can see the accuracy with which the training and validation images 
have been classified over the 20 epochs. 
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Figure 20: Experiment 1 Accuracies. 

5.2.2 – Evaluation 

In figure 21 we can see the confusion matrix of the predictions made by the 
trained model.  

 

Figure 21: Experiment 1 Confusion Matrix. 
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The classification report can be seen in table 19. 

 Precision Recall F1-score Support 

COVID 84.85%     77.42%     80.96%        217 

Normal 91.52%     95.26%     93.35%        612 

Pneumonia 97.33%     90.12%     93.59%         81 

     

Accuracy   90.55%        910 

Macro avg 91.23%     87.60% 89.30% 910 

Weighted avg 90.45% 90.55% 90.42% 910 

Table 19: Experiment 1 Classification Report. 

824 of 910 images have been classified correctly resulting in an accuracy of 
90.55%. Table 19 shows metrics by class and the macro and weighted 
averages mentioned in the methodology section.  
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5.3 – Experiment 2 

5.3.1 – Training 

This experiment is the base model with augmented data. The expectation is that 
the variance introduced in each epoch slows down overfitting. In figure 22, we 
see that the validation loss falls until almost the last epoch. 

 

Figure 22: Experiment 2 Losses. 

Consistent improvements in both the training and validation accuracies can also 
be observed in figure 23. 

 

Figure 23: Experiment Accuracies. 
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5.3.2 – Evaluation 

In figure 24 we can see the confusion matrix for this model: 

 

Figure 24: Experiment 2 Confusion Matrix. 

Looking along the diagonal, we can see that the model has correctly classified 
838 of 910 images, giving an accuracy of 92.08%. Further metrics can be seen 
in table 20. 

 Precision Recall F1-score Support 

COVID 81.70% 88.48% 84.96% 217 

Normal 95.62% 92.81% 94.20% 612 

Pneumonia 96.30% 96.30% 96.30% 81 

     

Accuracy   92.09% 910 

Macro avg 91.21% 92.53% 91.82% 910 

Weighted avg 92.36% 92.09% 92.18% 910 

Table 20: Experiment 2 Classification Report. 

This experiment has yielded high percentages in the pneumonia class. 
Percentages above 90% are also achieved on the Normal class, while the COVID 
class achieves, 81, 88 and 95 percent in precision, recall and F1 respectively. 
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5.4 – Experiment 3 

5.4.1 – Training 

In figure 25 we can see the loss of this model during training: 

 

Figure 25: Experiment 3 Losses. 

Two erratic peaks can be seen roughly around the 12th and 17th epochs, but 
the two functions re-converge for the last several. The accuracy functions 
present similar tendencies as seen in figure 26: 

 

Figure 26: Experiment 3 Accuracies. 

Here the validation accuracy presents some erratic behaviour in the same epochs 
but reconverges with the training accuracy in the last number of epochs. 
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5.4.2 – Evaluation 

An accuracy of 95% was achieved on the testing set, classifications can be seen 
in the confusion matrix in figure 27: 

 

Figure 27: Experiment 3 Confusion Matrix. 

In this case, 869 of 910 images have been classified correctly, 95.49%. In table 
21 further performance metrics can be seen: 

 Precision Recall F1-score Support 

COVID 92.56% 91.71% 92.13% 217 

Normal 96.43% 97.22% 96.83% 612 

Pneumonia 96.15% 92.59% 94.34% 81 

     

Accuracy   95.49% 910 

Macro avg 95.05% 93.84% 94.43% 910 

Weighted avg 95.49% 95.49% 95.49% 910 

Table 21: Experiment 3 Classification Report. 

This model has performed well on each class. Both the precision and recall on 
the covid class are above 90%, meaning very few false negatives and positives.  
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5.5 – Experiment 4 

5.5.1 – Training 

Figure 28 shows the training and validation losses during training. 

 

Figure 28: Experiment 4 Losses. 

The validation loss seems to destabilize in the last 5 epochs. A similar trend is 
seen in the accuracies in figure 29: 

 

Figure 29: Experiment 4 Accuracies. 
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5.5.2 – Evaluation 

The confusion matrix of this model can be seen in figure 30: 

 

Figure 30: Experiment 4 Confusion Matrix. 

In figure 30 we see that 868 of 910 images have been correctly classified, giving 
an accuracy of 95.38%. We can have a closer look at the rest of the metrics in 
table 22. 

 Precision Recall F1-score Support 

COVID 93.81% 90.78% 92.27% 217 

Normal 96.43% 97.06% 96.74% 612 

Pneumonia 91.67% 95.06% 93.33% 81 

     

Accuracy   95.38% 910 

Macro avg 93.97% 94.30% 94.12% 910 

Weighted avg 95.38% 95.38% 95.37% 910 

Table 22: Experiment 4 Classification Report. 
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We can see that this model has also performed well across the three classes.  
Both precision and recall are high across classes, although the COVID class is 
just above 90%.  

5.6 – Experiment 5 

5.6.1 – Training 

This experiment employs data augmentation, batch normalization and drop-out, 
drop-out layers were used, as detailed in section 4.3.5. 

The losses during training can be seen in figure 31. 

 

Figure 31: Experiment 5 Losses. 

Notably, from epoch 26 onwards, there is a large growth in validation loss. The 
accuracy trends show similar patterns as seen in figure 32. 
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Figure 32: Experiment 5 Accuracies. 

5.6.2 – Evaluation 

The confusion matrix of this model on the testing data is in figure 33. 

 

Figure 33: Experiment 5 Confusion Matrix. 

Here 94.95% of images have been classified correctly. Briefly, we can see that 
while the recall of the Covid class will be quite high, the precision has suffered 
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somewhat in comparison with the previous model. Further metrics can be found 
in table 23. 

 Precision Recall F1-score Support 

COVID 89.82% 93.55% 91.65% 217 

Normal 96.71% 96.08% 96.39% 612 

Pneumonia 96.05% 90.12% 92.99% 81 

     

Accuracy   94.95% 910 

Macro avg 94.20% 93.25% 93.68% 910 

Weighted avg 95.01% 94.95% 94.96% 910 

Table 23: Experiment 5 Classification Report. 

This model presents recall of Covid-19 with 94%, only 14 COVID images 
misclassified. It also remains strong in other categories, maintaining precision of 
0.90 in Covid and performing well on the other classes, although it does produce 
8 false negatives on the Pneumonia class. 

5.7 – Experiment 6 

5.7.1 – Training 

This experiment involves the fine tuning of the a pretrained ResNet18 [62] model 
as detailed in section 4.3.6.  

The losses of this training process can be seen in figure 34: 

 

Figure 34: Experiment 6 Losses. 

A steady reduction in loss can be observed in both the both the training and 
validation calculations. The inverse trends can be seen in figure 35: 
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Figure 35: Experiment 6 Accuracies. 

Here we can see a steady increase in accuracy across the epochs. It can also be 
observed that the validation accuracy, although increasing, had flattened 
somewhat. Further epochs would surely lead to overfitting. 

5.7.2 – Evaluation 

Figure 36 presents the results of the evaluation on the training set in a confusion 
matrix: 
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Figure 36: Experiment 6 Confusion Matrix. 

In is not difficult to see that this model has performed extremely well; only 11 
images have been misclassified giving an overall accuracy of 98.79%. Further 
metrics can be observed in the table 24. 

 Precision Recall F1-score Support 

COVID 98.18% 99.54% 98.86% 217 

Normal 99.34% 98.86% 99.10% 612 

Pneumonia 96.30% 96.30% 96.30% 81 

     

Accuracy   98.79% 910 

Macro avg 97.94% 98.23% 98.08% 910 

Weighted avg 98.80% 98.79% 98.79% 910 

Table 24: Experiment 6 Classification Report. 
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5.8 – Metrics by Experiment 

Figure 37: Metrics by Experiment. 
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Figure 37 shows the metrics from the experiments side by side. It is easy to 
visualize the effects that the techniques employed in each experiment have had 
on the results. There is a score for each class for each experiment: light 
represents the Covid class, the darker shade of blue representing Normal, and 
green representing Viral Pneumonia.  

The first diagram contains the F1 scores. The F1 scores are the harmonic means 
of the Precision and Recall.  The F1 scores of the Normal Class are above 96% 
in 4 out of 6 experiments. The Viral Pneumonia class is also consistently above 
92%. The Covid class’ F1 scores improve across the experiments. A difference 
of almost 18 percentage points can be observed between experiment 1 and 
experiment 6.  

The second diagram depicts the precision. As can be seen, precision on the Viral 
Pneumonia class is quite uniform across the models except for Experiment 4, 
where it falls below 96% for the first time. The precision on the Normal class for 
experiment 1 is the lowest, but improves in the other experiments, the maximum 
score being 99.34% in experiment 6.  

The precision in the Covid class varies more. Experiment 1 and 2 are 84.85% 
and 81.70% each. The remaining experiments, however, do achieve scores in 
the 90th percentile, with experiments 3, 4 and 6 achieving 92.56%, 93.81% and 
98.18% respectively. 

Recall measures a model’s ability to avoid false negatives. The Covid class in 
experiment 1 achieves the lowest score, with 77.42% of positive cases correctly 
identified. The other models perform well on Covid, with Experiment 6 achieving 
a 99.54%, a considerable improvement.  

Each experiment performs well on the Normal class. The set being imbalanced 
in the Normal Class’ favour probably helps this high performance. Each model 
avoids false negatives in the Viral Pneumonia class quite well with experiments 
2 and 6 achieving scores of 96.30%. 
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6. – Discussion  

Experiment 1 is considered the baseline model of this project. It involves no 
techniques other than the standard layers of a CNN. Experiment 1 achieves 
scores of 93% in both the Normal and Pneumonia classes, but only 80.69% in 
the Covid class. The precision scores for each class are 84, 91 and 97 percent 
for Covid, Normal and Viral Pneumonia respectively. In total, only 8 Viral 
Pneumonia images were misclassified.  

The recall in the Covid-19 class is 77.42%. This means that only 77.42% of actual 
Covid-19 positives we identified correctly. As such, while the precision and recall 
of the Normal and Pneumonia classes are quite high, this model fails to identify 
a high number of the Covid-19 cases. These results can be taken as a benchmark 
to study the effects of the techniques used in the other experiments. 

Experiment 2 uses the same architecture, augmenting the data. The expectation 
is that this technique will allow us to emulate a larger data set. This means that 
we should be able to train the model for more epochs, extracting more features 
that are useful while avoiding overfitting.  

We can see that the F1 score has improved for each class in this experiment with 
respect to experiment 1. The precision on the Normal and Viral Pneumonia 
classes are 95.62% and 96.30% respectively. The precision on the Covid class 
drops slightly with respect to experiment 1 to 81.70%. The recall on the Covid 
class has increased by more than 10%, producing 10% less false negatives. 

Kedia et al [11] and Minaee et al [12] also applied data augmentation to the data 
in their paper. Here is appears that data augmentation has allowed our model to 
better identify the features of each class, coinciding with a considerable 
improvement in the Covid class’ F1 score.  

Experiment 3 adds batch normalization layers which appear to have improved 
the performance of the model. In theory, batch normalization helps models 
converge more quickly and stabilises the results. We see here an improvement 
with respect to experiment 2.  

In experiment 3, the F1 scores for Covid, Normal and Viral Pneumonia are 92.13, 
96.83 and 94.34 percent respectively. This represents an improvement on the 
Covid and Normal classes with respect to experiment 2 and is the first experiment 
that achieves F1 above 90 for the Covid class. The Precision in the three classes 
have improved with respect to experiment 2, whereas the recall improved for the 
Covid and Normal classes. Batch normalization appears to have helped reduce 
the disparity between performance on Covid with respect to the other two classes.  

Experiment 4 makes use of L2 regularization as described in section 4.3.4. The 
F1 scores of this experiment are similar those of experiment 3, with a slight 
increase in the Covid class, and small drops in the Normal and Viral Pneumonia 
classes. This experiment achieves the highest precision on the Covid class that 
we have seen so far with 93.81%. The Normal class stays the same as 
experiment 3 while the viral pneumonia precision falls to 91.67%. The viral 
pneumonia recall increases to 95.06% while the same metric on Covid is 90.78%.  
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The L2 regularization appears to not have had a very large effect on the results 
with numbers that a very similar to the previous experiment. It did achieve the 
best precision results on Covid and has not obviously adversely affected the 
results. 

Experiment 5 makes use of drop out layers to prevent overfitting as detailed in 
section 4.3.5. Drop out is a simple technique that can have powerful results. Here 
we see that the F1 scores for Covid, Normal and Viral Pneumonia are 91.65, 
96.39 and 92.99 percent respectively. These scores are comparable to those of 
experiment 4 and are achieved simply randomly zeroing out nodes during 
training. The precision in the Normal and Viral Pneumonia classes are 96.71 and 
96.05 percent respectively.  

Precision in Covid has fallen with respect to experiment 4 to 89.82%. However, 
this experiment achieves the highest recall on the Covid class so far at 93.55%. 
This means very few false negatives and, in the context of screening for covid, is 
a positive.  

Experiment 6 makes use of transfer learning using a pretrained ResNet18 model. 
The expectation is that this pretrained model can be fine-tuned using our dataset 
and leverage the image-classifying capacity achieved through pretraining.  

The F1 scores are 98.86%, 99.10% and 96.30% for Covid, Normal and Viral 
Pneumonia. These are the highest scores of any experiment. It is obvious that 
the pretrained model has been successfully fine-tuned. The recall on the Covid 
class is 99.54% meaning almost no false negatives were produced. The precision 
scores on the Normal and Covid classes are above 98%.  

Of the techniques employed, transfer learning on a pretrained ResNet18 model 
achieves the best results. This result reflects findings in Minaee et al [12] where 
pretrained models were compared in effectiveness of identifying Covid-19 in x-
rays. Given that Covid-19 x-ray image data is not massively available, transfer 
learning appears to present an interesting opportunity. 

Screening patients is not equivalent to diagnosing patients with illnesses. The 
intention of this system is not to say, without doubt, that a patient has or does not 
have Covid-19. The intention is to classify, within reasonable certainty, of the 
people who come to a health centre, who should be tested and/or quarantined.  

This use case will lay specific demands on the model chosen, it will not be 
enough, for example, to correctly identify many true positives and achieve high 
precision score while performing poorly on recall and false negatives. In the 
context of a pandemic, it is much more damaging to tell someone who is positive 
for Covid-19 that they are healthy and can go home to their family than it is to 
spend a PCR test on a healthy patient.  

With this mind, a model which successfully meets the criteria for this use case 
will have a high recall score on Covid-19. This means minimising false negatives 
and avoiding inadvertent spread for the virus. We will also value high precision in 
the Normal and Viral Pneumonia classes. Correctly identifying healthy people is 
obviously favourable and will allow medical professionals to use PCR and 
antigens tests on people who need them. Viral Pneumonia, while not the cause 
of the current pandemic, is a serious disease and must be treated.   
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7. – Conclusions  

The results have shown that there is a compelling argument to be made in favour 
of using radiographic images in the screen of patients for Covid-19. We have 
seen that both pretrained models and more basic models following good practices 
can achieve impressive results. 

The high scores in Recall in the Covid and Viral Pneumonia classes to prevent 
inadvertent spread of the Coronavirus and failure to treat pneumonia along with 
the high precision scores in the Normal class suggest viability in practice.  

As discussed, X-rays are cheap and massively available. They can be produced 
quickly and do not necessarily put machine operators at risk. These reasons 
suggest that radiographical imagery could play an important part in the 
management of the remainder of the pandemic. The high F1 scores of 
experiments 3 to 6 indicate that the models could indeed play a part in the control 
and prevention of Covid-19 in practice.  

It is also necessary to recognise the limitations of this project. The dataset is 
15,153 images in total 67% of which were images of healthy lungs. Due to the 
nature of the pandemic, medical institutions simply have not had time to produce 
and anonymise sufficient images. The approval to use these techniques in clinical 
settings should follow further investigation with bigger datasets to avoid problems 
like over-fitting. However, the results on this dataset are encouraging. 

A continuation of this project would be to explore the features of the images which 
gave us our results. This project has been limited exclusively to quantitative 
results, meaning we have explored viability and results exclusively numerically. 
It would be of much interest to explore which specific features allowed the models 
to classify the images. These features could be validated by medical 
professionals, eliminating the possibility that the results have been influenced by 
characteristics of the machines taking the images or other noise. 

Overall, the results of the investigation are compelling. Transfer learning and data 
augmentation both proven useful in the given use case and helped mitigate the 
issues that small datasets pose. Across the experiments, the metrics have shown 
that CNNs can differentiate healthy lungs from those affected by Covid-19 and 
Viral Pneumonia. As more images become available, more robust models can be 
developed and hopefully put to work for the medical professionals working to 
protect people during this pandemic. 
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8. – Glossary  

  

Accuracy: The number of correct classifications divided by total number of 

classifications, usually expressed as percentage. .......................................... 24 

Activation Function: Defines the output of that node given an input or set of 
inputs. ............................................................................................................... 14 

Artificial Intelligence: Field of study concerning computer systems developing 
intelligence. ...................................................................................................... 10 

Artificial Neural Network: A multi-layer perceptron consisting of at least input, 
hidden and output layers. ................................................................................ 13 

Backpropagation: Process by which layers of ANN are adjusted using the loss 
function. ............................................................................................................ 14 

Batch Normalization: Scaling the output of each convolutional layer to avoid 

internal covariate shift. ..................................................................................... 20 

Batch size: Number of samples shown to algorithm before adjustments to 
parameters. ...................................................................................................... 16 

Bias: Defines distance between function and origin. ......................................... 13 

Computed tomography: A computerized x-ray imaging procedure .................. 2 

Convolutional Neural Networks: Type of ANN specialised in images. .......... 16 

Coronavirus: Novel virus identified 7th January 2020 ........................................ 1 

Covid-19: Associated disease of Coronavirus ..................................................... 1 

Data Augmentation: Process of applying transformations to artificially increase 
size of dataset. ................................................................................................. 20 

Deep Learning: An artificial neural network that uses multiple layers to extract 
high level features from data. 

Dropout: Method to prevent overfitting by randomly dropping nodes during 
training.............................................................................................................. 21 

Epoch: Full set of training data shown to algorithm. .......................................... 15 

F1 score: The harmonic mean of the precision and recall. ............................... 25 

False negative (FN): Sample incorrectly classified as not being of a class. .... 24 

False positive (FP): Sample incorrectly classified as being of a class. ........... 24 

Flter/Kernel: In Convolutional layer, applies spatial operations to extract 
features from data. ........................................................................................... 17 

Fully connected layer: Layer used to learn non-linear combinations of high-
level features. ................................................................................................... 19 
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Google Colab: Cloud-based machine learning environment .............................. 3 

Gradient descent: Process of finding minima in loss function. ........................ 15 

Hyperparameters: Configuratons of ANN affecting its behaviour. ................... 15 

Imbalanced: A dataset is said to be imbalanced when the proportions of 

classes are not equal. ...................................................................................... 29 

Internal covariate shift: Distribution of data changing with each batch. ......... 20 

L2 Regularization: Method which penalises complex models to avoid 
overfitting. ......................................................................................................... 21 

Learning Rate: Rate by which changes to parameters of ANN are made during 
backpropogration. ............................................................................................ 15 

Loss function: Quantifies difference between prediciton and desired result in 

supervised learning. ......................................................................................... 11 

Machine Learning: Computer system's ability to aquire domain knowledge. .. 10 

Macro average: Each class score contirubtes to the macro average equally. . 25 

Magnetic resonance imaging: imaging techniques that uses strong magnetic 
fields, magnetic field gradients, and radio waves to generate images of the 
organs in the body. ............................................................................................ 7 

Momentum: Direction of next step in gradient descent to avoid oscillations. ... 15 

Multilayer Perceptron: Multiple layer of fully connected perceptrons for solving 
non-linear problems. ........................................................................................ 13 

Overfitting: Process in which a machine learning algorithm learns features of 
training set and generallises poorly to new, unseen data. ............................. 11 

Perceptron: Learning algorithm for binary classification. .................................. 13 

Polymerase chain reaction: Chemical process used in Coronavius testing ..... 2 

Pooling Layer: Layer used to reduce spatial size of representation and number 
of parameters in CNN. ..................................................................................... 18 

Precision: Proportion of correct positive predictions. ........................................ 24 

Python: Programming language .......................................................................... 3 

Pytorch: Machine learning library available in Python ........................................ 3 

Recall: Proportion of actual positives that were correctly identified. ................. 25 

Supervised Learning: Machine learning by way of labelled examples. .......... 10 

The Convolutional Layer: Layer of CNN that extracts fatures using a 

fiter/kernel. ....................................................................................................... 17 

The Input Layer: Layer through which data is fed into ANN. ............................ 17 



61   

TorchVision: Module of Pytorch for image processing. .................................... 30 

Transfer Learning: Technique of taking advantage of already trained models to 
solve new problems. It consists of adapting the models already created so 

that they work with the new scenario. ............................................................. 22 

True negative (TN): Sample correctly identified as not being of a class. ......... 24 

True positive (TP): Sample correctly identified as a class. .............................. 24 

Validation techniques: Techniques by which data is presented to ML algorithm 

to ensure correct learning process. ................................................................. 11 

Weight: Value used to augment or decreased input value................................ 13 

Weighted average: Considers the dimension of each class and weights its 
contribution to the average accordingly. ......................................................... 25 

X-ray: Imaging using certain wavelengths to penetrate body .............................. 2 
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