
Universitat Oberta de Catalunya

Master’s degree in Data Science

MASTER THESIS

Area: Specialized fields

Density-based clustering for X-ray source
detection on XMM-Newton EPIC-PN data

Application of DBSCAN, OPTICS and HDBSCAN

—————————————————————————–

Author: Rodrigo Rico Gómez

Supervisors: José Vicente Perea Calderón1 and Laura Ruiz Dern2

Advisors: Pedro Rodríguez Pascual1 and María Santos Lleó1

Professor: Jordi Casas Roma2

—————————————————————————–

1XMM-Newton Science Operations Center, European Space Astronomy Center (ESAC-ESA)

2Estudios de Informática, Multimedia y Telecomunicación, Universitat Oberta de Catalunya (UOC)

June 6, 2021

Contents

Abstract 7

1 Introduction 9
1.1 Justification of interest and relevance . 9
1.2 Personal motivation . 9
1.3 Objectives definition . 10
1.4 Methodology followed and project deployment 10

2 State of the art 12
2.1 XMM-Newton observatory . 12
2.2 XMM-Newton SOC data analysis . 13

2.2.1 Flaring background particle filter . 14
2.2.2 EPIC source detection thread . 14

2.3 Machine Learning clustering in astronomy . 16
2.3.1 Unsupervised learning . 16
2.3.2 The clustering problem . 17
2.3.3 Density-based clustering . 18
2.3.4 DBSCAN, the most common density-based algorithm 19
2.3.5 Other density-based algorithms: OPTICS and HDBSCAN 22
2.3.6 Previous astronomical applications of machine learning 28

3 Design and implementation 31
3.1 Data acquisition and machine learning pipeline 31

3.1.1 The clustering threads . 33
3.2 Flaring background removal with DBSCAN . 34
3.3 DBSCAN-based source detection . 37
3.4 OPTICS-based source detection . 40
3.5 HDBSCAN-based source detection . 42
3.6 Extended sources . 46

2

CONTENTS 3

3.7 Computational performance . 48

4 Validation 50
4.1 Significance metrics . 50

4.1.1 Density-based significance . 50
4.1.2 Spectra-based significance . 55
4.1.3 Interpretation of both metrics . 57

4.2 XMM-Newton SOC pipeline cross match . 57

5 Conclusions 61

6 Future steps: transient source detection 63
6.1 Other possible future steps . 64

Copyright

Copyright ©2021, Rodrigo Rico Gómez
Esta obra está sujeta a una licencia de Reconocimiento - NoComercial - SinObraDerivada
3.0 España de CreativeCommons.

4

https://creativecommons.org/licenses/by-nc-nd/3.0/es/

FICHA DEL TRABAJO FINAL

Title:
Density-based clustering for X-ray source

detection on XMM-Newton EPIC-PN data

Author name: Rodrigo Rico Gómez

Supervisor: Laura Ruiz Dern

Professor: Jordi Casas Roma

Date (mm/yyyy): 06/2021

Title: Master’s degree in Data Science

Area: 2

Language: English

Keywords Unsupervised Learning, X-ray Astronomy, XMM-Newton

5

Acknowledgments

I would like to start acknowledging my parents and my brother, for being always there for me.
To Pere, for your patience over each and every weekly meeting discussing new ideas for the
project.
To Laura, for your attention during all this work.
To María and Pedro, for all the knowledge and experience provided to this project.

6

Abstract

The main purpose of this work is to explore X-ray astronomical data from EPIC cameras
on board XMM-Newton observatory by using machine learning techniques. As a result, and
depending on the scientific validation, part of the techniques/algorithmts produced could be
implemented in future XMM-Newton processing pipeline versions. XMM-Newton is short for
X-ray Multi Mirror observatory [1], and it is one of the main science missions of the European
Space Agency. As X-radiation is absorbed by the Earth’s atmosphere, XMM-Newton should
necessary be a space observatory, launched in 1999 by ESA’s Ariane 5 rocket [1]. Data collected
by XMM-Newton is sent to a complex set of algorithms and calibrations methods resulting in
scientific data products elaborated and distributed by XMM-Newton Science Operations Centre
[1]. This work is marked in the last stage of data processing. The data treated in the project has
been previously processed so the focus is kept on Machine Learning techniques. Although, as
this work will be developed in an astronomical environment and cosupervised by ESA scientists,
there will be a strong astronomical point of view.

Keywords: Machine Learning, Clustering, DBSCAN, X-ray Astronomy, XMM-Newton.

7

Resumen

El principal propósito de este trabajo es explorar los datos astronómicos recogidos por las
cámaras EPIC del satélite XMM-Newton. Como resultado, dependiendo de la validación corre-
spondiente, parte de las técnicas empleadas podrán ser implementadas en futuras versiones de
la pipeline de procesamiento de los datos de XMM-Newton. XMM-Newton es un observatorio
espacial de la Agencia Espacial Europea (ESA) que opera en el rango de los rayos X. Debido
a que la radiación a esa energía es absorbida por la atmósfera, es necesario que XMM-Newton
se encuentre en órbita. Los datos recogidos por XMM-Newton son enviados a un complejo sis-
tema de algoritmos y métodos de calibración que resultan en productos científicos elaborados y
distribuidos por el Centro de Operaciones Científicas de XMM-Newton (XMM-Newton SOC).
Este trabajo se enmarca en la última parte del procesamiento de los datos. Los datos tratados
en este proyecto han sido previamente procesados para evitar desviar el foco de las propias
técnicas de aprendizaje automático que se pretenden utilizar.

Palabras clave: Aprendizaje Automático, Clustering, DBSCAN, Astronomía de rayos X,
XMM-Newton.

8

Chapter 1

Introduction

1.1 Justification of interest and relevance

The nature of data products obtained by XMM-Newton data processing pipeline makes them
suitable for applying unsupervised Machine Learning techniques, particularly clustering meth-
ods. One of the best capabilities of XMM-Newton EPIC cameras is that they are able to detect
X-ray photons individually [1], so the type of data stored are events lists, where each event is
supposed to represent the arrival of an X-ray photon to the detector. Each event is character-
ized by its 2-dimensional position on the detector, which can be converted to sky coordinates
applying the proper transformation, the energy of the photon and the time it arrived. In other
words, an EPIC observation is a set of thousands of data points in a multidimensional space.
As no prior labeling is provided, the analytical problem is fully unsupervised.
XMM-Newton Science Operations Centre (SOC) applies its own analytical methods to treat
this multidimensional arrays data. The main interest of this work is the use of Machine Learn-
ing techniques to obtain the compatible results and discover new patterns unnoticed by the
actual analytical engine. Some primary objectives when dealing with XMM-Newton observa-
tions are the detection of sources, the selection of good time intervals and the characterization
of the background noise.

1.2 Personal motivation

As a BS in Physics holder and MS in Data Science student, the possibility to apply Data
Science and Machine Learning to astronomy is the ideal mixture. Currently, I am enjoying
an internship experience at ESA, concretely at XMM-Newton Science Operations Centre in
ESAC, which means that I am working with the same scientists that elaborate and analyze the
data products I am working with, which is a privilege and an opportunity to write my master’s

9

1.3. OBJECTIVES DEFINITION 10

thesis in this area.

1.3 Objectives definition

As a result of the Machine Learning methods applied, we aim to obtain:

• An alternative system to detect optimal observation time intervals. That implies retriev-
ing time intervals with a special characterization of the background level, which could be
used to filter out periods of time with high noise flares. Those episodes are caused by
changes in the spacecraft external environment. These changes are mainly produced by
the solar activity and the well-known belt of high energy charged particles around the
Earth (the Van Allen belt), and of course the relative position of the satellite with respect
to those effects.

• An alternative clustering-based method to detect astronomical X-ray sources from the
multidimensional data of one single observation.

• Detection and characterization of the background.

• A measure of the significance of each source detected. By significance it should be un-
derstood a normalized scale, in which detected sources with a high chance of represent a
real X-ray source will have higher values.

• Finally, a scientific validation of the results using those obtained by traditional XMM-
Newton SOC methods.

As part of the validation process, all this objectives should be applicable and probed by a wide
variety of XMM-Newton observations in order to cover different situations.

1.4 Methodology followed and project deployment

As we can see in Fig. 1.1, the project stages has been divided in three groups:

• Planning (in blue): these stages require exploring and reconsidering the objectives.

• Reading and writing (in green): stages requiring only investigation of related work and
writing the thesis.

• Technical stages (in red): they require designing, implementing the methods and validat-
ing them with multiple XMM-Newton observations.

1.4. METHODOLOGY FOLLOWED AND PROJECT DEPLOYMENT 11

Figure 1.1: Stages of the project

Notice that during most of the time, there are multiple stages overlapping. This phenomenon
occurs due to a few facts:

• Reading/writing stages and technical stages are independent. E.g. there is no need to
finish the state of the art investigation to start designing and implementing the technical
methods.

• The need of including two stages dedicated to possible additional objectives. As this work
is cosupervised by ESA scientists in daily contact with XMM-Newton data products, new
requirements and ideas will surely arise. There is a blue stage dedicated to explore new
objectives and study their viability. Subsequently, there is another red stage for deploying
this new ideas.

• Most of this activities are part of my current job at ESA, which means that I am dealing
with technical daily tasks, regardless of the master’s thesis stage I am involved in.

As for the tools used in each stage, the environment in which the project will be deployed is
Jupyter Lab, working with both Python Notebooks and scripts.

Chapter 2

State of the art

This chapter is intended to give the reader a picture of the actual situation. It will be divided in
two main parts: firstly, the current procedures used in XMM-Newton Science Operations Centre
to analyze the incoming data from the satellite. And secondly, the actual marriage between
astronomy and machine learning, making special emphasis on those clustering algorithms used
in this work.

2.1 XMM-Newton observatory

First of all, a brief description of XMM-Newton space observatory (Fig. 2.1) will be given for
the reader to be familiar with the instruments that make this work possible.

Figure 2.1: XMM-Newton X-ray space observatory. Obtained from [1]

12

2.2. XMM-NEWTON SOC DATA ANALYSIS 13

XMM-Newton carries three main scientific instruments [2]:

• European Photon Imaging Camera (EPIC): consists on three CCD-based cameras
that perform moderate-resolution spectroscopy, X-ray imaging and X-ray photometry.
Two of them are MOS-CCDs and the other is PN-CCD. The EPIC-PN camera is the one
whose collected data will be used in this project.

• Reflection Grating Spectrometer (RGS): two identical spectrometers for high reso-
lution X-ray spectroscopy and X-ray photometry.

• Optical Monitor (OM) to have an optical/UV view of the observations performed by
EPIC.

The specifications of the EPIC-PN camera should be taken under consideration when analyzing
the data. The incoming data, as it will be explained in the following section, is a list of events,
where each event is a photon, and the main attributes are the position, time and energy. When
dealing with this quantities, it is necessary to keep in mind the spatial, temporal and energy
resolution of the instrument. Spatial resolution is given by the Point Spread Function of the
telescope and the size of the pixels in the camera, each of the 12 CCDs have 200x64 pixels [2].
Temporal resolution depends on the readout mode. The unit of resolution in terms of space
are the pixels and in terms of time, the frames, both can be obtained directly from the FITS
file header. The energy range observed is 0.2keV − 15keV and the resolution is 1eV [2].

2.2 XMM-Newton SOC data analysis

Current XMM-Newton data analysis tasks are performed using SAS (Scientific Analysis System)
[1]. SAS is a collection of scripts, libraries and tasks specifically designed for scientific data
analysis of XMM-Newton observations [1].
Fig. 2.2 shows the process followed by raw observational data (ODF - Observational Data

File) until it is converted into high-quality calibrated science data products such as spectra,
time series, images or source lists.
The input data for the techniques developed in this work is not the primitive ODF product,
but the reduced event list in FITS format. The process from ODF to event list is performed by
a set of complex algorithms and calibration methods [1] developed by XMM-Newton SOC staff
and instrument developers. This first stage of the pipeline is not the objective of this work.
Once the event list is ready, depending on the type of analysis demanded, there is a SAS
thread to be executed [1]. Some of the most important threads available in SAS will be briefly
explained below, in order to give an idea of how XMM-Newton data is processed to generate

2.2. XMM-NEWTON SOC DATA ANALYSIS 14

Figure 2.2: XMM-Newton data analysis scheme. Information obtained from [3].

scientific products.
A thread should be understood as a sequence of SAS tasks that yield to an specific objective.
There are threads for generating light curves, spectra, removing flaring particle background or
detecting sources.

2.2.1 Flaring background particle filter

The input of this SAS thread is the event list of the observation. This thread defines a threshold
of counts per second [1]. Time intervals with higher counts per second rate are classified as
flaring background intervals. The rest of the time, where the counts per second rate is below
the threshold, are the so called GTI (Good Time Intervals) [1]. This is how SAS removes the
flaring background particles. The purpose of filtering out periods of high background is to
increase the signal to noise in the source products and to decrease the count rate lower limit in
source detection.

2.2.2 EPIC source detection thread

When following this thread, the user will generate optimally background-filtered images in five
energy bands and apply source detection techniques on them [1]. Also, the list of sources
detected is provided.
Initial steps of this thread involve generating the calibrated and concatenated event list, and
filter the flaring particles background. Both are mentioned previously in this section.
This SAS thread is composed by a set of complex algorithms that are open to be consulted

on XMM-Newton SOC site [1].

2.2. XMM-NEWTON SOC DATA ANALYSIS 15

Figure 2.3: Different maps produced to achieve source detection with SAS. Individual images
obtained from [1].

In summary, detection is performed following a chain of steps:

• Firt of all, the input of the process should be an EPIC event list with GTI defined by
removing flaring background periods [1].

• The next step is the creation of an exposure map [1]. It gives the exposure time per
instrument pixel, taking invalid pixels and relative detector efficiency into account [4].
They serve as input to the detection masks and background maps [4].

• After that, the detection masks are created from the exposure maps [1]. This masks
represent the valid pixels per image [4].

• Once obtained the detection mask, a first round of detection is performed using the
eboxdetect command from SAS [1]. This step is necessary to prior calculate the back-
ground map with non-source locations [1]. Point-like sources are detected using the PSF
(Point Spread Function) adjustment (considering a box of 3x3 or 5x5 pixels for the source
and 4 more pixels for the surrounding background [1]). Extended sources are obtained
by searching in up to three consecutive detection rounds, increasing the number of pixels
in the box [1].

2.3. MACHINE LEARNING CLUSTERING IN ASTRONOMY 16

• Then, the background map [1] is obtained, which gives the background counts [4] in each
pixel of the image.

• A second detection round is performed using the background map calculated in the pre-
vious step [1]. Also, fitting all sources by maximum likelihood criteria, obtaining their
centres and extension by fitting the local PSF [1].

• A sensitivity map, which indicates point source detection upper limits for each pixel [1].
The upper limits are derived by assuming Poissonian count statistics in each 3x3 pixel
detection box [1].

• Finally, detected sources location are displayed over the EPIC original image [1].

2.3 Machine Learning clustering in astronomy

In the previous sections of this chapter, an introduction to XMM-Newton space observatory and
actual data analysis techniques has been exposed. In contrast, this section will not be oriented
to XMM-Newton, but to Machine Learning clustering methods and their latest applications in
astronomy, regardless of the branch.
Before diving into possible applications of clustering algorithms for solving astronomical data
analysis tasks, it is necessary to give the reader an introduction to clustering as an important
branch of machine learning.

2.3.1 Unsupervised learning

Machine learning can be divided in two main parts, according to the nature of the problem
they aim to solve:

• Supervised learning: when the goal is to get the value of one or more response variables
(Y = (Y1, ..., Ym)) as a function of a set of predictor variables (XT = (X1, ..., Xp)) [5]. So
the target of a supervised machine learning algorithm should be approaching to a function
(F) that fulfills:

Y = F (XT) (2.1)

To achieve this target, one should provide pairs of samples (Yi, X
T
i) to the algorithm, so

it can ”learn” from them. That is why this process is called supervised learning. In order
to quantify the learning direction, a loss function is defined to measure the difference
between Yi and F (XT

i), so the aim of the algorithm should be finding its minimum.

2.3. MACHINE LEARNING CLUSTERING IN ASTRONOMY 17

• Unsupervised learning: in this case, the only input for the algorithm is a set of at-
tributes (XT = (X1, ..., Xp)) measured on n observations. But, as long as there is no
response variable provided, there is no prediction to make, and the goal is to obtain
interesting insights from the set of observations XT

n [6].

The techniques developed in this work are unsupervised since the data conformed on XMM-
Newton event lists is unlabeled. An event list is a set of attributes (time, position, energy, ...)
measured on a large amount of points (events).
Unsupervised learning is a very broad term. To be concrete, the techniques used in this work
are part of a subfamily of unsupervised learning called clustering.

2.3.2 The clustering problem

Clustering means finding subgroups (or clusters) of observations inside the total dataset [6].
Subsequently, the output of a clustering algorithm is another attribute of the data set that
represents the cluster each observation belongs to.

XT −→ {C1, ..., Ck} (2.2)

Up to now, the inputs and outputs of a clustering problem are defined. Now, it is necessary to
give the algorithm rules on what is is considered a good or a bad output.
As told before, the aim of a supervised learning algorithm is basically optimize a loss function.
The problem is that this loss function is defined over the prediction error, which makes no sense
in unsupervised domains, where there is no variable to predict. That is why, it is necessary
to find another way to quantify the goodness of a clustering algorithm output. It will depend
on the specific algorithm used to perform clustering, but the main goal is to divide the data
set into groups, such that observations belonging the same group are as similar as possible and
observations belonging different groups are as different as possible [5].
To express this target mathematically, a formal expression for similarity between observations
must be provided. Actually, dissimilarity is much easier to define than similarity, since the
ground level of dissimilarity in the attributes space can be set to zero. Therefore, the dissimi-
larity of two observations (i and j) will be a function of the attribute values of both observations:

Dissimilarity = d(XT
i , X

T
j) (2.3)

The function d is commonly called the distance between the two observations in the attributes
space. The most widely used distance measure in clustering applications when dealing with
continuous attributes is the euclidean distance. For an m-dimensional space each observation

2.3. MACHINE LEARNING CLUSTERING IN ASTRONOMY 18

Figure 2.4: Difference between distance (K-means) and density-based (DBSCAN) clustering
algorithms on data with arbitrary shape. Self-generated image with Python library sklearn
sample data set moons.

i will be represented by m attributes (i ← XT
i = (xi1, ..., xim)), and the euclidean distance

between two observations (i, j) will be defined as:

d(XT
i , X

T
j) =

√√√√ m∑
k=1

(xik − xjk)2 (2.4)

Most of the models used in clustering rely on the concept of distance. Although, the way they
use distance is something that varies. Some of them use the distance as the main criteria to
form clusters, those are the distance-based clustering algorithms [7]. Distance-base algorithms
use is widely spread for their simplicity [7] and good results on the majority of domains [6].
Unfortunately, the nature of the problems faced in this work makes distance-base clustering a
poor approach.
When dealing with event lists, where interesting features in the observation are characterized
by unusually high counts/(time × area) rates, and observations are full of background noise
events, the best approach to solve the clustering problem are density-based algorithms.

2.3.3 Density-based clustering

The main point of density-based clustering is that makes no assumption on the distribution of
the data treated. Some other clustering approaches, like k-means [8] or EM [9] suppose data is
generated by some probability distribution (in this case the gaussian). As a result, the output
of both algorithms are always spherical clusters [7]. In contrast, density-based algorithms adapt
to any distribution followed by the data, and is able to output clusters with arbitrary shape [7].
One example is provided in Fig. 2.4, where the input data has two natural groups, but they

2.3. MACHINE LEARNING CLUSTERING IN ASTRONOMY 19

Figure 2.5: Left: density-reachability. Right: density-connectivity. Obtained from [7].

have arbitrary non-spherical shape. We can see how a distance-base algorithm like k-means
is unable to give an appropriate output. On the other hand, a density-based algorithm like
DBSCAN [10] (the most widely used) is able to adapt the output to the original data groups
and reaches a much more coherent result.
In depth, the objective of density-based algorithms is to group densely connected areas of the
attribute space, surrounded by sparser areas [7]. Although not being distance-based, they still
use the previously defined concept of dissimilarity, as the distance in the attribute space (eq.
2.3), to evaluate whether a region is dense or not. And in most cases, the distance used would
be the euclidean distance (eq. 2.4).

2.3.4 DBSCAN, the most common density-based algorithm

It is a clustering algorithm that works using observations density criteria. All the observations
belonging to the same cluster are densely connected [7]. An observation point in the attribute
space (pi) is densely connected to other pj if exists a chain of points: pi → pi+1 → pi+2 →
...→ pj, where pi and pi+1 are neighbors [7]. Another condition is that every point in the chain
(except the two edges {pi, pj}) should be core points [7].
Two points are considered as neighbors when the distance between them is lower than a limit
(ε). Core points are those having a minimun number of neighbors (min_samples) or more [7].
In consequence, to execute the algorithm, two hyperparameters must be provided:

• ε: the maximun distance two points can have to be considered neighbors.

• min_samples : number of neighbors required to a neighborhood in order to be considered
a cluster.

A point is labeled as noise when it is not neighbor of a core point. Therefore, a cluster is a
set of densely connected points with an amount of them larger than min_samples. Formally, a
cluster C can be defined as a subset of the total points D that fulfills [7]:

2.3. MACHINE LEARNING CLUSTERING IN ASTRONOMY 20

∀{p, q} if p ∈ C and q is density reachable from p⇒ q ∈ C (2.5)

This is what it is called density-reachability, see Fig. 2.5. Another condition related to every
cluster is the following:

∀{p, q} ∈ C : p is density-connected to q (2.6)

Then, the formal definition of noise points is this subset:

noise = {p ∈ D|p /∈ Ci∀i} (2.7)

As a result of this conditions, DBSCAN reaches a final state where every point belongs to a
cluster or is classified as noise, and inside each cluster, there are core points and border points.
E.g. in Fig. 2.7, q and b are core points, and p, a and c are border points [7].

2.3.4.1 The algorithm

The algorithm that reaches this final state, given an input data set D is described by the fol-
lowing pseudocode:

Algorithm 1: DBSCAN
Result: Pi −→ {C1, ..., Ck, N}
Input: D, ε, min_samples;
Initialization;
C = 0;
for each unvisited point Pi in data set D do

mark Pi as visited;
NeighborsP tsi = regionQuery(Pi, ε);
if length(NeighborP tsi) < min_samples then

mark Pi as noise (Pi ∈ N);
else

C = next cluster;
expandCluster(Pi, NeighborP tsi, C, ε, min_samples)

end

end

As it can be seen, the algorithm takes one arbitrary unvisited point and evaluate its neighbor-
hood until the distance limit ε. If it has the required number of points min_samples it starts

2.3. MACHINE LEARNING CLUSTERING IN ASTRONOMY 21

expanding the clusters using another algorithm: expandCluster. Otherwise, the point is labeled
as noise.

Algorithm 2: expandCluster

Input: Pi, NeighborP tsi, C, ε, min_samples;
Initialization;
add Pi to cluster C (Pi ∈ C);
for each point Pj in NeighborP tsi do

if Pj is not visited then
mark Pj as visited;
NeighborP tsj = regionQuery(Pj, ε);
if length(NeighborP tsj) ≤ min_samples then

NeighborP tsi = NeighborP tsi joined with NeighborP tsj
end
if Pj is not member of any cluster then

add Pj to cluster C (Pj ∈ C)
end

end

end

The temporal complexity of the algorithm is governed by the number of times regionQuery
is called. Temporal complexity is naturally o(n2) but can be reduced to o(nlog(n)) when us-
ing indexing structure to query neighbors [10]. Memory complexity will be o(n2) for distance
matrix-based implementation but can be o(n) if not [10]. The distance matrix Dij contains the
distance between every pair of points Pi and Pj and it is used to avoid recalculating distance
during the clustering process.

Algorithm 3: regionQuery

Input: Pi, ε;
Output: NeighborP tsi;
Initialization;
Add to NeighborP tsi every point Pj with a distance to Pi lower than ε.

2.3.4.2 Hyperparameter selection

Hyperparameter selection in DBSCAN is not trivial. As it is an algorithm really sensitive to ε
and min_samples, it is necessary to find a method that, at least, would give a hint. Fortunately,
in [10], the creators of DBSCAN showed a way of estimating the values of ε and min_samples.

2.3. MACHINE LEARNING CLUSTERING IN ASTRONOMY 22

Figure 2.6: E.g. points sorted by dist(k, p) with k = 4. Obtained from [10].

Let d be the distance between a point p and its kth nearest neighbor. If ε = d the number of
members on its neighborhood will be k. Now, let dist(k, p) be a function that maps every point
p in D and returns the distance to its kth nearest neighbor:

dist : D −→ < (2.8)

If now, points on D are ordered by decreasing value of dist(k, p), the result is a graph with the
following shape (see Fig. 2.6). Taking an specific point pi as reference, if ε is set to dist(k, pi),
and min_samples to k, the point pi will represent a threshold. Points on the left will be noise
points, since its kth nearest neighbor’s distance is larger than pi’s kth nearest neighbor’s distance,
which is the ε. And by the same reasoning, points on the right will belong to a cluster.When
representing this plot, the distribution has an ”elbow”. As stated in [10], the optimal value for
ε is the dist(k, p) of this elbow, when min_samples = k.
Notice that, this method aims to reproduce clusters with optimal shape, and gives an idea of the
distribution of the input data. But depending on the specific domain, the user should consider
its own hyperparameter selection. In the case of XMM-Newton EPIC source detection, varying
the hyperparameters will detect brighter or fainter sources.

2.3.5 Other density-based algorithms: OPTICS and HDBSCAN

Apart from using DBSCAN as a density-based algorithm to perform clustering, another algo-
rithms will be tested in this work to compare results.
Both OPTICS [16] and HDBSCAN [18] are based on the mechanism and the concept of density
established by DBSCAN, so the main idea is common, but they introduce new advantages that
will be presented below.

2.3. MACHINE LEARNING CLUSTERING IN ASTRONOMY 23

Figure 2.7: Representation of core distance and reachability distance concepts used by OPTICS
clustering algorithm with min_samples = 4. In this graph the core distance is ε′ and ε is the
hyperparameter. Obtained from [17].

2.3.5.1 OPTICS

OPTICS [16] is a viable alternative to DBSCAN for those cases in which local densities vary
as a function of the position [7]. This is the case of astronomical observations in which the
background is not homogeneous in space. In general, XMM-Newton observations background
map is not constant (e.g. in Fig. 2.3). That makes OPTICS an algorithm that must be tried
in this domain. To sum up, the main advantage of OPTICS over DBSCAN is that it is able
to detect clusters of different densities. The behavior behind OPTICS is really similar to DB-
SCAN as both are density-based algorithms that perform clustering. One remarkable difference
between both is that the output of OPTICS is a certain order of the points that can yield to
cluster structures [17]. Then, the clustering can be performed by using this ordering on another
clustering method, like DBSCAN.
OPTICS uses the same hyperparameters of ε and min_samples previously introduced by DB-
SCAN. However, their function is not exactly the same. In DBSCAN, the radius of the region in
which a point’s neighbors are searched (search radius) is constant. The value is ε (a DBSCAN
hyperparameter) regardless how dense is the surrounding of it. The key difference introduced
by OPTICS is that a point’s search radius depends on the points surrounding it. Points in
dense regions will have a lower search radius associated, whereas points in sparser regions will
have their search radius enlarged. This way, in principle, the algorithm will be able to adapt
the process of cluster formation to the density of different regions in the EPIC observation.
In other words, in denser regions the requisites for a group of points to form a cluster will be
harder to fulfill.
The search radius is established as the distance from a point to its k-th nearest neighbor, being
k the min_samples OPTICS hyperparameter, the only one mandatory [17]. This radius is
called the core-distance of a point (eq. 2.9). The other hyperparameter used is ε, defined to

2.3. MACHINE LEARNING CLUSTERING IN ASTRONOMY 24

Figure 2.8: Steps followed by OPTICS clustering algorithm with min_samples = 4. In this
graph the core distance is ε′ and ε is the hyperparameter. Obtained from [17].

reduce the workload of the algorithm, so that points with core-distance higher than ε are not
considered [17]. As it is not mandatory, if undefined its value is set to infinity, which means
that no upper limit applies.
Mathematically, core distance is defined over each point P in the data set D using the hyper-
parameters ε and min_samples:

core-dist = dist(P ’s min_samples-th nearest neighbor, P) if N(ε, P) > min_samples (2.9)

Where dist(Pi, Pj) is normally the euclidean distance (eq. 2.4), despite sometimes another
metrics can be used (e.g. Minkowski). Notice that core-dist is defined only if N(ε, P) >

min_samples being N the number of points belonging the circle of center P and radius ε. In
other words, if the neighborhood of P has less than min_samples points, the core distance of
P remains undefined [16]. Which is the condition of a point to have a core-distance lower than
ε expressed in a different manner.
The most important concept to order the points is the reachability distance. The reachability
distance from a point P to a point O inside its core distance radius region is equal to the core
distance. If O is outside the core distance, the reachability distance is equal to the euclidean (or
another metric) distance between P and O. Mathematically, it can be said that the reachability
distance is the maximum between the core and euclidean distance (eq. 2.10).

reach-dist = max(dist(P,O), core-dist(P)) if N(ε, P) > min_samples (2.10)

2.3. MACHINE LEARNING CLUSTERING IN ASTRONOMY 25

Figure 2.9: Output given by OPTICS. Reachability plot. Obtained from [17].

It is the distance between P and O or the core-dist of P , the highest value is chosen. If P
is not a core point, mathematically: N(ε, P) > min_samples, reachability distance remains
undefined.
Both core (eq. 2.9) and reachability distance (eq. 2.10) definitions are used by OPTICS
algorithm in its execution. A graphical representation of both concepts can be seen in Fig. 2.7.
Once both core and reachability distance have been defined, it is time to see how OPTICS use
them to order the points. The first thing it does is label every point as core-point or not. Then
the algorithm executes a sequence of steps illustrated in Fig. 2.8.
Before visiting the next point, OPTICS calculates the reachability score and updates the

processing ordering of points [17]. If a point is not core point, its reachability score will be the
reachability distance to the nearest core point [16]. And if it is a core point, the reachability
score will be its core distance [16]. The processing ordering of points is updated and the
algorithm visits the next point in the queue [17]. Once, all points have been visited, there is
a certain ordering of points that is finally the output of OPTICS. As the processing sequence
joins reachable points in the queue, ordered by reachability score, a cluster structure arises (see
Fig. 2.9).

2.3. MACHINE LEARNING CLUSTERING IN ASTRONOMY 26

2.3.5.2 HDBSCAN

The other alternative, HDBSCAN [18], is the hierarchical version of DBSCAN. Its strength is
that it is able to ”decide”, under new hyperparameters (min_cluster_size and cluster_slection_
epsilon and min_samples) [19] whether two formed clusters should be joined as one or not. In
the astronomical domain, it can be useful, e.g. when extended sources create regions of multiple
clusters and it is interesting to resolve them individually.
HDBSCAN needs an efficient estimate of local density to perform clustering [19]. The concept
of core-distance, previously defined in OPTICS section (see eq. 2.9), is also used by HDBSCAN
under the same mathematical expression. Unlike DBSCAN, HDBSCAN transforms the space
changing the euclidean distance by the mutual reachability distance (see eq. 2.11).

mreach-dist(a, b) = max(core-dist(a), core-dist(b), d(a, b)) (2.11)

Where d(a, b) is the euclidean distance between a and b. Notice that the core-distance is defined
using the hyperparameter min_samples (eq. 2.9). Once this new distance metric is defined,
the algorithm proceeds to find dense regions in order to form clusters of points. The approach
to solve this problem is to see the data as a weighted graph where points are vertices whose
edges are weighted by the mutual reachability distance [19].
A threshold value is defined so that every edge with a higher weight will be dropped from the
graph [18]. This threshold starts high and becomes lower with ”time” so at the beginning all
connections between points are ”switched on”. As the threshold starts decreasing, points with
high mutual reachability distance will start to lose connection. Here is where the concept of
hierarchy arises, since the algorithm produces a hierarchy of connected components (from fully
connected to fully disconnected) [19].
If the observation has n points, the number of edges to compute will be n2 [18], so in practice
this method will not be efficient. As a result, HDBSCAN uses a subset of the total set of edges
that fulfills two conditions [18]:

• Dropping any edge of the subset would cause a disconnection between points. In other
words, this subset will keep essential edges and drop redundant.

• There is no lower weight edge that could connect two points.

The desired subset of edges is analogous to the ideal road map to connect cities. E.g. in Spain,
building a road from Seville to Barcelona that does not visit any other city would be inefficient.
It would be better to establish the connection from Seville to Barcelona using shorter roads
that connect a bigger amount of cities in the way, so they can also make use of the same road.
This subset of edges is known in graph theory as the minimum spanning tree of the graph [19],

2.3. MACHINE LEARNING CLUSTERING IN ASTRONOMY 27

Figure 2.10: Example of the minimum spanning tree of a data set. Obtained from [19].

and there are several methods to compute it. To visualize the idea of the concept, an example
is provided in Fig. 2.10.
Once this graph is obtained, using the weights given by the mutual reachability distance, a

cluster hierarchy is built. The process is the same stated below using an upper threshold that
decreases, but this time over the minimum spanning tree instead of the total graph.
A cluster structure can be obtained from this hierarchy by cutting it at a certain level. The
first step of cluster extraction is condensing this hierarchy into a simpler tree (see Fig. 2.11).
The majority of the splits in the resulting hierarchy are a cluster loosing one or two points
rather than the division of a cluster in two [19]. It would be interesting to identify this splits
to neglect them, since they do not contribute to understand the underlying cluster structure.
To establish a criteria, a new hyperparameter (min_cluster_size) is introduced [18]. For each
split, if one of the two outcoming clusters has less than min_cluster_size points, this split is
declared as a cluster losing points [19]. This is how the condensed tree is built (Fig. 2.11).
Once the condensed tree is built, the cluster structure, which is finally, the output of HDBSCAN
is got selecting those clusters with longest lifetime [19]. The lifetime o a cluster is measured
with the λ value from the condensed tree using the y coordinate (see Fig. 2.11). In other words,
for each point, the cluster in which it spends the majority of its ”life” is the cluster it belongs
to. Noise points are those neglected using the min_cluster_size.
As there is now a cluster label for each point, HDBSCAN execution has now ended.

2.3. MACHINE LEARNING CLUSTERING IN ASTRONOMY 28

Figure 2.11: Up-Left: total hierarchy. Up-Right: condensed tree. Bottom-Left: selection of
clusters. Bottom-Right: final output Obtained from [19].

2.3.6 Previous astronomical applications of machine learning

In this section, a brief description of previous works developed in the field of astronomy using
Machine Learning, and a few specific examples of density-based algorithms will be given.
Astronomy, and specially X-ray astronomy, is a branch of natural sciences where data is gold,
since sophisticated instruments (like XMM-Newton) are needed to obtain it. This fact, and the
large amount of data actually stored, makes astronomy one of the main fields of application of
machine learning.
At ESAC-ESA, a group dedicated to machine learning in astronomy has been recently formed.
In one of their most cited publications they proposed a new method for denoising astronomical
images taken by Hubble Space Telescope using U-nets [11], a fully convolutional neural network
architecture with U-shape [11]. There are also two publications in which they use density-based
clustering algorithms. In [12] they used DBSCAN to identify new member candidates in the
star cluster located in Upper Scorpius subgroup. They also discuss the use of density-based
DBSCAN over distance-based k-means claiming that it is able to find clusters of arbitrary shape
[12]. Another publication by ESAC machine learning group related to density-based clustering
is [13], where they concluded that density-based clustering (in particular DBSCAN, OPTICS

2.3. MACHINE LEARNING CLUSTERING IN ASTRONOMY 29

and HDBSCAN) is a promising method to identify candidate members of star forming regions.
Out of ESAC, we will put the focus on the algorithms used in this work exclusively: DBSCAN,
OPTICS and HDBSCAN. The most relevant papers using this techniques will be mentioned
so the reader can have an initial idea on how clustering algorithms are applied in astronomical
domains.
In 2018, a group of astronomers from the University of Barcelona used DBSCAN to explore
data from Gaia [21]. Concretely, the function of DBSCAN was to find clusters of sources
(mostly stars) with similar astrophysical properties, called Open Clusters (OCs). The results
obtained led to the proposal of new OCs. Although it may seem a similar work than the one
developed here, there is an important difference: in [21], the points in the data set are the
proper sources and the resulting clusters are groups of them, while here, points correspond to
events (X-ray photons), and sources are still supposed undetected. This works aims to solve a
previous problem than [21], since the only information taken as an input is the X-ray radiation
data. Another obvious difference is that Gaia performs measurements in the optical band, not
X-rays.
DBSCAN has also been used to classify binaries’ light curves in Gaia [22]. Again, sources have
already been detected before applying DBSCAN, which makes a great difference with respect
to this work.
A group of researchers from Changzou University in China, have used DBSCAN for detecting
nearby open clusters from Gaia DR2 [14], where they stated that DBSCAN is very useful when
finding densely populated structures in space data. On the other hand, they regret that it
could not be able to calculate cluster membership probabilities [14].

2.3.6.1 Clustering algorithms in astronomical source detection

The use of DBSCAN for detecting astronomical sources has been proved for the first time over
Fermi -LAT data [15], and concluded that DBSCAN was successful in detecting sources. It
stated that the cluster centroids obtained with DBSCAN are located in similar positions than
those obtained using the current Fermi -LAT software [15].
There is another application of DBSCAN in Fermi -LAT for detecting high energy (Eγ >

100GeV) γ-ray sources [23], a work similar to [15]. One of the most relevant problems detected
when applying DBSCAN in [23] is that it is unable to deal with non-homogeneous spatial dis-
tribution of the background, issue that could be tentatively fixed by using alternative clustering
algorithms (OPTICS and HDBSCAN).
In [15] and [23], the points in the cluster structure are γ-ray photons characterized by the
position in sky coordinates. DBSCAN is applied to this lists of photons (the event list of the
observation) in the same way than this work.

2.3. MACHINE LEARNING CLUSTERING IN ASTRONOMY 30

Another inspiring ideas from [15] and [23] to this work is the way they calculate the significance
of each detected cluster. They first calculate the effective radius of each cluster using eq. 2.12.

reff =
√
σ2
x + σ2

y (2.12)

Where x and y are the principal components of the cluster’s points distribution, and σ is the
standard deviation [23]. When having this reff , the significance is obtained from 2.13.

s =

√
2

(
Nsln

[
2Ns

Ns +Nb

]
+Nbln

[
2Nb

Ns +Nb

])
(2.13)

Where Ns are the number of points belonging to a cluster and Nb are the number of points in a
region a distance between 2reff and 3reff from the centroid of the cluster [23]. In this work, a
different calculation of the significance of each cluster is proposed, although the concept behind
is similar.

Chapter 3

Design and implementation

This chapter contains a step by step explanation of how the final solution has been reached in
order to fulfill the objectives stated in the first chapter.

3.1 Data acquisition and machine learning pipeline

The data needed in this project is available at XMM-Newton Science Archive, a web repository
supported by XMM-Newton Science Operations Centre of ESAC. It holds all the files containing
the event lists and the region lists to validate the results of clustering.

Figure 3.1: Data pipeline designed for the project.

The pipeline of the project is shown in Fig. 3.1. We download the required files from XMM-
Newton Science Archive using a Python script that builds an URL request from the search
conditions. For simplicity, as the only files with interest on this work is the EPIC-PN complete
event list and the corresponding sources list (technically called region list), in the whole energy
range, the only search filter we use is the observation ID. However, the archive accepts a wide
range of customizations on the URL.
Once both files are downloaded, another Python script is executed to retrieve the events and

31

3.1. DATA ACQUISITION AND MACHINE LEARNING PIPELINE 32

region lists and save them in local variables so they can be used in the pipeline.
As we can see in Fig.3.1, the event list inputs in the clustering methods, where the output
will be a list of detected sources. We characterize detected sources with a few attributes
(position, counts, significance) and labeling columns that corresponds to the cluster each event
was assigned in each of the clustering threads built. The region list contains the list of sources
detected by XMM-Newton pipeline, we use them in the validation stage to perform cross-match
validation with our clustering detected sources.
The event list comes from the archive in FITS format. A FITS file is composed by a set of
extensions that contains all the relevant information an astronomer would need when handling
the data. Every extension has a header with information about the data it stores. The event
list is located in an extension called EVENTS. It is a table with multiple columns that we are
filtering to keep the ones we show on Table 3.1.

TIME (s) The time an event was detected
X (0.05 arcsec) Relative position in right ascension axis
Y (0.05 arcsec) Relative position in declination axis
DETX (0.05 arcsec) Position in the X axis of the detector
DETY (0.05 arcsec) Position in the Y axis of the detector

PI (eV) Energy of the photon associated
with the event

CCDNR CCD chip in which the event
was detected

Table 3.1: Variables obtained from the EPIC-PN event list.

One of the most striking aspects of theses variables is that there are two different set of
axis to determine the position: one set referred to the standard equatorial system to locate
an astronomical source in the sky (X, Y), and another set referred to the detector coordinates
system (DETX, DETY). An example of an observation represented in both sets is available in
Fig. 3.2. Changing from X, Y to detector coordinates implies a non trivial transformation.
The source list is, as its name states, a list of elements, each of them containing the position of
the source in sky coordinates and the radius of the region where the source is located. Notice
that the position is given in sky coordinates (right ascension, declination). To compare results,
we use the World Coordinate System Information stored in the event list FITS file metadata.
Up to now, we have presented three different sets of axis: detector, X,Y and sky coordinates. It
is convenient to apply the clustering methods using detector coordinates since it is a coordinate
system where all observations are equivalent. However, we need to give the result in real sky
coordinates in order to perform a cross match validation with XMM-Newton pipeline.

3.1. DATA ACQUISITION AND MACHINE LEARNING PIPELINE 33

Figure 3.2: Observation seen from X, Y coordinates (left) and detector coordinates (right).
EPIC-PN event list from observation ID: 0690200301 as example.

3.1.1 The clustering threads

In the pipeline, there are three clustering algorithms used and also three clustering threads.
Each thread leads to a list of sources as an output. When sources are detected, we will validate
them using two techniques: defining two significance metrics to evaluate the confidence we
can give to each detection individually. And then, using XMM-Newton pipeline source list to
perform cross match validation, as explained before.
In Fig. 3.1, this source detection threads are located in the cell called ”Clustering methods”,
which is the core of this work.
In Fig. 3.3, an scheme for the reader to visualize the order of the clustering methods applied
to the event list is given. As it can be seen, before the source detection is performed, flaring
background intervals should be removed. Then the cleaned event list is sent to each source
detection thread. Notice that two of them combine more than one clustering algorithm. In
following sections each of them will be properly exposed. It is also appropriate to warn that,
since all the facts related to the clustering algorithms have been widely explained in section
2.3, we will give no comments about the clustering theory in this chapter.
Before diving into the specific clustering threads of the pipeline, we would like to make consid-
erations on the variables involved in the clustering algorithms. The flaring background removal
thread will exclusively use temporal coordinate, whereas those threads designed for source de-
tection involve only detector coordinates (DETX, DETY). One may wonder why the energy of
the events is not involved. The reason is that astronomical X-ray sources are not characterized

3.2. FLARING BACKGROUND REMOVAL WITH DBSCAN 34

Figure 3.3: Clustering methods inside the pipeline.

by certain energy emission lines but by a continuous spectra. Not only that, but also that
spectra of different sources normally overlap, lots of them have also similar shape. Having said
that, it is logical to argue that, the energy of an individual photon tell us little about the source
it belongs to. This is the reason why it is not used in this work to detect sources.

3.2 Flaring background removal with DBSCAN

As enunciated above, the first clustering technique we apply to the full event list has the ob-
jective of removing time intervals contaminated by high flaring background. Fortunately, these
intervals are identified by an outstanding increment of the count rate (counts/second). From
certain point of view, the count rate can be seen as density in the temporal axis of the obser-
vation. Therefore, the problem of detecting flaring background can be understood as the aim
of finding regions densely populated by events considering only the temporal coordinate.
Having said that, we have redefined the problem so now density-based clustering is applicable,
since it will lead to identify flaring background intervals as clusters of events. The key point
is that DBSCAN algorithm is able to classify points as noise. Following the reasoning stated,
noise points will be points not belonging to any flaring background interval. In other words,
DBSCAN can be used over the total event list involving only the time coordinate in the clus-
tering process and the cleaned events will be those classified as noise.
In Fig. 3.4 an example of this process can be seen graphically. We have selected the hyperpa-
rameters of DBSCAN considering the ”elbow” criteria exposed in chapter 2, but it must be said
that we have tuned them manually to fit to XMM-Newton observations. Their final values are

3.2. FLARING BACKGROUND REMOVAL WITH DBSCAN 35

eps (s) min_samples (counts)
7 300

Table 3.2: Hyperparameters selected for DBSCAN in flaring background removal stage.

presented in Table 3.2. As the only coordinate considered in the clustering process is the time,
the distance between points has also dimensions of time, subsequently, eps is given in units
of time (seconds in this case). On the other hand, min_samples has dimensions of number of
counts. if we rephrase this set of hyperparameters to astrophysical language, it can be said that
we consider any time interval as flare when there are approximately a concentration of more
than 300 events in a time interval of 7 seconds. This is the way the hyperparameters should be
interpreted.
As this stage can be considered part of the data cleaning process, an acceptable output for the
algorithm will be such that allows the source detection threads to obtain good results. In this
case, this method will produce good results as long as the cleaned observation is digestible by
the oncoming algorithms and sources are properly detected detected.
There is also some part of visual checking. E.g. in Fig. 3.4 we can see how DBSCAN is able to
detect all intervals corresponding to flares in the observation and the output image is properly
cleaned so the sources present in the observation are much more visible. After probing the
method with a sufficient amount of observations, a coherent result has been observed in most
of them. Consequently, this method is considered reliable.
An important fact to mention is that, in case that there are no flaring background intervals, all
the points will be labeled as noise by DBSCAN algorithm and no event will be removed from
the original list.
Nevertheless, we must warn some issues that could arise when using this method on certain
observations. If the observation is overcrowded by sources until the point that they all together
reach a count rate of 300/7, this method will consider this overload as flare, and all events will
probably be removed from the event list. However, it is true that this count rate levels are
really uncommon.
There is also another possible problem, but in this case is not fatal. We have been aware that
in some observations there are small time intervals affected by fainter flares undetected by our
method. E.g. in Fig. 3.4, at t ∼ 17000 s we can see two faint flares that remain undetected
after applying DBSCAN algorithm. All in all, this phenomenon do not imply major problems
since the only outcome they produce is a slightly higher environmental background.

3.2. FLARING BACKGROUND REMOVAL WITH DBSCAN 36

Figure 3.4: Comparison between an observation before and after removing the flaring back-
ground particles with DBSCAN. (Top): observation collapsed on TIME-DETY plane. (Bot-
tom): observation collapsed on DETX-DETY plane (classical image). Self-generated figure
with the EPIC-PN event list from observation ID: 0744414101 as example.

3.3. DBSCAN-BASED SOURCE DETECTION 37

Once flaring background intervals are detected and removed from the event list, we proceed to
apply source detection threads. The reason to design three different threads is not that each of
them will detect a different type of source, but that each algorithm by its own has significant
drawbacks, so it is necessary to try different algorithms and combinations. The threads are
presented in chronological implementation order, so we can argue the creation of each of them
basing on the issues generated by the previous ones.

3.3 DBSCAN-based source detection

As shown in Fig. 3.5, the only algorithm used in this case in this case DBSCAN.

Figure 3.5: Data flow scheme for DBSCAN-based source detection thread.

The process is a combination of two rounds of DBSCAN algorithm: one designed to detect
bright sources and the other to detect faint sources. The reason for that is the need to work
in two different ranges of cluster formation hyperparameters depending on the type of sources
we aim to detect. That is why there is a first round of the algorithm executing with restrictive
set of the hyperparameters (restrictive means a high value of min_samples for a low value of
eps) and a second one taking the noise events of the first one to find fainter sources with a less
restrictive set of hyperparameters. This procedure also leads to an intrinsic classification of the
resulting sources between brights and faints.
At the very beginning, the first approach we took to perform source detection was a single DB-
SCAN execution over the cleaned event list. The results showed that, when setting restrictive
hyperparameters, the method was able to detect bright sources individually but was also unable
to detect fainter sources. Otherwise, when setting permissive hyperparameters we obtained a

3.3. DBSCAN-BASED SOURCE DETECTION 38

Figure 3.6: Linear regressions for calibrating min_samples in both bright and faint sources
rounds in DBSCAN-based thread.

larger amount of faint sources, but, as a drawback, the method began to link brighter sources
together. Those linkages were critical in overcrowded regions where the count rate is high
enough. That troubles lead us to try a double execution method, in which we would benefit
from both hyperparameters sets advantages.
A high value of eps will allow the algorithm to find more extended sources. In the first round
of the pipeline we have set it to 120, which has dimensions of spatial coordinates: one unit
corresponds to 0.05 arcsec. The value of eps in the second round will be 100. Both have been
obtained by fitting its value manually to obtain relevant results on source detection.
As for min_samples, since it has dimensions of number of counts, and the number of counts

of any observation depends on its exposure time, a relation between min_samples and the
exposure time is needed.
In Fig. 3.6 it is shown how min_samples is determined from the exposure time using linear
regression. For this method to be applicable, it has to be probed that the relation between the
exposure time and the number of counts is linear.
Assuming an experiment in which the number of photons arriving the detector at an specific
window of time ∆t is measured. The number of photons arrived is an aleatory variable (X)
following a Poisson Probability Distribution Function. Then, the probability for this number
to be k is given by eq 3.1:

P [X = k] =
e−λλk

k!
(3.1)

3.3. DBSCAN-BASED SOURCE DETECTION 39

Figure 3.7: Example of an output of the DBSCAN-based source detection thread for the ob-
servation ID: 0690200301. More examples are provided at the annexed.

The expectation of this variable is E[X] = λ. So it is expected to get λ photons in a ∆t window
of time. If the experiment is repeated, under the same conditions, with a time window of 2∆t,
to calculate the expected number of photons arriving, the window can be divided in two with
equal time duration ∆t. In consequence, it ends up being two windows similar to the one of the
first situation. Since before the expectation was λ, now that there are two identical windows,
the expectation will be λ + λ = 2λ. As it has been probed, doubling the time produces the
double amount of photons. This reasoning has been done for t = 2∆t but it can be easily gen-
eralized to t = γ∆t for γ ∈ N. In conclusion, the relation between the exposure time and the
number of photons detected must be linear, so linear regression is applicable in this situation.
The results of both brights and faints linear regressions can be consulted in Fig. 3.6. The pro-
cedure to obtain samples to fit both lines has been manual fitting the min_samples parameters
of represented observations (each observation is named using its ID). The manual fit of each
observation is not a difficult task, it consists on trying different values of min_samples until
the best result is reached. Remember this techniques are unsupervised machine learning, so
there is no loss function to optimize to get the hyperparameters. Also notice that the X axis of
the linear regressions is the ”effective” exposure time, which means that the intervals removed

3.4. OPTICS-BASED SOURCE DETECTION 40

in flaring background cleaning are not considered in the total exposure time. Otherwise, the
method will be sensitive to the amount of time the observation was affected by flares.
Once the hyperparameters of the bright and faint round of DBSCAN algorithm are set, the
thread is ready to detect sources. Then, we need to perform some data integration tasks in
order to join sources detected in both DBSCAN rounds (see Fig. 3.5). This type of tasks are
omitted in this document since they consist on purely coding stuff.

3.4 OPTICS-based source detection

The next thread for detecting sources in the pipeline uses OPTICS algorithm.

Figure 3.8: Data flow scheme for OPTICS-based source detection thread.

The main problem that arises when applying DBSCAN on this domain, is that it is unable
to adapt cluster formation requirements to regions with different count densities. Because of
that, we had to choose between good bright or faint detection. The way OPTICS transforms
the space before ordering the points (see section 2.3) make us expect that it will be able to
attenuate this effect.
As explained in section 2.3, OPTICS do not perform clustering until the end, it just gives an
specific ordering of the points that can yield to a cluster structure. To obtain the clusters,
we execute DBSCAN right after it. This thread is an improvement of the first one with the
use of OPTICS before DBSCAN clustering, with the aim of making it adaptable to regions of
different count densities. An scheme of the process can be consulted in Fig. 3.8. We can see
how the data collection process is much simpler since all the sources are detected at once, with
no need to find independently bright and faint ones, thanks to the capability of OPTICS to
obtain clusters of different densities.
The hyperparameter selection in this case has been similar to the DBSCAN-based thread.

Since max_eps is an upper limit used by the algorithm to omit calculations and execute faster,
we have set the value used in the previous thread to detect bright sources. That is to say that

3.4. OPTICS-BASED SOURCE DETECTION 41

Figure 3.9: Example of source detection given by OPTICS-based thread. E.g. observation ID:
0690200301.

we are not interested in extend the neighborhood of each event longer than in DBSCAN-based
thread. Which will produce undesirable neighbor sources linkages.

max_eps (0.05 arcsec) min_samples (counts)
120 0.0007teff + 12.5

Table 3.3: Hyperparameters selected for DBSCAN in flaring background removal stage.

The min_samples has to be selected as a linear function of the exposure time. The coefficient
has been selected slightly higher than the one obtained by linear regression in the faint round
of the previous thread.
The final combination of hyperparameters is shown in table table 3.3. The hyperparameters
used in DBSCAN are the same used in OPTICS (with eps = max_eps).
This combination of hyperparameters has shown robustness on the results obtained in a wide
range on observations. They may not be the optimal ones, but, as stated in previous sections,
unsupervised learning makes it difficult to find the perfect hyperparameter set.
In Fig. 3.9 we show the position of the sources detected by OPTICS-based thread using the
same example as DBSCAN-based thread.

3.5. HDBSCAN-BASED SOURCE DETECTION 42

3.5 HDBSCAN-based source detection

The last thread developed in this work uses HDBSCAN algorithm to perform clustering over
the cleaned event list. However, once HDBSCAN produces its clusters, the method does not
ends. In this situation, we apply a second round of DBSCAN to each cluster produced by
HDBSCAN independently (see Fig. 3.10). The reason is different than in the case of OPTICS.
While OPTICS forced us to apply a second algorithm to perform clustering end to end, HDB-
SCAN is able to complete the process by its own, but we use DBSCAN to attenuate some
problems that arise when using HDBSCAN.

Figure 3.10: Data flow scheme for HDBSCAN-based source detection thread.

In order to understand the reason why a layer of DBSCAN has been situated after HDBSCAN,
one must observe Fig. 3.10. The output given by HDBSCAN is an specific cut on a cluster
hierarchy (see section 2.3), which provokes that in some regions of the observation the source
detection keeps unresolved. In other words, the clusters formed are too sparse (lots of points
belonging this clusters should be considered as noise) and sometimes there is more than one
source inside each of them. This phenomenon has been observed in regions where there are
not too many sources: underpopulated regions. In contrast, in regions where there is a high
density of counts produced by extended sources overlapping, HDBSCAN shows better results
than DBSCAN and OPTICS threads.
In order to solve the problem presented by HDBSCAN in sparse regions, we apply DBSCAN
independently to each cluster detected by HDBSCAN. That way, we keep the capability of
HDBSCAN detecting sources in dense regions, while forcing sparse clusters to achieve the de-
sired level of resolution, given by DBSCAN hyperparameters. We can see an example of an
output given after multiple DBSCAN layer in Fig. 3.12.

3.5. HDBSCAN-BASED SOURCE DETECTION 43

Figure 3.11: Calibration of min_cluster_size in HDBSCAN source detection thread using
linear regression.

The hyperparameters of HDBSCAN are slightly different from DBSCAN and OPTICS, as dis-
cussed in section 2.3. The first one to be discussed is min_cluster_size, which is the minimum
number of counts a group needs to be considered a cluster. Having probed that the relation
between the number of counts and the exposure time is linear, the min_cluster_size must be
calibrated by linear regression (see Fig. 3.11).
The next hyperparameter to be commented is min_samples. By default, it is set with the

same value than min_cluster_size. When min_samples is lower min_cluster_size, the effect
will be that more points (that normally would be considered noise) will now be included in
a cluster. In other words, we would be more permissive for points located in sparser regions
to be considered part of a cluster. In this case, min_samples is set with the same value than
min_cluster_size, otherwise, the issue of HDBSCAN in sparser regions would be enhanced (see
Fig. 3.12 top-right image).
The cluster_selection_eps has been approximated using the ”elbow” criteria and then manu-
ally fit, since it is analogous to eps in DBSCAN. The complete set of hyperparameters can be
consulted in table 3.4.
As for DBSCAN hyperparameters, they are set according those obtained in the first thread.
Since the aim of DBSCAN in this thread is helping HDBSCAN in regions where it is not able
to reach enough resolution, the idea is that, in those regions, the thread will return similar

3.5. HDBSCAN-BASED SOURCE DETECTION 44

results than DBSCAN-based thread. The selected expression must be a linear equation. The
coefficients exposed in table 3.4 are the ones we have chosen for this thread and have presented
good results in a wide range of observations, specially in those populated by extended sources.

min_cluster_size 0.00656teff + 3.42
HDBSCAN min_samples 0.00656teff + 3.42

cluster_selection_eps 60
DBSCAN min_samples 0.0006teff

eps 120

Table 3.4: Hyperparameters selected for HDBSCAN-based thread.

In general, we have observed over a wide range of observations, that HDBSCAN-based thread
shows the best results out of the three threads designed. The reason behind, which has been
so commented, is that it is able to detect sources in both sparse and crowded regions. By its
own, HDBSCAN has only showed good results on overpopulated regions. That is the reason
why, at some point of the project, we deliberate about removing it from the pipeline, since it,
regardless the set of hyperparameters used, was not able to achieve source detection over low
background and point-like sources. Nevertheless, when we tried it over those overpopulated
regions, we discovered its outstanding performance on this type of observations. Since then,
we concluded that the best source detection thread would combine both good results achieved
by DBSCAN on sparse regions and the outstanding ability of HDBSCAN when dealing with
crowded ones. The final solution was this thread (see 3.10).
Having said that, we would like to warn that, it is not that HDBSCAN is the best algorithm
on this domain, but that this thread has shown the best results out of the three designed. We
have called this thread HDBSCAN-based because the difference between the others is the use
of HDBSCAN, but their good results must be assigned to both HDBSCAN and DBSCAN, and
obviously to this specific combination.
Notice that OPTICS does not take part on this solution, since it shows similar results than
DBSCAN and therefore does not include a significant advantage. Also, as it will be discussed
in section 3.7, the use of OPTICS would considerably increase the total execution time.

3.5. HDBSCAN-BASED SOURCE DETECTION 45

Figure 3.12: Example of an output of the HDBSCAN-based source detection thread. (Top-left):
Input event list. (Top-right): Clusters output right after HDBSCAN execution. (Bottom-left):
sources detected after DBSCAN layer. (Bottom-right): clusters output after DBSCAN layer.
E.g. observation ID: 0690200301.

3.6. EXTENDED SOURCES 46

3.6 Extended sources

When dealing with crowded regions of the sky, the amount of counts concentrated in an specific
region is such that it can be difficult for the clustering algorithms to detect sources. The example
provided in this document to illustrate each step of the pipeline and validation is the typical
EPIC observation with a low background and point-like sources, but the input is not always
that simple.

Figure 3.13: (Top): DBSCAN-based thread: sources and clusters. (Bottom): HDBSCAN-based
thread: sources and clusters. E.g. with observation ID: 0112570101.

3.6. EXTENDED SOURCES 47

Figure 3.14: Zoom in the central region of Fig. 3.13 observation.

However, in this section we present an observation of M31 galaxy (as known as Andromeda
galaxy). Those observations present an overcrowded region of the sky in the center of the field
of view of the cameras. This kind of observations reveal the weakness of DBSCAN-based thread
and make evident the need for designing HDBSCAN-based thread.
We give as example to comment the observation shown in Fig. 3.13, and its zoom in Fig.

3.14. We can see how DBSCAN-thread is not able to resolve individual sources in the center
of the image. In addition, a group of spurious faint sources is formed surrounding it. Whereas
HDBSCAN thread can resolve both situations quite deeper. The DBSCAN layer of HDBSCAN
thread (see section 3.5) is important to try to resolve individual sources in sparser regions. While
HDBSCAN layer is responsible for the deep resolution in the center of the image.

3.7. COMPUTATIONAL PERFORMANCE 48

3.7 Computational performance

This section has the objective of measuring how much time is taken by every part of the
pipeline. In order to study the dependency of the execution time with respect to the number
of events in the input data, for each part of the pipeline, a scatter plot of the number of counts
versus the execution time has been drawn. We show the results obtained in Fig. 3.15. The
best performance is shown by the flaring background part. This is something really positive
because this part receives the hole event file as an input. The length of an observation’s event
file depends on the exposure time and the region of the sky where the telescope is pointing to,
so it is very variable. The largest files can have a length of the order of 106 events.
On the other hand, OPTICS-based thread is by far the least efficient when the number of counts
increases. It is recommended to maintain OPTICS thread inactive for observations with more
than 150000 cleaned events.
As for DBSCAN and HDBSCAN-based threads, the performance is more than acceptable
considering the size of the input data this threads have to bear with. Even with 1 million of
cleaned events as input, which is very unlikely, both will return the output in around a minute.
Normally the input will be of the order of 105, and the execution time will be of approximately
10 or 20 seconds.
We shall warn that, despite the flaring background thread receives considerably larger size of
input data, in Fig. 3.15, the execution time for DBSCAN, HDBSCAN and OPTICS threads
has been tested with uncleaned events, so each thread is tested under the same conditions
than the flaring background removal and we can control the input size. Otherwise, the source
detection threads would have received significantly lower amount of data than the one shown
in this plot.

Input size Execution time
410793 4 min 12 s
151703 2 min 14 s
194986 2 min 5 s
185874 3 min 2 s

Table 3.5: Computational performance of the background and source density estimation maps
calculation.

Another warning to make, is that the execution time of background and source density maps
(see section 4.1) could take about 2 or 4 minutes in a range of input sizes, but this execution
time is not clearly related to the input size (results given in table 3.5).
In this section, it is necessary to comment that the execution time is in the majority of the

3.7. COMPUTATIONAL PERFORMANCE 49

Figure 3.15: Execution time versus size of input data for each part of the pipeline.

cases justified to achieve the results. In principle, DBSCAN and OPTICS threads are not
improvable, the same to say about the flaring background removal. But we are also aware that
HDBSCAN-based thread can be optimized by parallelizing multiple DBSCAN layer executions,
since they are independent from each other. Also, the computation of the background density
map can be optimized by omitting some calculations that will remain unused.

Chapter 4

Validation

4.1 Significance metrics

So far, we have presented three methods for performing source detection. The aim of this part
of the pipeline is to determine the level of confidence that can be assigned to each detection.
Like the error level of every measurement in physics. Even the XMM-Newton pipeline source
detection gives a probabilistic value for each detection: the Maximum Likelihood. This part
should not be mismatched with the validation stage. The validation consist on comparing these
alternative and novel clustering methods to the actual results of the XMM-Newton pipeline.

4.1.1 Density-based significance

The first of the two types of metrics evaluated to measure the significance will be based on the
idea that a source should have a considerably higher count density than its surrounding back-
ground. The greater the difference, the more probable it is that the detection truly corresponds
to a real X-ray source. This metric is the more natural, since the sources has been detected
considering count density criteria.
In order to calculate this metric on a source, we need two quantities:

• The count density of the source.

• The count density of the background surrounding the source.

In other works, the significance of a clustering detected source was obtained counting events
of the source and the surrounding background surface (see section 2.3.6 to consult how the
significance is measured by [15] and [23]). Here, another approach to the problem is proposed.

50

4.1. SIGNIFICANCE METRICS 51

The reason why the method used in [15] and [23] is not fully applicable in this project is based
in three problems that arise when using it in XMM-Newton observations:

• When defining the region of the surrounding background of a source, other neighbor
sources may fall inside. So, when counting the number of noise events there, the result
will be less than if neighbor sources were not there. It is a source of error.

• When there are sources at the edge of a CCD chip (see Fig. 2.2), some fraction of the
background events of a source will belong a different CCD. As it is known, instrumental
background may depend on the CCD where the source is located, that is why including
background counts from a different CCD is another source of error.

• Between CCDs of the EPIC camera, there is empty surface with no detected events (itcan
be seen in any of the observation examples provided). So, if the background region of a
source includes part of empty surface, less events will be counted compared with sources
in the central region of a CCD. Which is another source of error that can not be controlled.

On balance, the method used on Fermi γ-rays ([15] and [23]) introduces a few complications
due to sources surrounded by neighbor sources and sources located on the edge of a CCD. Now
that the need of a different method has been argued, we are proposing a method that will
intend to solve these problems as much as possible. However, this method is not going to be
perfect, whereas some of the previously mentioned sources of error will be attenuated.
First of all, two density maps are obtained using Kernel Density Estimation with a gaussian
kernel: one for the events labeled as background and the other for the events labeled as source.
These last ones to be considered as part of a detected cluster.
The density distribution function of a set of points X = {x1, x2, ..., xn} can be approximated
using KDE (Kernel Density Estimation) with the expression:

f̂(x) =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K

(
x− xi
h

)
(4.1)

Being n the number of points, h the bandwidth or smoothing parameter and K the kernel, in
this case a gaussian function. With this three elements, one can get the density estimation in
any point of space x generated by a distribution of points X. We can see this process as a
model that works under the hyperparameters h and K and is fitted with a set of points X,
then is able to predict the density of any point x. In this project, the fitting set will be formed
by the background events, in the case of the background density map and the source events in
the case of the source density map.

4.1. SIGNIFICANCE METRICS 52

Each of the fitting points xi ∈ X is substituted by the kernel. In this case, a gaussian distribu-
tion:

xi → N(µ = xi, σ = h) (4.2)

Being N(µ, σ) a two dimensional gaussian distribution centered in xi = (DETX,DETY), where
DETX and DETY are the detector coordinates of the event xi. The standard deviation of the
distribution is h, which is the bandwidth of the KDE model.
At the end of the fitting, the two dimensional space (DETX, DETY) is populated by a set of
overlapping gaussian peaks. Notice that the larger the value of h, the broader the peaks will
be, and the smoother the adjust.
When trying to estimate the density in any position of the space x, the model will give the
density as the superposition of each of the gaussian peaks (see Fig. 4.1).

f̂(x) =
1

nh

n∑
i=1

N0,1

(
x− xi
h

)
(4.3)

So, at the end, the value of the count ”density” is given as a the value of the probability density
function in this point. The advantage of doing so, is that density can be calculated as an
intensive magnitude, giving only the coordinates of the point. Rather than extensively, where
we would need to define a region, calculate its area and the number of counts inside. Which is
the source of some of the errors exposed at the beginning of this section.
As stated before, following this method, we build two density maps, one for the background
and the other for the sources. This way the influence of neighbor sources when estimating
the background will be attenuated. However, it is necessary to advice that there will still be
influence, it will be explained below.
After that, we define a grid with 200×200 points distributed in the observation (40000 in total),
which means that 40000 density measurements will be made over the whole filed of view of the
observation. Using neighborhood criteria, we established whether each of this measurements
belongs to background or source regions (and the specific source), It is also evaluated the CCD
where are located in. Notice that, as this grid is too discrete, some faint sources will not be
represented by any measurement of the grid, whereas others will agglutinate a bunch of them.
For those faint sources not represented by any grid point, we evaluate its density on its centroid.
The centroid of a source i with n counts is given by:

ci =

(
1

n

n∑
j=1

DETXi,
1

n

n∑
j=1

DETYi

)
(4.4)

4.1. SIGNIFICANCE METRICS 53

Figure 4.1: Illustration of gaussian KDE smoothing and its dependence on the bandwidth.
Image from link.

Given a source, to calculate its significance, we need the density of the source and its surround-
ing background. With all the elements defined above, the density of the source is calculated
as the median of all the density measurements of the grid belonging the source. This is the
reason why the density is measured over a grid and not over every event. If the density was
measured over each and every event, apart from being computationally heavy, denser areas
would be overrepresented in the median calculation. The same argument is given for the case
of the background.
As for the surrounding background, we establish a rectangular region of amplitude 14σx×14σy,
and centered in the centroid of the source as surrounding background (see Fig. 4.3). The
density of the background is calculated as the median of every grid measurement belonging the
background, located in the surrounding region and also in the same CCD where the source is
located. We use the median with the aim of giving this calculation robustness over outliers.
Density outliers can be provoked by measurements located at the edge of a CCD and mea-
surements located at the edge of a neighbor position. Since the majority of the measurements
are going to be performed over none of this situations, the median is expected to avoid that
unwanted effect.
Once we have calculated a value for the source density (dsrc) and the background density (dbkg),
the significance of a source i (si) is calculated using the following formula:

s =
1

1 + 10e
−
dsrci

dbkgi

(4.5)

It is known as a sigmoid function and its objective is to maintain the significance on the range

https://homepages.inf.ed.ac.uk/rbf/CVonline/LOCAL_COPIES/AV0405/MISHRA/kde.html

4.1. SIGNIFICANCE METRICS 54

Figure 4.2: Measurements of the background and source density independently. E.g. with
observation ID: 0690200301.

between 0 and 1. The coefficient 10 is there just for flatten the sigmoid, if it were not there, it
would be too easy for a source to reach s = 1.00.
It is time to reevaluate the three problems this method was aimed to attenuate:

• The influence of neighbor sources was critical since they occupied part of the surrounding
area that was considered as fully background. Now, we only measure the density of the
background in those regions where it is sure that there is not a neighbor source. It is
true that the background density measured in the surroundings of a neighbor source is
affected by the effect of the bandwidth, but we avoid those outliers since there are much
more measurements far from this problematic regions. Taking the median between all of
them guarantees the robustness.

• The problem of having part of the surrounding background in another CCD is solved
by only considering those measurements taken in the same CCD when calculating the
median.

• The empty region between CCDs affects in the same way that holes provoked by neighbor
sources. The argument is the same, those anomalous measurements are not hegemonic
and taking the median will prevent their influence.

4.1. SIGNIFICANCE METRICS 55

Figure 4.3: Surrounding background regions over each detected source using (e.g.) HDBSCAN-
based thread output source list. E.g. observation ID: 0690200301.

4.1.2 Spectra-based significance

The other significance metric proposed in this work has to do with the energy spectrum of
the source compared to those from the background. The idea behind this metric is that a
well detected source will have a different energy distribution than its surrounding background.
The spectrum of the source and the background are expected to be different because they are
generated by different physical phenomena. To calculate this metric, we need to find a way of
calculating the correlation between the spectra of the source and the spectra of its surrounding
background.
Since both spectra are a group of points representing a variable (the energy of the photon),
with different sample sizes and no particular ordering, the only way of observing the behavior
of the energy in the source compared to the background is plotting both histograms on the
same image. However, as we aim to go further and get a correlation metric between them, we

4.1. SIGNIFICANCE METRICS 56

Figure 4.4: E.g. of two spectra correlations using sources 42 (Top) and 74 (Bottom) from Fig.
4.3. Observation ID: 0690200301.

will define both histograms using identical energy bins, so the amount of events inside each bin
is comparable between both spectra and the correlation coefficient between the two histograms
can be calculated.
We calculate the correlation between this two histograms using the determination coefficient
R2. In other words, the idea is to probe if the number of counts of source and background in
each energy bin are correlated, that is the reason why both histograms must have the exactly
same bins. Those bins go from 0 to 8.5 taking steps of 0.5 in a logarithmic energy scale. The
correlation coefficient R2 is given by eq: 4.6:

R2 =
σ2
SB

σ2
Sσ

2
B

(4.6)

Being σSB the covariance between source and background histograms, σ2
S the variance of the

source histogram and σ2
B the variance of the background histogram.

4.2. XMM-NEWTON SOC PIPELINE CROSS MATCH 57

In Fig. 4.4, we give two examples of sources from observation of Fig. 4.3 (source id: 42
and source id: 74). We can see how in the source 42 the correlation coefficient (R2) is equal
to 0.8734, whereas is the source 74 it is equal to 0.9743. The 42 does not have a significant
correlation with its background, as we can deduce from the histogram plots. So if this coefficient
comes together with a density-based significance near 1 (s > 0.95), the detection is considered
reliable. On the other hand the source 74 spectra is strongly correlated with its background,
but its density-based significance goes to 1.00, since it is a really bright source, so maybe what
this correlation is telling us is that surrounding events are also produced by the proper source,
instead of being background.
As the objective is to build a metric that, the more different the source with respect to its
background, the more reliable is its detection, we need to reverse the R2 coefficient, so the
spectra-based significance metric will be equal to 1−R2.
Using this metric, source 42 will have a value of 0.1266 and source 74 will have 0.0257. Which
indicates that, in terms of energy spectra, we give the detection of the source 42 more confidence.

4.1.3 Interpretation of both metrics

First of all, it is necessary to establish an idea of what is considered a high/low density/spectra
significance metric. Based on our experience, we can consider that a source has a high density-
based significance metric when its value is higher than 0.7. Whereas a high spectra-based
significance metric will be higher than 0.1. These numbers are just considerations in order to
be able to build categories. To be rigorous, each source should be revised individually and its
particular situation must be considered. An example that will make this metrics fail are read
out streaks, caused by out of time events. Out of time events are caused by the electronics
of the detector. In the observation used in this chapter as example there is a read out streak
(vertical line). Those events are artificial and not created by X-ray sources in the sky, but
under the view of both significance metrics, they can be accepted as a source.

4.2 XMM-Newton SOC pipeline cross match

The aim of this section is checking the position of the sources obtained by this work’s pipeline
in each of the three threads with those detected by XMM-Newton pipeline from the same
observation of an specific region of the sky. In consequence, the position of the sources detected
by our clustering pipeline should be converted to sky coordinates (ra, dec), which can be done
using metadata from the header of the FITS file.
An example of cross match validation is provided in Fig. 4.5, Fig. 4.6 and Fig. 4.7. There,

4.2. XMM-NEWTON SOC PIPELINE CROSS MATCH 58

Figure 4.5: DBSCAN-based thread cross match validation. E.g. with observation ID:
0690200301.

one can see that DBSCAN and OPTICS give the approximately the same results. HDBSCAN-
based thread stands out as the best alternative It is able to recognize the higher amount of
sources, whereas is true that distracts with the read out streak.
In this section, one can check the goodness of each source detection thread visually. But, in
order to establish a quantitative criteria to evaluate each detection thread, we have defined two
metrics: the match rate and the detection rate.
First of all, we should introduce the concept of ”match”. A match happens when the position
of a clustering detected source coincides with a SOC’s pipeline source. The more amount of
matches, the better. Mathematically, two sources (one from clustering and the other from
SOC) are considered to match when the distance between them is lower than an angular
distance threshold. We have set the threshold to 15 arcsec. Using nearest neighbor criteria,

4.2. XMM-NEWTON SOC PIPELINE CROSS MATCH 59

Figure 4.6: OPTICS-based thread cross match validation. E.g. with observation ID:
0690200301.

one can know the nearest SOC source to every clustering source. For every clustering source,
its neighbor and the distance between them is saved. Then, a boolean column is defined to save
whether if this clustering source has achieved to mach or not. Once the number of matches is
obtained, we can define the two metrics:

• Match rate: is the number of matches obtained over the number of sources detected by
clustering. It is a way of measuring the percentage of the clustering detected that end up
matching with the SOC pipeline.

• Detection rate: is the number of matches over the number of sources detected by the
SOC’s pipeline. The aim of this metric is to measure the percentage of actual sources
detected.

4.2. XMM-NEWTON SOC PIPELINE CROSS MATCH 60

Figure 4.7: HDBSCAN-based thread cross match validation. E.g. with observation ID:
0690200301.

As for the match rate, a low value is caused by the difference in the source detection techniques
used in each case. Remember low match rate means that we are detecting presumed sources
that were not detected by SOC pipeline. In most of the cases this detections are clearly fake
sources.
In the observation given as example (see Fig. 4.5, Fig. 4.6 and Fig. 4.7), the best detection
rate is for HDBSCAN-based thread, which achieves to detect more SOC sources than the two
others. On the other hand, it has lower match rate, provoked partially by the read out streak
mentioned above, that lead us to detect a bunch of undesirable fake sources.

Chapter 5

Conclusions

In this work, we tried to apply density-based clustering algorithms to flaring background filter-
ing and source detection on XMM-Newton EPIC-PN observations. Source detection was ap-
proached using three methods: DBSCAN-based, OPTICS-based and HDBSCAN-based. The
results obtained lead us to the following conclusions:

• The flaring background filter shows good accuracy when dealing with either
long or short flaring intervals. Nevertheless, sometimes is unable to detect flaring
intervals of low count rate, since they will not fulfill the minimum requirements to be
considered a cluster by DBSCAN.

• DBSCAN-based source detection thread shows consistent results in sparse
regions populated by point-like sources and low background. Whereas it is not
able to resolve individual sources on overpopulated regions.

• We have designed OPTICS-based source detection thread as an aim to main-
tain well results given by DBSCAN in sparse regions and improve its perfor-
mance on densely populated ones. This thread gives, as expected, similar results as
DBSCAN-based thread when dealing with low background and point-like sources regions.
Although, seeing the results given by OPTICS on M31 galaxy, we can conclude that the
resolution problem on densely populated regions remains unsolved. In addition, due to
its high execution time, it is not efficient for observations containing dense regions, since
they are characterized by a large amount of events.

• The last source detection thread, HDBSCAN-based, has been able to deal
with the problems that arises when using DBSCAN-based thread on densely
populated regions, as we show with several M31 observations. It also reduces

61

CHAPTER 5. CONCLUSIONS 62

significantly the execution time compared to OPTICS. Also, the problem intro-
duced by HDSCAN on sparser regions has been successfully fixed applying a
second layer of DBSCAN to each cluster independently.

It is also important to mention that we tried to develop a transient source detector involving
both spatial and temporal coordinates on DBSCAN algorithm. The process is discussed more
extensively in the next chapter. This is still under investigation and therefore not included yet
in the final pipeline. It must be properly revised and developed, that is why we have included
it in the list of future steps (next chapter 6).
It is necessary to argue that we have set the hyperparameter values of the whole pipeline with
the aim of making it functional for a wide range of different observations. One could obtain a
better result by fitting them for specific observations.
Another drawback of this pipeline, common to each of the three source detection threads, is
that we did not found the way of making these methods unaffected by empty space between two
consecutive EPIC-PN CCDs. This causes that sources located in the middle of these regions,
end up divided in two, since clustering algorithms consider this gaps as a reason to divide a
cluster in two.
As for the two significance metrics defined, we also find necessary to warn that they give
indicative results on each source, but they should not be seen as a conclusive result of this
project. It is just a method for validating the sources detected. They should be understood as
a proposal for validating sources detected using density-based clustering methods in a different
way than [15] and [23], aiming to deal with some specific problems intrinsic to XMM-Newton
observations. In other words, more formal considerations are needed to develop a more rigorous
version of these two metrics.
Finally, we observed by cross validating our clustering detected sources with the ones obtained
by the traditional method, that we normally detect between 35% and 65% of the sources
detected by the XMM-Newton pipeline. However, it should be taken into account, that XMM-
Newton pipeline is really sensible when performing source detection. We observed that the
sources undetected by our pipeline tend to have a low maximum likelihood in XMM-Newton
pipeline. Having said that, we can conclude that we had similar results than the actual XMM-
Newton pipeline, despite there are sources it detects that we do not and vice-versa.

Chapter 6

Future steps: transient source detection

This project is the first step of a long road of applying clustering algorithm to XMM-Newton
data. The road has started from the basics, being very promising able to clean the observation
from flaring background particles and detect sources. But there are some other elements that
can be explored on EPIC event files. In this section the focus will be in the detection of tran-
sient sources.
Transient sources are those that are not present in the whole period of time, they appear at a
certain instant and disappear after a short period of time. That makes them sometimes really
difficult to detect.
In this work, a method to detect transient sources has been tried, but with no success yet.
As we can see in Fig. 6.1, the input data for transient detection are those events who still

do not belong to any source after searching for bright and faint sources. To detect transients,
temporal coordinate should be included in the clustering process. In order to include time on
the clustering model, we have to rescale the data. Normally, one would standardize all variables
involved in the clustering algorithm so they will be equivalent.
In this work we have used a different strategy, since we have a preliminary idea of what we
are looking for. According to astronomical and instrumental criteria, we assume that, to be a
transient source, it has to produce around 10 counts in a duration of 5 frames and a detector
area of one pixel. This idea of transient source is hypothetical and has been slightly re-tuned
along the implementation process.
Having said that, we have transformed spatial coordinates (DETX, DETY) to that predefined
resolution scale, which means that a square unit (x, y) in this scale will be equal to a pixel of
the camera, and a time unit will be equal to 5 frames. Now we set DBSCAN hyperparameters:
we would have a value of eps of 1 and min_samples of 10. Notice that eps equal to 1 defines
a neighborhood of 1 pixel and 5 frames, and the value of min_samples set to 10 defines the
constraint of having 10 counts on this region. That way, we have a more convenient normaliza-

63

6.1. OTHER POSSIBLE FUTURE STEPS 64

Figure 6.1: Data flow of DBSCAN-based thread with a transient detection cell included.

tion of the data. It is important to notice that the parameters we try to fit in this part of the
pipeline are directly the hypothetical shape (counts per area per time) of the transient sources
we aim to detect. We have tried to find this type of sources over a wide range of EPIC-PN
observations. In fact, the transient detection with DBSCAN is implemented in our clustering
pipeline, in DBSCAN-based thread, in the way that is showed in Fig. 6.1.
Unfortunately, this method has not been able to detect any transient yet. A fine tunning of
the model is needed for this pipeline to have a functional transient detection method available.

6.1 Other possible future steps

Another natural step forward could be a possible source classification model. This step is
less related to this work and is completely independent, since actually XMM-Newton Archive
has plenty of spectra and light curves to train and test the models. In this work, apart from
obtaining a list of sources, one can get the spectra and the light curve of any of the sources
detected. However, it is necessary to warn that, spectra and light curves extracted from this
pipeline are far from being a scientific and valid spectrum / light curve, since they have not
been generated using the required calibration data. One should better extract spectra and light
curves from XMM-Newton archive. There are currently initiatives at the ESAC ML group to
classify astronomical objects using deep learning.
Finally, improving the performance of the pipeline could take big advantages. There are two

6.1. OTHER POSSIBLE FUTURE STEPS 65

main important high workload phases in this work: the background estimation map and the
OPTICS-based thread. This does not mean the rest of the pipeline is perfectly optimized. The
focus in this work was on the results themselves. Focusing on the computational efficiency can
yield to a new improved version of the pipeline. We are aware that there are parallelizable tasks
inside the pipeline. E.g. on HDBSCAN thread, DBSCAN layer should be parallelized since it
executes over each of the HDBSCAN clusters independently. As for the significance metrics,
there are density measurements that can be omitted.
Transient sources detection and parallelization of certain phases of the pipeline will be explored.
So hopefully a new version of the pipeline will be available soon.

Bibliography

[1] XMM-Newton Science Operations Centre site.

[2] XMM-Newton Science Operations Centre staff. (2020) XMM-Newton Users Handbook.
XMM-Newton Science Operations Centre. European Space Astronomy Centre (ESAC-
ESA).

[3] Guainazzi, M. (2012) An introduction to XMM-Newton data analysis and the SAS grand-
scheme. XMM-Newton Science Operations Centre. European Space Astronomy Centre
(ESAC-ESA).

[4] I. Traulsen, A. D. Schwope, et al. (2019). The XMM-Newton serendipitous survey. Leibniz-
Institut für Astrophysik Potsdam (AIP), Germany.

[5] Hastie, T. & Tibshirani, R. & Friedman, J. (2001) The elements of Statistical Learning.
2nd Edition. Springer Series on Statistics.

[6] Gareth, J. & Witten, D. & Hastie, T. & Tibshirani, R. (2013) An introduction to Statistical
Learning. Springer Texts in Statistics.

[7] Kumar, V. (2014) Data clustering: algorithms and applications. University of Minnesota.
Department of Computer Science and Engineering. Minneapolis, Minnesota, USA.

[8] MacQueen, J. B. (1967). Some Methods for classification and Analysis of Multivariate
Observations. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and
Probability 1. University of California Press.

[9] Jin X., Han J. (2011) Expectation Maximization Clustering. In: Sammut C., Webb G.I.
(eds) Encyclopedia of Machine Learning. Springer, Boston, MA.

[10] Ester, M. & Kriegel, H. P. & Sander, J. & Xu, X. (1996) A density-based algorithm for
discovering clusters. Institute of Computer Science. University of Munich.

66

BIBLIOGRAPHY 67

[11] Vojtekova, A. & Lieu, M. & Valtchanov, I. et al. (2020) Learning to Denoise Astronomical
Images with U-nets. European Space Astronomy Centre (ESAC-ESA).

[12] Wilkinson, S. & Merín, B. & Riviere-Marichalar, P. (2018) New member candidates of Up-
per Scorpius from Gaia DR1. European Space Astronomy Centre (ESAC-ESA) & Instituto
de Física Fundamental (CSIC).

[13] Cánovas, H. & Cantero, C. et al. (2019) Census of ρ Oph candidate members from Gaia
Data Release 2 European Space Astronomy Centre (ESAC-ESA).

[14] Shou-kun, X. & Chao, W. et al. (2019) DBSCAN Clustering Algorithm for the Detection of
Nearby Open Clusters Based on Gaia-DR2. School of Information Science and Engineering,
Changzhou University, Changzhou.

[15] Tramacere, A. (2014) γ-ray DBSCAN: a clustering algorithm applied to Fermi-LAT γ-ray
data. University of Geneva, Italy.

[16] Ankerst, M. & Breunig, M.M. et al. (1999) OPTICS: Ordering Points To Identify the
Clustering Structure. Institute for Computer Science, University of Munich, Germany.
HDBSCAN: Hierarchical density based clustering. Journal of Open Source Software, The
Open Journal, volume 2, number 11.

[17] Rhys, H.I. (2020) Machine Learning with R. Manning publications.

[18] Campello, R. & Moulavi, D. & Sander, J. (2017) Density-Based Clustering Based on Hier-
archical Density Estimate. Dept. of Computing Science, University of Alberta, Edmonton,
AB, Canada.

[19] L. McInnes & J. Healy & S. Astel (2017) HDBSCAN: Hierarchical density based clustering.
Journal of Open Source Software, The Open Journal, volume 2, number 11.

[20] Versloot, C. (2020) Performing OPTICS clustering with Python and Scikit-learn. Ma-
chineCurve.

[21] Castro-Ginard, A. et al. (2018) A new method for unveiling open clusters in Gaia. New
nearby open clusters confirmed by DR2 . Universitat de Barcelona, Spain.

[22] A. Kochoska et al. (2018) Gaia eclipsing binary and multiple systems. A study of detectabil-
ity and classification of eclipsing binaries with Gaia. University of Ljubljana, Deptartment
of Physics, Slovenia.

BIBLIOGRAPHY 68

[23] Armstrong, Thomas et al. (2015) The detection of Fermi AGN above 100 GeV using clus-
tering analysis. Department of Physics and Centre for Advanced Instrumentation, Durham
University, UK.

	Abstract
	Introduction
	Justification of interest and relevance
	Personal motivation
	Objectives definition
	Methodology followed and project deployment

	State of the art
	XMM-Newton observatory
	XMM-Newton SOC data analysis
	Flaring background particle filter
	EPIC source detection thread

	Machine Learning clustering in astronomy
	Unsupervised learning
	The clustering problem
	Density-based clustering
	DBSCAN, the most common density-based algorithm
	Other density-based algorithms: OPTICS and HDBSCAN
	Previous astronomical applications of machine learning

	Design and implementation
	Data acquisition and machine learning pipeline
	The clustering threads

	Flaring background removal with DBSCAN
	DBSCAN-based source detection
	OPTICS-based source detection
	HDBSCAN-based source detection
	Extended sources
	Computational performance

	Validation
	Significance metrics
	Density-based significance
	Spectra-based significance
	Interpretation of both metrics

	XMM-Newton SOC pipeline cross match

	Conclusions
	Future steps: transient source detection
	Other possible future steps

