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Abstract (220 words): 

Omic technologies are invaluable tools to study the biological organisation of 
organisms. In the field of transcriptomics, scientific advancements have enabled 
the development of extraordinarily sensitive techniques that can measure 
complete transcriptomes from single cells. On the other hand, several attempts 
have been made to measure single cell proteomes. However, most of them lack 
the coverage and the sensitivity of transcriptomic techniques. 

Although transcriptomic tools are widely used, several studies have shown that 
RNA and proteins are not sufficiently correlated to act as proxies for each other. 

In this thesis we have explored the use of the Protein/RNA ratios to improve 
RNA and protein correlations. Using a bulk proteogenomic dataset we expanded 
the work of previous authors and showed that this ratio can be used to impute 
protein levels from transcriptomic abundances in several human tissues.  
Importantly, this strategy was independent of the tissue composition and was 
also applicable for cell surface proteins. 

Using recently published CITE-seq atlases we explored for the first time this 
approach in single-cell data. Our results showed that Protein/RNA ratios can 
better predict protein levels in single cell data when they are computed from 
CITE-seq datasets compared to bulk-data-calculated ratios. Interestingly, protein 
prediction performed well using correction factors computed from a different 
experiment, suggesting that this approach can be generalised to other single cell 
datasets. 
 



 

  

 

 

 

Resumen del trabajo (242 palabras): 

Las tecnologías ómicas son una herramienta indispensable para el estudio de 
la organización biológica de los organismos. Avances científicos en 
transcriptómica han permitido el desarrollo de técnicas extraordinariamente 
sensibles que miden transcriptomas completos en células individuales. Por otro 
lado, aunque se han realizado varios intentos para medir el proteoma de una 
sola célula la mayoría de ellos carecen de la sensibilidad o cobertura de las 
técnicas transcriptómicas. 

Aunque las técnicas transcriptómicas son ampliamente usadas, varios 
estudios han demostrado que ARN y proteínas no están lo suficientemente 
correlacionados como para actuar uno en representación del otro. 

En este trabajo hemos explorado el uso de las ratios proteína/RNA para 
mejorar la correlación entre estas medidas. Usando un atlas proteo-genómico 
hemos expandido el trabajo de otros autores y demostrado que esta ratio se 
puede usar para imputar niveles de proteína a partir del transcriptoma en varios 
tejidos humanos. Además, esta corrección es independiente de la composición 
del tejido y es aplicable a proteínas de superficie. 

Utilizando atlas de CITE-seq hemos explorado por primera vez esta estrategia 
en conjuntos de datos single-cell. Nuestros resultados muestran que las ratios 
RNA/proteína predicen mejor los niveles de proteína en datos single-cell cuando 
se han estimado a partir de datos CITE-seq en comparación con ratios 
estimados con datos bulk. Además, fue posible predecir niveles de proteína 
usando ratios calculados a partir de un experimento distinto, lo que sugiere que 
esta estrategia se puede generalizar a otros conjuntos de datos single-cell. 
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1 Abstract 

Omic technologies are invaluable tools to study the biological organisation of 

organisms. In the field of transcriptomics, scientific advancements have enabled 

the development of extraordinarily sensitive techniques that can measure 

complete transcriptomes from single cells. On the other hand, several attempts 

have been made to measure single cell proteomes. However, most of them lack 

the coverage and the sensitivity of transcriptomic techniques. 

Although transcriptomic tools are widely used, several studies have shown that 

RNA and proteins are not sufficiently correlated to act as proxies for each other. 

In this thesis we have explored the use of the Protein/RNA ratios to improve 

RNA and protein correlations. Using a bulk proteogenomic dataset we expanded 

the work of previous authors and showed that this ratio can be used to impute 

protein levels from transcriptomic abundances in several human tissues.  

Importantly, this strategy was independent of the tissue composition and was also 

applicable for cell surface proteins. 

Using recently published CITE-seq atlases we explored for the first time this 

approach in single-cell data. Our results showed that Protein/RNA ratios can 

better predict protein levels in single cell data when they are computed from 

CITE-seq datasets compared to bulk-data-calculated ratios. Interestingly, protein 

prediction performed well using correction factors computed from a different 

experiment, suggesting that this approach can be generalised to other single cell 

datasets.

 

2 Introduction 

2.1 Context and project justification 

Cells are the structural and functional building blocks of organisms. Inside 

biological systems, different cell types and molecules form complex regulatory 

networks that define the physiological state of the tissue they constitute [1]. 

Scientific advancements over the past decade have led to the development of 
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high-throughput technologies that allow scientists to study this cellular interplay 

in detail [1].  

2.1.1 Single Cell Transcriptomics and Proteomics 

RNA sequencing (RNA-seq) is a high-throughput technique that reads and 

quantifies RNA transcripts, thereby providing a wide view of the transcriptional 

landscape in biological samples [2]. This technology has become an 

indispensable tool in molecular biology, especially for the study of differentially 

expressed genes in a broad range of organisms. However, traditional RNA-seq 

“sums-up” the unique transcriptomes of thousands of cells, masking the cellular 

and molecular complexity inherent to any biological sample [2], [3]. 

In this sense, modifications in the traditional RNA-seq protocols such as the 

introduction of pre-amplification steps and the establishment of multiplexing 

strategies like droplet encapsulation have enable the development of single cell 

RNA sequencing (scRNA-seq) [3]. This increasingly popular technique surveys 

the transcriptome at the single cell level, allowing scientist to resolve questions 

that were unattainable with bulk RNA-seq. 

scRNA-seq can reveal the uniqueness of individual cells. As a result, this 

technique has been used to create comprehensive cellular atlases in mouse [4] 

and human [5].  Single cell transcriptomics also provides valuable insight for 

diagnosis and treatment of human diseases. This technique has been used to 

untangle the heterogeneity of the immune system, identifying new immune cell 

subtypes in health and disease [6]. Moreover, in cancer research scRNA-seq has 

proven useful to study intra- and inter-tumour variability, shedding light on the 

importance of different cell subsets in treatment response [7]. 

Unlike transcriptomics, proteomics does not currently have a state-of-the-art 

method that can be applied to single cells. Mass spectrometry, the main 

technique of proteomics, can detect and quantify near-complete proteomes, but 

such experiments require typically tens of thousands of cells [8]. Furthermore, 

with current multiplexing techniques such as tandem mass tags (TMT), only 

around 20 barcodes can be used [8]. 
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Antibody-based approaches are being increasingly applied to protein profiling 

in single cells. Mass cytometry is a variation of classic flow cytometry that uses 

antibodies conjugated with heavy-metal ions tags. These ions can be 

subsequently detected by time-of-flight mass spectrometry, which allows profiling 

of about 100 different protein targets in single cells [8], [9]. 

Other antibody-based approaches such as Cellular indexing of transcriptomes 

and epitopes by sequencing (CITE-seq) and RNA expression and protein 

sequencing (REAP-seq) enable parallel quantification of RNA and surface 

proteins in single cells [10], [11]. Both methods rely on DNA barcoded antibodies 

to label and measure surface protein levels. After cells are incubated with the 

antibodies, the barcodes (antibody derived tags, ADTs) can be processed 

alongside RNA transcripts, producing a proteomic and transcriptomic readout 

that can be sequenced. Both CITE-seq and REAP-seq use a similar approach 

and they only differ in how the barcode is conjugated to the antibody [9]. 

In contrast to using fluorescence or heavy-metal ions, DNA barcodes have high 

multiplexing capacity, allowing scientist to measure over 200 surface proteins at 

the single cell level [12]. Noteworthy, CITE-seq and REAP-seq are restricted to 

cell surface proteins, which reduces the scope of proteins that can be surveyed 

with these techniques. Very recent efforts in the single cell community have 

expanded antibody based approaches to intracellular proteins [13], overcoming 

this limitation. However, CITE-seq and REAP-seq are more commonly used in 

the literature, as these are longstanding techniques. 

2.1.2 Problem to address: current limitations and proposed approach 

Findings obtained from scRNA-seq often need to be validated or further 

explored using wet lab techniques, which require the purification of the cell types 

identified from complex mixtures. In this regard, Fluorescence-activated cell 

sorting (FACS) is the method of choice to isolate millions of single cells based on 

multiple fluorescence parameters [14]. As a result, this purification strategy 

requires a priori knowledge of a cell-specific markers. In this sense, even though 

surface markers are already available for many cell types [15], new cell 

populations described by scRNA-seq analysis still require the identification of 

said markers using in silico approaches. 



Antonio Rodríguez Romera  Introduction 

4 

 

Laboratories often use differentially expressed genes that code for cell surface 

proteins as potential biomarkers for the cell populations they are enriched in [16]. 

This approach, although simple and widely applicable, assumes that gene 

expression and protein abundance are linearly correlated. However, several 

studies have measured RNA along with Protein abundances reporting relative 

low correlations between them in both bulk and single cell samples [13], [17]. This 

phenomenon suggests that RNA levels do not necessarily represent the actual 

protein abundances, making RNA-based marker discovery less reliable. 

Although CITE-seq and REAP-seq provide an accurate estimations of surface 

protein levels, these techniques require a previous selection of the proteins that 

need to be measured. Moreover, these protocols can be costly and technically 

challenging to implement and most single cell studies, including Human Cell Atlas 

project [18], quantify the transcriptome only and do not have cell-matched 

measurements of relevant surface proteins. 

With the rising popularity of single cell transcriptomic technologies, and the 

shortage of high-coverage single cell proteomics protocols, there is a strong need 

for the development of techniques that can impute protein levels from the cellular 

transcriptome. 

Reviews on the topic have shown that RNA and Protein correlations can be 

affected by several factors such as technical biases, temporal and spatial 

constrains, or biological differences [19]. Previous studies have used pulse 

labelling techniques to evaluate RNA and Protein turnover dynamics in 

mammalian cell lines [20].  Using this approach Björn Schwanhäusser and 

colleagues showed that Protein levels are principally controlled at the level of 

translation, with other processes such as RNA and Protein degradation having 

almost negligible effects. More importantly, these authors showed for the first time 

that it is possible to improve RNA and Protein correlations by adjusting for the 

translation rate of every gene [20]. 

We hypothesize this approach can be expanded to scRNA-seq datasets, 

allowing a more accurate identification of cell surface markers from the 

transcriptomic data. Therefore, in this final thesis we set out to answer the two 

following questions: can we use protein translation rates estimated in bulk 
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datasets to predict protein levels in scRNA-seq experiments? and additionally, 

can we apply this method using only scRNA-seq data? 

2.2 Project goals 

To address the questions outlined for this project, and to account for the 

limitations in currently published approaches (see State of the art section) we 

need to achieve two main goals: 

2.2.1 Estimation of a gene-wise RNA correction factor from bulk RNA and 
Proteomic data. 

This objective will focus on the estimation of protein translation rates from bulk 

RNA and proteomic datasets. For this project, we will refer to protein translation 

rates as “correction factors” (CF), since that is indeed the use we are making of 

these values. Two specific objectives are necessary to achieve this goal: 

▪ To calculate an RNA CF. Using RNA and protein data from published 

datasets, an RNA CF will be estimated as described before [21]. 

▪ To evaluate the CF performance. Before implementing this correction 

factor in scRNA-seq data, we will assess its efficiency in improving the 

RNA-Protein correlation. Moreover, we will validate some of the 

observations reported previously by other authors [21], [22]. 

2.2.2 Study of the suitability of the correction factor for scRNA-seq data. 

The second main goal for this project is to evaluate the performance of the CF 

in single cell RNA sequencing data. To this end, we propose three specific goals. 

▪ To apply the correction factor into scRNA-seq data. Since we require 

relatively good coverage of both RNA and Protein measurements, we will 

focus on CITE-seq/REAP-seq datasets as these provide high proteomic 

coverage. Due to the differences between bulk and single cell 

transcriptomics several additional steps will need to be applied before of 

the implementation of the correction factor (See Methods). 

▪ To evaluate the performance of the CF. Upon implementation of the CF, 

it is crucial to evaluate the ability of this approach to impute protein levels 

from single-cell RNA sequencing data. 
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▪ To evaluate the performance of a CF estimated from single cell data. 

Following similar procedures, we will calculate a CF this time based only 

on CITE-seq data. The performance of this CF will be evaluated within and 

across single-cell datasets, hence assessing how well this method 

extrapolates to other data. 

2.3 Methodology and approach 

It is generally accepted that omics data, and especially single cell omics, 

require powerful statistical software for their robust and reproducible analysis. In 

this sense, the most widespread tools used for the scientific community are 

Python [23] and R [24]. Although both present well stablished pipelines for data 

analysis, this thesis will be conducted entirely using the R programming language 

(v 4.0.5) and the Integrated Development Environment RStudio [25]. This 

decision stems from my relative extensive experience using this software, 

particularly for the analysis of bulk transcriptomic data. 

In this sense, for this project we will make use of pre-processed data, i.e., count 

matrices (RNA and scRNA sequencing) and protein abundance information. Most 

databases provide this type of data, reducing time-consuming tasks such as 

alignment and quality control steps. Consequently, BASH software, commonly 

used for these pre-processing steps, will not be necessary. 

Regarding bulk transcriptomics and proteomics data manipulation, most of the 

calculations in this thesis can be easily applied using base R functions. 

Nevertheless, we will use the collection of R packages Tidyverse [26] to aid data 

manipulation and use clearer syntax. 

On the other hand, single cell transcriptomics (and especially single-cell proteo-

genomics) require efficient and organised data-manipulation strategies to reduce 

the time of analysis. In this sense, the R package Seurat (v 4.0.1) [12] provides 

a suite of functions and objects that facilitate the analysis of single cell multimodal 

data such as CITE-seq results. Moreover, the package is regularly reviewed and 

updated, and contains well stablished pipelines as well as comprehensive 

documentation for scRNA-seq analysis [27]. 
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2.4 Workplan 

In this section we provide a detailed description of the fundamental tasks needed 

to achieve the goals established. Tasks are appended to the goals previously 

described for a better understanding of the project’s structure. Number of days 

dedicated to every task are indicated. 

1. Estimation of a gene-wise RNA correction factor for surface proteins. 

1.1. To calculate an RNA correction factor. 

1.1.1. Task 1 (5d): obtain bulk RNA and Protein data from different 

tissues. Due to the nature of this analysis, both RNA and Protein data 

should have been obtained from the same sample or at least from the 

same biological source in comparable conditions (i.e., same tissue 

from two healthy subjects).  

1.1.2. Task 2 (5d): Integrate datasets. For this task we will apply some 

basic data exploration to ensure we are working with high quality data 

(i.e., values distribution, Principal Components Analysis). We will also 

filter and prepare RNA and Protein datasets to facilitate the CF 

calculation. 

1.1.3. Task 3 (3d): RNA CF. An RNA CF will be estimated as described 

before (see Methods). 

 

1.2. To evaluate the RNA CF performance. 

1.2.1. Task 1 (7d): Using the CF we will correct the RNA expression so it 

better correlates with protein abundances. 

1.2.2. Task 2 (10d): Compare predictions between corrected and 

uncorrected data. Correlation of protein abundance with corrected 

and uncorrected RNA expression data will be calculated. We will pay 

special attention to surface proteins as these will be important in 

subsequent analyses. 
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2. Study of the suitability of the correction factor for scRNA-seq data. 

2.1. To prepare the scRNA-seq dataset to apply the CF. 

2.1.1. Task 1 (5w): Obtain CITE-seq/REAP-seq data. Looking ahead, to 

test the performance of this algorithm, datasets with high surface 

protein coverage are preferred as these enable as to get more robust 

results. We have allocated several weeks for this task. Since 

searching for scRNA-seq datasets is not restricted to any previous 

results, we consider this task can be completed while we work on the 

first main goal. 

2.1.2. Task 2 (7d): Dimensionality reduction. To aid to the visualization of 

single cell data, we will use dimensionality reduction techniques such 

as Principal Component Analysis (PCA), t-Distributed Stochastic 

Neighbour Embedding (t-SNE) or Uniform Manifold Approximation 

and Projection (UMAP). 

2.1.3. Task 3 (7d): Cluster scRNA-seq data. Before cell type identification 

cells will be clustered according to their expression profiles. 

2.1.4. Task 4 (7d): Identify cell types in clusters. Upon clustering, cell 

types will be identified according to the expression of characteristic 

cell markers. 

2.1.5. Task 5 (7d): Calculate pseudo-bulk RNA. In this task we will 

calculate the pseudo-bulk RNA profiles of the defined clusters. This 

step is crucial to avoid single-cell related artifacts in RNA-Protein 

correlations. 

 

2.2. To evaluate the performance of corrected data detecting surface 

markers. 

2.2.1. Task 1 (7d): To correct pseudo-bulk data using the CF estimated 

previously. 

2.2.2. Task 2 (7d): Comparison of surface protein abundance with 

corrected RNA values. Finally, the correlation between pseudo-bulk 

RNA data and cell surface proteins estimations will be computed. This 

value will be used as an indicator of the algorithm’s performance. 
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2.3. To evaluate the performance of a CF estimated from single cell data. 

2.3.1. Task 1 (7d): Estimation of a CF from single cell data. Using the 

same procedures as in previous tasks we will compute a CF, this time 

using only single cell data. 

2.3.2. Task 2 (7d): Lastly, we will apply this correction factor within and 

across datasets and estimate its performance. 

Figure 1 illustrates a Grantt Chart with the task’s organisation throughout the 

semester. PECs have been included at the top for reference. Orange pegs 

indicate the milestones completion date (see section below). 

 

Fig. 1. Grantt Chart 

2.4.1 Milestones 

Two crucial milestones have been identified in this project, the first one being the 

estimation of the RNA CF in bulk datasets. Indeed, the obtention of this factor is 

the main limiting step to start the second main goal. According to the plan 

stablished, before the end of PEC2 the first milestone should be completed. 

The second milestone refers to the processing of scRNA-seq data. As mentioned 

earlier, several additional steps need to be applied before the CF can be 

implemented. Indeed, the algorithm cannot be tested before obtaining a fully 

processed dataset making this a crucial limiting step. As reflected on the chart, 
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this milestone should be complete no later than the end of April and the results 

should be included in PEC3. 

2.4.2 Risk analysis 

Absence of suitable data: results obtained in this thesis will be only as good as 

the data used to produce them. This problem is not expected to affect the first 

goal as bulk RNA and protein data is widely available from a variety of models, 

tissues, and conditions [28], [29]. However, as indicated previously, simultaneous 

quantification of RNA and Protein at the single cell level is technically challenging, 

especially with high coverage [9]. In this sense, the absence of suitable datasets 

might pose a critical impediment for the completion of the second goal. To 

address this problem, sensible time has been designated to review the literature 

to find the best reports. 

Lack of coverage: one of the main characteristics of single cell data is its 

sparsity. The small amount of RNA recovered per cell affects the number of 

expressed genes detected by this technique. This could negatively affect our 

results, especially since we are going to focus on a specific subset of genes such 

as surface-protein-coding genes. Nevertheless, pseudo-bulk estimations (Goal 

2.1, Task 5) should help addressing this problem as combination of cell 

transcriptomes increases the coverage [19], [30]. 

2.5 Brief description of results and products obtained. 

▪ Working Plan: a comprehensive working detailing the necessary steps to 

complete the project and the timeline when they should be completed. 

▪ Report: results obtained in this final thesis will be summarised in this report, 

following the department guidelines, along with a critical interpretation of the 

main conclusions extracted from the data. Also, some background will be 

provided to introduce the reader on the topic. 

▪ Final product: although this algorithm could be implemented in a R package 

or Shiny application for easy utilization in several datasets, this goal is out of 

the scope of this thesis. However, for the shake of research transparency all 

R scripts developed for this project have been upload to an online GitHub 

repository. https://github.com/AntonioUOC/TFM 

https://github.com/AntonioUOC/TFM
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▪ Slides Presentation: a series of slides describing the project and the results 

will also be produced. 

▪ Project self-examination: limitations of this project and elements to improve 

will be evaluated at the end of the project (see conclusions and future 

perspectives). This will put in perspective the achievements of the project and 

the future steps in this research area. 

2.6 Brief description of the rest of the project’s chapters 

▪ State of the art: description of the current methods available to address the 

problem and the contribution of this project to the field. 

▪ Methods: comprehensive explanation of the methods employed in this thesis 

and the reasons why they were used. 

▪ Results: all the results obtained throughout the course of the project will be 

summarised and presented in this chapter. 

▪ Discussion: based on the results obtained, in this section we will delineate 

the main findings in this project. 

▪ Conclusions: the final chapter we will summarise the conclusions extracted 

from this thesis and evaluate the degree of achievement of the proposed 

goals. Additionally, we will describe future steps that can be followed to 

advance our knowledge on this topic.

 

3 State of the art 

The Central Dogma of Molecular Biology establishes clear associations 

between DNA, RNA and Proteins. However, although their sequences are tightly 

linked by rigid rules, there is no straightforward relationship between the 

concentration of RNA transcripts and the abundance of their correspondent 

proteins [19]. In this context, the presence or absence of correlation between 

RNA and protein levels has been subject of debate for many years. Thanks to 

the development of transcriptomic and proteomic techniques, there is an 

increasing body of evidence that shows that proteome and transcriptome 

abundances are not sufficiently correlated to act as proxies for each other. 

However, several reports show that the RNA to Protein ratios are well preserved 
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for every gene across different biological sources and can be used to extrapolate 

protein correlations from their RNA transcripts [20]–[22]. 

Based on previous works, Wilhelm and colleagues described the use of RNA 

to Protein ratios to increase the correlation between RNA and Protein 

abundances, reporting increases in  Spearman correlation coefficients from 0.41 

to 0.9 after correction [22]. However, in this article RNA and Protein 

measurements were taken from different biological sources since transcriptomes 

were obtained from an online repository. In this sense, despite showing an 

improvement in RNA-Protein correlations, the correction factor estimated does 

not faithfully represent the RNA translation rates since biological variability across 

individuals is known to affect the RNA-Protein interrelationship [19]. 

More recent publications have studied this correction factor using RNA and 

Protein measurements obtained from the same samples [21]. Although this 

approach accounts for artifacts derived from inter-sample variability, the 

correction factor was estimated using mainly cell lines and only a limited number 

of human tissues (11 different tissues). Cell lines are pivotal for biological 

research, however cellular models are known to diverge from their parental 

source, strongly affecting their phenotype and experimental outcomes [31]. 

Consequently, there is a strong need for a pan-tissue study of RNA to Protein 

ratios and their potential to correct RNA expression. More importantly, this 

approach has never been studied at the single cell level, probably due to the lack 

high-coverage single cell proteomic studies. In this regard, very recent works 

have reported comprehensive proteo-genomic single-cell datasets covering over 

150 cell surface proteins [12], [32], opening the door to expand this approach to 

single cells. 

Building upon previous studies, in this thesis we will use complete proteo-

genomic datasets available in the current literature to examine this promising 

concept, expanding the coverage to 29 different human tissues [29]. 

Furthermore, we will explore for the first time the potential of this approach in 

single cell data, paving the way for the creation of robust tools for the prediction 

of cell surface biomarkers in these studies.
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4 Methods 

4.1 Data collection 

For the first part of the analysis, we have used the data from Dongxue Wang 

et al. [29]. This data set contains a deep atlas of RNA and protein expression of 

29 different human tissues, more than doubling the coverage from previous 

studies. 

For the second part of the project, we have utilised a recently presented single 

cell atlas of the bone marrow of healthy subjects [32]. In particular, the dataset 

used here contains the RNA expression values of 8285 bone marrow cells from 

a healthy subject along with the abundance of 197 surface proteins measured by 

CITE-seq. 

4.1 Cell surface proteins selection in bulk datasets 

Databases such as UniProt include the keyword “cell membrane” to identify these 

proteins. However, this annotation also includes proteins attached or integrated 

in the plasma membrane from the intracellular side, without an extracellular 

domain [33]. Since we are looking for proteins that can potentially be used as cell 

markers, not all entries annotated as “cell membrane” in UniProt are of interest. 

The gene ontology (GO) database includes the GO term GO:0009897 that 

specifically characterize proteins at the “external side of plasma membrane”. 

However, only 538 human genes are annotated with this GO term (see 

Supplementary Method 1). Hence, filtering by this criterion would be far too 

restrictive for the analysis. 

To overcome these limitations Damaris Bausch-Fluck and colleagues developed 

a machine learning approach to identify cell surface proteins that are at least 

partially exposed to the extracellular space (referred by the authors as 

“surfaceome”)[33]. By integrating 131 protein features the authors were able to 

define a human surfaceome of 2886 proteins. To the best of our knowledge, this 

is the most comprehensive list of human cell surface proteins available in the 

literature that also meet the criteria for new cell biomarkers identification. 

Consequently, in this project the term “cell surface genes” refers to the genes 
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reported in this paper and “cell surface proteins” as the proteins coded by said 

genes. 

4.2 Single Cell Data pre-processing 

The R package Seurat (v 4.0.1) has been used to process the CITE-seq data 

[12]. In this case we started the analysis from the RNA and ADTs count matrices 

with low quality cells and doublets already filtered out. 

Gene counts were normalized using the “global-scaling” method 

“LogNormalize” implemented in the package and that is defined as follow: 

𝐿𝑜𝑔𝑁𝑜𝑟𝑚(𝑥𝑔,𝑖) = 𝑙𝑜𝑔 (
𝑥𝑔,𝑖

𝑡𝑜𝑡𝑖
∙ 10000 + 1)

 

Where xg,i is the gene count of gene “g” in cell “i” and toti is the library size of 

cell “i”. The scaling factor was left as default (10000). On the other hand, for the 

surface protein counts, we adopted the relative abundance transformation from 

Stoeckius et al. [10]:  

𝑐𝑙𝑟(𝑥𝑖) = [𝑙𝑛
𝑥1,𝑖
𝑔(𝑥𝑖)

, . . . , 𝑙𝑛
𝑥𝑔,𝑖
𝑔(𝑥𝑖)

]
 

Where xg,i is the gene count of gene “g” in cell “i” and g(xi) is the geometric 

mean of the ADT counts in cell x.  

4.3 Dimensionality reduction 

Before performing dimensionality reduction on the dataset, we selected the 

most variable genes as these represent heterogeneous features (i.e., high 

expression in some genes and low in others).  

For bulk transcriptomic and proteomic data, we manually computed the 

variance of all genes across tissues and selected the 1000 most variable for 

dimensionality reduction. Regarding scRNA-seq data, we used the function 

FindVariableFeatures from the package Seurat. This function applies a variance-

stabilizing transformation to correct for mean-variance relationship that is 

inherent to single-cell RNA-seq, hence reducing the influence of technical effects 

while preserving the biological heterogeneity [34]. 
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Having selected the most variable features we performed principal component 

analysis using the base R function and Seurat’s implementation for bulk and 

single cell data, respectively. 

4.4 Principal components selection 

Seurat uses the PCA results to perform other analyses such as clustering, 

which requires the selection of a defined number of components. To select the 

components that explain a statistically significant proportion of the variance 

Seurat provides the function “JackStraw”. In short, this method performs 1000 

PCAs on the input data permuting a small proportion of the genes each time (10% 

in our case). This way, the Jack Straw method estimates a null distribution of 

scores for every gene from which a p-value can be computed [35].  

4.5 Cell Clustering 

For cell clustering we used Seurat’s graph-based clustering approach, based 

on previously published algorithms [36]. Briefly, the function FindNeighbors 

constructs a k-nearest neighbours graph using the Euclidean distance in the PCA 

space. The cells in the graph are then iteratively grouped together into highly 

interconnected communities using a Louvain algorithm with the function 

FindClusters [37]. 

4.6 Cell type annotation 

Cell type annotation was performed using RNA and cell surface antibody 

readouts along with the information provided in the original publication [32]. To 

identify characteristic cell surface markers and expressed genes for every cluster 

we used FindAllMarkers. This function uses a non-parametric Wilcoxon rank sum 

test to identify differentially expressed genes and ADTs between one cluster and 

the rest using the Bonferroni correction to account for multiple-testing errors [38]. 

4.7 Non-linear dimensionality reduction 

In addition to PCA, we implemented two no-linear dimensionality reduction 

methods to better illustrate the datasets. We applied t-distributed stochastic 

neighbour embedding (t-SNE) initialised with a subset of components from the 

PCA analysis. The rationale behind this decision comes from previous 
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benchmarks which showed that PCA initialisation can improve the global 

structure of the final embedding and increases the reproducibility of outcome [39]. 

Alternatively, we applied uniform manifold approximation and projection (UMAP) 

on the datasets as an additional non-linear dimensionality reduction method. Both 

methods were applied using the package Seurat. The package umap (v0.2.7.0) 

[40] was used to apply this method to bulk datasets. 

4.8 Pseudo-bulk RNA counts 

Before applying the CF we computed pseudo-Bulk counts of the clusters using 

methods previously described in the literature [30]. For this thesis we adopted the 

following approach: firstly, we selected those clusters with over 400 cells to 

ensure a good pseudo-bulk approximation. Secondly, we generated the pseudo-

bulk profiles by calculating the sum of the transcript counts across all cells per 

cluster. The pseudo-bulk counts were transformed to counts per million (CPM) 

using the Bioconductor package EdgeR [41]. Lastly, CPMs were scaled and 

centred so the mean RNA CPMs matched the RNA average expression of the 

bulk dataset used to compute the correction factor. The same procedure was 

applied to the ADT counts. 

4.9 Computing and applying the Correction Factor 

We can define the correction factor for a gene “g” in tissue “t” as: 

𝐶𝑓𝑔,𝑡 =
𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑔,𝑡

𝑅𝑁𝐴𝑔,𝑡

 

Where Proteing,t and RNAg,t are normalised RNA and Protein values for gene 

“g” in tissue “t” respectively. For bulk data we used the log transformed iBAQ and 

FPKM values, whereas for single-cell data we used normalised RNA and ADT 

counts. 

This CF can also be interpreted as the translation rate as it estimates the 

number of proteins produced for every RNA molecule. Using this CF now it 

becomes possible to predict protein abundance from RNA levels as follow: 

𝑃𝑟𝑜𝑡𝑒𝑖𝑛𝑔,𝑡 ≈ 𝑅𝑁𝐴𝑔,𝑡 ∙ 𝐶𝑓𝑔 
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Using this formula, we corrected the RNA expression values for every gene in 

all tissues. Note that in each case, the gene‐specific CF used for prediction was 

never estimated an applied in the same sample to avoid overfitting. 

 

5 Results 

5.1 Correction Factor in Bulk data 

5.1.1 Data exploration 

The dataset from Dongxue Wang et.al. [29] was already normalized and 

presented in FPKM (Fragments Per Kilobase Million) and iBAQ (sum of all the 

peptides intensities divided by the number of observable peptides of a protein 

[42]) for RNA and protein respectively. Quick inspection of the data showed that 

RNA and Protein datasets were well normalised across tissues (Fig. 2 A, B). 

Furthermore, the distribution and dynamic range of transcripts and proteins 

matched with the described in the literature [17] (Fig. 2 C). 

 

Fig. 2 Protein and RNA distributions across tissues. 
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Before computing the correction factor, we wanted to test weather RNA and 

Protein datasets contain information about the tissue’s identities, similarities, and 

differences. To do so we performed principal component analysis (PCA) using 

the 1000 most variable genes in each dataset. 

 

Fig. 3 A, Filtering strategy. B, C, Principal Component Analysis Plots of RNA (B) and Protein (C) 

datasets. D, E, scree plots of RNA (D) and Protein (E) PCAs. 

Transcriptomics PCA showed a roughly homogeneous distribution of the 

tissues across the first 2 principal components with no evident clusters (Fig. 3 B). 

Secondary lymphoid tissues such as Spleen, Lymph node and Tonsil gathered 

close in the PCA plot. Interestingly, the vermiform appendix also localised close 

to these tissues, consistent with the recently described role of this part of the 
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intestine in human immunity [43]. Tissues with similar cellular composition also 

localised together such as Duodenum and Small Intestine or Colom and Rectum. 

In a similar fashion, proteomic PCA did not show any evident clusters (Fig. 3 C).  

Overall, the first two principal components accumulate less than 40% of the 

total variance (35.5% and 14.9% for RNA and Protein PCAs respectively, Fig. 3 

C, D). 

To account for the low variance captured by PCA and to try improving the 

datasets low dimensionality representation we also performed UMAP. The 

number of components to initialise the UMAP was selected using Scree Plots of 

the components’ variances (Fig. 3 D, E). RNA’s Scree Plot shows a significant 

drop in the variance explained across the first 6 components and very little 

change for the rest. This justifies the selection of the first 6 components for 

UMAP. 

Protein’s Scree Plot also showed a sudden drop in the explained variance 

during the first six components, although PCs7-28 also explained a significant 

proportion of the variability. We tried starting UMAP using increasing number of 

components, but we could not note a significant improvement in the dataset 

representation (Data not shown), hence we decided to also use the first six 

components. 

 

Fig. 4 A, B, Uniform Manifold Approximation and Projection plots of RNA (A) and Protein (B) datasets. 
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In the final UMAPs no distinct clusters could be observed (Fig. 4). However, 

tissues with similar cell composition tended to appear close together such as 

Small Intestine, Duodenum, Colon and Stomach. This could be seen in both RNA 

and Protein datasets. 

5.1.2 Data pre-processing 

Both RNA and Protein datasets included a column with the Ensemble ID of the 

gene to which the expression value (RNA or Protein) was associated to. This list 

of unique identifiers was used to merge both datasets. Only the genes that were 

common for both datasets (n = 13413) were kept for the analysis. 

After merging, some genes still had null RNA or Protein expression in all 

tissues or most of them. To avoid potential artifacts in future analyses we only 

kept those genes that were detected in at least 5 tissues at both Protein and RNA 

level (Fig. 5 A). After filtering, 11201 genes were retained for analysis. 

5.1.3 Correction Factor 

After preparing the datasets we then decided to compare the RNA and protein 

levels in the different tissues. In Fig. 5 C and Fig. S1 the RNA and protein levels 

for the detected genes are plotted for all the tissues included in the study. A 

moderate trend can be observed, with Spearman correlation values ranging from 

0.42 in the Ovary to 0.58 in the Liver with an average of 0.52 for all the tissues 

(Fig. 5 G). These results are in line with previous publications showing rather 

moderate correlation when RNA and protein levels are compared directly [17]. 

Both RNA and protein levels varied greatly depending on their biological 

source. However, the Protein/RNA ratio is largely conserved between tissues as 

shown previously [22]. The study of Protein to RNA ratios in this dataset yield 

similar conclusions, where the ratio can be shown to be roughly constant across 

tissues (Fig. 5 H). 

Based on this value, we set out to estimate a correction factor that corrects the 

RNA level for every gene so that it better correlates with its corresponding protein 

abundance. Note that in each case, the gene‐specific CF used for prediction of 

protein abundance was estimated as the median of the CF for that gene in the 
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other twenty-eight tissues (leave-one-out method), to avoid overfitting (Fig. 5 A, 

B).  

 

Fig. 5 Study of RNA and Protein correlations. A, B, strategy for computing (A) and applying (B) the 

correction factor. C-F, RNA and Protein correlation levels in Adrenal Gland before (C, E) and after (D, F) 

correction for all genes (C, D) and surface protein genes (E, F). G, comparison of the Spearman correlation 

value between RNA and Protein levels before and after correction for all 29 tissues, SP. Surface Proteins. 

H, study of the Protein/RNA ratio (CF) across all tissues in 6 representative genes. I, frequency of Cell 

Surface Genes by binned Cf levels. 
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As shown in Fig. 5 D, G and Fig. S2, a good correlation can be observed across 

all the genes in each of the tissues after applying the correction. The Spearman 

correlation coefficient for corrected data ranged from 0.72 to 0.87 in Ovary and 

Adrenal Gland respectively with an average of 0.82 for all tissues. 

5.1.4 Correction factor in cell surface proteins 

Out of 2886 cell surface genes, 1012 were identified in our dataset (31.3%). 

These genes showed an even distribution in Protein/RNA scatterplots (Fig. 5 E, 

F, and darker points in Fig. S1, S2).  Protein/RNA correlations for surface genes 

were lower than correlations for all genes both before and after correction. 

Nevertheless, correlations showed a noticeable improvement after correction 

with the average Spearman correlation factor increasing from 0.46 to 0.71 before 

and after correction (Fig. 5 G, paired t-test p.val < 0.001). 

Interestingly, genes with low values of CF were enriched in cell surface genes, 

with 36% of the cell surface genes showing a CF between 1.1 and 2.1 (Fig. 5 I, 

Pearson's Chi-squared test p.val < 0.001). Nonetheless, 64% of the cell surface 

genes had a CF greater than 2.1 showing that applying the correction has a great 

impact in the RNA values for most of these genes. 

5.2 Correction factor in single cell data 

5.2.1 Data description 

We have started the analysis from the count matrices for both RNA and 

antibody derived tags (ADTs), where the latter is a proxy of the cell surface 

protein abundances. In particular, this dataset contains the RNA expression 

values of 8285 bone marrow cells from a healthy subject along with the 

abundance of 197 surface proteins measured by CITE-seq [32]. 

5.2.2 Dimensionality reduction and principal components selection 

After normalising RNA and ADT count matrices we performed Principal 

Component Analysis to explore the global structure of the dataset. Additionally, 

we used the calculated principal components as inputs in subsequent analyses, 

treating them as “meta-features” that encompass the variance of the data. 
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We selected the 200 most variable genes using the function 

FindVariableFeatures to compute the PCA. Features were scaled so that gene 

expression’s means and variances across cells were equal to 0 and 1, 

respectively. 

PCA results (Fig. 6 A) showed moderate separation of the clusters identified 

(See sections below for more details on cell clustering and labelling). The first 

principal component (PC1) captured the differences between progenitor cells 

(i.e., EP/MkP, MP, HSC/MPP) and mature cells (i.e., pDC, B cells, T cells) as well 

as the variability within the progenitor cells clusters themself. Similarly, the 

second principal component seemed to represent the variability between the 

myeloid (i.e., MP, Myelocytes, Monocytes) and lymphoid (i.e., B cells, T cells) 

compartments. 

Overall, the first two PCs recapitulated 38.75% of the total variance which 

represented the global biological differences between the clusters. Nevertheless, 

JackStraw analysis of the PC variances showed that the first 14 components 

retained a significant proportion of the variability at the 5% confident level (Fig. 6 

B), suggesting that nonlinear embeddings can improve the dataset 

representation in lower dimensions. 

 

Fig. 6 A, Scatterplot of the first two Principal Components. Cells are coloured by cluster. B, JackStraw 

results or the first 15 Principal Components. 
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5.2.3 Cell Clustering 

Following PCA application and components selection we set out to identify the 

main cell clusters in the dataset. To do so we constructed a k-nearest-neighbours 

graph with the function FindNeighbors using the first 14 principal components as 

defined previously. The cells in the graph were then grouped together in clusters 

using the function FindClusters. The parameter “resolution”, which indirectly 

controls the number of clusters identified, was set to 0.4. After running both 

functions, we were able to identify 12 clusters. 

5.2.4 Cell type annotation 

We identified characteristic cell surface markers and genes for every cluster 

using Seurat’s function FindAllMarkers.  Table 1 shows the five RNAs and ADTs 

with the highest fold change for each cluster. 

Using this information, along with the data provided in the original publication, 

we identified twelve different haematopoietic cell types and states previously 

described in the bone marrow [32]. Hematopoietic stem cells and multipotent 

progenitors (HSC/MPP) were defined via surface expression of CD34 and 

CD133. On the RNA level, the HSC/MPP cluster is characterized by high 

expression of CRHBP, NPR3 and PROM. 

Erythroid/Megakaryocyte progenitors (EP/MkP) arise from the HSC/MPP 

cluster and are characterised for the expression of CD34, CD236 and the 

transferrin receptor CD71. In addition, EP/MkP cells showed characteristic 

expression of SLC40A1, haemoglobins (HBD) and the coagulation-related 

protein ITGA2B.  

Cells from the myeloid-granulocyte lineage (Myeloid Progenitors (MP), 

Myelocytes, Neutrophils) showed an increased expression of the myeloid marker 

CD33. Monocytes showed increased expression of FCGR3A and LST1. On the 

other hand, Neutrophils showed increased expression of the inflammatory 

molecules S100A9 and S100A8. 

Plasmacytoid dendritic cells (pDCs) displayed expression of characteristic 

makers such as CF38, CD123 and CD98. Additionally, CD1c dendritic cells were 

defined by increased expression of Tim3 as well as CD1c. 
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Regarding the lymphoid compartment, B cells expressed IgD and IgM on the 

cell surface as well as CD79A and IGHM at the RNA level. T lymphocytes showed 

characteristic expression of CD3 along with CD8 and CD4 in T-CD8 and T-CD4 

lymphocytes, respectively. Lastly, Natural Killer (NK) cells displayed surface 

markers like CD16 or CD7 as well as high expression levels of the NK granules 

component NKG7. 

Table 1 RNA and ADT makers with the highest fold change for every cluster. 

Cluster ID RNA Markers ADT Markers 

Neutrophils 
CD14, S100A9, S100A8, 
VCAN, FCN1 

CD36, CD41, CD282, CD33, 
CD93 

NK Cells 
GNLY, TRDC, KLRB1, NKG7, 
KLRF1 

CD7, CD94, CD16, CD45RA, 
CD122.MIK.BETA3 

B Cells 
IGHM, CD79A, MS4A1, IGHD, 
TCL1A 

CD73, IgD, CD21, IgM, CD272 

Monocytes 
FCGR3A, MS4A7, LST1, 
NR4A1, COTL1 

CD16, CD11c, CD31.WM59, 
CD54, CD371 

CD8 T Cells 
CD8A, CD8B, TRAC, CD3G, 
CD3E 

CD8, CD8b.2ST8.5H7, CD3, 
CD2, CD5 

CD4 T Cells 
IL7R, TRAC, CD27, CD3E, 
CCR7 

CD5, CD4, CD3, CD2, CD27 

Erythroid/Mk 
progenitor 

HBD, ITGA2B, SLC40A1, 
TYMS, STMN1 

CD71, CD34, CD43, CD326, 
CD235a-b 

HSC/MPP 
SPINK2, CD34, CRHBP, 
NPR3, PROM1 

CD34, CD49b, CD166, CD133, 
CD110 

Myeloid 
Progenitor 

TOP2A, UBE2C, CDC20, 
AURKB, NUSAP1 

CD85k, CD371, HLA.DR, CD33, 
CD193 

CD1c Dendritic 
Cells 

MRC1, FCER1A, CD1C, 
CST3, AREG 

Tim3, CD371, CD141, CD101, 
CD206 

Plasmacytoid 
DC 

MZB1, DERL3, JCHAIN, 
ITM2C, IL3RA 

CD98, CD54, CD123, CD38, 
CD162 

Myelocytes 
CD163, CD14, CSF3R, VCAN, 
FCN1 

CD93, CD36, CD116, CD282, 
CD33 

 

5.2.5 Non-linear dimensionality reduction 

We implemented two no-linear dimensionality reduction methods to illustrate 

the dataset, that is, t-distributed stochastic neighbour embedding (t-SNE) and 

uniform manifold approximation and projection (UMAP). Both algorithms were 

initialised with the first 14 PCA components. 
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Fig. 7 A, tSNE plot. B, UMAP plot.  Neut, neutrophil; NK, natural killer; B, B cell; Mono, monocytes; T-

CD8/CD4, T-CD8/CD4+ lymphocytes; EP/MkP, Erythroid/Megakaryocyte Progenitor; HSC/MPP, 

haematopoietic stem cell/multipotent progenitor; MP, myeloid progenitor; CD1c DC, CD1c dendritic cell; 

pDC, plasmacytoid dendritic cell; Myelo, myelocyte. 

Results of both algorithms showed good agreement with clustering findings 

(Fig. 7). tSNE embedding had bigger clusters that were closer together. On the 

other hand, UMAP clusters were smaller and clearly separated by cell lineages 

such as progenitor cells (EP/MkP, HSC/MPP, MP), T cells (NK, TCD8, TCD4), B 

cells and myeloid cells (Monocytes, Neutrophils, Myelocytes), highlighting the 

biological differences among clusters. These results are in line with previous 

benchmarks which showed that UMAP preserves better the global structure of 

the data when compared to tSNE [44]. 

5.2.6 Pseudo-bulk RNA counts 

It is expected that cell-to-cell variation captured in scRNA-seq data will affect 

the RNA to Protein correlation, thus affecting our correction. Important processes 

such as cell cycle, transcriptional bursting, the delay between transcription and 

translation and the variation in the influence of external signals can affect this 

correlation [19]. However, these sources of variation are “averaged out” of the 

data in bulk RNA-seq experiments, where all cells are assumed to be in the same 

steady state [19]. Hence, we decided to compute pseudo-Bulk counts of the 

clusters using methods previously described in the literature [30] (Fig. 8 A).  
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Fig. 8 A, Pseudo-bulk strategy. B, C, PCAs of RNA and ADT’s pseudo-bulk profiles. 

Principal component analysis of RNA and ADT pseudo-bulk profiles showed 

that cell types aggregate in a similar way as we observed in UMAP and t-SNE 

representations of individual cells. In both RNA and ADT’s PCAs we could 

observe clear separations between progenitor cells (EP/MkP, HSC/MPP), 

myeloid cells (Monocytes, Neutrophils), T cells (T-CD4, T-CD8, NKs) and B cells. 

These results clearly show that pseudo-pseudo bulk profiles retain the biological 

information from the single cell clusters. 

5.2.7 Merge RNA and ADT datasets 

The dataset selected for this analysis had different notation systems for 

features in the RNA and ADT count matrices. RNAs genes were annotated using 

gene names whereas ADTs were named using its Cluster of Differentiation (CD) 

code. To facilitate the datasets integration feature names were substituted for 

their Ensembl Gene ID since these are stable unique identifiers. The Ensembl 

IDs corresponding to the gene names were obtained using Biomart [45]. On the 
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other hand, CDs were transformed to Ensembl IDs using the tools from the Hugo 

Gene Nomenclature Committee’s web portal [46]. 

Using the Ensembl IDs we then filtered and reordered both datasets, so they 

contained the same features in the same order. In total, 99 genes were selected 

for further analyses. 

5.2.8 Correction factor application 

Having merged both datasets we now wanted to investigate the correlation 

between RNA and their corresponding ADT counts. In a similar way to what we 

observed on bulk data, RNA and ADT counts sowed a low correlation for all 

pseudo-bulk profiles (Fig. 9 B, C, Fig. S3 A). Spearman correlation values ranged 

from 0.33 for T-CD8 cells to 0.57 for HSC/MPP with an average of 0.43 for all cell 

types. 

 

Fig. 9  A, pseudo-bulk profiles correction strategy. B, comparison of the Spearman’s correlation value 

before and after correction for all pseudo-bulk profiles. C, D, RNA and ADT correlation levels in EP/MkP 

cells before (A) and after (B) correction using the CF estimated with bulk data. 

For the next step in our analysis, we wanted to explore whether it would be 

possible to improve the RNA-ADT correlation using a correction factor computed 

using bulk transcriptomics and proteomics. To do so, we computed the average 
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CF for every gene using the data obtained previously and used this value to 

correct the RNA abundance in our new pseudo-bulk dataset (Fig. 9 A). 

The Spearman correlation coefficients between corrected RNA and ADT 

showed a moderate improvement over the uncorrected data (Fig. 9 B, D, Fig. S3 

B). Correlation values ranged from 0.34 to 0.6 for Neutrophils and EP/MkP 

respectively with an average correlation of 0.48. 

5.2.9 Correction factor from single-cell data 

Following these results, we asked whether we could estimate a correction 

factor from single cell data that could better improve RNA-ADT correlations. To 

do so, we created two new pseudo-bulk profiles called “training” and “test” using 

the method described above. Training pseudo-bulk profiles were calculated by 

randomly selecting 70% of the cells from every cluster. The 30% remaining cells 

were used to compute the test dataset (Fig. 10 A). 

Using the training dataset, we estimated the CF for every gene and cell type 

using the same procedure as before. The correction factor for every gene was 

computed as the average CF across all cells in the training dataset. 

Using this new CF, we then corrected the RNA expression in the testing dataset 

and re-calculated the RNA-ADT correlations. As shown in Fig. 10 D and Fig. S4 

B, after correction a good correlation can be observed across genes for all cell 

types. The Spearman correlation for corrected data varied from 0.67 to 0.91 for 

T-CD8 cells and HSC/MPP respectively with an average correlation of 0.80. 

These correlations were significantly higher than the ones obtained with 

uncorrected data (paired t-test p-value < 0.001). 

5.2.10 Application of the correction factor on a different dataset 

Having shown that we can effectively correct RNA expression we wanted to 

see if we could use this correction factor to improve the RNA-ADT correlation on 

a different dataset. To test this hypothesis, we used a new dataset also included 

in the original publication. This new data included RNA abundance of 11252 bone 

marrow cells from a healthy subject at the single cell level along with 105 ADT 

measurements. The data was pre-processed following the same steps as before 

and the results are illustrated in Supplementary Figure 5. 
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Fig. 10 A, strategy for computing training and testing datasets. B, C, RNA and ADT correlation levels in 

EP/MkP cells before (A) and after (B) correction using the CF estimated from single cell data. D, comparison 

of the Spearman’s correlation value before and after correction for all pseudo-bulk profiles. 

From the processed data we computed the pseudo-bulk profiles as described 

previously. Using this data, we computed a correction factor. Lastly, we corrected 

the data using both CFs, the one obtained from the first dataset (CF1) and the 

one calculated from this one (CF2). When we compare both CFs, we could see 

that their values were in good agreement (Fig. 11 A), which suggest that RNA-

ADT ratios are maintained across samples. 

Using the correction factor calculated with the previous dataset (CF1) we were 

able to substantially increase RNA-ADT correlations (Fig. 11 C, D. Fig. S7). When 

compared to the uncorrected data, the average Spearman correlation factor 

increased from 0.4 to 0.67 using CF1 (paired t-test p-value < 0.001). On the other 

hand, the correction factor computed using the second dataset (CF2) achieved 

even greater RNA-ADT correlations with an average correction of 0.76 (Fig. 11 

C, E. Fig. S8). These results show that the correction factor can be successfully 
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applied across CITE-seq datasets although with certain loss of power. 

Nonetheless, the correction factor calculated using CITE-seq data clearly 

outperformed the one computed using bulk data. 

 

Fig. 11 A, comparison between CF1 and CF2. B, RNA-ADT scatterplot of MPPs before correction. C, 

comparison of the Spearman’s correlation value before and after correction for all pseudo-bulk profiles. D, 

E, RNA-ADT scatterplots of MPPs after correction using CF1 (D) and CF2 (E)

 

6 Discussion 

In the present thesis we have explored the concept of using translation rates 

(also referred to as correction factor) to estimate the protein abundance in a 

sample from the transcriptome. 

As discussed in the State of the art section, previous studies have shown the 

potential of this measurement to improve RNA-Protein correlations. However, 

these reports were somewhat limited, and results needed to be validated using a 

more comprehensive dataset. In this sense, in the first part of our analysis we 

explored this approach using a proteogenomic atlas of 29 different human 

tissues, more than doubling the number of tissues included in previous efforts. 

Our results showed good agreement with earlier studies. RNA and proteins 

showed modest correlations when compared directly in all 29 tissues (average 



Antonio Rodríguez Romera  Discussion 

32 

 

Spearman correlation 0.52). Moreover, we showed that Protein/RNA rations were 

roughly constant across tissues, validating previous observations of this 

phenomenon in a pan-tissue context. 

More importantly, we showed that protein abundances from one tissue could 

be effectively predicted from the transcriptomic levels using the Protein/RNA 

ratios (correction factor) of the other 28 tissues. Interestingly, we could see this 

increase in tissues such as the brain, that have a distinct cellular composition 

than the rest of the tissues used to compute the CF. This result, suggest that the 

CF is independent of the cellular configuration and can be applied in any human 

sample regardless of the origin or biological architecture. 

When we focused on cell surface proteins, we could also observe an increase 

in RNA-Protein correlations after correction in all tissues. Some tissues however 

showed moderate correlations such as the Ovary (Spearman correlation 0.45 

after correction).  We hypothesize that this modest correlation is due to technical 

artifacts in this sample since the correlation before correction was considerably 

lower compared to the rest of the tissues (Spearman correlation 0.25 for Ovary 

versus 0.47 average correlation for the other 28 tissues). 

An interesting finding is that cell surface proteins display low Protein/RNA 

ratios. This result is in line with previous studies that revealed that cell-surface 

proteins have stable RNAs but high protein turnover rates [20] making protein 

and RNA levels more comparable, thus reducing their Protein/RNA ratios. 

In the second part of our analysis, we set out to explore the application of this 

approach in single cell data. To do so, we used a recently published 

proteogenomic atlas of the bone marrow that surveyed almost 200 cell surface 

proteins alongside transcriptional profiles using CITE-sequencing. 

Cell clustering and labelling showed that the dataset utilised had a good 

representation of the bone marrow cellular composition. To avoid unwanted 

artifacts in the RNA-Protein correlations that arise from cell-to-cell variation we 

computed the pseudo-bulk RNA and Protein profiles from the clusters. 

Interestingly, principal component analysis of the pseudo-bulk profiles showed 

similar clustering results as the ones observed using UMAP in single cell data. 



Antonio Rodríguez Romera  Discussion 

33 

 

These results showed that pseudo-bulk profiling not only captures the biological 

information of the clusters but also removes sources of variation that are 

challenging to model using linear dimensionality reduction methods. 

When we applied the CF estimated from bulk data to the pseudo-bulk profiles, 

we observed a moderate increase in the correlation. We hypothesize there are 

two main reasons for the limited performance the correction factor in this case: 

▪ On the one hand, the correction factor was estimated using proteomic data 

measured by mass spectrometry whereas CITE-seq measures protein 

quantities by sequencing antibody derived tags. Although both techniques 

aim to measure protein abundances, the approaches are radically different 

and are affected by their own particular biases that can in turn affect the 

final correction factor [9]. 

▪ On the other hand, proteomic data measures whole cell protein 

abundance as opposed to CITE-seq that only surveys proteins on the cell 

surface.  Indeed, this can have a prominent effect on the RNA-protein ratio 

since proteins present in one cell compartment (the cell surface in this 

case) do not represent total protein abundance in the cell [14]. In the case 

of cell surface proteins, this bias can be particularly important since some 

membrane proteins can be downregulated in the cell surface without 

affecting the cellular total protein content [47]. 

To overcome these limitations, we explored the application of a CF computed 

from CITE-seq data. Our results showed that this second CF can be used to 

effectively predict cell surface protein levels from the transcriptomic profiles with 

average ADT-RNA correlations improving from 0.43 to 0.76. More importantly, 

we demonstrated that the CF estimated from different datasets are roughly 

similar, and that the CF from one dataset can be used to predict cell surface 

protein levels across studies. 

Overall, the results of this research project shows that the use of translation 

rates to predict protein levels in single cell data is possible, although careful 

considerations must be taken to minimise potential biases affecting the 

Protein/RNA ratios



Antonio Rodríguez Romera  Conclusions 

34 

 

7 Conclusions 

7.1 Conclusions 

Based on the results obtained in this project we can conclude that: 

▪ Protein/RNA ratios remain roughly constant across tissues, supporting their 

use for protein prediction from RNA levels. 

▪ The translation rate for every gene expressed as the ratio Protein/RNA (also 

referred to as Correction Factor) can be used to impute protein abundances 

from transcriptomic data in a wide range of tissues regardless of their origin 

or cellular composition. Importantly, given the high number of tissues included 

we can say this is a robust conclusion of the study. 

▪ Surface proteins prediction is also possible, which suggests that this approach 

can be used to improve surface markers detection. 

▪ Translation rates estimated from bulk datasets are affected by specific biases 

that limit their implementation in single cell data. Nonetheless, additional 

research is needed to validate the exact sources of variation that leaded to 

this result. 

▪ Protein/RNA ratios can be computed from single cell datasets and can be 

effectively applied to improve RNA-protein correlations in pseudo-bulk profiles 

of the single cell clusters. 

▪ Correction factors estimated from single cell data can improve RNA-protein 

correlations when applied to external datasets, indicating that is possible to 

estimate a correction factor that can be applied across single cell datasets. 

Nevertheless, further research is needed to corroborate this hypothesis. 

7.2 Future perspectives 

Overall, this thesis serves as a starting point for the development of algorithms 

that predict protein levels in scRNA-seq. Building upon our results we propose 

different strategies to further explore unresolved questions in this topic. 

We theorised that one of the reasons for the poor performance of the correction 

factor from bulk data in single cell is the intrinsic bias in protein detection by both 

techniques. Indeed, although bulk proteomics can detect far more surface 

proteins than CITE-seq (in our datasets, around 1300 in bulk and almost 200 in 
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single cell), bulk proteomics measure whole cell protein levels, introducing an 

unwanted bias.  

Plasma membrane profiling is a proteomic technique that employs aminooxy-

biotinylation to label and extract cell surface proteins [48]. This technique retains 

the high coverage characteristic of bulk techniques while avoiding artifacts 

introduced by whole cell proteomics. For this reason, we hypothesize that 

correction factors computed using this data will perform better in CITE-seq 

datasets, increasing the number of proteins that can be corrected. 

On the other hand, recent antibody based approaches were able to measure 

intracellular proteins in single cells [13]. It would be interesting to explore the 

possibility of applying the correction factor in this dataset and in future 

proteogenomic atlases developed with this technique. 

Finally, our single cell analysis was limited to bone marrow samples. As more 

proteogenomic datasets are published it will be necessary to validate the 

conclusions obtained in this thesis in other human tissues, especially the ability 

of the correction factor to be applied across studies. 

7.3 Planning Compliance 

At the beginning of the project, we stablished two main goals, both of which 

were successfully completed according to the timeline established. The 

completion of the goals also means that all milestones were achieved on time, 

and the project progressed uninterruptedly. Furthermore, all the methods 

originally proposed were sufficient to address the main questions of this project. 

Overall, the planning was followed successfully, and the project completed 

satisfactorily. 

7.3.1 Working plan deviations and justification. 

For the second part of the project there was some deviations from the original 

timeline. The second goal was achieved 1.5 weeks ahead of schedule, which 

gave us more time to complete additional tasks. In this sense, we added an 

additional last task (i.e., apply the correction factor across datasets and estimate 

its performance) which enabled us to obtain more robust conclusions for this 

project.
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8 Glossary 

8.1 Definition of relevant terms used in the project 

RNA, RiboNucleic Acid. Polimeryc molecule that contains genetic information 

essential for biological processes such as expression and regulation of genes. 

Although there are different types of RNA described (for instance ribosomal 

RNAs, transfer RNA or non-coding RNAs), in this thesis we focus on those RNAs 

that contain the genetic information used to produce proteins, that is, messenger 

RNA or mRNA. Hence, the term RNA in this project refers to the mRNA type. 

Protein, biological molecule made of amino acids that exert most of the functions 

in the cell, from structural support to reaction catalysis and cell signalling. 

CF, Correction Factor. Measure of the ratio Protein/RNA for each gene. 

8.2 Other acronyms used in the project 

▪ Techniques 

▪ UMAP, Uniform Manifold Approximation and Projection 

▪ PCA, Principal Components Analysis 

▪ TSNE, t-Distributed Stochastic Neighbour Embedding 

▪ Cell types 

▪ Neut, neutrophil 

▪ NK, natural killer 

▪ B, B cell 

▪ Mono, monocytes 

▪ T-CD8/CD4, T-CD8/CD4+ lymphocytes 

▪ EP/MkP, Erythroid/Megakaryocyte Progenitor 

▪ HSC/MPP, haematopoietic stem cell/multipotent progenitor 

▪ MP, myeloid progenitor 

▪ CD1c DC, CD1c dendritic cell 

▪ pDC, plasmacytoid dendritic cell 

▪ Myelo, myelocyte.  

▪ iB, immature B cell
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10 Supplementary Materials 

10.1 Supplementary methods 

Supplementary method 1 

To evaluate the number of human genes annotated with the term GO:0009897 

we followed the next process: 

1. Using BioMart, we filtered all Human Ensembl Gene IDs that were 
annotated with the GO term GO:0009897. 

2. Since the list can have some duplicates, we filtered and counted the 
dataset using the R software with the following command: 

IDs %>% unique %>% length 

 Where “IDs” is a vector object with the Ensembl gene IDs. 

3. The output obtained is the number of human genes annotated with the 

GO:0009897 term. 
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10.2 Supplementary figures 

Supplementary figure 1 

Protein/RNA Scatterplots for all tissues before correction. Darker points 

represent cell surface genes. 
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Supplementary figure 2 

Protein/RNA Scatterplots for all tissues after correction. Darker points 

represent cell surface genes. 
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Supplementary figure 3 

RNA/ADT scatterplots for all cell types before (A) and after (B) correction with 

the CF estimated from bulk data. 
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Supplementary figure 4 

RNA/ADT scatterplots (testing dataset) for all cell types before (A) and after (B) 

correction with the CF estimated from single cell data. 
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Supplementary figure 5 

Dimensionality reduction and clustering results of the second scRNA-seq 

dataset. A, PCA; B, JackStraw permutation results; C, tSNE; D, UMAP. 

 

Neut, Neutrophil, B, B cell; T, T cell; NK, Natural Killer cell; EP/MkP, Erythroid 

Progenitor/Megakaryocyte Progenitor; HSC, Haematopoietic Stem Cell; MP, 

Myeloid Progenitor; MPP, Multipotent Progenitor; pDC, plasmacytoid Dendritic 

Cell; iB, immature B cell. 
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Supplementary figure 6 

Uncorrected RNA-ADT scatterplots from pseudo-bulk profiles calculated from 

the second CITE-seq dataset. 

 

 

 

  



Antonio Rodríguez Romera  Supplementary Materials 

VIII 

 

Supplementary figure 7 

RNA-ADT scatterplots from pseudo-bulk profiles calculated from the second 

CITE-seq dataset and corrected with CF1. 
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Supplementary figure 8 

RNA-ADT scatterplots from pseudo-bulk profiles calculated from the second 

CITE-seq dataset and corrected with CF2. 

 

 

 

 


