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Abstract

Purpose: In any distributed application, the communication between the
distributed processes/nodes of the distributed systems is essential for both
reliability and efficiency matters. In this work we address this issue for
distributed applications based on JXTA protocols aiming at extending and
evaluating the protocols of the JXTA library for reliable P2P computing.

Approach: After a careful examination of the current version of JXTA
protocols, we observed the need for improving the original JXTA protocols
such as pipe services to ensure reliable communication between nodes of
the grid platform and the discovery and presence service to increase the
performance of the applications Our approach is based in using a mixed
P2P network based on broker peers and client peers architecture, which
served as a basis to extend the JXTA protocols.

Findings: The original JXTA protocols are extented/re-implemented to
support the development of reliable P2P distributed applications.
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Practical implications: The proposed approach has been validated in
practice by deploying a P2P network using nodes of PlanetLab platform
and testing each of the re-implemented protocols using this real P2P net-
work. The extended JXTA protocols can be used to develop reliable P2P
distributed applications.

Category: Research paper
Keywords: P2P computing, JXTA protocols, distributed computing, pipe ser-
vices, discovery services, presence services.

1 Introduction and motivation

The reliability of distributed applications has been largely investigated by re-
searchers of the distributed computing community. While reliability issues are
generally well understood for operating systems and classical distributed sys-
tems and LANs (see e.g. Guerraoui and Rodrigues, 2006), there is still few
work in addressing these issues for the emergent computational systems. With
the development of Internet and other new technologies, distributed systems
and applications are becoming the indispensable approach for solving complex
problems. Therefore, the reliability issue is nowadays being investigated for
Web-based distributed systems and applications (Keidl, Seltzsam and Kemper,
2003; Peterson, Ramasubramanian and Gun Sirer, 2006; Ostrowski and Bir-
man, 2006), for Grid-based computing (Foster and Kesselman, 1998; Krepska,
Kielmann, Sirvent and Badia, 2006).

Each time more, P2P are used, beyond file and data sharing applications, for
developing large scale distributed applications that benefit from the immense
computing power contributed by millions of peers worldwide. Projects such as
“Folding@Home on the PS3” by seti@home for studying the protein folding by
utilizing the new Cell processor in Sony’s Playstation 3 are allowing to achieve
performance previously only possible on supercomputers. The main challenge in
developing large-scale P2P applications is how to develop efficient, scalable and
reliable distributed system from inexpensive unreliable computers contributed
to P2P network by millions of individuals. One of the today’s technologies used
in developing P2P systems is JXTA (Brookshier, Govoni, Krishnan, and Soto,
2002; Li, 2003; Oaks, Traversat and Gong, 2003). This is a recent technology,
which has been used in many P2P projects (Jxta Projects, 2007) and is currently
attracting the attention of many researchers and developers of the P2P and Grid
computing. In particular the reliability and efficiency issue is being studied for
JXTA-based applications (Halepovic and Deters, 2003; Riasol and Xhafa, 2006).

This work is motivated by the need to support the development of efficient
and reliable P2P applications using JXTA protocols. To this end, we have
carefully analyzed the current JXTA protocols and report several limitations of
most important protocols of JXTA. After examining and pointing out such lim-
itations, we further propose a solution to them through re-implementation and
extensions without damaging the generality of JXTA protocols. More precisely,
in this work we have considered the following protocols: Peer Discovery Protocol,
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Discovery Service, Peer Information Protocol, Peer Information Service, Peer
Resolver Protocol, Resolver Service, Pipe Binding Protocol and Pipe Service,
Endpoint Routing Protocol and Endpoint Service. Our approach is validated in
practice by deploying a real P2P network using the nodes of the PlanetLab plat-
form (PlanetLab, 2007), a planetary scale distributed infrastructure and have
experimentally evaluated the performance and reliability of the re-implemented
protocols.

The rest of the paper is organized as follows. We briefly overview JXTA basic
entities n Section 2. The evaluation of the JXTA protocols and their limitations
are given in Section 3. In Section 4 we present the re-implementation of the
JXTA protocols; their evaluation is given in Section 5. Finally, we conclude in
Section 6 with some remarks and indicate directions for future work.

2 JXTA overview

JXTA technology is a set of open protocols proposed by Sun Microsystems
that allow any connected device on the network ranging from cell phones and
wireless PDAs to PCs and servers to communicate and collaborate in a P2P
manner (Brookshier, Govoni, Krishnan, and Soto, 2002; Oaks, Traversat and
Gong, 2003). JXTA peers create a virtual network in which any peer can in-
teract with other peers and resources directly even when some of the peers and
resources are behind fire-walls and NATs or when they are on different network
transports.

JXTA library offers a set of basic protocols to implement P2P networks
independently of the platform, ubiquitously (any connected digital device can be
accessed) and inter-operability (by using identifiers, clients can traverse different
networks and can change transport).

The current specification of this architecture determines the management of
the clients (peers) of the developed networks:

• Discover peers and resources on the network even across fire-walls.

• Share files with peers across the network.

• Create your own group of peers of devices across different networks.

• Communicate securely with peers across public networks.

One important advantage of JXTA is its platform independence as regards:

• Programming language: Implementations of JXTA protocols are found in
Java, C, C++ and other languages.

• Transport protocol : It is not required to use an specific net structure. P2P
applications can be developed over TCP/IP, HTTP, Bluetooth and other
transports.
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• Security: Developers are free to manage the security issues of the devel-
oped platform.

The JXTA protocols and services have been structured as a working stack
(see Fig. 1). It should be noticed that JXTA protocols are independent among
them. A definition of a JXTA peer doesn’t require implementing the set of all
protocols in order to participate in the network.

 
 

Figure 1: JXTA Architecture and Services.

2.1 Main entities of JXTA networks

The main entities of a JXTA network are as follows.

Peer. Any interconnected node is called peer. Peers work independently and
asynchronously with other peers. Peers publish one or more interfaces that are
used by other peers to establish peer-to-peer connections.

PeerGroup. A peerGroup is a collection of peers that are joined to provide a
secure shared environment for the participating peers. PeerGroups can decide
their own policy of peer membership. Note that peers can simultaneously belong
to more than one peerGroup. As in the case of peers, peerGroups offer their
services such as discovery services, pipe services, peer join services, monitoring
services etc.

Pipes. A pipe is a virtual communication channel established between two
processes. A computer connected to the network can open, at transport level,
as many pipes as its operating system permits. These channels act as data links
between the two communication points. Through pipes can be sent any types
of objects such as strings, binary code, java objects, etc. JXTA offers both
unidirectional, not secure pipes and bidirectional secure pipes.

Messages. Messages are objects used for communicating and interchanging
data. A message is essentially an ordered sequence of tags/values, which could
also include binary code (appropriately encoded).
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Advertisements. The JXTA resources and services are represented using ad-
vertisements. An advertisement is a meta-data structured information (XML
document), which are published with a certain lifetime that specifies its avail-
ability.

2.2 Types of peers

Peers can be classified in different types according to their role in the P2P
network as follows.

Limited Edge peer : peers that can send and receive messages but cannot
send advertisements neither store advertisements in their cache.

Complete Edge peer : peers that can send and receive messages, store adver-
tisements but cannot manage resource discovery advertisements.

Rendezvous peer : peers that can send and receive messages, store advertise-
ments and moreover can manage resource discovery advertisements. Each group
of peers must have at least a rendezvous peer; when a peer joins a group of peers,
it automatically looks for a rendezvous in the group. Moreover, rendezvous keep
a list of other rendezvous and their respective peers.

Relay peer : this type of peers serve as intermediate nodes. Relay peer keep
routing information to other peers and sends messages to other peers that can’t
access directly to another peer.

3 The JXTA protocols and their limitations

JXTA protocol standardize the way client peers discover other client peers,
communicate among them, get organized into groups, announce, advertise and
discover services and resources in the network and can monitor other peers.

3.1 The JXTA protocol and services

The services offered by JXTA library are based on its own protocols and serve
as the starting point in the development of a P2P network. Certainly, it is
upon the developer to extend/implement these services according to his needs.
JXTA offers essentially six protocols, each one with its corresponding services. It
should be noted that when developing a JXTA-based P2P application, all these
protocols and services are not necessarily used. These protocols and services
are the following:

• Peer Discovery Protocol and Discovery Service, which serve to advertise
the proper resources (peers, groups, pipes, services...) and to discover the
resources of other peers.

• Peer Information Protocol and Peer Information Service, which are in
charge of obtaining state information of local or remote peers (time, state,
recent traffic, etc.). In a sense these protocols and services allow to monitor
other peers participating in the network.
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• Peer Resolver Protocol and Resolver Service, which are used for sending
a general query to one or more peers and receiving one or more responses
in order to interchange desired information.

• Pipe Binding Protocol and Pipe Service, which serve for establishing a vir-
tual communication channel, that is a pipe, to enable sending and receiving
data from other peers.

• Endpoint Routing Protocol and Endpoint Service for routing to other
peers. The route information contains an ordered sequence of relay peers
that must be used to send a message to the specified destination peer.

• Rendezvous Protocol and Rendezvous Service, which constitute the mech-
anisms through which peers can be subscribed to a propagated service
or a source peer can propagate a message to all peers subscribed to the
service.

3.2 Limitations of JXTA protocols

While developing a P2P network, independently of its specific purposes there
are several key issues:

(a) the service publishing and reception;

(b) the network connection; and

(c) message sending and reception.

JXTA offers protocols and services to support these needs, however, they
show several limitations that we overcame by adding new functionalities to the
original services. We analyze next the limitations of JXTA protocols.

Management of the presence mechanism. The presence of a peer node in
a peerGroup of the JXTA network is provided by the document of presence no-
tification. This document is published by each peer and reaches the local cache
of all peers, where it will “stay” for a certain time. The presence mechanism is
very important for the JXTA network in order for a peer’s advertisement and
therefore its services, to reach all peers that are present. Most importantly,
the rendezvous must know all peers connected to the peerGroup because the
rendezvous is in charge of synchronizing the local caches of peers and compute
the routes to be used by any peer to reach all the connected peers of the group.

Advertisement documents are of PeerAdvertisement type and must period-
ically be published in order for other peers of the group to know the updated
presence information of the peer that publishes the advertisement document.
However, this publishing is not done automatically in JXTA; hence any appli-
cation using JXTA must manage it by its own! Essentially, any JXTA-based
application has to manage the information of the updated presence (a sort of
refreshment of presence) of any peer node in any peerGroup it belongs to.
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Management of the connection to groups. In any mixed P2P network,
that is, a P2P network in which we have broker peers and client peers (Riasol
and Xhafa, 2006), any client peer can be connected only to one peerGroup by
discovering and establishing communication with a rendezvous. Therefore it is
necessary to have a broker peer in any peerGroup, which must act as a ren-
dezvous in order to achieve that client peers get connected and the broker could
notify the presence of the peer to the rest of the nodes of the peerGroup. It
should be noted that the connection to a peerGroup is done differently depend-
ing on whether the peerGroup is specific or is a general group.

The general group is the NetPeerGroup, the peerGroup to which must get
connected any peer to join the JXTA network and to collaborate and work
with other peers. On the other hand, the connection to other peerGroups is
not indispensable in order for the peer to start working in the JXTA network,
but rather it serves to make much more specific the peer’s characteristics and
functionalities. Moreover, in this way, the number of peers that could be used
for a certain purpose can be reduced. In JXTA, there are no such mechanisms
for broker peers, as matter of fact, broker peer type is not defined in JXTA.

Managing the communication mechanism. In JXTA, pipes are used as
a basic direct communication mechanism between two peers belonging to the
same peerGroup. Pipes are of two types: InputPipe and OutputPipe. Clearly, if
a peer A wants to send a message to a destination peer B, it is necessary that
an instance of A’s outputPipe get connected to an instance of B’s inputPipe.
In order to establish this connection, peer A must know B’s inputPipe and peer
B must accept messages from A’s outputPipe. This is achieved in JXTA by
using descriptions of pipes in a way that they are unique, that is, an inputPipe
can only receive messages from an outputPipe having the same description.
The description is done in XML documents, called PipeAdverstisement, which
is of type advertisement and has defined, besides its unique identifier, several
parameters such as name, type and description. Therefore, in order for peer A
to send a message to peer B, both inputPipe and outputPipe must be defined
in the same PipeAdvertisement and both peers must agree which one to use.
Thus, we have to find the appropriate protocol to assure the communication
among all peers of the same peerGroup.

4 Re-implementation of JXTA protocols

In order to overcome the limitations of the JXTA protocols shown in the previous
section, we re-implemented the JXTA protocols and services by adding new
functionalities and control to the original services1.

1Source code, documentation and application examples are available at http://jxta-
overlay.dev.java.net
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Figure 2: UML diagram of the overlay module

4.1 Management of the presence and service mechanisms

Recall that peer’s presence is done through the presence notification document.
This document must be periodically published in order for other peers of a
peerGroup to know the presence of the peer. This is one of the limitations of
JXTA that we have solved by adding to peer’s functionalities, the publishing of
its own PeerAdvertisement periodically (say, each 5 seconds). In this way, the
peers of the peerGroup will know the presence of the peer and hence they will
send to the peer their future advertisements. Moreover, in order for the peer to
know all services of the P2P network, it has to discover such services, which are
found in different advertisements and are stored in the peers’ local caches.

Therefore the peer’s cache must be frequently updated. One way to do this,
is to look up local caches of peers in the peerGroup by sending queries. A query
is a request sent to all peers of the peerGroup which upon reaching a peer,
examines its local cache, and recollects all the advertisements of the specified
type. When such query reaches a rendezvous, it recollects all advertisements of
all peers of the peerGroup.

Finally, the results of the query are stored in the local cache of the peer,
which can use them later on for its purposes. The main issue here is thus the
synchronization of the local cache of a peer with local caches of other peers of
the peerGroup. To this end, in our implementation, a query is sent periodically
(say each 5 seconds) to all peers of the peerGroup. More precisely this is done
in a new module2, called DiscoveryOverlay, as shown in Fig. 2.

2In all figures, the abbreviation Ov stands for Overlay, which refers to the new implemen-
tation.
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4.2 Management of the connection to groups

Recall that any peerGroup needs a rendezvous peer. The principal peerGroup is
that of NetPeerGroup, the connection to which is done according to the peer’s
configuration:

a) Connection to the default rendezvous of JXTA. This is certainly inefficient
since we cannot control the rendezvous;

b) Connection to the rendezvous pre-specified by the concrete JXTA applica-
tion;

c) Connection to the rendezvous specified in a rendezvous list. In this case,
the JXTA application just needs to know the address where to find the
rendezvous list.

In our implementation, we have implemented the alternative c). Note that
in this case, the rendezvous list can be changed independently of the P2P ap-
plication. Moreover, once a peer is connected to the P2P network through the
principal peerGroup, it can join any peerGroup by knowing the GroupAdver-
tisement of such groups. However, for this to be done, the peerGroups must
exist, there must be at least one rendezvous and the GroupAdvertisements must
be propagated. In our P2P network, this is achieved through broker peers and
client peers (see Fig. 3 for a general view of our JXTA P2P architecture). Bro-
kers are the governors of the network and control the organization of the groups.
Thus brokers are in charge of creating the groups and propagate the GroupAd-
vertisement accordingly.

OPERATING SYSTEM

JAVA VIRTUAL MACHINE

J X T A

BROKER PRIMITIVES

CLIENT

O
V

E
R

L
A

Y

Figure 3: The Architecture of the P2P Overlay.

4.3 Management of the communication mechanism

Recall that in order for a peer to send a message to another peer, there must
exist a connection between an outputPipe and inputPipe defined in the same
PipeAdvertisement and therefore both peers have to agree on which PipeAdver-
tisement to use. One possible solution would be to create a PipeAdvertisement
for any possible connection between any two peers of a peerGroup according to
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a predefined protocol. This is not efficient given the large number of different
PipeAdvertisements needed to manage the connections.

We decide then to create a unique PipeAdvertisement by a concrete peer in a
peerGroup, having thus operative only one inputPipe through which to receive
messages from all the rest of peers of the peerGroup. It is necessary to find a way
to create such a unique PipeAdvertisement per peer and how other peers can
know the peer’s PipeAdvertisement. Since in JXTA, each peer has its unique
PeerID, we associate a PipeAdvertisement with a peer by including the PeerID
in PipeAdvertisement variables. Once the PipeAdvertisement is created, the
source peer has to create an outputPipe and the destination peer has to create
an inputPipe, both of them defined with the same PipeAdvertisement. This
can be done easily for the destination peer, which just needs to create a unique
inputPipe for each peerGroup to which it belongs because the peer will receive
messages defined by a unique type of pipeAdvertisement.

It is a bit more complex, however, for the source peer, which has to cre-
ate an outputPipe defined by the pipeAdvertisement of the destination peer.
Notice that the source peer just needs to know the pipeAdvertisement of the
destination peer, which is easily since the source peer keeps in its local cache
the advertisements of the rest of the peers, and because pipeAdvertisement are
identified by PeerID; the source peer can thus find the pipeAdvertisement of the
destination peer.

We have thus implemented this approach for the case of receiving and send-
ing messages and pipe services. We show in Fig. 4 the UML diagram of the
re-design of the JXTA pipe services mechanisms.

4.4 Management of peer’s state information

As already mentioned, keeping updated information of the network is crucial in
P2P applications. To this end, we have implemented functionalities that allow
to recollect information on the nodes of the network and publish it periodically
through advertisements. This is done externally from JXTA. More precisely,
each time a node changes its state due to any network event or application
event, the node’s state information is updated. This information is defined at
three levels: (a) for the last k hours (being k a parameter to be specified); (b)
for the current session and, (c) for all sessions (historical data).

The peer node publishing this information using advertisements, which are
periodically published. Moreover, the peer node computes several statistics,
which are sent together with the peer’s state information; thus, any peer can
use statistical information of other peers in order to take efficient decisions. For
the purpose of the implementation, we have implemented a module LocalCache,
which has functionalities to control the local cache of the peer (see Fig. 5).
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Figure 4: UML diagram of the Pipe Service re-implementation
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Figure 5: UML diagram of information management re-implementation

5 Testing the re-implementations of the JXTA
protocols

5.1 Deployment of the P2P network

In order to evaluate the performance of the extensions of the JXTA protocols,
we deployed a P2P network using the extended JXTA library using nodes of
the PlanetLab platform. PlanetLab (PlanetLab, 2007) is an open platform for
developing, deploying and accessing planetary-scale services. It is, at the time
of this writing, composed up of 784 nodes at 382 sites. Each Planetlab node
is an IA32 machine that must comply with minimum hardware requirements
(i.e. 1GHz PIII + 1Gb RAM) running the same base software, basically a modi-
fied Linux operating system offering services to create virtual isolated partitions
in the node, called slivers, which look to users as the real machine. Planetlab
allows every user to dynamically create up to one sliver in every node, the set of
slivers assigned to a user form what is called a slice. It is said that a Planetlab
node can run up to 100 concurrent slivers.

The sample set of PlanetLab’s machines forming the slice is about 25 nodes
shown in Table 1. Moreover we used the cluster nozomi.lsi.upc.edu (a main
control node + five computing nodes). The main node was used as one the
brokers of the P2P network.

5.2 Reliability tests and computational results

We conducted several experiments to test the reliability and efficiency of the re-
implemented protocols and compare them with original JXTA protocols. The
experimenting was thus conducted twice under the same P2P network using
PlanetLab nodes.
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Table 1: Nodes added to the PlanetLab slice.
ait05.us.es planet01.hhi.fraunhofer.de
planet1.cs.huji.ac.il planet1.manchester.ac.uk
system18.ncl-ext.net planetlab1.net-research.org.uk
planetlab01.cs.tcd.ie planet2.scs.stanford.edu
planetlab01.ethz.ch planetlab-1.ssvl.kth.se
planetlab1.esi.ucm.es planetlab1.csg.unizh.ch
planetlab1.poly.edu planetlab1.cslab.ece.ntua.gr
planetlab2.ls.fi.upm.es planetlab1.eecs.iu-bremen.de
planetlab2.upc.es planetlab1.hiit.fi
lsirextpc01.epfl.ch planetlab5.upc.es
ricepl-1.cs.rice.edu planetlab1.itwm.fhg.de
planet2.seattle.intel-research.net planetlab1.informatik.unierlangen.de
edi.tkn.tu-berlin.de

Testing the presence and service management. When a peer client joins
the network for the first time, its local cache is created empty. Next, the local
cache must get synchronized, at first place, with the local cache of the ren-
dezvous and then with those of other peers of the same peerGroup. On the
other hand, if the peer has already joined the P2P network in previous sessions,
the advertisement are stored in its local cache. We observed and experimentally
measured that the synchronization for the first connection takes, as expected,
much more time than when the peer has already done some prior sessions in the
P2P network.

Once the peer has already its local cache synchronized, we experimentally
considered and observed the services that a peer can offer. Peer’s services are
implemented in a way that each service can have its lifetime and its publishing
frequency. We briefly mention here three scenarios that we considered:

a) Statistics services : these services distinguish for their long lifetime (e.g. or-
der of minutes) and a high publishing frequency (e.g. order of seconds, say,
30 seconds). By monitoring the statistics of the P2P nodes, we observed
that these services correctly kept the information on all peers.

b) Rendezvous services : these services include criteria for choosing a peer for
efficient computation or efficient data transmission, which require that the
rendezvous’ advertisements must be synchronized because through it are
synchronized the local caches of other peers.

c) Peer common services (e.g. information on peer node): these services have
usually a short lifetime, otherwise in case the peer is disconnected from the
P2P network its services would be alive even the node is not present in the
network. Experimental values showed that 60 seconds was a good value
for the lifetime of such services, meaning that an invalid service could be
alive during that time but because the publishing time is inferior to that,
a new publishing could take place.

The time connection to a peerGroup. Recall that at least one rendezvous
of the general group must be permanently operative so that different peers
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will try to join the network by trying to connect to the rendezvous. In order
to increase the possibilities that a peer will always establish connection to a
rendezvous we used a rendezvous list implementation. The experimental data
showed that, although it could take more time to establish the connection (now
a peer has to examine the list of rendezvous), it considerably increases the
possibility of a peer to establish connection with a rendezvous. In fact with our
real P2P network, we did not observe failure to establish connection. We show
in Fig. 6 the connection time for the case when there is just one broker in the
list and when there are 11 brokers (the experiment was repeated several time
by changing the order in the broker list and the connection time to each broker
is reported).
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Figure 6: Peer’s connection time to a broker of the P2P network.

The communication test. One important parameter to measure is the pipe
connection times, which depending in the type of peer and the network could
vary considerably. Essentially, in order to establish a pipe, JXTA has to pre-
viously do some communications based in a communication protocol and each
of these connections has its ping time. Due to this variability, considering a
fixed timeout (say 2 seconds) turned out to not be a good choice; it worked very
well for cluster-based P2P network but it was not reliable for a geographically
distributed P2P network.

This motivated precisely one of the improvements presented in this work,
namely, the progressive augmentation of the window timeout, which in our ex-
periments was upper bounded by 40 seconds. Recall that in our re-implementa-
tion of pipes, if a message is not delivered to destination peer, it is intended
again to send it. The number of intents depends on the time window used. The
experimental data showed that by using a time window that progressively in-
creases at most to 40 seconds, almost all messages were sent to destination. By
using this approach less than 2% of messages that could not be delivered (e.g.
because the peer is already disconnected) were reported as errors as opposed to
32% of undelivered messages that were reported as errors with a fixed timeout.
We show in Fig. 7 the progressive timeout used and the corresponding number
of sent messages.

14



Percentage of sent messages per window timeout
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Figure 7: Time out values and the corresponding percentage of sent messages

Information management test. In our approach, each node publishes a
large quantity of information and therefore peer nodes of the P2P network have
better knowledge of the peerGroup and of the network and can use the informa-
tion of other peers in decision-taking process. In this context, we considered as
a test finding the best peer for efficiently running a task from many candidate
peers. In absence of information about the other peer nodes, the task assign-
ment would essentially reduce to a random assignment, which is not efficient. By
using the information published by the peer nodes brokers are able to find the
best peer among different candidates. Thus, we implemented a data-evaluator
model as part of brokerage services to identify the best peer for executing a
task.

6 Conclusions and future work

In this work we have analyzed the protocols and services of JXTA library and
have shown several limitations of these protocols regarding their efficiency and
reliability. The analyzed protocols include discovery, peer information, peer
resolver, and pipe binding protocols and services, among others. We then pro-
posed extensions and re-implementation of these protocols in order to overcome
the identified limitations. The proposed extensions of the JXTA protocols have
been validated in practice using a real P2P network deployed in nodes of Plan-
etLab platform. The experimental results showed the improvement of both
efficiency and reliability of JXTA protocols and services.

In our future work we plan to use the re-implemented protocols in large-
scale JXTA-based applications for data intensive computing and measure the
performance of the JXTA protocols in highly dynamic environment using a large
number of unreliable peer nodes.
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