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  Resumen del Trabajo (máximo 250 palabras): Con la finalidad, contexto de 

aplicación, metodología, resultados i conclusiones del trabajo. 

ATAC-seq es esencial para perfilar la accesibilidad de la cromatina y caracterizar 

el panorama regulatorio transcripcional. Sin embargo, el reciente interés por el 

estudio de poblaciones celulares heterogéneas constituye un desafío para el 

ATAC-seq. Por lo tanto, el ATAC-seq unicelular surge como una respuesta a las 

limitaciones de ATAC-seq en masa cuando se estudia la heterogeneidad celular. 

Nuestro objetivo es caracterizar el componente de tipo celular de los 
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potenciadores utilizando datos scATAC-seq. Para lograr este propósito, a) 

anotamos potenciadores en regiones de cromatina abierta de tipo celular, b) 

estimamos el enriquecimiento de motivos entre potenciadores de tipo celular, c) 

detectamos potenciadores accesibles de tipo celular que muestran una unión 

robusta a TF y d) identificamos variantes asociadas a T2D que afectan la unión 

de TF a potenciadores de tipo celular. El análisis de enriquecimiento de motivos 

presentó grupos bien definidos de motivos enriquecidos en potenciadores de tipo 

celular. La recurrencia de motivos a través de potenciadores de tipo celular 

mostró que los potenciadores unidos a un TF dado eran consistentes con el 

agrupamiento de tipo celular observado en el análisis de enriquecimiento de 

motivos. Finalmente, la integración de los potenciadores de tipo celular que 

caracterizan la unión de TF con variantes genéticas de T2D nos permitió 

proponer el mecanismo molecular más probable subyacente a algunos loci de 

riesgo de T2D. 

  Abstract (in English, 250 words or less): 

ATAC-seq is essential for profiling chromatin accessibility and characterizing the 

transcriptional regulatory landscape. However, the recent shift towards the study 

of heterogeneous cell populations poses a challenge for bulk ATAC-seq. Thus, 

single-cell ATAC-seq has emerged as a response to the limitations of bulk ATAC-

seq when studying cellular heterogeneity. We aim to to characterize the cell-type-

selective component of enhancers using scATAC-seq data. To achieve this 

purpose, we a) annotate regulome signatures across cell-type selective open 

chromatin regions, b) estimate TF motif enrichment among cell-type selective 

enhancers, c) detect accessible cell-type selective enhancers that show robust 

TF binding and d) identify T2D-associated SNPs affecting TF binding across cell-

type selective enhancers. Motif enrichment analysis presented well-defined 

groups of TF motifs enriched across islet cell-type selective enhancers. TF motif 

occurrences across cell-type selective enhancers showed that enhancers bound 

by a given TF was consistent with the cell-type selective clustering observed in 

the TF motif enrichment analysis. Finally, the integration of TF-binding 

characterizing islet cell-type enhancers with fine-mapped T2D genetic variants 

allowed us to propose the most likely molecular mechanism underlying a few T2D 

risk loci. 



 5 

Contents 

1. Introduction ___________________________________________________ 6 
1.1. Context and justification _______________________________________ 6 
1.2. Objectives __________________________________________________ 7 
1.3. Approach and method to follow _________________________________ 7 
1.4. Work plan __________________________________________________ 8 
1.5. Summary of products obtained __________________________________ 9 
1.6. Brief description of the other chapters of the manuscript ______________ 9 

2. State of the art ________________________________________________ 10 

3. Methodology __________________________________________________ 15 
3.1. Data sources _______________________________________________ 15 
3.2. Cell-type characterization of the islet regulome ____________________ 18 

4. Results ______________________________________________________ 21 

5. Discussion ___________________________________________________ 28 

6. Conclusions __________________________________________________ 30 

7. Glossary _____________________________________________________ 30 

8. References ___________________________________________________ 31 

Acknowledgments _________________________________________________ 40 

Annex ___________________________________________________________ 41 
 

 

 

 

 

 

 

 

 

 

 



 6 

1. Introduction 

1.1. Context and justification 
Bulk assay for transposase accessible chromatin sequencing (ATAC-seq) 

measurements offer comprehensive profiles of chromatin accessibility in a tissue-

specific manner (Reddington et al., 2020). However, they are limited to disentangle 

tissue heterogeneity and the contribution of restricted cell-types into the regulatory 

landscape of human pancreatic islets. This is because bulk ATAC-seq produces 

aggregated profiles by averaging the signal over cell populations, masking cellular and 

regulatory heterogeneity (Rai et al., 2020; Shema, Bernstein, & Buenrostro, 2019). 

Consequently, the elevated cell-type heterogeneity of pancreatic islets could hinder 

the identification of accessible regulatory elements that can otherwise be identified 

with single cell ATAC-seq (scATAC-seq) data. 

In this project we address islet cellular heterogeneity by characterizing the cell-

type component of the human islet regulatory landscape using scATAC-seq data from 

beta, alpha, delta and acinar cells. When studying heterogeneous biological samples 

such as human pancreatic islets, single-cell analysis enables the identification of cell-

type populations and regulatory elements (Buenrostro et al., 2018; Rai et al., 2020). 

This provides larger resolution to advance the molecular understanding of 

transcriptional regulation in tissues with large cellular complexity as human pancreatic 

islets. Thus, by adopting a cell-type-specific approach to examine distal regulatory 

elements in human islets, we could gain insights into the cellular diversity and gene 

regulatory mechanisms. Furthermore, characterizing the cell-type specific regulatory 

landscape of human islets not only allows elucidating the role that each cell type plays 

in the physiology of human islets, but it also offers a single-cell resolution view of 

metabolic disorders such as type 2 diabetes (T2D) (Chiou et al., 2019). Ultimately, we 

expect to obtain single-cell regulatory profiles to elucidate both the relationship 

between cell types and their contribution to pancreatic islet transcriptional regulation. 
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1.2. Objectives 
General objective 
Our general objective is to characterize the cell-type-selective component of distal 

human pancreatic islet regulatory elements, “enhancers”, using scATAC-seq data. 

Specific objectives 
1) To annotate regulome signatures identified in human islets among open chromatin 

regions in endocrine (beta, alpha and delta) and exocrine (acinar) cell types. 

2) To estimate transcription factor (TF) motif enrichment in open chromatin regions for 

each islet cell type. 

3) To leverage abovementioned motif enrichment analysis to detect cell-type selective 

distal regulatory regions, known as enhancer elements, that show robust TF binding. 

4) To integrate genetic data from large-scale genetic association studies (GWAS) for 

T2D to identify variants associated with T2D risk that are likely to disrupt TF binding 

across cell-type specific enhancers identified in (3). 

 

1.3. Approach and method to follow 
In order to achieve the purpose of this project, we will leverage cell-type selective open 

chromatin regions identified in the host lab using unpublished scATAC-seq data from 

human pancreatic islets from one donor that were exposed at high glucose 

concentrations (11 mM). Sequencing was performed employing the 10x Genomics 

Chromium Single Cell ATAC platform. Data processing, identification and annotation 

of cell clusters, and peak differential analysis were performed by the host lab, using 

10x Genomics Cell Ranger ATAC 1.2.0 (Satpathy et al., 2019; Zheng et al., 2017) for 

pre-processing and Signac 1.1.1 (Stuart, Srivastava, Lareau, & Satija, 2020), an 

extension of Seurat 4.0 (Hao et al., 2020), for downstream analyses. The resulting 

single-cell open-chromatin peaks are the starting point of our project. 

To delineate single-cell regulatory profiles in the human pancreatic islet 

regulatory landscape we performed as follows by: a) annotating regulome signatures 

across cell-type selective open chromatin regions by overlapping scATAC-seq peaks 

with the Miguel-Escalada et al (2019) human islet regulome using BEDTools 2.30.0 

(Quinlan & Hall, 2010). b) Estimating TF motif enrichment among cell-type selective 

enhancers using HOMER 4.11 (Heinz et al., 2010). c) Detection of accessible cell-

type selective enhancers that show robust TF binding with FIMO 5.3.3 (Grant, Bailey, 
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& Noble, 2011). d) Identification of T2D-associated single-nucleotide variants (SNPs) 

affecting TF binding across cell-type selective enhancers using motifbreakR 2.4.0 

(Coetzee, Coetzee, & Hazelett, 2015). To this end, we will also leverage fine-mapped 

variants from a large-scale T2D meta-analysis, generated by Mahajan et al (2018). 

 

1.4. Work plan  
Tasks and milestones 
1. Work planning 

1.1. Contextualize and justify the project. 

1.2. Define the objectives. 

1.3. Outline the approach and the methodology to follow. 

1.4. Plan project milestones and timing. 

1.5. Write and submit CAT1. 

2. Work development - characterization of single-cell regulatory profiles. 

2.1. Annotate regulome signatures across cell-type selective open chromatin 

regions. 

2.2. Perform motif enrichment analysis. 

2.3. Write and submit CAT2. 

2.4. Detect cell-type selective enhancers with robust TF binding. 

2.5. Identify variants affecting TF binding across cell-type 

selective enhancers. 

2.6. Write and submit CAT3. 

3. Manuscript drafting and submission. 

3.1. Write the introduction and state of the art. 

3.2. Write the methodology and results. 

3.3. Write the discussion and conclusions. 

3.4. Last review and submission. 

4. Project defense preparation. 
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Project schedule 
  Tasks and milestones Date Weeks 
      1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 

CAT1 

1. Work planning  01/03/21 - 16/03/21                                   

1.1 Contextualize and justify the project. 01/03/21 - 03/03/21                                   

1.2 Define the objectives. 04/03/21 - 06/03/21                                   

1.3 Outline the approach and the methodology to follow. 07/03/21 - 09/03/21                                   

1.4 Plan project milestones and timing. 10/03/21 - 12/03/21                                   

1.5 Write and submit CAT1. 13/03/21 - 16/03/21                                   

CAT 
2 & 3 

2. Work development - characterization of single-cell regulatory profiles. 17/03/21 - 17/05/21                                   

2.1 Annotate regulome signatures across cell-type specific open chromatin 

regions. 
17/03/21 - 04/04/21                                   

2.2 Perform motif enrichment analysis. 29/03/21 - 19/04/21                                   

2.3 Write and submit CAT2. 05/04/21 - 19/04/21                  

2.4 Detect cell-type specific enhancers with robust transcription factor 

binding. 
19/04/21 - 25/04/21                                   

2.5 Identify variants affecting transcription factor binding across cell-type 

specific enhancers. 
26/04/21 - 02/05/21                                   

2.6 Write and submit CAT3. 03/05/21 - 17/05/21                                   

CAT4 

3. Manuscript drafting and submission. 10/05/21 - 08/06/21                                   

3.1 Write the introduction and state of the art.  10/05/21 - 16/05/21                                   

3.2 Write the methodology and results. 17/05/21 - 23/05/21                                   

3.3 Write the discussion and conclusions. 24/05/21 – 30/05/21                                   

3.4 Last review and submission. 31/05/21 - 08/06/21                                   

CAT5 4. Project defense preparation. 31/05/21 - 23/06/21                                   

 

1.5. Summary of products obtained 
From our project we obtained and present in this manuscript the following results: 

1) Sub-classification of the islet regulome according to cell-type selective open-

chromatin regions.  

2) Quantification of TF motif enrichments in cell-type selective clusters of enhancer 

elements.  

3) Identification of cell-type selective accessible enhancer elements that show robust 

TF binding.  

4) Identification of disease-associated genetic variants that are likely to disrupt TF 

binding across cell-type selective enhancer elements.   

 

1.6. Brief description of the other chapters of the manuscript  
Chapter 2: Introduces the state of the art or the level of development of the project 

topic. 

Chapter 3: Describes the methodology followed throughout the project development. 

Chapter 4: Presents the results obtained with this research proposal.  

Chapter 5: Discusses the results within the context of the project and whether they 

meet the initial objectives or not, and future related research. In this section, limitations 

are also addressed.  
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Chapter 6: Enumerates the most relevant results and conclusions derived from this 

study. 

Chapter 7: Glossary with the most relevant terms and acronyms used within the 

manuscript. 

Chapter 8: List of references cited throughout the manuscript. 

Chapter 9: Acknowledgments. 

Chapter 10: Contains information that is not included in the manuscript’s main body 

due to their extension and relevance.   

 

2. State of the art 
Nearly two decades after the human genome sequence was sequenced, many 

questions remain unanswered of how non-coding DNA directs spatial and temporal 

activation of gene expression. However, recent advances in regulatory genomics, also 

with the establishment of large consortia, has delivered comprehensive catalogues of 

non-coding gene regulatory elements along with the parallel development of novel 

genomic technologies (Andersson et al., 2014; ENCODE Project Consortium, 2012; 

FANTOM Consortium and the RIKEN PMI and CLST (DGT) et al., 2014). This 

progress in the understanding of the dynamic usage of non-coding transcriptional 

regulatory elements is essential to gain insights into development, cell and tissue 

function and identity (Shlyueva, Stampfel, & Stark, 2014), and disease 

pathophysiology (Chatterjee & Ahituv, 2017; Maurano et al., 2012; Miguel-Escalada, 

Pasquali, & Ferrer, 2015).  
Eukaryotic DNA is organized in the cell nucleus into chromatin, which preserves 

and compacts the genetic information but also controls gene expression (Klemm, 

Shipony, & Greenleaf, 2019; Wolffe, 2000). Chromatin is highly compacted into 

structural units named “nucleosomes”, formed by DNA wrapped around a histone 

octamer core, enabling the genome to be assembled into the cell’s small nucleus. 

Nucleosome occupancy across the genome defines chromatin accessibility, which 

precedes transcription of the human genome, and varies between cell types and 

tissues (Kaplan et al., 2009); e.g. a low nucleosome occupancy (nucleosome-depleted 

regions) translates into a high chromatin accessibility. Chromatin accessible regions, 

also known as “open chromatin” regions, are hereby targeted by TFs, RNA 

polymerases and other structural proteins and co-factors that result in a higher-order 
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genome organization essential for gene transcriptional regulation. The accessibility of 

the chromatin is largely facilitated by diverse post-translational modifications of histone 

proteins that will identify the distinct purposes of active chromatin. Two of the main 

players that coordinate gene transcription are enhancers and promoters (Andersson 

& Sandelin, 2020). Promoter elements identify short genomic sequences at the vicinity 

of the transcription start sites (TSS), which initiate gene transcription (Shlyueva et al., 

2014). Genomic regions that embody promoter regulatory elements are characterized 

by the enrichment of acetylation of histone H3 lysine 27 residues (H3K27Ac) and tri-

methylation of histone H3 lysine 4 residues (H3K4me3) epigenomic signatures 

(Andersson & Sandelin, 2020; Shlyueva et al., 2014). In sharp contrast with promoter 

elements, transcriptional enhancers are ~300-1000 bp DNA fragments that are often 

located hundreds of kilobases away from their endogenous gene targets. The three-

dimensional re-organization of the chromatin allows enhancers to loop to the promoter 

sequence of their target gene and thus, to guide gene expression activation (Kagey et 

al., 2010). Active enhancers are characterized by H3K27ac and H3K4me1 

modifications in flanking nucleosome histones, among other hallmarks (Andersson & 

Sandelin, 2020; Kagey et al., 2010). To identify this repertoire of transcriptional 

regulatory elements, several experimental methods have been developed to map 

chromatin accessibility based on the susceptibility of these DNA fragments to 

enzymatic cleavage or methylation.  
Assay for Transposase-Accessible Chromatin using sequencing (ATAC-seq), 

developed by Buenrostro et al. (2013) as an alternative to Micrococcal Nuclease 

sequencing (MNase-seq) (Schones et al., 2008), Formaldehyde-Assisted Isolation of 

Regulatory Elements sequencing (FAIRE-seq) (Giresi, Kim, McDaniell, Iyer, & Lieb, 

2007) and DNase I hypersensitive sites sequencing (DNase-seq) (Boyle et al., 2008), 

is currently one of the most powerful and widely used chromatin accessibility profiling 

methods (Yan, Powell, Curtis, & Wong, 2020). ATAC-seq evaluates genome-wide 

DNA accessibility using a genetically engineered hyperactive enzyme known as Tn5 

transposase (Reznikoff, 2008; Shashikant & Ettensohn, 2019). This enzyme 

simultaneously cuts DNA and inserts high-throughput sequencing adaptors, with 

preference for nucleosome-depleted chromatin regions. DNA fragments are then 

purified and amplified via PCR, creating DNA sequencing libraries that are enriched 

for open chromatin regions. These libraries are then sequenced by next generation 

sequencing (NGS). ATAC-seq data analysis then follows four major steps (Yan et al., 
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2020); (1) The pre-analysis step, where reads are evaluated for quality assessment 

and aligned to the reference genome assembly. (2) The core analysis or peak calling, 

where regions with a high density of aligned reads are identified, indicating accessible 

regions which are also referred to as peaks. (3) Advanced downstream analysis, with 

the focus on peaks, motifs, nucleosomes, and TF footprints. Finally, (4) integrative 

multiomics approaches allows the characterization of the underlying regulatory 

networks.  

The success of ATAC-seq is driven by the low-input requirements, the simplicity 

and sensitivity of ATAC-seq (Buenrostro et al., 2013; Buenrostro, Wu, Chang, & 

Greenleaf, 2015). Simultaneous chromatin fragmentation and insertion of sequencing 

adaptors executed by Tn5 transposase simplifies the experimental protocol, which can 

be completed in a single day. The method’s high sensitivity enables it to accurately 

perform even on small cellular samples ranging from 500 to 50,000 cells.   

ATAC-seq has proven to be an essential player for profiling chromatin 

accessibility and characterizing the genomic landscape of transcriptional regulatory 

elements such as enhancers and promoters (Buenrostro et al., 2013; Buenrostro, Wu, 

Chang, et al., 2015; Yan et al., 2020). However, our recent shift towards the study of 

heterogeneous cell populations posed a challenge for bulk chromatin accessibility 

assays. Bulk ATAC-seq can generate comprehensive chromatin accessibility profiles 

in a tissue-specific manner (Reddington et al., 2020), but the aggregated profiles that 

delivers by averaging the signal over cell populations masks cellular and regulatory 

heterogeneity (Rai et al., 2020; Shema et al., 2019). This hampers the understanding 

of how diverse individual cell types contribute to the regulatory networks maintaining 

cell and tissue homeostasis. Consequently, single-cell ATAC-seq (scATAC-seq) has 

emerged as a response to the limitations of bulk ATAC-seq when studying cellular 

heterogeneity (Buenrostro, Wu, Litzenburger, et al., 2015; Cusanovich et al., 2015). 

Single-cell ATAC-seq allows the identification of chromatin accessibility and 

regulatory elements for thousands of single cells within and across cell-type 

populations (Baek & Lee, 2020; Buenrostro et al., 2018; Rai et al., 2020), with a wide 

range of available sequencing technologies (Baek & Lee, 2020; Buenrostro, Wu, 

Litzenburger, et al., 2015; Xi Chen, Miragaia, Natarajan, & Teichmann, 2018; Xingqi 

Chen et al., 2018; Cusanovich et al., 2015; Lareau et al., 2019; Mezger et al., 2018; 

Mulqueen et al., 2019; Rubin et al., 2019; Satpathy et al., 2018).  Nevertheless, three 

main protocols are used to generate single-cell ATAC libraries after exposing 



 13 

individual cells to Tn5 transposase (Baek & Lee, 2020; H. Chen et al., 2019). These 

include (1) barcoding individual single cells by the split-and-pool method allowing the 

identification of reads from each cell, (2) extraction and labeling of single cell DNA 

using microfluidic droplet-based technologies or (3) depositing single cells into a multi-

well plate or array. Post-sequencing analyses (e.g., quality control, alignment and 

peak calling) are similar to those of bulk ATAC-seq, but they differ in other downstream 

analyses (Baek & Lee, 2020; Yan et al., 2020). Unlike bulk ATAC-seq, after the 

preprocessing of sequencing reads and the quality control, cells with good quality are 

selected to create a cell-by-feature matrix that is used for downstream analysis such 

as clustering, cell identity annotation, determination of differential accessibility, and 

estimation of regulatory networks (Baek & Lee, 2020; H. Chen et al., 2019).  

Diversity is one of the most characterizing aspects of life, and as any other 

organ or tissue, the human pancreas is made up of diverse and highly specialized cell 

types. The largest fraction of the pancreatic tissue is embodied in the exocrine 

specialized tissue (exocrine acini ducts), formed by acinar cells. In contrast, the 

comparatively smaller endocrine compartment is confined in the islets of Langerhans 

and is essential to maintain blood glucose homeostasis (Segerstolpe et al., 2016). 

Hormone-secreting cells in the endocrine compartment are formed by glucagon-

producing alpha cells, insulin-producing beta cells, somatostatin-producing delta cells, 

pancreatic polypeptide (PP) producing gamma cells, and ghrelin-producing epsilon 

cells (Chiou et al., 2019; Rai et al., 2020). ScATAC-seq can ease deciphering the 

cellular heterogeneity of the pancreatic tissue by characterizing their distinct regulatory 

profiles, delivering new clues about their contribution to the pancreatic function and 

identity (Baek & Lee, 2020; Buenrostro, Wu, Litzenburger, et al., 2015). Importantly, a 

single-cell resolution of gene regulatory mechanisms in human pancreatic islets has 

already prove to be a fertile ground to gain novel insights into the pathophysiology of 

metabolic disorders such as diabetes mellitus (Chiou et al., 2021).  

 Type 2 diabetes (T2D) is the most prevalent form of diabetes mellitus, a group 

of chronic metabolic disorders characterized by elevated blood glucose levels 

(International Diabetes Federation, 2019). Pancreatic islet dysfunction and insulin 

resistance are the two central pathological processes of the multifactorial nature of 

T2D (American Diabetes Association, 2020; McCarthy, 2010). Despite the highly 

polygenic inheritance of T2D (Mahajan et al., 2018a; Vujkovic et al., 2020), the large 

enrichment of T2D-predisposing genetic variants in islet regulatory annotations 
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highlights the central role of pancreatic islets in diabetes pathophysiology (Miguel-

Escalada, Bonàs-Guarch, Cebola, Ponsa-Cobas, Mendieta-Esteban, Atla, Javierre, 

Rolando, Farabella, Morgan, García-Hurtado, et al., 2019; Pasquali et al., 2014; 

Thurner et al., 2018). However, the distinct role of endocrine cell types into T2D 

pathophysiology has not been extensively explored. Although more than 400 T2D-risk 

genetic variants have been identified in large-scale genetic association studies 

(GWAS) (Mahajan et al., 2018a; Vujkovic et al., 2020), the conversion to novel 

molecular insights has been limited. One of the main bottlenecks that frustrates the 

translation of GWAS genetic discoveries into molecular insights are the high amounts 

of (i) local linkage disequilibrium (LD) (that is, high correlation between neighbouring 

genetic markers). The identification of the true causal variant underlying a GWAS 

association is hereby hindered by high local LD between adjacent genetic markers 

(Schaid, Chen, & Larson, 2018). Statistical approaches, known as “fine-mapping”, 

have been developed to overcome this limitation by identifying the minimum set of 

SNPs (“credible sets”) with a 95-99% cumulative posterior probability of including the 

true causal variant (Wellcome Trust Case Control Consortium et al., 2012). However, 

the overwhelmingly majority of GWAS risk variants fall in non-coding regions and far 

away from coding sequences, which impairs the identification of an obvious target 

gene (Maurano et al., 2012). The integration of genome-wide maps of regulatory 

elements and chromatin interactions has been resourceful in aiding fine-mapping 

approaches to identify most likely causal regulatory variants and target genes (Miguel-

Escalada, Bonàs-Guarch, Cebola, Ponsa-Cobas, Mendieta-Esteban, Atla, Javierre, 

Rolando, Farabella, Morgan, García-Hurtado, et al., 2019). Providing a single-cell 

perspective of gene regulation is now essential to refine the molecular interpretation 

of non-coding T2D risk GWAS associations.  

This project focuses on leveraging scATAC-seq data in human pancreatic islets 

to characterize the cell-type-specific component of human pancreatic islet gene 

regulation. Our main goal is to obtain islet cell-type selective regulatory profiles by the 

integration of single-cell chromatin accessibility maps with islet regulome annotations 

to elucidate both the relationship between cell types and their contribution to the 

pancreatic islet-cell identity and function. Finally, by connecting single-cell epigenomic 

annotations with T2D GWAS results, we aim to reveal novel molecular insights into 

into T2D pathophysiology 
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3. Methodology 

3.1.  Data sources 
In this project we leveraged five different datasets: (i) unpublished cell-type accessible 

chromatin peaks in human pancreatic islets, (ii) islet regulome annotations and (iii) 

enhancer-to-gene assignments identified in Miguel-Escalada et al (2019), (iv) 

unpublished cis-eQTLs mapped in 399 human pancreatic islet samples, and finally (v) 

fine-mapped variants from one of the largest meta-analysis for type 2 diabetes 

(Mahajan et al 2018).  

Cell-type enriched and specific accessible chromatin peaks for beta, alpha, 

delta and acinar cells (see Figure 1) were identified by the host lab using unpublished 

human pancreatic islets scATAC-seq data from one donor sample. Cell-type enriched 

and specific peaks were identified after peak differential analysis; enriched peaks are 

more often open on a given cell-type but may also be open on other cell-types, and 

specific peaks are specifically open in a given cell-type and not open in the rest of the 

cell-types. In this project we primarily focus on enriched peaks since the low number 

of open chromatin regions specific for a given cell-type (see Figure 1) can limit the 

statistical power of our study. 

Single cell sequencing libraries were generated from human pancreatic islets 

from a single donor that were exposed at high glucose concentrations (11 mM). 

Libraries were sequenced using the 10x Genomics Chromium Single Cell ATAC 

platform. Then, cell-type peaks of open chromatin regions were identified by the host 

lab after quality control, identification and annotation of cell-type clusters, and peak 

differential analysis. The host lab used 10x Genomics Cell Ranger ATAC 1.2.0 

(Satpathy et al., 2019; Zheng et al., 2017) to demultiplex Illumina BCL files into FASTQ 

files, and Signac 1.1.1 (Stuart et al., 2020), an extension of Seurat 4.0 ( Hao et al., 

2020), for the rest of downstream analyses.  
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Figure 1    Barplot showing open chromatin peaks identified by the host lab using 

scATAC-seq, specific (in blue) or enriched (in orange) in a given cell-type in human 

pancreatic islets.  

 

Annotations of the human pancreatic islet regulome were obtained from Miguel-

Escalada et al (2019). This recent work from members of the host lab harnessed bulk 

ATAC-seq data to generate genome-wide maps of open chromatin regions in human 

pancreatic islets. Open chromatin regions were classified into distinct epigenome 

annotations, such as active promoters and active enhancers, by implementing k-

medians clustering into chromatin immunoprecipitation (ChIP)-seq datasets including 

H3K27ac, H3K4me1, H3K4me3, Mediator, cohesin and CTCF. Active enhancers were 

subclassified into three categories I, II and III, based on Mediator, cohesin and 

H3K27ac occupancy patterns (from higher to lower activity, respectively). Of note, in 

this project we aggregated the three categories (active enhancers I, II and III) since 

bulk ATAC-seq can be hampered in capturing regulatory elements specific from minor 

cell populations that can otherwise be detected in scATAC-seq data. Active promoters 

were defined by H3K27ac and H3K4me3 marks but they have not been considered in 

our analysis.  
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Enhancer-gene assignments identified in Miguel-Escalada et al (2019) and 

unpublished islet cis-eQTLs were leveraged to assign target genes to cell-type 

selective enhancers. In Miguel-Escalada et al (2019) enhancer elements were first 

connected to their gene targets by leveraging a (i) high-resolution genome-wide map 

of chromatin interactions between islet gene promoters and their regulatory elements 

using promoter capture Hi-C (Javierre et al., 2016). Due to conservative detection 

thresholds or the limitation of Hi-C methods for short-range interactions, the authors 

(ii) imputed additional enhancer-gene assignments that were missed. Islet cis-eQTL 

mapping was performed by the host lab using QTLtools (Delaneau et al., 2017) in 399 

human pancreatic islet samples using a cis-window of 500 kb up- and downstream of 

the TSS. Further details about RNA-seq processing, gene expression quantification, 

genotype QC and imputation will be provided in the manuscript in preparation by the 

host lab. In the linear model, 15 PCs derived from gene expression and 4 genetic PCs 

were used as covariates. Best associated cis eQTL SNP-eGene pairs, were identified 

using the permutation pass mode (--permute 1000 --window 500000). Beta 

approximated permutation p-values were adjusted for multiple testing correction using 

Storey q-values implemented in the qvalue R package (Storey, Bass, Dabney, 

Robinson, & Warnes, 2021) and significance threshold was set at FDR q-value ≤ 0.01 

(3,433 eGenes FDR ≤ 1%). Nominal p-values for all cis-SNPs were calculated within 

a 500kb window centered on the TSS of each gene ( --nominal 1 --window 500000). 

Significant variant-gene pairs were identified based on a genome-wide p-value 

threshold (pt) by considering the empirical p-value of the eGene closest to the 0.05 

FDR threshold. A gene-based nominal p-value threshold was then calculated using pt 

and the beta distribution parameters from QTLtools. For 3,433 significant eGenes, 

variants with a nominal p-value below the gene-level threshold were considered in 

subsequent analyses (named from now on as nominally significant cis-eQTL variants). 

Nominally significant cis-eQTLs were intersected with islet enhancer elements (see 

Command 1). For overlapping islet eQTL-enhancer pairs, the eGene was assigned as 

the target gene that the enhancer is likely to regulate.  

 
Command 1 

bedtools intersect -a <bulk islet regulome regions> -b <islet cis-eQTLs> -
wa -wb 
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Finally, fine-mapped genetic variants across 381 independent T2D signals 

identified in a large-scale meta-analysis for T2D (Mahajan et al 2018) in 898,130 

individuals of European ancestry (74,124 T2D cases and 824,006 controls) were 

integrated with our cell-type selective epigenomic annotations.  

 

3.2.  Cell-type characterization of the islet regulome  
To provide single-cell resolution to islet regulome annotations we followed four general 

steps: (1) we annotated regulome signatures by the overlap with cell-type selective 

open chromatin regions, (2) we estimated  the enrichment of known TF motifs among 

islet cell-type selective enhancers, (3) we identified islet cell-type selective enhancers 

that show robust TF binding, and finally (4) we integrated genetic data to identify 

variants that are likely to disrupt TF binding across cell-type selective enhancers and 

TF binding regions identified in (3). 

Regulome annotations were integrated with open chromatin regions that are 

selective for endocrine (beta, alpha and delta) and exocrine (acinar) cell types. This 

was accomplished by overlapping cell-type selective scATAC-seq peaks with the 

Miguel-Escalada et al (2019) human islet regulome using the intersect command (see 

Command 2) from the BEDTools 2.30.0 software (Quinlan & Hall, 2010). We grouped 

human islet regulome active enhancers I, II and III and used them jointly. Even though 

the distinct analyses performed in this study were based on islet cell-type enriched 

scATAC-seq peaks, we also annotated active enhancers across islet cell-type specific 

scATAC-seq peaks. 

 
Command 2 

Additionally, we integrated enhancer-to-gene assignments from Miguel-

Escalada et al (2019) and significant nominal cis-eQTL variants from the host lab by 

overlapping them with cell-type selective active enhancer elements in human 

pancreatic islets using the intersect command from bedtools (see Command 3). The -
wa and the -wb options were set to write the original entries of both intersecting files.  

This allowed us to assign a target gene based on the eQTL mapping and promoter 

capture Hi-C assignments to those overlapping cell-type selective enhancer elements. 

 

 
bedtools intersect -a <bulk regulome regions> -b <cell-type open chromatin 
peaks> 
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Then we used enrichr (Xie et al., 2021) to search for ontologies, pathways and cell-

types associated with genes regulated by islet cell-type selective enhancers. 

 
Command 3 

TF motif enrichment analysis was performed among enhancers overlapping 

islet-selective scATAC-seq peaks using HOMER 4.11 (Heinz et al., 2010), which is 

based on a differential motif discovery algorithm. Motif enrichment was also estimated 

across the smaller fraction of enhancers overlapping islet cell-type specific open 

chromatin regions. This provided further support of the islet regulatory cell-type 

component revealed through open chromatin regions enriched in a given islet cell-

type. To assess the robustness of the results, we used two different backgrounds for 

enrichment analysis, (i) the HOMER software default background and (ii) a custom 

background containing open chromatin regions that do not show enhancer epigenomic 

signatures. The HOMER default background is generated by selecting random regions 

from the genome until the total number of regions is 50000 or 2x the total number of 

peaks that are being analysed for each test. To execute the motif enrichment analysis, 

we used the HOMER findMotifsGenome.pl function (see Command 4). The fragment 

size used for motif finding was set to the exact size of the input regions with the option 

-size given, the UCSC human genome assembly hg19 was assigned as reference 

and the -mask option was used to mask out the repeat sequences in the genome. 

When the -bg option is not defined, HOMER selects the default background.  

 
Command 4 

For the identification of TF motif occurrences in enhancer elements,  enhancers 

within cell-type selective scATAC-seq peaks were transformed into DNA sequences 

using the getfasta command (see Command 5) from the BEDTools 2.30.0 software 

(Quinlan & Hall, 2010). The hg19 reference genome was used to extract the 

sequences.  

 

 
bedtools intersect -wa -wb -a <enhancer-to-gene assignments> -b <cell-type 
annotated enhancers> 
 

 
findMotifsGenome.pl <cell-type enhancer peaks> <genome> <output directory> 
-size given -mask -bg <background regions> 
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Command 5 

The FIMO 5.3.3 software (Grant et al., 2011) was employed to identify cell-type 

selective enhancers that show robust transcription factor binding. To that end, 

individual known TF motif occurrences are scanned across islet cell-type selective 

enhancer DNA sequences obtained as aforementioned (see Command 6). We 

included transcription binding motifs, represented as position probability matrices, 

based on our previous TF motif enrichment results. The –parse-genomic-coord FIMO 

option was set to check for UCSC style genomic coordinates.   

 
Command 6 

Islet cell-type selective enhancers with robust transcription factor binding were 

finally identified by intersecting (see Command 7) TF motif occurrences detected by 

FIMO with the annotated active enhancers across islet cell-type enriched peaks, 

resulting in TF motif-enhancer assignments.  

 
Command 7 

Finally, we identified known TF-binding that is potentially disrupted by common 

single-nucleotide variants (SNVs or SNPs, from now on). MotifbreakR 2.4.0 (Coetzee 

et al., 2015) was implemented on fine-mapped T2D-associated variants identified in 

Mahajan et al (2018). We overlapped T2D candidate causal variants with TF binding 

regions in islet-cell selective enhancers, and we estimated allele-specific effects of 

these candidate T2D causal variants on individual TF-binding (see Command 8 for 

chosen parameters; see complete code in Annex Command 1). MotifbreakR assesses 

if the sequence that surrounds a variant matches a known TF binding site and 

evaluates the amount of information that is gained or lost by one allele vs. another. 

The background frequencies (A=0.270182, C=0.2290216, G=0.2297711, 

T=0.2710253) were calculated from pancreatic islet enhancers (see Command 8); this 

 
bedtools getfasta -fi <genome> -bed <cell-type enhancer peaks> 
 

 
fimo -oc <output directory> --parse-genomic-coord <motif file> <cell-type 
enhancer sequences> 
 

 

 
bedtools intersect -wa -wb -a <FIMO TF motif coordinates> -b <cell-type 
annotated enhancer> 
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affects the calculation of motif disruptions.  The threshold option was set to establish 

5e-5 as the maximum p-value for a match to be called. The resulting variants were 

filtered by pct (pct > 0.8 ) ensuring that 80% of the motif matches the DNA sequence 

for the reference or alternate allele, and by the strength of the effect (effect = strong).  

 Thus, the integration of TF-binding that characterizes islet cell-type selective 

enhancers with fine-mapped genetic variants allowed us to identify the most likely 

molecular mechanism underlying a particular T2D association. 

 
Command 8 

 

4. Results 
Annotation of regulome signatures across cell-type selective open chromatin 
regions. After intersecting human pancreatic islet regulome annotations (Miguel-

Escalada, Bonàs-Guarch, Cebola, Ponsa-Cobas, Mendieta-Esteban, Atla, Javierre, 

Rolando, Farabella, Morgan, García-Hurtado, et al., 2019) with open chromatin 

regions (scATAC-seq peaks) enriched or specific for islet cell-types, we obtained an 

islet cell-type classification of active enhancers (see Figure 2). Within the endocrine 

proportion (beta, alpha and delta cell types) of the annotated enhancers, we observe 

that open chromatin regions enriched for beta and alpha cells account for the largest 

fraction of overlapping enhancer elements in comparison to delta cells. This is 

concordant for both cell-type enriched or specific scATAC-seq peaks. However, the 

low count of cell-type specific peaks directed our analysis towards islet enhancers that 

overlap islet cell-type enriched peaks (“islet cell-type selective enhancers”).  scATAC-

seq peaks enriched in acinar cells accounted for <30% of all enhancers overlapping 

any cell-type enriched scATAC peak, with more than 70% of them falling in open 

chromatin regions selectively active in endocrine cell-types, as expected. 

Nevertheless, we leveraged active enhancers selectively active in acinar cells to 

provide further evidence to the cell-type regulatory component connected to human 

islet endocrine cell populations.  

motifbreakR(snpList = list of snps,  
            filterp = TRUE, #to filter by p-value 
            pwmList = list of motifs to be interrogated, 
            threshold = 5e-5, #maximum p-value for a match to be called 
            method = "ic", 
            bkg = c(A=0.270182, C=0.2290216, G=0.2297711, T=0.2710253), 
            BPPARAM = BiocParallel::SerialParam()) 
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Figure 2    Barplot showing absolute number of active enhancers overlapping islet 

cell-type enriched (in orange) and specific (in blue) scATAC-seq peaks (islet cell-type 

enriched/specific open chromatin regions).  

 

After classifying enhancers according to islet cell-type selective chromatin 

accessibility, we assigned target genes by leveraging pcHi-C enhancer-gene 

assignments (Miguel-Escalada, Bonàs-Guarch, Cebola, Ponsa-Cobas, Mendieta-

Esteban, Atla, Javierre, Rolando, Farabella, Morgan, García-Hurtado, et al., 2019) and 

islet cis-eQTL variants (manuscript in preparation by the host lab). We performed 

enrichment analysis for functional annotations and ontologies with enrichR (Kuleshov 

et al., 2016) in target genes assigned to islet cell-type selective enhancers. We show 

in Table 1 that genes connected to endocrine cell-type selective enhancers were 

enriched (although not significantly after multiple test correction, in most cases) for 

functional annotations that are essential for pancreatic function, endocrine cell 

differentiation and development, and diabetes. Note that, while highly ranked 

annotations across genes linked to each group of endocrine cell-type selective 

enhancers revealed a broad endocrine functional profile, we did not achieve 
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appropriate resolution to unearth a cell-type selective profile. However, target genes 

assigned to alpha cell-selective enhancers were enriched in pathways related to 

glucagon secretion. Target genes connected to acinar cell-selective enhancers 

showed enrichment for annotations associated with cellular stress and apoptosis.  

 

Table 1    Top functional biological terms enriched in target genes assigned to islet 

cell-type selective enhancers (see complete list in Annex Table 1).  

 
 

TF motif enrichment analysis. Motif enrichment analysis revealed well-defined 

groups of known TF motifs distinctly enriched across islet cell-type selective 

enhancers. (see Figure 3). Clustering of beta and alpha cell-selective enhancers was 

largely driven by a recurrent enrichment for TF motifs from members of the Forkhead 

box (FOX) family, among others. In particular, FOXA1 and FOXA2 were consistently 

enriched in alpha cell-selective enhancers, and in a lower degree in beta cell-selective 

enhancers. These FOXA family members are essential for alpha cell function and 

differentiation, glucagon biosynthesis and for beta cell secretory and metabolic activity 

(N. Gao et al., 2008; Nan Gao et al., 2010; Heddad Masson et al., 2014; Lee, Sund, 

Behr, Herrera, & Kaestner, 2005). We also identified a large enrichment of motifs from 

members of the RFX TF family in endocrine active enhancers, such as RFX6 in alpha 

cell-selective enhancers, which is involved in the determination of the endocrine cell 

lineage (Bramswig & Kaestner, 2011; Chandra et al., 2014; Smith et al., 2010). 

Endocrine cell-selective enhancers showed TF enrichment for members from the NKX 

family such as NKX6.1, which have also been reported to participate in alpha-cell 

formation and glucagon biosynthesis (Henseleit et al., 2005). TF motifs from PDX1 

and PBX2 transcription factors were found to be enriched across endocrine cell-

selective enhancers but mostly across enhancers selectively active in beta and delta 

cells. These results are in line with previously observed activity of PDX1 and PBX2 in 

the stimulation of somatostatin expression (Ampofo, Nalbach, Menger, & Laschke, 

2020).  

Gene-set library Top functional biological terms for gene sets P value
Adjusted P 
values

Combined 
score Gene examples

Beta cells KEGG 2021 Human Maturity onset diabetes of the young 0.00944 1.000 13.72 NEUROD1 ,PDX1 ,SLC2A2 ,HES1 
KEGG 2021 Human Type II diabetes mellitus 0.00969 1.000 10.57 KCNJ11 ,ABCC8 ,PRKCE ,PDX1 
Descartes Cell Types and Tissue 2021 Islet endocrine cells in Pancreas 0.02314 1.000 5.62 NECAB2 ,CERKL ,NKX2-2-AS1 ,DDC 

Alpha cells Elsevier Pathway Collection alpha-Cell to beta-Cell Interconversion (Hypothesis) 0.00022 0.347 46.88 NEUROD1 ,CXCL12 ,MAF ,MAFB 
Elsevier Pathway Collection L-cell: GCG, PYY and 5-HT Release 0.00418 1.000 19.17 CASR ,FFAR4 ,GNAS ,FFAR2 
GO Biological Process 2018 type B pancreatic cell differentiation (GO:0003309) 0.00016 0.703 139.27 PDX1 ,RFX3 ,INSM1 ,DLL1 
ARCHS4 Tissues PANCREATIC ISLET 0.00005 0.006 12.19 USP6NL ,SCOC ,EHF ,FAM159B 

Delta cells KEGG 2021 Human Insulin secretion 0.00377 1.000 14.29 CAMK2B ,CHRM3 ,RYR2 ,CAMK2D 
GO Biological Process 2018 regulation of type B pancreatic cell development (GO:2000074) 0.00006 0.175 233.92 GSK3B ,RHEB ,RFX3 ,NKX6-1 
ARCHS4 Tissues BETA CELL 0.01388 1.000 5.18 EHF ,TRIO ,TMEM200A ,TESK1 
ARCHS4 Tissues PANCREATIC ISLET 0.02602 1.000 4.33 USP6NL ,SCOC ,EHF ,FAM159B 

Acinar cells WikiPathway 2021 Human Apoptosis-related network due to altered Notch3 in ovarian cancer WP2864 0.00116 0.661 17.73 VAV3 ,APP ,SOCS3 ,CDKN1A 
CCLE Proteomics 2020 ASPC1 PANCREAS TenPx29 0.00402 1.000 7.25 SH2D4A ,ACY1 ,CD82 ,PWWP2B 
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Figure 3    Heatmap representing enrichment of known TF motifs in cell-type selective 

active enhancers vs. the custom background (open chromatin regions that do not 

show enhancer epigenomic signatures). Top 50 enriched TF motifs for each cell type 

were selected for plotting. High enrichment (based on the enrichment p-value) is in 

red, and low enrichment in yellow.   

 

HOXB4 and HOXA1 TF motifs are highly enriched in beta and delta cell-

selective enhancers. Previous work reported that HOX TFs may be involved in 

pancreatic development (Gray, Pandha, Michael, Middleton, & Morgan, 2011). Other 

interesting TF motifs are LHX1, PTF1A and NEUROD1, which are significantly 

enriched in beta-selective enhancers, and ISL1 TF motifs, enriched in both beta and 

alpha cell-selective enhancers; these TFs are involved in pancreatic development and 

glucose homeostasis (Bethea et al., 2019; Dong, Provost, Leach, & Stainier, 2008; 

Gray et al., 2011; Mastracci, Anderson, Papizan, & Sussel, 2013). Within the minor 

fraction of delta cell-selective enhancers (9% of all cell-type selective enhancers, see 

Figure 2) we observed very low TF enrichment except for some TF motifs 

abovementioned. We rationalized that the low number of scATAC-seq peaks identified 
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in delta cells (see Figure 1) could hinder our statistical power. Of note, we also noticed 

that acinar cell-selective enhancers were largely enriched for FOS, FRA and JUN TF 

motifs, which are involved in the response against stress-induced cell death (Vaz et 

al., 2012; Zhou et al., 2007). The limited fraction of acinar cells captured in this analysis 

are most likely to be the result from exocrine contamination, and hereby, they might 

have suffered from cellular stress during human pancreatic isolation. 

 

Analysis of individual motif occurrence. We selected a subset of TF motifs that 

were representative across islet cell-type selective enhancers based on previous TF 

motif enrichments. Results show that the cell-type selective component of the 

enhancers bound by a given TF (see Figure 4) is consistent with the cell-type selective 

clustering revealed in the TF motif enrichment analysis (see Figure 3).  

 

 
Figure 4    Heatmap showing known TF motif occurrences across islet cell-type 

selective enhancers. Lower to higher occurrences are represented from light yellow to 

dark red, respectively. TF motifs were selected based on previous TF motif enrichment 

results (see Figure 3). 
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LHX1, NEUROD1 and HOXb4 TF motifs show a high occurrence in beta cell-

selective enhancers. Across alpha cell-selective enhancers, we observe an elevated 

occurrence of NKX6.1, FOXA1 and FOXA2 TF motifs. High TF motif occurrences for 

FOS, FRA1 and JUNB were identified in acinar cell enhancers. Finally, very low levels 

of TF motif occurrences were detected across delta cell-selective enhancers, 

consistent with the limited power already observed in TF motif enrichment analysis for 

this endocrine cell population. 

 

Identification of T2D risk genetic variants affecting TF binding across islet cell-
type selective enhancers. To predict the effect of T2D risk variants on islet cell-type 

gene regulation, we first overlapped fine-mapped T2D variants from one of the largest 

T2D GWAS meta-analysis (Mahajan et al., 2018a) with TF binding regions previously 

identified in islet-cell selective enhancers. This detected 22 candidate T2D causal 

variants within islet cell-type associated TF binding sites. After estimating the allele-

specific effects of these 22 variants on the corresponding TF-binding sites using 

motifbreakR (Coetzee et al., 2015), 6 candidate T2D causal variants (rs180980072, 

rs115077735, rs703977, rs386111, rs34584161 and rs190513637) were predicted to 

disrupt TF binding for NEUROD1, HOXA1, LHX1 and FOS across beta, alpha and 

acinar selective enhancers (see Annex Table 2).  

For example, at the RNF6/CDK8 locus rs34584161 impacts on FOS TF binding 

in beta-cell selective active enhancers (see Annex Table 2). We observe that the T2D 

[A] risk increasing allele (effect size = 0.05) favors FOS TF binding (pct = 0,99). FOS 

TF motifs have recently been reported to be enriched in chromatin accessible regions 

associated with hormone-low endocrine cell-type states, including insulin low-

secretory beta cells (Chiou et al., 2021). Furthermore, according to in-house and a 

recently published eQTL dataset in ~400 human pancreatic islet samples (Viñuela et 

al., 2020) (see figure 5) the rs34584161 [A] T2D risk allele is also associated with 

RNF6 and CDK8 increased gene expression levels. CDK8 has been proposed as a 

negative regulator of insulin secretion and as a repressor proapoptotic neuropeptides 

expression during metabolic stress (Xue, Scotti, & Stoffel, 2019). Taken together, this 

suggests that the rs34584161 variant within a beta-cell selective enhancer contributes 

to T2D pathophysiology via the FOS-related regulatory network and by impacting on 

RNF6 and CDK8 gene expression.  Further experiments to disentangle the effect on 
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insulin secretion and response to cell stress are necessary to elucidate the underlying 

molecular mechanism.  

 

 
Figure 5. (a) Regional association signal locuszoom plot for the RNF6/CDK8 locus 

centered on the rs34584161 T2D risk variant. Each dot represents a variant, with its 

p-value from a BMI-adjusted T2D meta-analysis on a -log10 scale in the y-axis. The x-

axis represents the genomic position (hg19). Each variant is coloured by the LD (r2) 

with rs34584161. (b) Human islet ATAC-seq, scATAC-seq across endocrine cell-types 

and CHIP-seq datasets for H3K27ac, H3K4me3 and Mediator are represented across 

islet regulome annotations. Gene assignments for rs34584161 are shown as purple 

archs based on eQTL maps in human islets. (c) TF binding disruption of FOS motifs 

by rs34584161. The position of the SNP within the motif are indicated by a purple dot 

and the red box. Motif logos for the robustly disrupted TF motifs are shown.  

 

Another example is the rs180980072 variant, which impacts on NEUROD1 TF 

binding in an alpha cell-selective active enhancer (see Annex Table 2). It should be 

noted that although this enhancer shows an increased chromatin accessibility in alpha 

cells, we observe scATAC-seq signal in other endocrine cell types. Additional 
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comprehensive analyses will provide further resolution to the true islet cell-type 

component of this and other regulatory elements. Contrary to the last example, here 

the rs180980072 [A] effect allele protects for T2D (effect size = -0.19) and favors 

NEUROD1 TF binding (pct = 0.97). Chromatin interaction maps from pcHi-C in human 

islets (see Annex Figure 1) links the enhancer where rs180980072 falls to ITGA1 and 

PELO genes. This suggests a candidate regulatory influence from the alpha selective 

enhancer containing the rs180980072 variant over the expression of ITGA1 and 

PELO. Of note, PELO has been identified in a recent genome-wide CRISPR screen 

to positively regulate insulin secretion (Grotz et al., 2021) and ITGA1 has been 

reported as a beta-cell surface marker that successfully performs to enrich for 

functional stem-cell derived beta cells (Veres et al., 2019).  

 

5. Discussion  
Untwining the single-cell regulatory profile of gene regulation is one of the most 

challenging goals ahead. New technological developments such as scATAC-seq have 

expended our capacity to bring gene regulatory frames at a cellular resolution. This 

creates new opportunities to unravel the cell-type selective contributions to cell identity 

and function, or disease pathophysiology. Our project aims to characterize single-cell 

regulatory profiles in human pancreatic islets and elucidate the distinct roles of islet 

cell-types to human pancreatic islet transcriptional regulation. We sub-classified 

human islet active enhancers according to their cell-type selective chromatin 

accessibility and quantified TF motif enrichments in groups of islet cell-type selective 

enhancers. Finally, we identified cell-type selective active enhancers bound by TF that 

were a proxy of islet cell-type selective regulatory programmes, which also were 

impacted by T2D risk alleles. 

Our classification of enhancer elements according to islet-cell selective 

chromatin accessibility attained the appropriate resolution to discriminate between 

islet gene regulation in the endocrine vs. the exocrine component. However, as 

observed by the enrichment of functional annotations and ontologies in genes linked 

to islet cell-selective enhancers, we were not able to unearth a cell-type selective 

profile. Several limitations could explain this lack of endocrine cell-type resolution. 

First, we relied on cell-type enriched chromatin accessibility peaks to sub-classify 

enhancer elements. Although a given enhancer might show increased chromatin 
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accessibility in a given cell type, with our current dataset, we cannot discard enhancer 

activity in other endocrine cell-types. Second, we reasoned that the overwhelmingly 

lack of significant enrichments (based on adjusted p-values) for the different ontologies 

and annotations can be partially explained by the narrowed gene count due to the 

limited number of available cell-type selective enhancers. Of note, we did not leverage 

cell-type selective promoters, which might have provided a more comprehensive 

single-cell perspective of human islet regulation. Furthermore, expanding this pilot 

study, by harnessing human islet scATAC-seq data in additional donors, will provide 

further resolution. Finally, we also relied on islet eQTL data to connect enhancer 

elements to target genes, which could be confounded by LD  (Schaid et al., 2018). 

Thus, we might have connected enhancer elements to non-relevant target genes that 

may dilute our understanding of the cell-type selective component of human 

pancreatic gene regulation.  

We should note that linking single-cell chromatin accessibility on enhancers and 

promoters, and by also integrating scRNA-seq data of candidate target genes, could 

provide a larger granularity in the cell-type characterization of gene regulatory 

networks in human pancreatic islets. This can be accomplished by employing CICERO 

(Pliner et al., 2018). This tools leverages single-cell chromatin accessibility data to 

predict cis-regulatory interactions (such as those between enhancers and promoters). 

This will allow us to assign enhancers to their endogenous target genes by following 

single-cell profiles.  

 Motif enrichment analysis and the identification of motif occurrence across cell-

type selective enhancers revealed several TFs that could delineate islet cell-type 

regulatory networks. However, TF motif redundancy was observed between cell-types 

hindering the identification of consistent islet cell-type TF networks. One approach to 

overcome this limitation is harnessing manually-curated PWM (position weighted 

matrices) databases for the TF motif enrichment analysis. Furthermore, alternative 

motif enrichment software more appropriate for scATAC-seq data, such as chromVAR 

(Schep, Wu, Buenrostro, & Greenleaf, 2017), could have refined our results. 

Our integrative approach combining fine-mapped T2D variants, eQTL data and 

cell-type selective enhancers allowed us to propose the molecular mechanism 

underlying T2D genetic susceptibility. However, due to the multifactorial nature of T2D, 

other tissues and biological pathways could be contributing to the disease 

pathophysiology. Therefore, not all T2D signals could be explained by perturbations 
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in the islet regulatory landscape. Thus, our data might have been more relevant to 

dissect genetic associations related to other islet-related traits, such as fasting 

glycemia or measures of beta-cell function based on oral glucose tolerance tests, 

among others. However, high-resolution fine-mapped data was not available. 

Despite all these limitations, we were able to characterize cell-type selective 

regulatory profiles by identifying T2D-associated variants that modulate TF binding 

sites, which are distinctly enriched in sets of cell-type selective enhancers. This and 

other on-going efforts are essential to bridge the genotype to phenotype gap and 

invigorate drug discovery. 

 

6. Conclusions 
After the completion of this master project the following conclusions were drawn. First, 

despite TF motif redundancy, motif enrichment analysis presented well-defined groups 

of known TF motifs distinctly enriched across islet cell-type selective enhancers. 

Second, the landscape of TF motif occurrences across cell-type selective enhancers 

was consistent with the cell-type selective clustering observed in the TF motif 

enrichment analysis. This provides further support to our definitions of islet-cell 

selective TF binding.  Third, the integration of TF-binding that characterizes islet cell-

type selective enhancers with fine-mapped T2D genetic variants allowed us to propose 

the most likely molecular mechanism underlying some T2D risk loci. Fourth, the small 

count of enhancers leveraged in this study could have limited the performance of our 

approach, masking cell-type selective regulatory networks operating across the islet 

regulome. And last, further analyses should focus on extending the sample size, as 

well as on joint analysis of cell-type selective enhancers along with their target 

promoters, and on the integration of scRNA-seq data. These and other efforts will aid 

in elucidating the cell-type selective regulatory component of gene regulation in human 

pancreatic islets.  

 

7. Glossary  
ATAC-seq – assay for transposase-accessible chromatin using sequencing 

ChIP – chromatin immunoprecipitation 

ChIP-seq – chromatin immunoprecipitation sequencing 
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DNA – deoxyribonucleic acid 

eQTL – expression quantitative trait locus 

GWAS – genome-wide association study 

H3K27ac – histone 3 lysine 27 acetylation 

H3K4me1 – histone 3 lysine 4 mono-methylation  

H3K4me3 – histone 3 lysine 4 tri-methylation 

LD – linkage disequilibrium 

pcHi-C – promoter capture Hi-C 

scATAC-seq – single-cell ATAC sequencing 

scRNA-seq – single-cell RNA sequencing 

TF – transcription factor 

TFBS – transcription factor binding site 

TSS – transcription start site  
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Annex 

 
Annex Command 1 

 
 
 
 
 
 
 
 
 
 
 
 
 

library(motifbreakR) 
library(MotifDb) 
library(BSgenome) 
library(BSgenome.Hsapiens.UCSC.hg19) 
library(SNPlocs.Hsapiens.dbSNP142.GRCh37) 
 
data(motifbreakR_motif) 
 
# read in Single Nucleotide Variants 
pca.snps <-c("rs115077735","rs180980072","rs190513637", 
             "rs34584161","rs386111","rs703977") 
 
# import rsid snips "pca.snps" 
snps.mb <- snps.from.rsid(rsid = pca.snps, 
                          dbSNP = SNPlocs.Hsapiens.dbSNP142.GRCh37, 
                          search.genome = BSgenome.Hsapiens.UCSC.hg19) 
 
# execute motifbreakr 
results <- motifbreakR(snpList = snps.mb, filterp = TRUE, 
                       pwmList = motifbreakR_motif, 
                       threshold = 5e-5, 
                       method = "ic", 
                       bkg = c(A=0.270182, C=0.2290216, 
                             G=0.2297711, T=0.2710253), 
                       BPPARAM = BiocParallel::SerialParam()) 
 
# calculate p-values 
results <- calculatePvalue(results) 
 
# filter by effect and pct 
results <- results[results$effect == "strong" & (results$pctRef > 0.80 | 
results$pctAlt > 0.80),] 
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Annex Table 1.    Complete list of top functional biological terms enriched in target 

genes assigned to islet cell-type selective enhancers.  
 

 
 

Annex Table 2.    List of candidate T2D causal variants estimated with motifbreakR 

and filtered by pct (pct > 0.8) and strength of the effect (effect = strong). Ref = 

reference allele for the variant; Alt = alternate allele for the variant. 

 

 

Cell type Gene-set library Top functional biological terms for gene sets P value
Adjusted 
P values

Combined 
score Genes

Various types of N-glycan biosynthesis 0.0016 0.498 18.95 CHST9,ALG9,ALG2,ALG3
Maturity onset diabetes of the young 0.0094 1.000 13.72 NEUROD1,PDX1,SLC2A2,HES1
Type II diabetes mellitus 0.0097 1.000 10.57 KCNJ11,ABCC8,PRKCE,PDX1
N-Glycan biosynthesis 0.0214 1.000 7.76 DPAGT1,ALG9,ALG2,ALG3
Insulin secretion 0.0663 1.000 4.13 CAMK2B,CHRM3,RYR2,CAMK2D
insulin-like growth factor I binding (GO:0031994) 0.0005 0.458 57.35 IGFBP1,IGFBP5,IGFBP4,ITGB4
insulin-like growth factor binding (GO:0005520) 0.0009 0.458 43.52 IGFBP1,IGFBP5,IGFBP4,ITGB4
insulin-like growth factor II binding (GO:0031995) 0.0025 0.794 70.29 IGFBP1,IGFBP5,IGFBP4,IGFBP3,
RNA polymerase II transcription corepressor activity (GO:0001106) 0.0094 1.000 13.72 TLE1,CITED2,CTBP1,ZMYND8
glucocorticoid receptor binding (GO:0035259) 0.0112 1.000 26.43 NR4A2,NR4A1,NRIP1,YWHAH
Islet endocrine cells in Pancreas 0.0231 1.000 5.62 NECAB2,CERKL,NKX2-2AS1,DDC
Neuroendocrine cells in Lung 0.0257 1.000 6.09 KCNH2,OPRD1,TMEM132D,GPX2
Chromaffin cells in Intestine 0.0894 1.000 3.30 RAB3B,CERKL,LRRC10B,LSAMP
Stromal cells in Lung 0.2525 1.000 1.83 PDGFRA,MIR1245A,OCA2,MYOCD
Stromal cells in Intestine 0.3749 1.000 1.19 EDAR,EPN3,PDGFRA,NPY
alpha-Cell to beta-Cell Interconversion (Hypothesis) 0.0002 0.347 46.88 NEUROD1,CXCL12,MAF,MAFB
L-cell: GCG, PYY and 5-HT Release 0.0042 1.000 19.17 CASR,FFAR4,GNAS,FFAR2
Transcription Factors in beta-Cell Neogenesis (Rodent Model) 0.0042 1.000 19.17 NEUROD1,MAFB,PDX1,PAX6
Prostate Cancer 0.0101 1.000 7.68 GSK3B,CDKN1A,TGFB1I1,PTEN
Endocannabinoids Role in Sleep Regulation 0.0118 1.000 20.20 DAGLA
type B pancreatic cell differentiation (GO:0003309) 0.0002 0.703 139.27 PDX1,RFX3,INSM1,DLL1
neurotrophin signaling pathway (GO:0038179) 0.0012 1.000 34.40 NTRK1,SORT1,MAGI2,DDIT4,
sympathetic ganglion development (GO:0061549) 0.0018 1.000 57.71 NELL2,FZD3,SEMA3A,INSM1
positive regulation of endothelial cell migration (GO:0010595) 0.0021 1.000 13.79 NELL2,ADAM17,NOS3,ATOH8
ganglion development (GO:0061548) 0.0037 1.000 38.16 NELL2,FZD3,SEMA3A,INSM1
PANCREATIC ISLET 0.0001 0.006 12.19 USP6NL,SCOC,EHF,FAM159B
BETA CELL 0.1092 1.000 2.38 EHF,TRIO,TMEM200A,TESK1
ALPHA CELL 0.5788 1.000 0.54 ERRFI1,EHF,TMEM200A,RGSL1
PREFRONTAL CORTEX 0.9998 1.000 0.00 PPP5D1,TRIO,ZMYND8,RGSL1
CEREBRAL CORTEX 1.000 1.000 0.00 HPSE2,HDAC11,AQP4,LDLRAD4
Insulin secretion 0.0037 1.000 14.29 CAMK2B,CHRM3,RYR2,CAMK2D
Non-homologous end-joining 0.0081 1.000 30.68 FEN1,RAD50,XRCC4
GABAergic synapse 0.0303 1.000 7.08 KCNJ6,SLC12A5,GAD1,GNAI3
Thyroid cancer 0.0315 1.000 9.60 NTRK1,TCF7L2,CDKN1A,RXRA
Other types of O-glycan biosynthesis 0.0319 1.000 8.64 GALNT7,COLGALT2,GALNT3,GALNT2
regulation of type B pancreatic cell development (GO:2000074) 0.0001 0.175 233.92 GSK3B,RHEB,RFX3,NKX6-1
adenylate cyclase-activating adrenergic receptor signaling pathway (GO:0071880) 0.0013 0.762 40.62 ADRA1B,ADRA2A
type B pancreatic cell differentiation (GO:0003309) 0.0018 0.762 72.73 PDX1,RFX3,INSM1,DLL1
negative regulation of MAP kinase activity (GO:0043407) 0.0018 0.762 19.95 DUSP4,PTPN1,DUSP2,RGS14
cellular response to corticosteroid stimulus (GO:0071384) 0.0021 0.762 44.38 BCL2L11,AKR1C3,SSTR2,NR3C1
BETA CELL 0.0138 1.000 5.18 EHF,TRIO,TMEM200A,TESK1
PANCREATIC ISLET 0.0260 1.000 4.33 USP6NL,SCOC,EHF,FAM159B
PREFRONTAL CORTEX 0.2087 1.000 1.69 PPP5D1,TRIO,ZMYND8,RGSL1
CINGULATE GYRUS 0.4593 1.000 0.79 APP,SCOC,HPSE2,HDAC11
SPINAL CORD (BULK) 0.4948 1.000 0.71 HPSE2,AQP4,HS6ST1,ANTXR1
Apoptosis-related network due to altered Notch3 in ovarian cancer WP2864 0.0012 0.661 17.73 VAV3,APP,SOCS3,CDKN1A
Integrated breast cancer pathway WP1984 0.0046 0.806 9.03 ATF1,ZMYND8,ODC1,PTEN
Pathogenic Escherichia coli infection WP2272 0.0048 0.806 12.17 TUBAL3,TUBB,PRKCA,ACTB
Bladder cancer WP2828 0.0064 0.806 12.77 CDKN1A,RASSF1,RPS6KA5,MYC
Gastrin signaling pathway WP4659 0.0071 0.806 8.68 GSK3B,JUN,CDKN1A,MEF2B
insulin-like growth factor I binding (GO:0031994) 0.0005 0.484 56.89 IGFBP1,IGFBP5,IGFBP4,IGFBP3
insulin-like growth factor binding (GO:0005520) 0.0010 0.484 43.16 IGFBP1,IGFBP5,IGFBP4,IGFBP3
insulin-like growth factor II binding (GO:0031995) 0.0026 0.832 69.77 IGFBP1,IGFBP5,IGFBP4,IGFBP3
cadherin binding involved in cell-cell adhesion (GO:0098641) 0.0110 1.000 15.37 ANXA2,PAK4
retinoic acid receptor binding (GO:0042974) 0.0136 1.000 15.67 NR4A2,MBD4,NCOA6
ASPC1 PANCREAS TenPx29 0.0040 1.000 7.25 SH2D4A,ACY1,CD82,PWWP2B
SNU719 STOMACH TenPx29 0.0142 1.000 5.38 ATF1,HERPUD2,SCOC,DHRS11
JHH4 LIVER TenPx40 0.0211 1.000 5.02 FKBP10,TGFB1I1,BHLHE41,JADE1
LS180 LARGE INTESTINE TenPx27 0.0405 1.000 3.81 USP6NL,SCOC,PWWP2B,RTCB
HEYA8 OVARY TenPx27 0.0466 1.000 3.75 RAB3B,BCAR3,SCOC,NRP2

CCLE Proteomics 2020

Beta cells

Alpha cells

Delta cells

Acinar cells

KEGG 2021 Human

GO Molecular Function 2018

Descartes Cell Types and Tissue 2021

Elsevier Pathway Collection

GO Biological Process 2018

ARCHS4 Tissues

KEGG 2021 Human

GO Biological Process 2018

ARCHS4 Tissues

WikiPathway 2021 Human

GO Molecular Function 2018

chr Locus rsid position Effect Allele  Effect size Ref Allele Alt Allele PctRef PctAlt Ref P-value Alt P-value AlleleDiff Enhancer location Enhancer type TF motif Cell type Motif database 
chr5 ITGA1-rs62357230 rs180980072 52005870 A -0,19 A T 0,97 0,82 1,72E-05 1,08E-03 -1,46 chr5:52005770:52006703 Active enhancers I NeuroD1 alpha HOMER
chr9 GLIS3-rs510807 rs115077735 4137685 A 0,16 G A 0,85 0,99 2,64E-04 9,54E-07 1,20 chr9:4137032:4138334 Active enhancers II HOXA1 acinar HOCOMOCO
chr10 ZMIZ1-rs703972 rs703977 80944230 T 0,08 T G 0,92 0,81 2,37E-05 5,09E-04 -1,07 chr10:80943759:80944788 Active enhancers I Lhx1 beta ENCODE-motif
chr11 KCNQ1-rs445084 rs386111 2933605 A 0,00 A G 0,97 0,82 8,58E-06 1,84E-03 -1,33 chr11:2933530:2934500 Active enhancers III NeuroD1 acinar HOCOMOCO
chr13 RNF6-rs34584161 rs34584161 26776999 A 0,05 A G 0,99 0,83 1,62E-05 1,12E-03 -1,51 chr13:26776649:26777631 Active enhancers I Fos beta HOMER
chr13 RNF6-rs34584161 rs34584161 26776999 A 0,05 A G 0,96 0,82 4,01E-05 9,37E-04 -1,54 chr13:26776649:26777631 Active enhancers I Fos beta ENCODE-motif
chr17 ZZEF1-rs1043246 rs190513637 3977886 A 0,07 A G 0,98 0,84 6,68E-06 6,57E-04 -1,37 chr17:3977635:3978684 Active enhancers I NeuroD1 beta HOMER
chr17 ZZEF1-rs1043246 rs190513637 3977886 A 0,07 A G 0,97 0,81 1,62E-05 2,07E-03 -1,33 chr17:3977635:3978684 Active enhancers I NeuroD1 beta HOCOMOCO



 43 

 
Annex Figure 1. Human islet ATAC-seq, scATAC-seq across endocrine cell-types, 

and CHIP-seq datasets for H3K27ac, H3K4me3 and Mediator are shown across islet 

regulome annotations. Gene assignments based on pcHi-C data connecting the 

rs180980072-containing enhancer to PELO and ITGA1 genes are shown as purple as 

purple arches. 

 


