
LEARN-SQL:Automatic Assessment of SQL Based on IMS QTI Specification

Alberto Abelló1, M. Elena Rodríguez2, Toni Urpí1, Xavier Burgués1,
M. José Casany1, Carme Martín1, Carme Quer1

Universitat Politècnica de Catalunya1, Universitat Oberta de Catalunya2
{aabello,urpi,diafebus,mjcasany,martin,cquer}1@lsi.upc.edu, mrodriguezgo@uoc.edu2

Abstract

In this paper we present LEARN-SQL, a system
conforming to the IMS QTI specification that allows
on-line learning and assessment of students on SQL
skills in an automatic, interactive, informative,
scalable and extensible manner.

1. Introduction

In this paper we present LEARN-SQL (Learning
Environment for Automatic Rating of Notions of
SQL), a system conforming to the IMS QTI [3] that
allows the learning and assessment of students on SQL
skills in an automatic and efficient manner. SQL
(Structured Query Language) is the dominant database
(DB) language today, comprising commands to define
schema structures (i.e. tables, views, indexes, etc.) as
well as statements to manipulate data (i.e. queries,
modification statements, procedures, triggers, etc.).
The model underlying SQL is the relational model.

The development of software architectures that deal
with automatic code correction is not new in computer
science education. Several efforts have been made for
automatic correction of programming problems (see
[2] for a detailed discussion). In the case of the DB
field, additional difficulties arise: firstly, the variety
and diversity of SQL question types implies to cope
with a broad set of evaluation methods to guarantee the
correctness of student solutions and secondly, the
added problems that a specialized and complex
technology, as is the case of a database management
system (DBMS), imposes.

Some tools have been proposed for students
learning and assessment on SQL skills. [1, 7, 8, 9] are
good examples of such tools. On the other hand, [4, 5]
are automated tutor systems for SQL abilities training;
therefore, the focus is on providing personalized
training and guidance to students. The main drawback
of all previous works is they only cover SELECT

statements. They do not take into account learning
technologies specifications either.

The main problem, when trying to automatically
correct SQL questions, is that the solution, in the
general case, is not unique. Moreover the number of
correct solutions, for a given SQL question, grows
rapidly as its complexity does. For example, the SQL
statements: a) UPDATE DEPARTMENTS SET
BUDGET=0.1*BUDGET WHERE #DEPT NOT IN
(SELECT #DEPT FROM EMPLOYEES) and b)
UPDATE DEPARTAMENTS D SET
D.BUDGET=D.BUDGET-D.BUDGET*0.9 WHERE
NOT EXISTS (SELECT * FROM EMPLOYEES E
WHERE E.#DEPT=D.#DEPT), are semantically
equivalent (both sentences decrease in 90% the budget
of departments without assigned employees), although
they are different from a syntactic point of view.
Therefore an automatic correction based on string
comparison between the student solution and all
existing valid solutions provided by the teacher is
neither feasible nor efficient.

So, we need to implement a strategy that objectively
allows evaluating the correctness of the solution given
by a student. This strategy depends on the kind of SQL
question posed (e.g. SELECT or UPDATE SQL
questions will have different correction strategies). In
the case of the previous UPDATE statement, the
associated strategy, as first step, needs to apply to the
student solution a set of experiments representing
different DB states for the DEPARTMENT and
EMPLOYEES tables. Each experiment verifies a
possible mistake made by the student when the number
of updated rows (which is the output of the operation)
in the DEPARTMENTS table coincides with the
number of departments without employees. However
this is not enough; as second step, for each experiment,
it is also required to confirm that the departments
having zero employees (and only those departments
and only the BUDGET column) have been properly
updated in the DEPARTMENTS table.

2. System architecture

IMS QTI deals with questions (i.e.
assessmentItems) and tests (i.e. assessmentTests).
More specifically, it proposes a software architecture
consisting of a repository (i.e. itemBank) managed by
the itemBankManager that stores the assesmentItems
(which will be SQL questions in our case) that can be
included and reused in different assesmentTests in a
given learningSystem. There is also an authoringTool
for the authors to manage assessmentItems and a
testConstructionTool for the testConstructors to build
assessmentTests. The tutors configure the materials in
the learningSystem for the candidates, who can answer
assessmentTest through an assessmentDeliverySystem,
maybe under the vigilance of a proctor.

Figure 1. Extended IMS QTI Architecture.

There is one more element in this architecture: the
scorer. In [3], it is defined as a person or external
system responsible for assessing the candidate's
responses. Thus, since one of our goals is to
automatice the assessment process, we choose it to be
a system as emphasized in figure 1. We have
implemented it as a Web Service (WS) which is in
charge of SQL questions assessing. A WS is a
software resource available in the Web at the disposal
of anyone who needs it. This kind of construct
improves by itself the flexibility in the implementation
and geographical distribution of the components. In
our case, we needed to extend the IMS QTI
architecture, because the assessmentDeliverySystem
asks the scorers to assess candidate responses, but also
the authoringTool calls them to generate the correct
output for the battery of experiments of an
assessmentItem. In turn, a scorer needs to query the
itemBank in order to get this same battery of
experiments (to retrieve the defined experiments to be
evaluated, as well as to retrieve and store the correct
outputs of each of the experiments).

3. Conclusions

The design of LEARN-SQL has been driven by the
requirements of automatization, interactivity,
informativeness, scalability and extensibility.

From students’ perspective, LEARN-SQL has
proved its usefulness since students can access the tool
anytime and anywhere obtaining automatically
semantic feedback and grading, enhancing their
learning in SQL skills. The response time we have
obtained during the evaluation (in a group of 40
students) is about 1-2 seconds for query and data
modification items, and 5-6 seconds for schema
modification and optimization items.

From teachers’ perspective, LEARN-SQL helps
them to teach SQL skills while enforcing consistency
in grading and helping to considerably reduce their
marking load, although manual qualitative assessment
of student responses is not excluded. We would like to
point out that our architecture allows not only the reuse
of the SQL assessment items in different tests, but also
among different subjects.

4. Acknowledgments

This work has been supported by the Improvement of
Learning Quality Program (2007MQD00202 project)
funded by the Catalan Government and by the
PERSONAL research project (TIN2006-15107-C02)
funded by the Spanish Ministry of Education.

5. References

[1] Dekeyser, S., de Raadt, M.., Lee, T.Y., “Computer
Assisted Assessment of SQL query Skills”, ADC, 2007.
[2] Douce, C., Livingstone, D., Orwell, J., “Automatic Test
Base Assessment of Programming: a Review”, ACM Journal
of Educational Resource in Computing, 5(3), 2005.
[3] IMS Learning Consortium, “IMS QTI Specification”,
available at: http://www.imsglobal.org.
[4] Kenny, C., Pahl, C., “Automated tutoring for a database
skills training environment”, SIGCSE’05, 2005, pp. 59–62.
[5] Mitrovic, A., “Learning SQL with a computerized
Tutor”, Proc. of SIGCSE’98, 1998, pp. 307–311.
[6] Polsani, P.R., “Use and Abuse of Reusable Learning
Object”, Journal of Digital Information, 3(4), 2004.
[7] Prior, J., Lister, R., “The backwash effect on SQL skills
grading”, Proc. of ITiCSE’04, 2004, pp. 32–36.
[8] Sadiq, S., Orlowska, M.., Sadiq, W., Lin, J., ”SQLator: an
Online SQL Learning Workbench”, Proc. of ITiCSE’04,
2004, pp. 223–227.
[9] Soler, J., Prados, F., Boada, I., Poch,, J., “Utilización de
una plataforma de e-learning en la docencia de Bases de
Datos”, Proc. of JENUI, 2006, pp. 581-588.

proctor
(teacher)
proctor
(teacher)

author
(teacher)

itemBankManager
(teacher)

itemBankManager
(teacher)

testConstructor
(teacher)

testConstructor
(teacher)

tutor
(teacher)
tutor

(teacher)

candidate
(student)

candidate
(student)

assessmentItem

assessmentTest

scorerscorer

authoringTool
(specific system)
authoringTool
(specific system)

testConstructionTool
(Moodle 1.8 module)

testConstructionTool
(Moodle 1.8 module)

itemBank
(postgreSQL 8.2)

itemBank
(postgreSQL 8.2)

assessmentDeliverySystem
(Moodle 1.8 module)

assessmentDeliverySystem
(Moodle 1.8 module)

learningSystem
(Moodle 1.8)

learningSystem
(Moodle 1.8)

NewNew

