
i

Capabilities and limitations of style transfer with
CycleGANs for ring design automatic generation

Tomas Cabezon Pedroso
Master’s in Computational Engineering and Mathematics

Natalia Díaz Rodríguez
Carles Ventura Royo

ii

iii

iv

INDEX CARD OF THE FINAL MASTER PROJECT

Title of the FMP:
Capabilities and limitations of style
transfer with CycleGANs for ring
design automatic generation

Name of the author: Tomas Cabezon Pedroso
Name of the tutor: Natalia Díaz Rodríguez
Name of the PRA: Carles Ventura Royo

Date of delivery (mm/yyyy): 06/2021

Degree:
Master’s in Computational
Engineering and Mathematics

Area of the Final Work: Artificial Intelligence
Language of the Work: English

Keywords: GAN, style, design
 Summary of the Work:

 Rendering programs have changed the design process completely as they
permit to see how the products will look like before they are fabricated.
However, the rendering process is complicated and takes a lot of time not
only in the rendering itself but in the setting of the scene as well. Materials,
lights and cameras need to be set in order to get the best quality results,
nevertheless, the optimal output may not be obtained in the first render.
This all makes the rendering process a tedious process.

Since Zhu et al. introduced Generative Adversarial Networks (GANs) in 2014,
they have been used to obtain computer-generated data. From non-existing
human faces to medical data analysis or image style transfer. GANs have
been used to transfer image textures from one domain to another, but paired
data was needed. When this same group introduced the CycleGANs, this all
changed. CycleGANs allow transforming one image from one domain to
another, without the need of paired data.

This Work studies the possibilities of CycleGANs on style transfer from an
initial sketch to a final render. A process that is crucial in the automatic
generation of ring designs as allows the costumer to see the final products
before buying.

The present Work sets a basis for future research, showing the possibilities
of GANs in design and establishing a starting point for new applications.

v

 Resumen:

Los programas de renderizado han cambiado el proceso de diseño por
completo, ya que permiten ver cómo se verán los productos antes de ser
fabricados. Sin embargo, el proceso de renderizado es complicado y lleva
mucho tiempo, no solo en el renderizado en sí, sino también en la
configuración de la escena. Es necesario configurar los materiales, las luces
y las cámaras para obtener los mejores resultados de calidad; sin embargo,
el resultado óptimo no suele conseguirse en el primer renderizado. Todo
esto hace que el proceso de renderizado sea un proceso tedioso.

Desde que Zhu et al. introdujeron las Redes Generativas Antagónicas (RGAs)
en 2014, estas se han utilizado para obtener datos generados por
computadora. Desde rostros humanos inexistentes, hasta el análisis de datos
médicos o transferencias de estilos de imágenes. Las RGAs se han utilizado
para transferir texturas de imágenes de un dominio a otro, pero se
necesitaban datos emparejados. Cuando este mismo grupo introdujo las
CycleGAN, todo esto cambió. Las CycleGANs permiten transformar una
imagen de un dominio a otro, sin la necesidad de datos emparejados.

Este Trabajo estudia las posibilidades de las CycleGANs en la transferencia
de estilo desde un boceto inicial a un render final. Un proceso que es crucial
en la generación automática de modelos de anillos ya que permite al cliente
ver los productos finales antes de comprarlos.

El presente Trabajo sienta las bases para futuras investigaciones, mostrando
las posibilidades de las RGAs en el diseño y estableciendo un punto de
partida para nuevas aplicaciones.

vi

First and foremost, I would like to express my sincere gratitude to my supervisor
Natalia Díaz Rodríguez for the support on my Final Master Thesis. Her guidance has

not only helped me complete this work but has also motivated me to give my best
during this difficult course. I would also like to thank her for having encouraged and

allowed me to this work on the intersection of computation and design.

Secondly, I would like to thank my sister and friends who have helped me during this
course, if it wasn’t for them, I would not be writing these lines now.

vii

Contents

1 INTRODUCTION .. 13

1.1 CONTEXT AND JUSTIFICATION OF THE WORK .. 13
1.2 AIMS OF THE WORK ... 15
1.3 APPROACH AND METHOD FOLLOWED ... 15
1.4 PLANNING OF THE WORK .. 15
1.5 BRIEF SUMMARY OF THE OBJECTIVES .. 17
1.6 BRIEF DESCRIPTION OF THE OTHER CHAPTERS OF THE MEMORY .. 18

2 PERSONAL REFLECTIONS ... 19

3 STATE OF ART ... 22

3.1 PRELIMINARY NOTIONS ... 23
3.1.1 Autoencoders ... 23
3.1.2 Latent space ... 24

3.2 GENERATIVE ADVERSARIAL NETWORKS .. 26
3.2.1 Generator and discriminator .. 27
3.2.2 BCE Cost Function ... 29
3.2.3 Activation functions ... 30
3.2.4 Convolutions ... 33

3.3 TYPES OF GAN .. 35
3.3.1 Conditional GAN ... 35
3.3.2 Pix2pix .. 36

3.4 CYCLEGAN ... 37
3.4.1 Cycle consistency loss ... 37
3.4.2 Adversarial loss .. 38
3.4.3 Identity loss .. 39
3.4.4 Generator total loss .. 39
3.4.5 Generator architecture ... 41
3.4.6 Discriminator architecture ... 42

4 PRACTICAL CASE DEVELOPMENT ... 43

4.1 CASE DESCRIPTION ... 43
4.1.1 XYU ring .. 43
4.1.2 Actual model state ... 45
4.1.3 New model proposal description .. 48

4.2 CYCLEGAN DEVELOPMENT .. 49
4.2.1 CycleGAN description ... 49
4.2.2 Building the CycleGAN .. 50
4.2.3 Building the network .. 52
4.2.4 Training the CycleGAN .. 55

5 RESULTS ... 59

5.1.1 Sketch2object3D ... 59
5.1.2 Sketch2rendering ... 60

viii

6 DISCUSSION AND FUTURE WORK .. 64

6.1 DETECTED ARTIFACTS .. 64
6.1.1 White spots .. 64
6.1.2 Continuity loss in the lines in the sketch transformation ... 65
6.1.3 Aureole around the ring ... 65
6.1.4 Checkerboard pattern .. 66

6.2 MODEL LIMITATIONS .. 67
6.2.1 Lighting settings ... 67
6.2.2 2D perspective .. 68

7 CONCLUSIONS .. 69

8 GLOSSARY OF TERMS .. 71

9 BIBLIOGRAPHY ... 72

10 ATTACHMENTS ... 75

10.1 DATABASES ... 75
10.1.1 Sketch dataset (first version, thin wire sketch) .. 75
10.1.2 Sketch dataset (second version, thick wire sketch) .. 76
10.1.3 Object3D dataset (first version, white background) .. 77
10.1.4 Object3D dataset (second version, blue background) ... 78
10.1.5 Rendering dataset ... 79

10.2 CODE .. 80

ix

List of figures

Figure 1: Gantt diagram for project structure ... 16
Figure 2: Personal project prototypes. ... 20
Figure 3: Simple autoencoder architecture. [17] .. 23
Figure 4: s-SNE projection of the latent space of the MNIST dataset of handwritten
digits. [19] ... 24
Figure 5: The two GAN subnetworks, their inputs and outputs, and their
interactions. ... 27
Figure 6: Schema of the generator. .. 28
Figure 7: Schema of the generator’s parameters update, training of the generator.
 .. 28
Figure 8: Schema of discriminator’s parameters update, training of the generator.
 .. 29
Figure 9: Schema of activation functions. .. 31
Figure 10: ReLu activation function [26]. .. 31
Figure 11: Leaky ReLu activation function [26]. .. 32
Figure 12: Sigmoid activation function [26]. ... 33
Figure 13: tanh activation function [26]. ... 33
Figure 14: Convolution operation on a 7x7 matrix with a 3x3 kernel [27]. 34
Figure 15: Spatial hierarchy of visual modules that combine into the ‘cat’ concept
[16]. ... 35
Figure 16: Image-to-Image Translation with Conditional Adversarial Networks [10].
 .. 36
Figure 17: Schema of the Cycle consistency loss. .. 38
Figure 18: Output image comparation with and without Identity loss [33]. 39
Figure 19: Loss function plot for the first 1400th steps of the training, corresponding
to 14 epochs. ... 40
Figure 20: Architecture of the generator [33]. Example of the orange2apple
CycleGAN. .. 41
Figure 21: Example the classification of a portion of the image in the PatchGAN
architecture [36]. .. 42
Figure 22: Original concept schema. .. 43
Figure 23: Mood board (visualization of concepts and ideas) of the XYU ring and
rendered images of different XYU rings created. .. 44
Figure 24: Actual model’s program and steps followed. On top Matlab program
screenshot where the algorithm is run. In the middle, Maya program with the 3D
object of the ring. On the bottom, blender program and the rendered image. 45

x

Figure 25: Schema of how each of the brands of the ring are 3D modelled on Maya
program. The points that compose the curve as well as the circle that will be
extruded along this curve are passed to Maya program using Maya MEL coding
language. ... 46
Figure 26: Rendering setting and image rendering times for 1000x1000 pixel size
simple images. .. 47
Figure 27: Actual model schema: the algorithm run in Matlab, the 3D object
modelled in Maya, the rendered image in Blender and the final product after being
made by the jewel. .. 48
Figure 28: Proposed model idea. The algorithm in this case, apart from creating the
ring is also responsible of generating the rendered images of it. A CycleGAN is added
to the algorithm for this last part. ... 48
Figure 29: Proposed CycleGANs, sketch2object3D and sketch2rendering. 49
Figure 30: CycleGAN architecture schema. .. 54
Figure 31: Result of the CycleGAN sketch2object3D (epoch 4, step 420). On top, the
input images and bellow the images in the other domain generated by the CycleGAN.
 .. 55
Figure 32: Influence of the background color on the images of the first 60 steps of
the training of the CycleGAN with white and blue backgrounds. 56
Figure 33: Training process steps 420 and 2800 with both background colors. The
input images are followed by the images generated by the Cyclegan with the domain
changed. .. 57
Figure 34: Continuity problems found during sketch2rendering CycleGAN training
with the thin lines sketch. .. 58
Figure 35: Collection of some results of the sketch2object3D CycleGAN. 59
Figure 36: Collection of some results of the first trained sketch2rendering. 60
Figure 37: Collection of some results of the second trained sketch2rendering. 60
Figure 38: Different rings in the sketch domain and the rendered domain. The
expected rendering has been generated with Blender and the other using the
sketch2rendering CycleGAN. .. 61
Figure 39: Different views of the same object in the sketch domain and the rendered
domain. The expected rendering has been generated with Blender and the other has
been generated by the sketch2rendering CycleGAN. .. 62
Figure 40: Different views of the same object in the sketch domain and the rendered
domain. The expected rendering has been generated with Blender and the other has
been generated by the sketch2rendering CycleGAN. .. 63
Figure 41: Examples of the white spots artifact. .. 65
Figure 42: Examples of the continuity loss in the sketch domain transformation. . 65
Figure 43: Examples of the aureole artifact. ... 66
Figure 44: Examples of the checkerboard artifact. .. 66
Figure 45: Examples of the influence of the lightning settings on the final render.
 .. 67

xi

Figure 46: Example of two lines intersecting in the 2D image, and two different 3D
examples of the actually intersecting and non intersecting cases. 68
Figure 47: Random images of the thin wire sketch dataset. 75
Figure 48: Random images of the thick wire sketch dataset. 76
Figure 49: Random images of the white background model dataset. 77
Figure 50: Random images of the blue color background model dataset. 78
Figure 51: Random images from the rendering dataset. 79

12

¨Turing believes machines think
Turing lies with men

Therefore machines do not think¨

Letter from Alan Turing to Norman Routledge,
February 1952 [1]

13

1 Introduction

1.1 Context and justification of the Work

Despite of his short life, Alan Turing was one of the most influential
scientists o the 20th Century. He died at the age of 41 in 1594 after
being prosecuted for homosexual acts. However, he is considered
to be the father of computer science and artificial intelligence.
Since then, computation has experienced a surge and now it is
applied to ease our everyday life but also to radically change it.
From the way we interact with each other, to the way we go
shopping, or the way we work or leisure. Computation is here to
stay.

In this project I want to see the possibilities and capabilities of
computation in the field of design. If a machine can only do what
it is programmed to do, how can it be creative? Not all computer
theorists agree on this [2], and actually, the examples of the
intersection of design and computation are growing and are more
relevant than ever. In the last years, engineers, researchers or
artists have begun to explore the possibilities of artificial
intelligence for creative tasks that can vary from the AI generated
music of Arca that sounds in the MOMA´s lobby [3] to the drawings
by AARON computer program that can be visited at TATE Museum
[4].

This Work rises in this same intersection design and technology,
design and engineering, design and computation. The aim of this
Work is to explore new areas and applications in which computers
will change the way we consider design and the role that
computers have on it. When this statement is made, often the fear

14

of computers stealing people’s jobs arises, nevertheless, this is not
how this intersection of computers and design is conceived by the
author. While algorithms will spend time doing repetitive work,
designers will be able to focus on what really matters: the users,
innovations, needs… This Work’s objective is to make the most of
the agents taking part in the process of design, the computer and
the designer. The tools at our disposal cannot determine what we
are capable of creating, the tools should serve for new ideas and
not to limit the ones that the designer already has.

This work is organized in two parts, a theoretical one and a
practical one, both complementary. The first one is motivated by
the recent arrival of Generative Adversarial Networks (GAN) that
since they were first introduced few years ago, in 2014 [5], have
experimented and exponential growth and development. This
research will be focus on the study and comprehension of the
theory that supports GANs and their components. In the second
part of the Work, taking into account all of the above, a new tool of
image generation is applied to an actual design problem, in this
case, the rendering of an example of the XYU ring (finger, jewelry
area) 1. This tool will consist on a CycleGAN that taking as an input
the sketch of the shape of the ring will generate a 3D object
representation or a rendered image of it.

The steps of the process of design can differ among authors,
however, all of this process consist on going form a virtual concept
or idea to the materialization in a concrete product [6]. This
process stars with an initial brainstorming and later some of the
concepts are developed, prototyped and after evaluation the final
product is selected. Computers have become fundamental in these
last steps allowing designers not only materialize their ideas with
3D objects and renders but also show the clients how the final
products look like. Actually, the famous furniture seller Ikea
reaches their clients with the yearly catalogs, full of not real images
but renders [7]. This Work aims to input new tools for this last part
of the design process

1 The XYU ring is key to understand this Work and this project will lately be introduced. More
information about this project previously developed by the auhor can be found on
https://tomascabezon.com/

15

1.2 Aims of the Work

There are two main aims for this work. The first one is the state of
the art of GAN image generation and how it can be applied for
design purposes. The second one, applying this technology on a
concrete example, as it can be the rendering of a sketch of the XYU
ring example. To approach this issue, how GANs create images will
be needed to be understood.

1.3 Approach and method followed

In this Work, GANs will be used to generate realistic images to see
the scope of this technology in design. Although realistic images
could be generated by other means, such as rendering, mocking up
or photographing, in this work, the objective are not the output
images themselves, but seeing the possibilities and limitations of
GANs.

1.4 Planning of the Work

The project will follow the following scheme that has been divided
taking into account the continuous evaluation PECs:

1st Milestone PEC 1 – PEC 2
For this milestone, what to do, how and the reach has been
planned. Investigation of the state of the art in deep learning and
GAN technology has been carried out. Familiarizing with this new
field is crucial to develop a practical project in the following
milestones.

2nd Milestone PEC 3
In this second phase, what has been learnt in the first phase is put
into practice. The project transitions from a theoretical approach
to the practical one, the code starts to be written and the images
generated.

3rd Milestone PEC 4
The main output of this milestone is the finished documentation.
After this milestone, the remaining work to do is to write and
record the video presentation.

16

Figure 1: Gantt diagram for project structure

17

1.5 Brief summary of the objectives

In the following lines the general objectives (GE) as well as the
specific objectives will be described.

GO 1. Bibliographic review of the different available Artificial
Intelligent techniques that will be used for this Work, more
concretely, the study of the state of the art of GANs. To achieve the
objective, the following specific objectives need to be met:

 EO 1.1. Obtain information from different sources and

research articles.
EO 1.2. Define the different components that form a GAN.
EO 1.3. Establish the algorithms that best adapt to the
requirements of the project.

GO 2. Obtaining the models. To achieve this general objective, the
following specific objectives need to be met:

EO 2.1. Code the GAN.
EO 2.2. Create the databases to train the GANs.
EO 2.3. Train the GANs and compare the result obtained.

GO 3. Presenting the results obtained. To achieve this general
objective, the specific objectives need to be met:

EO 3.1. Write the final report.
EO 3.2. Elaborate the presentation.
EO 3.3 Public defense of the master’s Thesis.

18

1.6 Brief description of the other chapters of the memory

The Work begins with some personal reflections, that although not
being necessary to understand it, they serve to illuminate the
perspective from which it has been developed.

In the second chapter, a state of the art of the GANs can be found.
The purpose of this section is to understand and develop the
components necessary to perform the later implementation of a
GAN in the practical case. GANs are nowadays a tools used in a
wide range of area that go from dataset generation [5], realistic
image generation [8], text to image translation [9] or image
translation [10]. Understanding how these tools are used is key to
not make the most on them. One of the intentions of the Work is to
help the designers not to depend on the tools but to make the tools
available to them.

Finally, in the fourth chapter, the XYU ring concept is presented,
an algorithm designed to randomly generate different ring
examples. The initial concept is explained, and the actual state of
the project is presented. The process that is carried out every time
that a XYU ring example is created is shown to understand the
limitations that are found on the generation of realistic images,
renderings, of the final products.

Afterwards, the new proposal is explained, in which the
implementation of the CycleGAN not only simplifies the process
but allows its automatization. This new tool restructures the
process in a way in which no interaction of the designer is needed.
This proposal permits to design an algorithm in which the
interaction of the user and the machine ends up in a completely
personalized and unique ring examples. The tools used for its
development are explained as well as the problems encountered
during the elaboration of this Work. Although the ultimate goal has
been the design of this completely automated model, issues of
great relevance are addressed along the way. The possibilities of
algorithms in design, of the automation of certain creative tasks
and the personalization of products by the user.

19

2 Personal reflections

Prior to doing this Master’s in Computational Engineering and
Mathematics, I studied a Double Degree in Industrial Design
Engineering and Mechanical Engineering. During those university
years one learns many things. But above all, one realizes which
things he should have learnt but he hasn’t. Or even better, one
realizes those things that he did not know existed, but about which
he wanted to learn more. This project is mainly the result of the
latter, but also a bit of the former.

This Final Master Project (FMP) is in its the most part the sum of
two disciplines that not only enrich oneself as an engineer but also
as a person. The first one, Design Engineering, which is essential
to understand what surrounds us. The second, computing, because
digitization is an increasingly present and powerful reality.
Digitization together with automatization, allows that machine are
dedicated to everything that we do not like to do so that we can
dedicate ourselves to what we are really passionate about. In my
case, I would have loved an artificial intelligence to be so advanced
that it could have helped me write these lines. If the Instagram
algorithm already knows me so well that it suggests better posts
than the ones I follow, why won't one day a machine write this FMP
better than I do with the information it had about me.

The reason for this FMP is also the sum of two events mainly. The
first, my first design course during my bachelor’s degree, in the

20

subject of Workshop I. In that course we were asked to redesign a
travel brush. What I learned from that design is the importance of
the tools available to the designer. In that particular case, the
influence of the CAD (Computer Aided Design) programs that I
knew how to use.

Figure 2: Personal project prototypes.
Evolution of a project with the same idea but using different modelling tools
such as AutoCAD or SolidWorks.

The influence of the tools the designer has available is very clear
in his work, even limitating, as the designer is not able to
materialize his ideas as a consequence of not having the necessary
tools to do it. Therefore, this project tries to understand how some
artificial intelligence (AI), more concretely GANs, work so we do
not depend on them, but we make these tools available for the
designer. Tools should serve for new ideas and not to limit the ones
that one already has.

The second reason for this FMP is my exchange study in Tongji
University in Shanghai, China. Before that exchange, I thought I
was going to go to a less developed country than mine,
nevertheless, I couldn't be more wrong. My experience in China

21

was a trip to the future, which made me think a lot about which
would be the next technological advances, which changes would
they bring in our ways of life, in our jobs. I remember the day one
of my professors, Dean Lou Yongji, explained how the advertising
banners that appeared in the Taobao2 application were completely
personalized for each of the buyers and that these banners were
not designed by people, but by algorithms[11]. This made me think
about the graphic designers who had lost their jobs or about how
AI could affect me as an industrial designer. But then I understood
the true power of AI. While algorithms do the repetitive work,
designers would be able to focus on what is really important, the
people and their needs.

In this project I wanted to delve into the field of AI in design and
understand how AI can be introduced for designing products.
Explore the customization possibilities offered by the
automatization of the design process. Instead of designing an
object, designing an algorithm that can generate different objects,
different designs.

2 Taobao: A online shopping website owned by the Alibaba group. Its division tmall.com is the
third most visited website in the world.

22

3 State of Art

The aim of this chapter is to serve as a theoretical base of how GANs
work as well as explain the different components of them so this
tool for image generation can later be put into practice in the
following part of this Work.

Machine learning is a discipline in the field of Artificial
Intelligence that serves to recognize patterns in existing massive
data and use this information to make predictions, these can be

- Classification, assigning the correct label or category to an
example or group of found features.

- Regression, use the know data as an input to predict or
estimate a numerical values.

Computers can classify bank customers according to their
probability of non-payment [12], win a chess champion [13] or
predict which Instagram post we are likely to like [14]. However,
when asked to generate new data, computers have historically
struggled.

23

When in 2014, Ian Goodfellow, then a PhD student at the University
of Montreal, introduced GANs, this changed [15]. Using not one but
two separate and opposite neural networks, this new tool could be
used by computers to create new data. This technique is not
specific to generate images, actually, other data types such as
sound, music or even text can be generated. In this Work, though,
we will focus on the image generation as GANs will later be used
with this purpose.

3.1 Preliminary notions

3.1.1 Autoencoders

Image generation with deep learning is done by learning the latent
spaces that capture the statistical information about the data we
are training on, in our case, a dataset of images. Each of the
pictures will be a point in the latent space and sampling and
decoding these points in the latent space, new data can be created.
Two main tools are used for this task: Variational Autoencoders
(VAEs) and GANs [16].

Understanding the first one, is a good starting point to understand
how GANs work. Autoencoders, as their name suggests,
automatically encode data. Autoencoders are a family of neural
networks for which the input is the same as the output, as we can
see in the following figure, although altered versions can be
achieved.

Figure 3: Simple autoencoder architecture. [17]

24

A simple image autoencoder would take an image, and would map
it into the latent space, encode it; and then decompress it with the
same size as the input, decode it. To do so, they are trained having
the same image as input and output. Therefore, we can think of
autoencoders as a tool to compress the input data into fewer bits of
information.

To train the autoencoder the input image (x) is passed to it and the
output image (x*) is compared whit it to see if there is any change.
The differences between the input and the output are measured to
calculate the error which is called the reconstruction loss (||x-x*||).

3.1.2 Latent space

As it has been seen in the previous section the encoder of the
autoencoder brings the data from a higher dimension space into a
bottleneck layer reducing its dimension. The space in which this
lower dimension data lies is the latent space. The latent space is the
hidden representation of the compressed data and contains all the
important information needed to represent the original image, this
is, contains the principal features of the data. When the
autoencoder is trained on the images, the model learns to
represent the features of the original data and simplifies its
representation [18].

Figure 4: s-SNE projection of the latent space of the MNIST dataset of
handwritten digits. [19]

25

Autoencoders use one only loss function, the reconstruction loss to
train the network, however, as it has been previously mentioned,
the objective of the GANs cannot be written in one function, two
distinct functions are needed to train the model and represent the
competing objectives of the generator and the discriminator.
Formally, the generator and discriminator are represented by to
different neural networks, each with its own objective, each own
cost function.

As we saw in figure 3, it is the output of the discriminator, the
discriminator’s estimation of whether the picture is fake or real,
what is used to train the model. If the generator manages to fool
the discriminator, which means that the discriminator estimates
the image is real, will be useful for the generator as it will know
how to keep improving. On the other side, the discriminator, will
have to learn to and improve so next time is not fooled again. Both
of the networks are trained by backpropagation of the
discriminator’s loss.

Traditional neural networks, as it is the case of VAEs, are defined
exclusively in terms of their own trainable parameter, the
reconstruction loss, however, GANs differ from conventional
neural networks in having two different networks whose cost
functions are dependent in both of the networks’ parameters.
During training, each of the networks is able to change only its own
weights and biases, so each of the networks has control over only
a part of what determines its loss. Training a traditional neural
network is optimizing its cost function, on the contrary, training a
GAN is more like a competition in which the training will stop
when neither of the opponents can beat the other. The GAN will
ideally be trained when the discriminator cannot differentiate the
real images (x) coming from the dataset and fake images (x*) from
the generator. The discriminator will only be able to make a guess
having a probability of 50% to be right. In this point, the generator
won’t be able to improve, as its output is already indistinguishable,
so no improvements are possible and any change on the way the
fakes are generated my give a clue to the discriminator to know
which is the fake image. This equilibrium achieved is called the
Nash equilibrium. Nevertheless, in practice, it is nearly impossible
to reach this point and still remains as an open question in GAN
research [20].

26

3.2 Generative Adversarial Networks

Generative adversarial networks (GANs) generate realistic looking
synthetic images by forcing the generated images to be statistically
almost indistinguishable from real ones. They consist of two
neural networks simultaneously trained, the generator, trained to
create fake data based on a dataset; and the discriminator, trained
to distinguish fake images from real ones. As their name indicates,
this is a generative tool, this is, it is capable of production or
reproduction. This ability to generate new data will depend on how
the GAN is trained, in the case of this Work, it will be trained on a
XYU ring example rings, so it will learn to reproduce other
examples of this ring.

The work adversarial refers to the competitive dynamic between
the generator and the discriminator, the two models that compose
the GAN. Finally, the term network refers to the kind of machine
learning technique that it is compose of, both the discriminator
and the generator, are neural networks. The complexity of this
networks depends on the complexity of the implementation. They
can go from simple feed-forward neural network to a more
complex convolutional network to even a U-Net as the one in our
practical case.

An intuitive way to understand how GANs work, is using the
counterfeiters and police metaphor, the one Ian Goodfellow
himself used to explain this new tool [5]. The criminals (the
generator) make fake money while police (the discriminator) tries
to discern between counterfeit money and real money. This
competition leads to more realistic money generated by the
criminals until perfect fake money that fools the police is created.
In more technical terms, the generator tries to generate images
with the same characteristics of those in the training data, so they
look identical to those in the dataset. On the other hand, the
discriminators’ goal is to determine if a particular example is real,
this is, it comes from the dataset or if it is fake, it has been created
by the generator.

27

Figure 5: The two GAN subnetworks, their inputs and outputs, and their
interactions.

3.2.1 Generator and discriminator

The generator as we have seen, is the model that is used to generate
the outputs of the GAN, the synthetic images. The generator (G)
takes a random noise vector z and produces a fake example x* of
the same class as the ones in the dataset. G(z)=x*. The generator’s
final goal is to produce examples of a certain class that fool the
discriminator. This set of features that compose the fake image of
the class is fed into the discriminator (D) that will determine how
real or fake this image is based on its inspection of it. The generator
wants the prediction of the discriminator, D(x*) as close as 1 as
possible, indicating the image is real. While the discriminator
wants this prediction to be as close to 0 as possible, indicating the
image is fake.

28

Figure 6: Schema of the generator.

The discriminators goal is to accurately differentiate real data from
fake data, this is, the discriminator wants G(x)=1 and G(x*)=0, but
the generators goal is the opposite, wants to create a really good
fake example x* that strives to get D(x*) as close as 1 as possible.
After the discriminator’s predictions, a cost function can be
computed that measures how far the examples produced by the
generator are being considered real by the discriminator, because
the generator wants to seem as real as possible. This function is
used to update the parameters (θG) of the generator so it improves
over time knowing in which direction to move it’s parameters so
the generated images, G(z)=x*, will be more likely to fool the
discriminator, D(x*)=1 [21].

Figure 7: Schema of the generator’s parameters update, training of the
generator.

29

The discriminator works as a classifier, that will only have two
classes, real and fake. To do so, the neural network will take the
features of the dataset and train its parameters (θD) to learn how to
map these features to each of the classes and learn how to make
better predictions. The goal is to reach a point where the difference
between the real values (0 for fake and 1 for real) and the
predictions is minimized. The gradient of cost function will be used
to improve the discriminative model updating its parameters (θD)
as it indicates the direction in which those parameters should go to
make a better prediction the next time [22].

Figure 8: Schema of discriminator’s parameters update, training of the
generator.

3.2.2 BCE Cost Function

The Binary Cross Entropy (BCE) cost function is used for training
GANs as it is a measure of the difference between computed
probabilities and actual probabilities for predictions with only two
possible class. The greater the cross-entropy loss, the further away
our predictions are form the true labels.

30

Being m the number of examples in the batch; h are the
predictions made by the model; y are the labels of the different
examples (true labels of if an image is real or fake); x are the
features that are passed in through the prediction, the images and
θ are the parameters of whatever is computing that prediction, in
our case, the discriminator [23]. For this Work, what is needed to
be taken into account about the BCE cost function is that it has two
parts, one for each of the classes (true or fake). This function will
be close to zero when the predictions and the real labels are
similar, and it will approach the infinity if the predictions and the
labels are different [24].

3.2.3 Activation functions

Activations are functions that take any real number as input, also
known as its domain, and outputs a number in a certain range
using a non-linear differentiable function. In deep neural
networks, and more specifically in GANs, this activation functions
are used for classification. These functions have to be non-linear
and differentiable, the first condition, non-linearity prevents the
hidden layers and neurons from collapsing in a simple regression.
On the other hand, activation functions have to be differentiable as
backpropagation is used to train the network, so it needs to provide
a gradient to the previous layer to update its parameters.

To understand these activation functions, we need to understand
what each of the individual nodes in the neural network do. A node
takes the information from the previous layer ail-1 and predicts two
things. The first one, zil , is the sum of the product of various
weights Wil on the outputs products from the previous layer ail-1.
Therefore, z is composed by the sum of the weighted outputs from
the previous layer. On the other side of the node, we have the
outputs of this node, ail, this is the output of the activation function
Gl of this node that takes the previously calculated zil as input. In
the following picture and scheme of this process can be found [25].

31

Figure 9: Schema of activation functions.

These activation functions Gl, as we have mentioned, need to be
non-linear and differentiable. The most common activation
functions for deep learning models are:

3.2.3.1 ReLu:

Rectified Linear Unit (ReLu) takes the max value between 0 and the
input value zl.

This means, that this function eliminates the negative values and
makes them 0. Graphically, the ReLu activation looks like this

Figure 10: ReLu activation function [26].

32

As it can be seen in the graph, for values smaller than 0, the
negative numbers, the derivative is equal to 0, so this function gives
no backpropagation information to the network, that gets stuck on
the same value and the weights stop learning. This is known as the
dying ReLu problem, that makes the network stop learning. A
variation of this function, the Leaky ReLu has been proposed to
solve this problem.

3.2.3.2 Leaky ReLu

The Leaky ReLu is the same as the ReLu for the positive values,
however, for the negatives, it adds a little leak or slop in the line.
Now this function has a non-zero derivative, that is intended to be
smaller than one so it doesn’t form a line with the positive side,
therefore, 0<a<1.

Graphically the Leaky ReLu function looks like the following
graph:

Figure 11: Leaky ReLu activation function [26].

3.2.3.3 Sigmoid

This activation function values the outputs between 0 and 1. If the
input is positive the value will be between 0,5 and 1, while if the
input is negative, the value will be between 0 and 0,5. This function
is not very often used in hidden layers as it produces what is called
the vanishing gradient problems, which means that in the tails of
the function the derivative approaches to zero.

33

Graphically the sigmoid function looks like the following graph:

Figure 12: Sigmoid activation function [26].

3.2.3.4 Hyperbolic tangent

The hyperbolic tangent (tanh) activation function is similar to the
previous sigmoid function, however, this function outputs values
between -1 and 1. This allows this function to maintain the sign of
the input which can be useful for some applications.

Graphically the sigmoid function looks like the following graph:

Figure 13: tanh activation function [26].

3.2.4 Convolutions

In mathematics convolution is a mathematical operation on two
functions (f and g) that produces a third function (f*g) that
expresses how the shape of one is modified by the other. In image
processing, it is the process of transforming the image by applying
a kernel over each of the pixels and its local neighbors across the
entire image. In other words, convolutions are performed by

34

sliding one or more filters over the input layer. Each filter has a
relatively small receptive field (width x height) but always extends
through the entire depth of the input volume. At every step the dot
product between the input values and the filter entries is calculated
as it can be seen in the following image.

Figure 14: Convolution operation on a 7x7 matrix with a 3x3 kernel [27].

The parameters of the filter will be applied to all the input values
to the given filters. Therefore, these parameters will be shared
across the image and allow us to learn the visual features and
shapes found on the input image. Convolutions layers learn the
patterns of the image, in the case of images, they learn the patterns
found in 2D. This is key to understand some of their
characteristics. The patterns they learn are translation invariant,
this is, it doesn’t matter which part of the image they are found in.
This makes these tools data efficient when processing images. On
the other hand, convolutions allow to learn the spatial hierarchies
of patterns. The first convolution layer will learn local patterns
while the second convolution will learn larger patterns made of the
local patterns found in the first operation. This allows these
convolutions to be really efficient in image processing as they can
learn complex and abstract visual concepts, which is key to feature
classification [28].

35

Figure 15: Spatial hierarchy of visual modules that combine into the ‘cat’
concept [16].

3.3 Types of GAN

After having explained how GANs work and how to build them,
some concrete GAN types will be explained. Although the final type
of GAN selected for the XYU ring rendering style transfer has been
a CycleGAN, other alternatives are studied in the following lines in
order to better understand what a CycleGAN is.

3.3.1 Conditional GAN

Until now, in the previous chapters, the outputs of the GANs were
random examples that mimicked the dataset, this is, unconditional
generation. However, if we had conditional image generation, we
could ask for an example of an specific class to be generated by the
GAN [29]. Remembering the metaphor of the counterfeiters,
maybe we don’t want to make a fake 5€ bill to fool the police, but
we rather make a 500€ bill. To do so, in conditional GANs, apart
from the random noise vector that the generator has as input, we
will also provide a class and the generator will have to provide an
example of that class. To be able to do so, we will need that our
dataset is also labeled so the GAN during training learns what the
features of each of the classes is. For example, in the counterfeit
money metaphor, blue color would be a feature of the 5€ bill, while
purple, would be a feature for the 500€ bill.

36

3.3.2 Pix2pix

In the previous section, we have seen how giving a certain class to
the conditional GAN to generate a certain type of image. In section,
the input for the generator, won’t be a class but a picture. As we
can imagine from its name, pix comes from image, this type of GAN
will output the same image as the input but with a certain change.
Therefore, this is an image-to-image translation kind of GAN, an
special case of conditional GAN, whose condition is the whole
image rather than a class [30]. In the following figure a famous
image translation example from University of California, Berkeley
can be seen, in this image, it can be seen how this style3 transfer
works on different domains.

Figure 16: Image-to-Image Translation with Conditional Adversarial
Networks [10].

As it can be seen pix2pix is a really powerful tool that can be
applied in a wide range of applications. However, as in conditional
GANs we need labeled data. In the case of image-to-image
translation, we need that the data is composed of paired images.
Our dataset should consist of the same exact image but with the
different style. For example, in the case of the Day to Night style
transfer in the previous figure, the day picture and the night
picture should be taken from the same point and position [31].

3 In this context, style refers to the textures, colors, and visual patterns in the image, at various
spatial scales; while the content is the higher-level macrostructure of the image [16].

37

3.4 CycleGAN

The problem with the previous need of paired data was solved by
the same UC Berkeley group that realized that we do not need
perfect pairs, in fact, it is enough with just closing the cycle by
translating from one domain to another and then back again [32].
This close cycle gave the name to this kind of GANs, the CycleGAN.
This is the GAN type that will be later be used in the practical part
of this Work. The CycleGAN is a technique that involves the
automatic training of image-to-image translation models without
paired examples that makes it perfect for the later practical
application as no need of paired image dataset is needed.

To achieve this cycle consistency two generators are needed, the
fist generator (GAB) will translate from the domain A to B and the
second generator (GBA) that will translate from the domain B back
to A. Therefore, there will be two losses, one forward cycle-
consistency loss and another backward cycle consistency loss. But
as all they mean is x*=GAB(GBA(x)) and y*=GBA(GAB(y)), we can think
of them as essentially the same, but off by one [32].

3.4.1 Cycle consistency loss

The cycle consistency loss, that can be expressed as //x-x*// or
 //y-y*// depending on which of the styles we consider as the
starting point, ensures that the original image and the output
image after completing the cycle, the twice-translated image, are
the same. Apart from this loss function, the total loss function in
CycleGANs have other terms.

38

Figure 17: Schema of the Cycle consistency loss.

3.4.2 Adversarial loss

Apart from the cycle consistency loss mentioned before, we still
have the adversarial loss that should be taken into account. Every
translation by the GAB generator will be checked by the DB
discriminator and the generator GBA will be controlled by the DA

discriminator. Every time we translate from one domain to
another, the discriminator will test if the output of the generator
looks real.

This component of the generator's loss that we are later going to
implement in the practical part is similar to the previously
mentioned loss for GANs, however, it is important to note that the
criterion now is based on least squares loss, rather than binary
cross entropy loss or W-loss used in general GANs. This loss
function will ensure that the outputs of this CycleGAN look real, so
it is key for the good functioning of the model.

39

This function has two terms, the first is the probability of the given
image to be the real one rather than the fake one, the translated
one. The second term is where the generator may get to fool the
discriminator. The previous formula is only the formula for the DB

discriminator, in the final loss there is an equivalent formula for
DA.

As in the general GANs, the adversarial loss measures if the
generated images look real, if they are indistinguishable to the
ones in the training set [33].

3.4.3 Identity loss

The identity loss measures if the output of the CycleGAN preserves
the overall color temperature or structure of the picture. Although
it is an optional term for the total loss, it will be considered in this
Work for color preservation. Pixel distance is used to ensure that
ideally there is no difference between the output and the input, this
ensures that the CycleGAN only changes the parts of the image
when it needs to. In the following figure, the effects of considering
this Identity loss can be seen in two different examples [34].

Figure 18: Output image comparation with and without Identity loss [33].

3.4.4 Generator total loss

40

As explained by Zhu et al. [32], the full objective of the CycleGAN
must be reducing this three loss functions. Actually, Zhu et al. in
their article show that training the networks with only one of the
functions doesn’t arrive to high-quality results. In the Previous
formula, we can see that both the identity loss and cycle
consistency functions are weighted by λident and λcyc, respectively.
These scalars control the importance of each of the losses in the
training. In our case, following the values for these parameters
proposed in the article, λcyc will be 10, and λident will be 0.1, as this
last function only controls the tint of the input and output images,
in our case, as the dataset is composed of the same colors, it doesn’t
suppose any big problems.

Figure 19: Loss function plot for the first 1400th steps of the training,
corresponding to 14 epochs.

41

In the previous image, the different components of the generator
loss, as well as the generator total loss and discriminator total loss
can be seen in a chart. This chart corresponds to the training of one
of the CycleGANs of this work and we can see how the cycle
consistency loss has decreased during training, however, the
adversarial loss has been increasing in the first steps but at the end
of the plot, we can see that it will start decreasing.

3.4.5 Generator architecture

The generators in the CycleGAN are updated generators compared
to the traditional GANs, this upgraded generators are based in U-
NET. This architecture framework it’s an encoder-decoder model
that uses skip connections. Compared with the traditional model,
that takes a noise vector as input, the U-net takes in an entire image
and uses convolution layers in the encoder and can be thought as
a classification model that finds the classes in the input, and
outputs a value or some compressed data. Those important
features are decoded to the output, another image. They can be
then imagined as an autoencoder; however, we don’t want the
output x* to be as close as possible to x, we want it to be conditioned
with a certain style.

Nevertheless, to prevent these layers from losing some
information during encoding, the U-Net also introduces some skip
connections between the decoder and encoder layers, allowing
certain details that may have been lost during the encoding still be
present on the later layers.

Figure 20: Architecture of the generator [33]. Example of the orange2apple
CycleGAN.

42

The encoder as it can be seen in the previous image is made of
convolutional layers that reduce the resolution while the decoder
is made of deconvolutional layers, transposed deconvolutions, that
upscale the information back to an image with the same size as the
input. In-between skip connections are created to permit that the
information has an easier way to propagate through the network
[35].

3.4.6 Discriminator architecture

The discriminator of the CycleGANs is based in the PatchGAN
architecture. The difference between this architecture and the
previous generator, is that in this CycleGAN instead of having a
single float as an output, is outputting a matrix of values. A
PatchGAN architecture will output a matrix of values, each of them
between 0 (fake) and 1 (real), classifying the corresponding
portions of the image. The activation function for the training of
the model in the practical part of this Work is the LReLu (Leaky
Rectified Linear Activation)4.

Figure 21: Example the classification of a portion of the image in the
PatchGAN architecture [36].

In summary, if a fake image is passed to the discriminator, this
should output a matrix of all zeros, on the contrary, if a real image
is passed, it should output a matrix of only ones [36].

4 This function is different from the previously mentioned function as a new term is added:
f(x)=max(0,x)+β∗min(0,x)

43

4 Practical case development

4.1 Case description

4.1.1 XYU ring5

XYU is not only a ring but an algorithm to create them. This
algorithm uses splines to generate infinite ring possibilities. The
starting point is set by the user, who specifies the number of
splines and the length and thickness of the ring. The control points
of the splines are randomly selected and adapted to make them
continuous on the ring. If the user does not like the result, the
algorithm can be run again until an aesthetic shape is achieved.

Figure 22: Original concept schema.

5 XYU is the name of this ring project, it is not an acronym, but the name of this ring composed
of 3 randomly chosen letters.

44

Inspiration can be quite a tricky topic, because I do believe every
single random encounter I have had in my life has led me to this
unique position where I am right now, writing to you about what it
means to design, to do maths and to integrate both.

There are infinite possibilities and universes in which this decision
did not happen at all, as well as I am sure there are many others in
which it also occurred. But if I had to point down a single event it
would probably be how I realized AI was quickly taking over
designers’ jobs, creating ads, banners... So I thought: how will
designers face this new world where thousands of variants can be
created with only one click?

Maths can be the answer to this, the one that gives the input to
generate these infinite possibilities if we integrate algorithms with
the power of randomness. If creativity is imagining the impossible,
why not have the infinite as the starting point? XYU ring is not only
an item but an infinite. This is not just a jewel, but as many as you
want. This is not just a ring, it is an algorithm that designs them.

Figure 23: Mood board (visualization of concepts and ideas) of the XYU ring
and rendered images of different XYU rings created.

45

4.1.2 Actual model state

XYU ring is not merely an ornament, but a proof of the infinite
possibilities of computational design. This algorithm allows the
users to design their own 3D ting example based on their
preferences which are used by the algorithm to generate random
rings. Each time the code is run, a different and unique ring is
produced. This procedure permits to personalize each of the XYU
ring examples.

Once the users find the ring that they like, this is automatically
modelled on Maya and the 3D object is sent to the jeweler. Each of
the rings is 3D printed and cast, so each of the pieces are unique.

Figure 24: Actual model’s program and steps followed. On top Matlab program
screenshot where the algorithm is run. In the middle, Maya program with the
3D object of the ring. On the bottom, blender program and the rendered image.

46

Description of the actually used programs and different steps
followed to go from the initial starting data to the final design of
the ring are shown in the previous figure. The algorithm is run on
Matlab, the ring is later automatically translated into Maya MEL
coding language where the ring is 3D modelled and .obj file is
created. Finally, the realistic images of the ring are rendered using
Blender program.

To generate the 3D object and send the .obj file to the jeweler who
will 3D print and cast it, Maya 3D computer graphics application is
used. To do so, the information of the ring is passed to Maya using
the Maya MEL coding language. This is, the output of the Matlab
algorithm is a .txt file with the instructions of the curves that
generate the different brands of the ring, the splines, as well as the
circles that will be extruded along the splines to form the 3D object.
Therefore, the information to 3D generate the ring is passed as
coded instructions to Maya.

Figure 25: Schema of how each of the brands of the ring are 3D modelled
on Maya program. The points that compose the curve as well as the circle
that will be extruded along this curve are passed to Maya program using
Maya MEL coding language.

The last stage of the process corresponds to the rendering of the
final product. In this last step, Blender rendering program is used
to generate realistic images on the ring and to show the final
product to the costumer.

47

Rendering is the process of turning a 3D scene into a 2D image [37].
A 3D scene is composed of various elements apart from the object
we want to render, such as the background, the camera, the
materials and the light. This step is the most tedious part of the
XYU ring generation. The rendering of images not only takes a long
time to be calculated, but scenes need to be arranged and the
images not always render as expected the first time. Actually,
companies like Pixar that create whole animation films by
rendering each of the video frames of their films, have rendering
directors to optimize this process [38].

To calculate how long it takes to render an image, apart from the
time needed to calculate the color of each of the pixels, that is not
the biggest one of the process; the scene setting time, the lightning
configuration and the material generation and selection times
should be added. A good rendered image of one of the XYU rings
would take in total around an hour in the making.

Figure 26: Rendering setting and image rendering times for 1000x1000 pixel
size simple images.

48

As it has been seen, the original idea was not achieved as
intermediate external programs need to be used in the process. In
the following picture the actual process is shown in which
intermediate steps for the 3D object and rendering generation are
needed.

Figure 27: Actual model schema: the algorithm run in Matlab, the 3D object
modelled in Maya, the rendered image in Blender and the final product
after being made by the jewel.

4.1.3 New model proposal description

The initial process in which the generation of rings was completely
automatized has not been achieved yet. This limitation was the
starting point of this Work. Therefore, finding a new approach for
this ring design generation algorithm in which no need of the
designer has been tackled in this Work which has resulted in this
proposal of including a CycleGAN in the process that allows the
algorithm to generate the rendered images of the ring and show
them to the user.

Figure 28: Proposed model idea. The algorithm in this case, apart from
creating the ring is also responsible of generating the rendered images of
it. A CycleGAN is added to the algorithm for this last part.

49

4.2 CycleGAN development

4.2.1 CycleGAN description

CycleGANs are used to translate image style such as horse2zebra,
apple2orange, photo2Cezanne, winter2summer… and vice versa [39].
In this Work CycleGANs will be used for the last parts of the
process of the design of the XYU rings, the presentation. To
achieve this, two CycleGANs will be trained: a first sketch2object3D
that will take a starting point a sketch of the shape of the ring (an
image of the 3D view of the splines of which is composed) and will
apply a style transfer to generate an of the actual 3D volume of the
ring. This will be used to see the possibilities of CycleGAN, as the
sketch2object3D is a simpler model, it can be trained with a simpler
image dataset, as no renderings are needed to be done. This
model’s training will serve as the starting point for the practical
part of this Work.

The second CycleGAN, sketch2rendering, will also start with the
sketch and will apply a style transfer to generate a rendered image
of the ring. In the following figure these two CycleGAN can be seen.
Actually, the second CycleGAN, the sketch2rendering is the final
objective of this Work, as renders are used in design to present
final products, but long time and preparation are needed to obtain
them. Training a CycleGAN that would render the generated rings
would not only ease this process and reduce the process time but
also automatize the process.

Figure 29: Proposed CycleGANs, sketch2object3D and sketch2rendering.

50

4.2.2 Building the CycleGAN

In this part of the Work the code used for training the CycleGAN
will be introduced. This code is based on the generative model
proposed by Zhu et al. in the paper Unpaired Image-to-Image
Translation using Cycle-Consistent Adversarial Networks [32]. In the
following lines the different elements of this code will be discussed
and explained. The code is attached at the end of this Work. The
CycleGAN will be implemented on Pytorch.

Before starting with the CycleGAN code, a visualization function
will be defined, and the image dataset imported. The first one,
show_tensor_images will be the visualization function that will plot
and print the tensor of images. The second, ImageDataset, that is
inspired by the dataset.py by aitorzip [40] will serve to setup the
dataset with the following directory structure:

.
├── datasets
| ├── <dataset_name> # i.e. sketch2render
| | ├── train A # Training .jpg images of domain A
| | ├── train B # Training .jpg images of domain B
| | ├── test A # Testing .jpg images of domain A
| | └── test B # Testing .jpg images of domain B

4.2.2.1 Building the generator

As explained in the theoretical part of this Work, the generator is
based on the U-Net architecture, which uses skip connections as
described before. Between the encoding (contracting) and
decoding (expanding) the residual blocks have been added.

- Residual Block

In CycleGANs after the expanding blocks, there are convolutional
layers where the output is added to the original input to ensure that
the network cannot completely change the image. This can be
thought as a kind of skip connections that also allows the network
to be deeper, as they help with the vanishing gradients issues that
occur when the neural network gets too deep, and the gradients
multiply in backpropagation become very small.

51

The ResidualBlock will perform two deconvolutions and an instance
normalization. Afterwards, the input will be added to this output to
form the residual block output.

- Contracting and Expanding Block

This is the decoding and encoding section of U-Net. The
ContractingBlock will be the encoding that will perform a
convolution followed by an instance normalization followed by a
optional instance norm. The activation function will be the ReLu
function.

The ExpandingBlockwill be the decoding that will perform a
convolutional transpose operation in order to upsample, with an
optional instance norm.

The FeatureMapBlock is the last and first layer of the generator. It
maps the input and output to the desired number of channels.

After defining the block classes, we can define the actual
generator. This will be composed of 2 contracting blocks, 9
residual blocks and 2 expanding blocks to transform the input
image into an image of the other domain. This generator will have
an upfeature layer at the start and a downfeature layer at the end.

4.2.2.2 Building the discriminator

The discriminator in the CycleGAN is based on the PatchGAN
architecture as it has been previously explained. The discriminator
will output a matrix of values classifying corresponding portions of
the image as real or fake. The discriminator's final layer will simply
map from the final number of hidden channels to a single
prediction for every pixel of the layer before it. The discriminator
will be based on the contracting path of the U-Net. It will be
composed of a series of 3 contracting blocks and a final
convolutional layer.

4.2.2.3 Training parameters

In this part of the code, the different parameters are defined, and
the images of the dataset are loaded (an horizontal random flip is
added to introduce some data augmentation).

52

4.2.3 Building the network

Once the basic elements are defined, we can initialize the network.
Our CycleGAN is composed of two generators and two
discriminators:

- gen_AB: generator for domain A to domain B
- gen_BA: generator for domain B to domain B
- disc_A: discriminator for domain A
- dics_B: discriminator for domain B

There is an option to load a pretrained model, which is useful to
continue with the training of the CycleGAN loading a pretrained
model but adding some modifications to the parameters.

4.2.3.1 Discriminator Loss

As explained before, the discriminator’s loss function is an
adversarial loss function. This function takes the discriminators
predictions and the target labels and returns the adversarial loss.
In our case, following the Zhu er al. recommendations [32], the
adversarial loss calculation criterion is the mean squared error of
this two elements.

4.2.3.2 Generator Loss

The generator loss in CycleGAN is compassed of 3 losses as it has
been explained in the theoretical part.

- Adversarial Loss
- Identity Loss
- Cycle Consistency Loss

After calculating this losses, they are put together into the
generator total loss. To sum these three components,
lambda_identity and lambda_cycle will be used to weight the
importance of this two components in the final loss. In our case the
lambda_identity will be small because this is not an important
component for our application.

53

4.2.3.3 CycleGAN training algorithm

After all the components are coded, the training loop is created,
the details of each iteration are as follows:

1: for training_step do

2: Dataloader returns random images batch (real_A, real_B)

3: Use the generator for domain translation

 fake_B=gen_AB(real_A) and viceversa

4: Compute discriminator losses disc_A_loss, disc_B_loss

5: Update discriminator gradients and optimizers

6: Compute generator total loss gen_loss

7: Update generators gradients and optimizers

8: if iteration_step % display_step == 0 then

9: Visualize the results

10: if iteration_step % save _step == 0 then

11: Save the model

12: iteration_step += 1

4.2.3.4 CycleGAN testing

Part of the image dataset has been set aside to be used with testing
purposes. These images of both of the domains are saved in the
testA/ and testB/ folders respectively. In this part of the code these
images are loaded, and they are used as input for the model. The
testing is used to make sure that when our model gets new images,
images that it has not seen before, the output has the same
conditions as the ones in the training set. Therefore, the testing
algorithm is similar to the training algorithm but no loops are
needed as no parameters are changed. The images are loaded and
transferred to the other domain by the generators, then the loss is
calculated and printed to be compared with the loss obtained in the
training.

54

Figure 30: CycleGAN architecture schema.

55

4.2.4 Training the CycleGAN

Once the algorithm to train and test the CycleGANs is explained the
actual training process followed in this Work will be explained.
First the sketch2object3D was trained, as a simple dataset was
needed as an starting point, so in case any changes in the training
image dataset should have been made, these would be easier to be
done. During the training of these CycleGANs some needed
changes on the initial idea and dataset have been found. On the
following lines the process followed for training both of the
CycleGANs will be explained as well as the problems encountered.

4.2.4.1 Sketch2object3D: white background problem

During the training of this sketch2object3D CycleGAN, a problem on
the database images has been found. The white background
images used for the training of the CycleGAN supposed a problem
for the development and learning of the system that was
uncappable of differentiating where the ring ends and the
background starts.

Figure 31: Result of the CycleGAN sketch2object3D (epoch 4, step 420). On
top, the input images and bellow the images in the other domain generated
by the CycleGAN.

56

Figure 32: Influence of the background color on the images of the first 60 steps of the
training of the CycleGAN with white and blue backgrounds.

57

To solve this problem a new database with a colored background
(blue color background images dataset) was created and the
influence of the background on the development of the CycleGAN
has been observed. Actually, in the previous picture, even in the
first 60 steps of the training of GAN this influence can be seen.

Solving this problem with the background has been fundamental
for the training, as no learning could be achieved with the white
background. Indeed, if we look closely to the generated images,
they were closer to the form of the shadows that objects standing
over some surfaces create. Actually, if we looked closely to the
images with the white background, it would also be impossible for
a person to differentiate the line in which the ring ends, and the
background starts.

This change on the color of the background allows the CycleGAN
to be trained. In the following image, we can compare the training
process of this CycleGAN with both of the databases and see how
the first database, the one with the white background wouldn’t
permit the CycleGAN to reach a good style transfer level.

Figure 33: Training process steps 420 and 2800 with both background
colors. The input images are followed by the images generated by the
Cyclegan with the domain changed.

58

In the following parts of this Work, blue will be used in order to
avoid white backgrounds. However, different blue tones will be
found in the images, although all the backgrounds have the same
blue color, #B9E2EA, the lighting will influence how the
background is rendered.

4.2.4.2 Sketch2rendering: wireframe thinckness problem

Training the sketch2rendering CycleGAN some continuity problems
on the sketches were found when the CycleGANs had to transfer
the image from the sketch domain to the rendering domain. To
solve this problem, it was decided to use thicker lines in the
sketches and a new dataset was created. As it will be seen in future
lines, going from thin lines to thicker ones permitted the CycleGAN
to produce continuous rings

Figure 34: Continuity problems found during sketch2rendering CycleGAN
training with the thin lines sketch.

59

5 Results

5.1.1 Sketch2object3D

Although the sketch2object3D CycleGAN is not the final objective of
this work, training this CycleGAN has served for learning about the
possibilities and limitations of style transfer. Training this first
CycleGAN showed the importance of the background color. The
results of this sketch2object3D CycleGAN can be seen in the
following image. Cyclegan trained after

Figure 35: Collection of some results of the sketch2object3D CycleGAN.

60

5.1.2 Sketch2rendering

In the following image some examples of the style transfer by the
sketch2rendering CycleGAN trained in this work are shown, in the
first image, some of the results of the first trained CycleGAN are
shown, the one trained with thin line sketches of the different
rings. On the second image the actual CycleGAN outputs are
shown.

Figure 36: Collection of some results of the first trained sketch2rendering.

Figure 37: Collection of some results of the second trained sketch2rendering.

61

For comparison purposes, some of the ring sketches used to train
the data have been modelled and rendered using the traditional
procedure. In the following image, the outputs of the CycleGAN are
show next to what they could be some expected rendered images
using Maya modelling program and Blender rendering program.
Although the data are unpaired images, in the following figure, the
images are show as pairs of the input sketch and the generated
image by the sketch2rendering CycleGAN and the rendered image
using Blender.

Figure 38: Different rings in the sketch domain and the rendered domain.
The expected rendering has been generated with Blender and the other
using the sketch2rendering CycleGAN.

62

In the following images 360 degrees of the same XYU ring can be
seen. On the left, the input image (sketch image) is shown and next
to it an expected rendered image of the 3D object using Blender can
be seen and next to it, the output of the sketch2rendering CycleGAN.

Figure 39: Different views of the same object in the sketch domain and the
rendered domain. The expected rendering has been generated with
Blender and the other has been generated by the sketch2rendering
CycleGAN.

63

Figure 40: Different views of the same object in the sketch domain and the
rendered domain. The expected rendering has been generated with
Blender and the other has been generated by the sketch2rendering
CycleGAN.

64

6 Discussion and future work

After having shown the possibilities of the applications of style
transfers with CycleGANs with rendering purposes, in the
following section, the artifacts found during the training and
testing as well as some of the limitations found on the model will
be considered.

Although the model can achieve reasonable results in some cases,
there are areas for improvements in future works. As it can be seen
in the following lines, the results are far from uniformly positive
and there are still some challenges and improvements to be done
before good quality realistic images of the rings are generated by
the CycleGAN. The following artifacts have been found in both the
training and the testing and solving them is important for future
works.

6.1 Detected artifacts

6.1.1 White spots

During the training white blurry spots have been found on the
output images. They have been usually found in the edge of the
ring in areas where there is a strong shine on the ring or where the
different bands of the ring intersected.

65

Figure 41: Examples of the white spots artifact.

6.1.2 Continuity loss in the lines in the sketch transformation

When the rendered images are transformed into the sketch
domain, there is no continuity in the curves that form the ring due
to the shiny parts of the rendered image. Although the domain
change we are looking for in this Work is the sketch->rendering
change, to train the CycleGAN the whole cycle is applied to the
image, so solving this problem with the style transfer from the
rendering domain to the sketch domain may be fundamental to
obtain better results in the sketch->rendering transformation.

Figure 42: Examples of the continuity loss in the sketch domain transformation.

6.1.3 Aureole around the ring

This may be one of the most commonly found artifacts in the
model. It is a gradient or aureole around the edges of the ring. Due
to the different lighting settings, there is non uniform background

66

color in the training dataset. Actually, the rendered images created
using the Blender program show noise in the background, like if a
photoshop Film Grain filter would have been applied to the
background. This is due to the renderization parameters on
Blender. In order to accelerate the renderization process, the
number of calculation steps for the color of each pixel was reduced
when the dataset was created. In order to see if this is the actual
cause of this artifact, in future works a better-quality dataset
should be created, not only for the rings themselves but also for the
backgrounds.

Figure 43: Examples of the aureole artifact.

6.1.4 Checkerboard pattern

This is one of the most typical artifacts in GANs, the reason for this
checkboard like pattern in images is due to the upsampling process
of the images from the latent space. This deconvolution “can easily
have uneven overlap putting more of the metaphorical paint in
some places than others” [41]. Solving this artifact may be on of
the first problems to be tackled in future works.

Figure 44: Examples of the checkerboard artifact.

67

6.2 Model limitations

Apart from the artifacts described in the previous section, some
limitations of the actual model have been found, and solving them
would need to change the model itself, for example using paired
data for the lighting setting instruction to know where the light is
coming form or change how the lines in the sketch intersect to
show which one is on top of the others.

6.2.1 Lighting settings

In the following image, different lightning settings have been used
in the rendering of the same object with the same materials.
Therefore, different images have been created. In order to
improve the training of the CycleGAN it would be better if always
the same rendering settings are used so the CycleGAN is able to
learn the rendering style. Another solution, as previously
mentioned could be to used labeled data, adding information about
the light position and direction, so the network can learn the
differences. However, this would complicate the generation of the
datasets and really precise information would be needed to make
sure that all the information about the lighting settings is included
in the labels.

Figure 45: Examples of the influence of the lightning settings on the final render.

68

6.2.2 2D perspective

The sketch input image of the ring is an image of a 3D plot of the
different splines that form the ring. Therefore, when in the 2D
image two lines intersect; this may be because the lines actually
intersect in the 3D space, or it may just be a consequence of the
perspective. When created a plot of a 3D object, some of the
information is lost, so there is no way for the CycleGAN to know
which of the intersecting lines in the image is on top of which or if
they are actually intersecting. A good way to solve this could be to
a different representation for intersecting lines and the ones that
aren’t, for example, the diagrams used for knot representation in
 the study of mathematical knots [42] could be used.

Figure 46: Example of two lines intersecting in the 2D image, and two
different 3D examples of the actually intersecting and non intersecting
cases.

69

7 Conclusions

After having presented the obtained results in the CycleGAN
training and having discussed the problems encountered, some
conclusions around the initially set objectives have been made.
These conclusions are discussed in the following lines

First of all, it is concluded that the model can achieve compiling
results for the rendering style transfer, that was the initially
objective. Nevertheless, as it has been seen, there are areas for
improvement in future works before high quality realistic images
of the ring examples are generated by the CycleGAN. However, the
results obtained exceed the initial expectations for this Work.
Actually, this new model supposes a new approach for the XYU
ring algorithm and even though perfect results have not been
obtained, the reduction of the time and the allowance of a
complete automatization of the different ring design generation,
makes this Work the perfect starting point for future research and
improvements.

Secondly, this Work shows the possibilities of the intersection of
computation and design, an intersection that allows the designers
to focus on what really matters while the algorithms do the
repetitive work. The rendering style transfer supposes going from
the rendering of images that could take up to one hour on the
making, to renders generated by the CycleGAN in seconds.

70

Therefore, it can be concluded that the research objective has been
achieved, having developed a software that is capable of
transferring the rendering style to the initial sketches of the ring.
The contribution of this work to the XYU ring design generation
algorithm supposes an inflexion point for the way that the rings are
shown to the costumer, who now would be able to see real time
rendered images of the ring that is generating while interacting
with the algorithm.

With regards to the initial planification, it can be concluded that is
has been adequate and has managed to meet the milestones
proposed. Some delay was suffered in the third milestone with the
code development and the problems encountered with the
databases, however, in the last part of the elaboration of this Work
the delay has been overcome. Therefore, the initial objectives of
this Work have been achieved on time.

Last of all, in the previous chapter the problems encountered
during the making of this Work have been discussed and they
suppose the challenges to be solved in future works. Apart from
these, some quantitative results for this model should be done. In
future work, other types of GANs could be trained like pix2pix,
BiGAN or StyleGAN and train them with paired data to compare
them with this model. This quantitative comparison with other
methods would help decide if CycleGANs that do not need of paired
data, as in this case, are the best approach for this problem, or
preparing a paired data to train an image to images translation
GAN is worth the time and the effort.

71

8 Glossary of terms

AI Artificial Intelligence
CNN Convolutional Neural Network
GAN Generative Adversarial Network
VAE Variational Autoencoders
FMP Final Master Project
UOC Universitat Oberta de Catalunya
BCE The Binary Cross Entropy
ReLu Rectified Linear Activation
LReLu Leaky Rectified Linear Activation

72

9 Bibliography

[1] The Turing Digital Archive. (n.d.), from

http://www.turingarchive.org/viewer/?id=167&title=1a, accessed 23-3-
2021

[2] WHY PROGRAMMING IS A GOOD MEDIUM FOR EXPRESSING POORLY
UNDERSTOOD AND SLOPPILY-FORMULATED IDEAS. (n.d.). 1967, from
https://web.media.mit.edu/~minsky/papers/Why programming is--.html,
accessed 25-3-2021

[3] Arca will use AI to soundtrack NYC’s Museum of Modern Art | Engadget.
(n.d.), from https://www.engadget.com/2019-10-17-arca-ai-soundtrack-
for-nyc-moma.html, accessed 25-3-2021

[4] ‘Untitled Computer Drawing’, Harold Cohen, 1982 | Tate. (n.d.), from
https://www.tate.org.uk/art/artworks/cohen-untitled-computer-drawing-
t04167, accessed 25-3-2021

[5] Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.;
Ozair, S.; Courville, A.; Bengio, Y. (2020). Generative adversarial networks,
Communications of the ACM, Vol. 63, No. 11, 139–144. doi:10.1145/3422622

[6] Design Thinking. (n.d.), from https://hbr.org/2008/06/design-thinking,
accessed 24-5-2021

[7] Why IKEA Uses 3D Renders vs. Photography for Their Furniture Catalog |
Cad Crowd. (n.d.), from https://www.cadcrowd.com/blog/why-ikea-uses-
3d-renders-vs-photography-for-their-furniture-catalog/, accessed 22-5-
2021

[8] Brock, A.; Donahue, J.; Simonyan, K. (2018). Large Scale GAN Training for
High Fidelity Natural Image Synthesis, ArXiv

[9] Reed, S.; Akata, Z.; Yan, X.; Logeswaran, L.; Schiele, B.; Lee, H. (2016).
Generative Adversarial Text to Image Synthesis, 33rd International
Conference on Machine Learning, ICML 2016, Vol. 3, 1681–1690

[10] Isola, P.; Zhu, J.-Y.; Zhou, T.; Efros, A. A.; Research, B. A. (n.d.). Image-to-
Image Translation with Conditional Adversarial Networks

[11] Alibaba Luban: AI-based Graphic Design Tool | by Alibaba Cloud |
Medium. (n.d.), from https://alibaba-cloud.medium.com/alibaba-luban-
ai-based-graphic-design-tool-75dbb94a2115, accessed 25-5-2021

[12] We optimize recovery management with Artificial Intelligence. (n.d.),
from https://the-cocktail.com/en/cases/we-optimize-recovery-
management-with-artificial-intelligence, accessed 26-5-2021

[13] IBM100 - Deep Blue. (n.d.), from
https://www.ibm.com/ibm/history/ibm100/us/en/icons/deepblue/,
accessed 26-5-2021

73

[14] How does Instagram determine which posts appear in Suggested Posts? |
Instagram Help Center. (n.d.), from
https://www.facebook.com/help/instagram/381638392275939, accessed
26-5-2021

[15] IanGoodfellow PhD Defense Presentation - YouTube. (n.d.), from
https://www.youtube.com/watch?v=ckoD_bE8Bhs, accessed 29-5-2021

[16] Chollet, F. (2017). Deep Learning with Python
[17] Autoencoders — Deep Learning bits #1 | Hacker Noon. (n.d.), from

https://hackernoon.com/autoencoders-deep-learning-bits-1-
11731e200694, accessed 25-3-2021

[18] Understanding Latent Space in Machine Learning | by Ekin Tiu | Towards
Data Science. (n.d.), from
https://towardsdatascience.com/understanding-latent-space-in-machine-
learning-de5a7c687d8d, accessed 25-3-2021

[19] Latent space visualization — Deep Learning bits #2 | Hacker Noon. (n.d.),
from https://hackernoon.com/latent-space-visualization-deep-learning-
bits-2-bd09a46920df, accessed 25-3-2021

[20] Farnia, F.; Ozdaglar, A. (2020). GANs May Have No Nash Equilibria
[21] Generator | Coursera. (n.d.), from https://www.coursera.org/learn/build-

basic-generative-adversarial-networks-gans/lecture/DkMQx/generator,
accessed 28-5-2021

[22] Discriminator | Coursera. (n.d.), from
https://www.coursera.org/learn/build-basic-generative-adversarial-
networks-gans/lecture/DdSCm/discriminator, accessed 28-5-2021

[23] BCE Cost Function | Coursera. (n.d.), from
https://www.coursera.org/learn/build-basic-generative-adversarial-
networks-gans/lecture/2bF5q/bce-cost-function, accessed 28-5-2021

[24] BCE Cost Function | Coursera. (n.d.), from
https://www.coursera.org/learn/build-basic-generative-adversarial-
networks-gans/lecture/2bF5q/bce-cost-function, accessed 29-5-2021

[25] Common Activation Functions | Coursera. (n.d.), from
https://www.coursera.org/learn/build-basic-generative-adversarial-
networks-gans/lecture/WYsEO/common-activation-functions, accessed
29-5-2021

[26] Commonly used activation functions: (a) Sigmoid, (b) Tanh, (c) ReLU,... |
Download Scientific Diagram. (n.d.), from
https://www.researchgate.net/figure/Commonly-used-activation-
functions-a-Sigmoid-b-Tanh-c-ReLU-and-d-LReLU_fig3_335845675,
accessed 28-5-2021

[27] 6 basic things to know about Convolution | by Madhushree Basavarajaiah
| Medium. (n.d.), from https://medium.com/@bdhuma/6-basic-things-to-
know-about-convolution-daef5e1bc411, accessed 28-5-2021

74

[28] Review of Convolutions | Coursera. (n.d.), from
https://www.coursera.org/learn/build-basic-generative-adversarial-
networks-gans/lecture/W6bPB/review-of-convolutions, accessed 29-5-
2021

[29] Mirza, M.; Osindero, S. (2014). Conditional Generative Adversarial Nets
[30] Karras, T.; Laine, S.; Aila, T. (2019). A style-based generator architecture

for generative adversarial networks, Proceedings of the IEEE Computer
Society Conference on Computer Vision and Pattern Recognition (Vol. 2019-
June), IEEE Computer Society, 4396–4405. doi:10.1109/CVPR.2019.00453

[31] Pix2Pix Overview | Coursera. (n.d.), from
https://www.coursera.org/learn/apply-generative-adversarial-networks-
gans/lecture/X9EOT/pix2pix-overview, accessed 29-5-2021

[32] Zhu, J.-Y.; Park, T.; Isola, P.; Efros, A. A.; Research, B. A. (n.d.). Unpaired
Image-to-Image Translation using Cycle-Consistent Adversarial Networks
Monet Photos

[33] Langr, J.; Bok, V. (2019). GANs in Action
[34] CycleGAN: Identity Loss | Coursera. (n.d.), from

https://www.coursera.org/learn/apply-generative-adversarial-networks-
gans/lecture/RlHCn/cyclegan-identity-loss, accessed 29-5-2021

[35] Pix2Pix: U-Net | Coursera. (n.d.), from
https://www.coursera.org/learn/apply-generative-adversarial-networks-
gans/lecture/Xr0NK/pix2pix-u-net, accessed 29-5-2021

[36] Pix2Pix: PatchGAN | Coursera. (n.d.), from
https://www.coursera.org/learn/apply-generative-adversarial-networks-
gans/lecture/jSbor/pix2pix-patchgan, accessed 29-5-2021

[37] Introduction — Blender Manual. (n.d.), from
https://docs.blender.org/manual/en/latest/render/introduction.html,
accessed 1-6-2021

[38] Rendering | The Science Behind Pixar. (n.d.), from
https://sciencebehindpixar.org/pipeline/rendering, accessed 1-6-2021

[39] CycleGAN Project Page. (n.d.), from https://junyanz.github.io/CycleGAN/,
accessed 22-5-2021

[40] PyTorch-CycleGAN/datasets.py at master · aitorzip/PyTorch-CycleGAN.
(n.d.), from https://github.com/aitorzip/PyTorch-
CycleGAN/blob/master/datasets.py, accessed 22-5-2021

[41] Odena, A.; Dumoulin, V.; Olah, C. (2017). Deconvolution and
Checkerboard Artifacts, Distill, Vol. 1, No. 10, e3. doi:10.23915/distill.00003

[42] Knot theory - Wikipedia. (n.d.), from
https://en.wikipedia.org/wiki/Knot_theory, accessed 4-6-2021

75

10 Attachments

10.1 Databases

Some randomly selected .jpg images from the different datasets
generated for this work are shown in this section. The aim of this
section is to show the images that have been used in the training of
the CycleGANs.

10.1.1 Sketch dataset (first version, thin wire sketch)

These .jpg images have been generated using Matlab program and
the XYU ring algorithm. Actually, these images are a 3D plot of the
splines that compose each of the rings, all with the same line
thickness.

Figure 47: Random images of the thin wire sketch dataset.

76

10.1.2 Sketch dataset (second version, thick wire sketch)

These .jpg images have been created using the same algorithm as
the previous dataset, however, when doing the 3D plot thicker lines
have been used. The thickness has been varied to show different
ring thicknesses.

Figure 48: Random images of the thick wire sketch dataset.

77

10.1.3 Object3D dataset (first version, white background)

These images are screenshots of the of the 3D visualization of the
ring 3D objects (.obj files) in the MacOS preview application.

Figure 49: Random images of the white background model dataset.

78

10.1.4 Object3D dataset (second version, blue background)

As in the previous dataset, these images are screenshots of the 3D
visualization of the XYU ring 3D objects, however, this time the
background has been set to blue color, in order to have a non-white
background.

Figure 50: Random images of the blue color background model dataset.

79

10.1.5 Rendering dataset

These images have been created using the Blender rendering
program. As it can be seen, although the background color has
always been the same blue #B9E2EA, the lighting setting has
changed as well as the camera position and orientation, therefore,
different shadow and lights can be seen across the dataset.

Figure 51: Random images from the rendering dataset.

80

10.2 Code

#Start by connecting gdrive into the google colab
from google.colab import drive
drive.mount('/content/gdrive')

#file in which the sketch2render folder is saved
%cd /content/gdrive/MyDrive/TFM /

import torch
from torch import nn
from tqdm.auto import tqdm
from torchvision import transforms
from torchvision.utils import make_grid
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt

def show_tensor_images(image_tensor, num_images=25, size=(1, 28, 28)):

 image_tensor = (image_tensor + 1) / 2
 image_shifted = image_tensor
 image_unflat = image_shifted.detach().cpu().view(-1, *size)
 image_grid = make_grid(image_unflat[:num_images], nrow=5)
 plt.imshow(image_grid.permute(1, 2, 0).squeeze())
 plt.axis('off')
 plt.show()

import glob
import random
import os
from torch.utils.data import Dataset
from PIL import Image

class ImageDataset(Dataset):
 def __init__(self, root, transform=None, mode='train'):
 self.transform = transform
 self.files_A = sorted(glob.glob(os.path.join(root, '%sA' % mode) + '/*.*'))
 self.files_B = sorted(glob.glob(os.path.join(root, '%sB' % mode) + '/*.*'))
 self.new_perm()
 assert len(self.files_A) > 0, "Make sure you downloaded the images!"

 def new_perm(self):
 self.randperm = torch.randperm(len(self.files_B))[:len(self.files_A)]

 def __getitem__(self, index):
 item_A = self.transform(Image.open(self.files_A[index % len(self.files_A)]))
 item_B = self.transform(Image.open(self.files_B[self.randperm[index]]))
 if item_A.shape[0] != 3:
 item_A = item_A.repeat(3, 1, 1)
 if item_B.shape[0] != 3:
 item_B = item_B.repeat(3, 1, 1)
 if index == len(self) - 1:
 self.new_perm()
 return (item_A - 0.5) * 2, (item_B - 0.5) * 2

 def __len__(self):
 return min(len(self.files_A), len(self.files_B))

§ CycleGAN generator

Residual Block

class ResidualBlock(nn.Module):
 def __init__(self, input_channels):
 super(ResidualBlock, self).__init__()
 self.conv1 = nn.Conv2d(input_channels, input_channels, kernel_size=3, padding=1,

padding_mode='reflect')
 self.conv2 = nn.Conv2d(input_channels, input_channels, kernel_size=3, padding=1,

padding_mode='reflect')
 self.instancenorm = nn.InstanceNorm2d(input_channels)
 self.activation = nn.ReLU()

 def forward(self, x):
 original_x = x.clone()
 x = self.conv1(x)

81

 x = self.instancenorm(x)
 x = self.activation(x)
 x = self.conv2(x)
 x = self.instancenorm(x)
 return original_x + x

Contracting and Expanding Blocks

class ContractingBlock(nn.Module):

 def __init__(self, input_channels, use_bn=True, kernel_size=3, activation='relu'):
 super(ContractingBlock, self).__init__()
 self.conv1 = nn.Conv2d(input_channels, input_channels * 2, kernel_size=kernel_size,

padding=1, stride=2, padding_mode='reflect')
 self.activation = nn.ReLU() if activation == 'relu' else nn.LeakyReLU(0.2)
 if use_bn:
 self.instancenorm = nn.InstanceNorm2d(input_channels * 2)
 self.use_bn = use_bn

 def forward(self, x):
 x = self.conv1(x)
 if self.use_bn:
 x = self.instancenorm(x)
 x = self.activation(x)
 return x

class ExpandingBlock(nn.Module):

 def __init__(self, input_channels, use_bn=True):
 super(ExpandingBlock, self).__init__()
 self.conv1 = nn.ConvTranspose2d(input_channels, input_channels // 2, kernel_size=3,

stride=2, padding=1, output_padding=1)
 if use_bn:
 self.instancenorm = nn.InstanceNorm2d(input_channels // 2)
 self.use_bn = use_bn
 self.activation = nn.ReLU()

 def forward(self, x):
 x = self.conv1(x)
 if self.use_bn:
 x = self.instancenorm(x)
 x = self.activation(x)
 return x

class FeatureMapBlock(nn.Module):

 def __init__(self, input_channels, output_channels):
 super(FeatureMapBlock, self).__init__()
 self.conv = nn.Conv2d(input_channels, output_channels, kernel_size=7, padding=3,

padding_mode='reflect')

 def forward(self, x):

 x = self.conv(x)
 return x

Building the generator

class Generator(nn.Module):

 def __init__(self, input_channels, output_channels, hidden_channels=64):
 super(Generator, self).__init__()
 self.upfeature = FeatureMapBlock(input_channels, hidden_channels)
 self.contract1 = ContractingBlock(hidden_channels)
 self.contract2 = ContractingBlock(hidden_channels * 2)
 res_mult = 4
 self.res0 = ResidualBlock(hidden_channels * res_mult)
 self.res1 = ResidualBlock(hidden_channels * res_mult)
 self.res2 = ResidualBlock(hidden_channels * res_mult)
 self.res3 = ResidualBlock(hidden_channels * res_mult)
 self.res4 = ResidualBlock(hidden_channels * res_mult)
 self.res5 = ResidualBlock(hidden_channels * res_mult)
 self.res6 = ResidualBlock(hidden_channels * res_mult)
 self.res7 = ResidualBlock(hidden_channels * res_mult)
 self.res8 = ResidualBlock(hidden_channels * res_mult)
 self.expand2 = ExpandingBlock(hidden_channels * 4)
 self.expand3 = ExpandingBlock(hidden_channels * 2)
 self.downfeature = FeatureMapBlock(hidden_channels, output_channels)
 self.tanh = torch.nn.Tanh()

 def forward(self, x):

82

 x0 = self.upfeature(x)
 x1 = self.contract1(x0)
 x2 = self.contract2(x1)
 x3 = self.res0(x2)
 x4 = self.res1(x3)
 x5 = self.res2(x4)
 x6 = self.res3(x5)
 x7 = self.res4(x6)
 x8 = self.res5(x7)
 x9 = self.res6(x8)
 x10 = self.res7(x9)
 x11 = self.res8(x10)
 x12 = self.expand2(x11)
 x13 = self.expand3(x12)
 xn = self.downfeature(x13)
 return self.tanh(xn)

§ CycleGAN Discriminator

class Discriminator(nn.Module):
 def __init__(self, input_channels, hidden_channels=64):
 super(Discriminator, self).__init__()
 self.upfeature = FeatureMapBlock(input_channels, hidden_channels)
 self.contract1 = ContractingBlock(hidden_channels, use_bn=False, kernel_size=4,

activation='lrelu')
 self.contract2 = ContractingBlock(hidden_channels * 2, kernel_size=4,

activation='lrelu')
 self.contract3 = ContractingBlock(hidden_channels * 4, kernel_size=4,

activation='lrelu')
 self.final = nn.Conv2d(hidden_channels * 8, 1, kernel_size=1)

 def forward(self, x):
 x0 = self.upfeature(x)
 x1 = self.contract1(x0)
 x2 = self.contract2(x1)
 x3 = self.contract3(x2)
 xn = self.final(x3)
 return xn

§ Training Parameters

import torch.nn.functional as F

adv_criterion = nn.MSELoss()
recon_criterion = nn.L1Loss()
n_epochs = 100
dim_A = 3
dim_B = 3
display_step = 50
save_step=50
step_bins = 10 #for plotting
batch_size = 1
lr = 0.0002
load_shape = 400
device = 'cuda'

transform = transforms.Compose([
 transforms.Resize(load_shape),
 transforms.RandomHorizontalFlip(),
 transforms.ToTensor(),
])

import torchvision
dataset = ImageDataset("sketchThickness2renderColorBlue_REDUCED", transform=transform)

§ Building the network

gen_AB = Generator(dim_A, dim_B).to(device)
gen_BA = Generator(dim_B, dim_A).to(device)
gen_opt = torch.optim.Adam(list(gen_AB.parameters()) + list(gen_BA.parameters()), lr=lr,
betas=(0.5, 0.999))
disc_A = Discriminator(dim_A).to(device)
disc_A_opt = torch.optim.Adam(disc_A.parameters(), lr=lr, betas=(0.5, 0.999))
disc_B = Discriminator(dim_B).to(device)
disc_B_opt = torch.optim.Adam(disc_B.parameters(), lr=lr, betas=(0.5, 0.999))

def weights_init(m):
 if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
 torch.nn.init.normal_(m.weight, 0.0, 0.02)

83

 if isinstance(m, nn.BatchNorm2d):
 torch.nn.init.normal_(m.weight, 0.0, 0.02)
 torch.nn.init.constant_(m.bias, 0)

Feel free to change pretrained to False if you're training the model from scratch
pretrained = False
if pretrained:
 pre_dict = torch.load('Models/lr_0.000002/cycleGAN_850.pth')
 gen_AB.load_state_dict(pre_dict['gen_AB'])
 gen_BA.load_state_dict(pre_dict['gen_BA'])
 gen_opt.load_state_dict(pre_dict['gen_opt'])
 disc_A.load_state_dict(pre_dict['disc_A'])
 disc_A_opt.load_state_dict(pre_dict['disc_A_opt'])
 disc_B.load_state_dict(pre_dict['disc_B'])
 disc_B_opt.load_state_dict(pre_dict['disc_B_opt'])
else:
 gen_AB = gen_AB.apply(weights_init)
 gen_BA = gen_BA.apply(weights_init)
 disc_A = disc_A.apply(weights_init)
 disc_B = disc_B.apply(weights_init)

§ Discriminator Loss

def get_disc_loss(real_X, fake_X, disc_X, adv_criterion):

 disc_fake_X_hat = disc_X(fake_X.detach())
 disc_fake_X_loss = adv_criterion(disc_fake_X_hat, torch.zeros_like(disc_fake_X_hat))
 disc_real_X_hat = disc_X(real_X)
 disc_real_X_loss = adv_criterion(disc_real_X_hat, torch.ones_like(disc_real_X_hat))
 disc_loss = (disc_fake_X_loss + disc_real_X_loss) / 2
 return disc_loss

§ Generator Loss

Adversarial Loss

def get_gen_adversarial_loss(real_X, disc_Y, gen_XY, adv_criterion):
 fake_Y = gen_XY(real_X)
 disc_fake_Y_hat = disc_Y(fake_Y)
 adversarial_loss = adv_criterion(disc_fake_Y_hat, torch.ones_like(disc_fake_Y_hat))

 return adversarial_loss, fake_Y

Identity Loss

def get_identity_loss(real_X, gen_YX, identity_criterion):
 identity_X = gen_YX(real_X)
 identity_loss = identity_criterion(identity_X, real_X)

 return identity_loss, identity_X

Cycle Consistency Loss

def get_cycle_consistency_loss(real_X, fake_Y, gen_YX, cycle_criterion):
 cycle_X = gen_YX(fake_Y)
 cycle_loss = cycle_criterion(cycle_X, real_X)

 return cycle_loss, cycle_X

Generator total Loss

def get_gen_loss(real_A, real_B, gen_AB, gen_BA, disc_A, disc_B, adv_criterion,
identity_criterion, cycle_criterion, lambda_identity=0.1, lambda_cycle=5):

 # Adversarial Loss
 adv_loss_BA, fake_A = get_gen_adversarial_loss(real_B, disc_A, gen_BA, adv_criterion)
 adv_loss_AB, fake_B = get_gen_adversarial_loss(real_A, disc_B, gen_AB, adv_criterion)
 gen_adversarial_loss = adv_loss_BA + adv_loss_AB

 # Identity Loss
 identity_loss_A, identity_A = get_identity_loss(real_A, gen_BA, identity_criterion)
 identity_loss_B, identity_B = get_identity_loss(real_B, gen_AB, identity_criterion)
 gen_identity_loss = identity_loss_A + identity_loss_B

 # Cycle-consistency Loss
 cycle_loss_BA, cycle_A = get_cycle_consistency_loss(real_A, fake_B, gen_BA,

cycle_criterion)

84

 cycle_loss_AB, cycle_B = get_cycle_consistency_loss(real_B, fake_A, gen_AB,
cycle_criterion)

 gen_cycle_loss = cycle_loss_BA + cycle_loss_AB

 # Total loss
 gen_loss = lambda_identity * gen_identity_loss + lambda_cycle * gen_cycle_loss +

gen_adversarial_loss

 return gen_loss, gen_adversarial_loss, lambda_identity

*gen_identity_loss,lambda_cycle*gen_cycle_loss, fake_A, fake_B

§ CycleGAN training

from skimage import color
import numpy as np
from torchvision.utils import save_image

def train(save_model=True):
 mean_generator_loss = 0
 mean_discriminator_loss = 0
 dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
 cur_step = 0
 generator_loss = []
 generator_adversarial_loss = []
 generator_identity_loss = []
 generator_cycle_loss= []
 discriminator_loss = []

 for epoch in range(n_epochs):
 for real_A, real_B in tqdm(dataloader):
 real_A = nn.functional.interpolate(real_A, size=target_shape)
 real_B = nn.functional.interpolate(real_B, size=target_shape)
 cur_batch_size = len(real_A)
 real_A = real_A.to(device)
 real_B = real_B.to(device)

 ### Update discriminator A ###
 disc_A_opt.zero_grad()
 with torch.no_grad():
 fake_A = gen_BA(real_B)
 disc_A_loss = get_disc_loss(real_A, fake_A, disc_A, adv_criterion)
 disc_A_loss.backward(retain_graph=True)
 disc_A_opt.step()

 ### Update discriminator B ###
 disc_B_opt.zero_grad()
 with torch.no_grad():
 fake_B = gen_AB(real_A)
 disc_B_loss = get_disc_loss(real_B, fake_B, disc_B, adv_criterion)
 disc_B_loss.backward(retain_graph=True)
 disc_B_opt.step()

 ### Update generator ###
 gen_opt.zero_grad()
 gen_loss, gen_adversarial_loss, gen_identity_loss, gen_cycle_loss, fake_A, fake_B =
get_gen_loss(
 real_A, real_B, gen_AB, gen_BA, disc_A, disc_B, adv_criterion, recon_criterion,
recon_criterion
)
 gen_loss.backward()
 gen_opt.step()

 # Keep track of the average discriminator loss
 mean_discriminator_loss += disc_A_loss.item() / display_step
 discriminator_loss += [disc_A_loss.item()]

 # Keep track of the average generator loss
 mean_generator_loss += gen_loss.item() / display_step
 generator_loss += [gen_loss.item()]
 generator_adversarial_loss += [gen_adversarial_loss.item()]
 generator_identity_loss += [gen_identity_loss.item()]
 generator_cycle_loss += [gen_cycle_loss.item()]

 ### Visualization code ###
 if cur_step % display_step == 0:
 print(f”Epoch {epoch}: Step {cur_step}: Generator (U-Net) loss mean:

{mean_generator_loss}, Discriminator loss mean: {mean_discriminator_loss}”)
 print(f”\t\t Generator (U-Net) loss: {gen_loss.item()}, Discriminator loss:

{disc_A_loss.item()}”)
 show_tensor_images(torch.cat([real_A, real_B]), size=(dim_A, target_shape,

target_shape))

85

 show_tensor_images(torch.cat([fake_B, fake_A]), size=(dim_B, target_shape,
target_shape))

 mean_generator_loss = 0
 mean_discriminator_loss = 0
 x_axis = sorted([i * step_bins for i in range(len(generator_loss) // step_bins)]
* step_bins)
 num_examples = (len(generator_loss) // step_bins) * step_bins
 plt.plot(
 range(num_examples // step_bins),
 torch.Tensor(generator_loss[:num_examples]).view(-1, step_bins).mean(1),
 label=”Generator Loss”
)
 plt.plot(
 range(num_examples // step_bins),
 torch.Tensor(generator_adversarial_loss[:num_examples]).view(-1,
step_bins).mean(1),
 label=”Generator Adversarial Loss”
)
 plt.plot(
 range(num_examples // step_bins),
 torch.Tensor(generator_identity_loss[:num_examples]).view(-1,
step_bins).mean(1),
 label=”Generator Identity Loss”
)
 plt.plot(
 range(num_examples // step_bins),
 torch.Tensor(generator_cycle_loss[:num_examples]).view(-1,
step_bins).mean(1),
 label=”Generator Cycle Loss”
)
 plt.plot(
 range(num_examples // step_bins),
 torch.Tensor(discriminator_loss[:num_examples]).view(-1,
step_bins).mean(1),
 label=”Discriminator Loss”
)

 plt.legend()
 plt.show()

 if cur_step % save_step == 0:
 if save_model:
 torch.save({
 ‘gen_AB’: gen_AB.state_dict(),
 ‘gen_BA’: gen_BA.state_dict(),
 ‘gen_opt’: gen_opt.state_dict(),
 ‘disc_A’: disc_A.state_dict(),
 ‘disc_A_opt’: disc_A_opt.state_dict(),
 ‘disc_B’: disc_B.state_dict(),
 ‘disc_B_opt’: disc_B_opt.state_dict()
 }, f”Models/lambda_5_lr_0.0002/cycleGAN_{cur_step}.pth”)

 cur_step += 1
train()

§ CycleGAN testing

transform = transforms.Compose([
 transforms.ToTensor(),
])

#import the test imagedataset
import torchvision
dataset = ImageDataset("sketchThickness2renderColorBlue_REDUCED", transform=transform,
mode='test')

from skimage import color
import numpy as np
from torchvision.utils import save_image
plt.rcParams["figure.figsize"] = (10, 10)

def test():
 #this testing function shows the whole cycle
 dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
 mean_generator_loss = 0
 mean_discriminator_loss = 0
 generator_loss = []
 discriminator_loss = []

 for epoch in range(n_epochs):
 for real_A, real_B in tqdm(dataloader):

86

 real_A = nn.functional.interpolate(real_A, size=target_shape)
 real_B = nn.functional.interpolate(real_B, size=target_shape)
 cur_batch_size = len(real_A)
 real_A = real_A.to(device)
 real_B = real_B.to(device)

 with torch.no_grad():
 fake_A = gen_BA(real_B)
 fake_BAB = gen_AB(fake_A)
 fake_B = gen_AB(real_A)
 fake_ABA= gen_BA(fake_B)

 # Keep track of the average discriminator loss
 mean_discriminator_loss += disc_A_loss.item() / display_step
 discriminator_loss += [disc_A_loss.item()]

 # Keep track of the average generator loss
 mean_generator_loss += gen_loss.item() / display_step
 generator_loss += [gen_loss.item()]

 print(f"Epoch {epoch}: Step {cur_step}: Generator (U-Net) loss mean:

{mean_generator_loss}, Discriminator loss mean: {mean_discriminator_loss}")
 print(f"\t\t Generator (U-Net) loss: {gen_loss.item()}, Discriminator loss:

{disc_A_loss.item()}")
 show_tensor_images(torch.cat([real_A, fake_B, fake_ABA]), size=(dim_A,

target_shape, target_shape))
 show_tensor_images(torch.cat([real_B,fake_A,fake_BAB]), size=(dim_B,

target_shape, target_shape))

test()

