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 Rendering programs have changed the design process completely as they 
permit to see how the products will look like before they are fabricated. 
However, the rendering process is complicated and takes a lot of time not 
only in the rendering itself but in the setting of the scene as well. Materials, 
lights and cameras need to be set in order to get the best quality results, 
nevertheless, the optimal output may not be obtained in the first render. 
This all makes the rendering process a tedious process. 
 
Since Zhu et al. introduced Generative Adversarial Networks (GANs) in 2014, 
they have been used to obtain computer-generated data. From non-existing 
human faces to medical data analysis or image style transfer.  GANs have 
been used to transfer image textures from one domain to another, but paired 
data was needed. When this same group introduced the CycleGANs, this all 
changed. CycleGANs allow transforming one image from one domain to 
another, without the need of paired data.  
 
This Work studies the possibilities of CycleGANs on style transfer from an 
initial sketch to a final render. A process that is crucial in the automatic 
generation of ring designs as allows the costumer to see the final products 
before buying. 
 
The present Work sets a basis for future research, showing the possibilities 
of GANs in design and establishing a starting point for new applications. 
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 Resumen: 
 

Los programas de renderizado han cambiado el proceso de diseño por 
completo, ya que permiten ver cómo se verán los productos antes de ser 
fabricados. Sin embargo, el proceso de renderizado es complicado y lleva 
mucho tiempo, no solo en el renderizado en sí, sino también en la 
configuración de la escena. Es necesario configurar los materiales, las luces 
y las cámaras para obtener los mejores resultados de calidad; sin embargo, 
el resultado óptimo no suele conseguirse en el primer renderizado. Todo 
esto hace que el proceso de renderizado sea un proceso tedioso. 
 
Desde que Zhu et al. introdujeron las Redes Generativas Antagónicas (RGAs) 
en 2014, estas se han utilizado para obtener datos generados por 
computadora. Desde rostros humanos inexistentes, hasta el análisis de datos 
médicos o transferencias de estilos de imágenes. Las RGAs se han utilizado 
para transferir texturas de imágenes de un dominio a otro, pero se 
necesitaban datos emparejados. Cuando este mismo grupo introdujo las 
CycleGAN, todo esto cambió. Las CycleGANs permiten transformar una 
imagen de un dominio a otro, sin la necesidad de datos emparejados. 
 
Este Trabajo estudia las posibilidades de las CycleGANs en la transferencia 
de estilo desde un boceto inicial a un render final. Un proceso que es crucial 
en la generación automática de modelos de anillos ya que permite al cliente 
ver los productos finales antes de comprarlos. 
 
El presente Trabajo sienta las bases para futuras investigaciones, mostrando 
las posibilidades de las RGAs en el diseño y estableciendo un punto de 
partida para nuevas aplicaciones. 
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¨Turing believes machines think 
Turing lies with men 

Therefore machines do not think¨ 
 

Letter from Alan Turing to Norman Routledge, 
February 1952 [1] 
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1 Introduction 
 

1.1 Context and justification of the Work 
 
 
Despite of his short life, Alan Turing was one of the most influential 
scientists o the 20th Century. He died at the age of 41 in 1594 after 
being prosecuted for homosexual acts. However, he is considered 
to be the father of computer science and artificial intelligence. 
Since then, computation has experienced a surge and now it is 
applied to ease our everyday life but also to radically change it. 
From the way we interact with each other, to the way we go 
shopping, or the way we work or leisure. Computation is here to 
stay.   
 
In this project I want to see the possibilities and capabilities of 
computation in the field of design. If a machine can only do what 
it is programmed to do, how can it be creative? Not all computer 
theorists agree on this [2], and actually, the examples of the 
intersection of design and computation are growing and are more 
relevant than ever. In the last years, engineers, researchers or 
artists have begun to explore the possibilities of artificial 
intelligence for creative tasks that can vary from the AI generated 
music of Arca that sounds in the MOMA´s lobby [3] to the drawings 
by AARON computer program that can be visited at TATE Museum 
[4]. 
 
This Work rises in this same intersection design and technology, 
design and engineering, design and computation. The aim of this 
Work is to explore new areas and applications in which computers 
will change the way we consider design and the role that 
computers have on it. When this statement is made, often the fear 
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of computers stealing people’s jobs arises, nevertheless, this is not 
how this intersection of computers and design is conceived by the 
author. While algorithms will spend time doing repetitive work, 
designers will be able to focus on what really matters: the users, 
innovations, needs… This Work’s objective is to make the most of 
the agents taking part in the process of design, the computer and 
the designer. The tools at our disposal cannot determine what we 
are capable of creating, the tools should serve for new ideas and 
not to limit the ones that the designer already has. 
 
 
This work is organized in two parts, a theoretical one and a 
practical one, both complementary. The first one is motivated by 
the recent arrival of Generative Adversarial Networks (GAN) that 
since they were first introduced few years ago, in 2014 [5], have 
experimented and exponential growth and development. This 
research will be focus on the study and comprehension of the 
theory that supports GANs and their components. In the second 
part of the Work, taking into account all of the above, a new tool of 
image generation is applied to an actual design problem, in this 
case, the rendering of an example of the XYU ring (finger, jewelry 
area) 1. This tool will consist on a CycleGAN that taking as an input 
the sketch of the shape of the ring will generate a 3D object 
representation or a rendered image of it.  
 
The steps of the process of design can differ among authors, 
however, all of this process consist on going form a virtual concept 
or idea to the materialization in a concrete product [6]. This 
process stars with an initial brainstorming and later some of the 
concepts are developed, prototyped and after evaluation the final 
product is selected. Computers have become fundamental in these 
last steps allowing designers not only materialize their ideas with 
3D objects and renders but also show the clients how the final 
products look like. Actually, the famous furniture seller Ikea 
reaches their clients with the yearly catalogs, full of not real images 
but renders [7]. This Work aims to input new tools for this last part 
of the design process 

 
 

1 The XYU ring is key to understand this Work and this project will lately be introduced. More 
information about this project previously developed by the auhor can be found on 
https://tomascabezon.com/  
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1.2 Aims of the Work 
 
There are two main aims for this work. The first one is the state of 
the art of GAN image generation and how it can be applied for 
design purposes. The second one, applying this technology on a 
concrete example, as it can be the rendering of a sketch of the XYU 
ring example. To approach this issue, how GANs create images will 
be needed to be understood. 
  
 

1.3 Approach and method followed  
  

In this Work, GANs will be used to generate realistic images to see 
the scope of this technology in design. Although realistic images 
could be generated by other means, such as rendering, mocking up 
or photographing, in this work, the objective are not the output 
images themselves, but seeing the possibilities and limitations of 
GANs. 
 

1.4 Planning of the Work  
 

The project will follow the following scheme that has been divided 
taking into account the continuous evaluation PECs: 
 
1st Milestone PEC 1 – PEC 2 
For this milestone, what to do, how and the reach has been 
planned. Investigation of the state of the art in deep learning and 
GAN technology has been carried out. Familiarizing with this new 
field is crucial to develop a practical project in the following 
milestones. 
 
2nd Milestone PEC 3 
In this second phase, what has been learnt in the first phase is put 
into practice. The project transitions from a theoretical approach 
to the practical one, the code starts to be written and the images 
generated. 
 
3rd Milestone PEC 4 
The main output of this milestone is the finished documentation. 
After this milestone, the remaining work to do is to write and 
record the video presentation. 
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Figure  1: Gantt diagram for project structure 
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1.5 Brief summary of the objectives 
 

 
In the following lines the general objectives (GE) as well as the 
specific objectives will be described. 
 
GO 1. Bibliographic review of the different available Artificial 
Intelligent techniques that will be used for this Work, more 
concretely, the study of the state of the art of GANs. To achieve the 
objective, the following specific objectives need to be met: 
 
 EO 1.1. Obtain information from different sources and 

research articles. 
EO 1.2. Define the different components that form a GAN. 
EO 1.3. Establish the algorithms that best adapt to the 
requirements of the project. 

 
GO 2. Obtaining the models. To achieve this general objective, the 
following specific objectives need to be met: 
 

EO 2.1. Code the GAN. 
EO 2.2. Create the databases to train the GANs. 
EO 2.3. Train the GANs and compare the result obtained. 

 
GO 3. Presenting the results obtained. To achieve this general 
objective, the specific objectives need to be met: 
  

EO 3.1. Write the final report. 
EO 3.2. Elaborate the presentation. 
EO 3.3 Public defense of the master’s Thesis. 
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1.6 Brief description of the other chapters of the memory  
 
 
The Work begins with some personal reflections, that although not 
being necessary to understand it, they serve to illuminate the 
perspective from which it has been developed. 
 
In the second chapter, a state of the art of the GANs can be found. 
The purpose of this section is to understand and develop the 
components necessary to perform the later implementation of a 
GAN in the practical case. GANs are nowadays a tools used in a 
wide range of area that go from dataset generation [5], realistic 
image generation [8], text to image translation [9] or image 
translation [10]. Understanding how these tools are used is key to 
not make the most on them. One of the intentions of the Work is to 
help the designers not to depend on the tools but to make the tools 
available to them. 
 
Finally, in the fourth chapter, the XYU ring concept is presented, 
an algorithm designed to randomly generate different ring 
examples. The initial concept is explained, and the actual state of 
the project is presented. The process that is carried out every time 
that a XYU ring example is created is shown to understand the 
limitations that are found on the generation of realistic images, 
renderings, of the final products. 
 
Afterwards, the new proposal is explained, in which the 
implementation of the CycleGAN not only simplifies the process 
but allows its automatization. This new tool restructures the 
process in a way in which no interaction of the designer is needed. 
This proposal permits to design an algorithm in which the 
interaction of the user and the machine ends up in a completely 
personalized and unique ring examples. The tools used for its 
development are explained as well as the problems encountered 
during the elaboration of this Work. Although the ultimate goal has 
been the design of this completely automated model, issues of 
great relevance are addressed along the way. The possibilities of 
algorithms in design, of the automation of certain creative tasks 
and the personalization of products by the user.  
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2 Personal reflections 
 
 
 
Prior to doing this Master’s in Computational Engineering and 
Mathematics, I studied a Double Degree in Industrial Design 
Engineering and Mechanical Engineering. During those university 
years one learns many things. But above all, one realizes which 
things he should have learnt but he hasn’t. Or even better, one 
realizes those things that he did not know existed, but about which 
he wanted to learn more. This project is mainly the result of the 
latter, but also a bit of the former. 
 
This Final Master Project (FMP) is in its the most part the sum of 
two disciplines that not only enrich oneself as an engineer but also 
as a person. The first one, Design Engineering, which is essential 
to understand what surrounds us. The second, computing, because 
digitization is an increasingly present and powerful reality. 
Digitization together with automatization, allows that machine are 
dedicated to everything that we do not like to do so that we can 
dedicate ourselves to what we are really passionate about. In my 
case, I would have loved an artificial intelligence to be so advanced 
that it could have helped me write these lines. If the Instagram 
algorithm already knows me so well that it suggests better posts 
than the ones I follow, why won't one day a machine write this FMP 
better than I do with the information it had about me. 
 
The reason for this FMP is also the sum of two events mainly. The 
first, my first design course during my bachelor’s degree, in the 
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subject of Workshop I. In that course we were asked to redesign a 
travel brush. What I learned from that design is the importance of 
the tools available to the designer. In that particular case, the 
influence of the CAD (Computer Aided Design) programs that I 
knew how to use. 
 

 
 

 
Figure  2: Personal project prototypes. 
Evolution of a project with the same idea but using different modelling tools 
such as AutoCAD or SolidWorks. 

  
 
The influence of the tools the designer has available is very clear 
in his work, even limitating, as the designer is not able to 
materialize his ideas as a consequence of not having the necessary 
tools to do it. Therefore, this project tries to understand how some 
artificial intelligence (AI), more concretely GANs, work so we do 
not depend on them, but we make these tools available for the 
designer. Tools should serve for new ideas and not to limit the ones 
that one already has. 
 
The second reason for this FMP is my exchange study in Tongji 
University in Shanghai, China. Before that exchange, I thought I 
was going to go to a less developed country than mine, 
nevertheless, I couldn't be more wrong. My experience in China 
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was a trip to the future, which made me think a lot about which 
would be the next technological advances, which changes would 
they bring in our ways of life, in our jobs. I remember the day one 
of my professors, Dean Lou Yongji, explained how the advertising 
banners that appeared in the Taobao2 application were completely 
personalized for each of the buyers and that these banners were 
not designed by people, but by algorithms[11]. This made me think 
about the graphic designers who had lost their jobs or about how 
AI could affect me as an industrial designer. But then I understood 
the true power of AI. While algorithms do the repetitive work, 
designers would be able to focus on what is really important, the 
people and their needs. 
 
In this project I wanted to delve into the field of AI in design and 
understand how AI can be introduced for designing products. 
Explore the customization possibilities offered by the 
automatization of the design process. Instead of designing an 
object, designing an algorithm that can generate different objects, 
different designs. 

 

 
  

 
 

2 Taobao:   A online shopping website owned by the Alibaba group. Its division tmall.com is the 
third most visited website in the world.  
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3 State of Art 
 
 
The aim of this chapter is to serve as a theoretical base of how GANs 
work as well as explain the different components of them so this 
tool for image generation can later be put into practice in the 
following part of this Work.  
 
Machine learning is a discipline in the field of Artificial 
Intelligence that serves to recognize patterns in existing massive 
data and use this information to make predictions, these can be 
 

- Classification, assigning the correct label or category to an 
example or group of found features. 
 

- Regression, use the know data as an input to predict or 
estimate a numerical values. 

 
Computers can classify bank customers according to their 
probability of non-payment [12], win a chess champion [13] or 
predict which Instagram post we are likely to like [14]. However, 
when asked to generate new data, computers have historically 
struggled. 
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When in 2014, Ian Goodfellow, then a PhD student at the University 
of Montreal, introduced GANs, this changed [15]. Using not one but 
two separate and opposite neural networks, this new tool could be 
used by computers to create new data. This technique is not 
specific to generate images, actually, other data types such as 
sound, music or even text can be generated. In this Work, though, 
we will focus on the image generation as GANs will later be used 
with this purpose.  
 
 

3.1 Preliminary notions 
 

3.1.1 Autoencoders  

 
Image generation with deep learning is done by learning the latent 
spaces that capture the statistical information about the data we 
are training on, in our case, a dataset of images. Each of the 
pictures will be a point in the latent space and sampling and 
decoding these points in the latent space, new data can be created. 
Two main tools are used for this task: Variational Autoencoders 
(VAEs) and GANs [16]. 
 
Understanding the first one, is a good starting point to understand 
how GANs work. Autoencoders, as their name suggests, 
automatically encode data. Autoencoders are a family of neural 
networks for which the input is the same as the output, as we can 
see in the following figure, although altered versions can be 
achieved. 
  

 

 
 
Figure  3: Simple autoencoder architecture.  [17] 
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A simple image autoencoder would take an image, and would map 
it into the latent space, encode it; and then decompress it with the 
same size as the input, decode it. To do so, they are trained having 
the same image as input and output.  Therefore, we can think of 
autoencoders as a tool to compress the input data into fewer bits of 
information.  
 
To train the autoencoder the input image (x) is passed to it and the 
output image (x*) is compared whit it to see if there is any change. 
The differences between the input and the output are measured to 
calculate the error which is called the reconstruction loss (||x-x*||). 

 

3.1.2 Latent space  

 
As it has been seen in the previous section the encoder of the 
autoencoder brings the data from a higher dimension space into a 
bottleneck layer reducing its dimension. The space in which this 
lower dimension data lies is the latent space. The latent space is the 
hidden representation of the compressed data and contains all the 
important information needed to represent the original image, this 
is, contains the principal features of the data. When the 
autoencoder is trained on the images, the model learns to 
represent the features of the original data and simplifies its 
representation [18]. 
 

 
 
Figure  4: s-SNE projection of the latent space of the MNIST dataset of 
handwritten digits. [19] 
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Autoencoders use one only loss function, the reconstruction loss to 
train the network, however, as it has been previously mentioned, 
the objective of the GANs cannot be written in one function, two 
distinct functions are needed to train the model and represent the 
competing objectives of the generator and the discriminator. 
Formally, the generator and discriminator are represented by to 
different neural networks, each with its own objective, each own 
cost function. 
 
As we saw in figure 3, it is the output of the discriminator, the 
discriminator’s estimation of whether the picture is fake or real, 
what is used to train the model. If the generator manages to fool 
the discriminator, which means that the discriminator estimates 
the image is real, will be useful for the generator as it will know 
how to keep improving. On the other side, the discriminator, will 
have to learn to and improve so next time is not fooled again. Both 
of the networks are trained by backpropagation of the 
discriminator’s loss.  
 
Traditional neural networks, as it is the case of VAEs, are defined 
exclusively in terms of their own trainable parameter, the 
reconstruction loss, however, GANs differ from conventional 
neural networks in having two different networks whose cost 
functions are dependent in both of the networks’ parameters. 
During training, each of the networks is able to change only its own 
weights and biases, so each of the networks has control over only 
a part of what determines its loss. Training a traditional neural 
network is optimizing its cost function, on the contrary, training a 
GAN is more like a competition in which the training will stop 
when neither of the opponents can beat the other. The GAN will 
ideally be trained when the discriminator cannot differentiate the 
real images (x) coming from the dataset and fake images (x*) from 
the generator. The discriminator will only be able to make a guess 
having a probability of 50% to be right. In this point, the generator 
won’t be able to improve, as its output is already indistinguishable, 
so no improvements are possible and any change on the way the 
fakes are generated my give a clue to the discriminator to know 
which is the fake image. This equilibrium achieved is called the 
Nash equilibrium. Nevertheless, in practice, it is nearly impossible 
to reach this point and still remains as an open question in GAN 
research [20]. 
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3.2 Generative Adversarial Networks 
 
 
Generative adversarial networks (GANs) generate realistic looking 
synthetic images by forcing the generated images to be statistically 
almost indistinguishable from real ones.  They consist of two 
neural networks simultaneously trained, the generator, trained to 
create fake data based on a dataset; and the discriminator, trained 
to distinguish fake images from real ones. As their name indicates, 
this is a generative tool, this is, it is capable of production or 
reproduction. This ability to generate new data will depend on how 
the GAN is trained, in the case of this Work, it will be trained on a 
XYU ring example rings, so it will learn to reproduce other 
examples of this ring.  
 
The work adversarial refers to the competitive dynamic between 
the generator and the discriminator, the two models that compose 
the GAN.  Finally, the term network refers to the kind of machine 
learning technique that it is compose of, both the discriminator 
and the generator, are neural networks. The complexity of this 
networks depends on the complexity of the implementation. They 
can go from simple feed-forward neural network to a more 
complex convolutional network to even a U-Net as the one in our 
practical case. 
 
An intuitive way to understand how GANs work, is using the 
counterfeiters and police metaphor, the one Ian Goodfellow 
himself used to explain this new tool [5]. The criminals (the 
generator) make fake money while police (the discriminator) tries 
to discern between counterfeit money and real money. This 
competition leads to more realistic money generated by the 
criminals until perfect fake money that fools the police is created. 
In more technical terms, the generator tries to generate images 
with the same characteristics of those in the training data, so they 
look identical to those in the dataset. On the other hand, the 
discriminators’ goal is to determine if a particular example is real, 
this is, it comes from the dataset or if it is fake, it has been created 
by the generator.  
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Figure  5: The two GAN subnetworks, their inputs and outputs, and their 
interactions. 

 
 
 

3.2.1 Generator and discriminator 

 
The generator as we have seen, is the model that is used to generate 
the outputs of the GAN, the synthetic images. The generator (G) 
takes a random noise vector z and produces a fake example x* of 
the same class as the ones in the dataset. G(z)=x*. The generator’s 
final goal is to produce examples of a certain class that fool the 
discriminator. This set of features that compose the fake image of 
the class is fed into the discriminator (D) that will determine how 
real or fake this image is based on its inspection of it. The generator 
wants the prediction of the discriminator, D(x*) as close as 1 as 
possible, indicating the image is real. While the discriminator 
wants this prediction to be as close to 0 as possible, indicating the 
image is fake. 

 



 

28 
 

 
 
Figure  6: Schema of the generator. 

 
 
The discriminators goal is to accurately differentiate real data from 
fake data, this is, the discriminator wants G(x)=1 and G(x*)=0, but 
the generators goal is the opposite, wants to create a really good 
fake example x* that strives to get D(x*) as close as 1 as possible. 
After the discriminator’s predictions, a cost function can be 
computed that measures how far the examples produced by the 
generator are being considered real by the discriminator, because 
the generator wants to seem as real as possible. This function is 
used to update the parameters (θG) of the generator so it improves 
over time knowing in which direction to move it’s parameters so 
the generated images, G(z)=x*, will be more likely to fool the 
discriminator, D(x*)=1  [21]. 
 
 

 
 
Figure  7: Schema of the generator’s parameters update, training of the 
generator. 
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The discriminator works as a classifier, that will only have two 
classes, real and fake. To do so, the neural network will take the 
features of the dataset and train its parameters (θD) to learn how to 
map these features to each of the classes and learn how to make 
better predictions. The goal is to reach a point where the difference 
between the real values (0 for fake and 1 for real) and the 
predictions is minimized. The gradient of cost function will be used 
to improve the discriminative model updating its parameters (θD) 
as it indicates the direction in which those parameters should go to 
make a better prediction the next time [22]. 
 

 

 
 
Figure  8: Schema of discriminator’s parameters update, training of the 
generator. 

 
 

3.2.2 BCE Cost Function 

 
The Binary Cross Entropy (BCE) cost function is used for training 
GANs as it is a measure of the difference between computed 
probabilities and actual probabilities for predictions with only two 
possible class. The greater the cross-entropy loss, the further away 
our predictions are form the true labels. 
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Being m  the number of examples in the batch;  h are the 
predictions made by the model; y are the labels of the different 
examples (true labels of if an image is real or fake); x are the 
features that are passed in through the prediction, the images and 
θ are the parameters of whatever is computing that prediction, in 
our case, the discriminator [23]. For this Work, what is needed to 
be taken into account about the BCE cost function is that it has two 
parts, one for each of the classes (true or fake). This function will 
be close to zero when the predictions and the real labels are 
similar, and it will approach the infinity if the predictions and the 
labels are different [24]. 
 

3.2.3 Activation functions 

 
Activations are functions that take any real number as input, also 
known as its domain, and outputs a number in a certain range 
using a non-linear differentiable function. In deep neural 
networks, and more specifically in GANs, this activation functions 
are used for classification. These functions have to be non-linear 
and differentiable, the first condition, non-linearity prevents the 
hidden layers and neurons from collapsing in a simple regression. 
On the other hand, activation functions have to be differentiable as 
backpropagation is used to train the network, so it needs to provide 
a gradient to the previous layer to update its parameters. 
 
To understand these activation functions, we need to understand 
what each of the individual nodes in the neural network do. A node 
takes the information from the previous layer ail-1 and predicts two 
things. The first one, zil , is the sum of the product of various 
weights Wil on the outputs products from the previous layer ail-1. 
Therefore, z is composed by the sum of the weighted outputs from 
the previous layer. On the other side of the node, we have the 
outputs of this node, ail, this is the output of the activation function 
Gl of this node that takes the previously calculated zil as input. In 
the following picture and scheme of this process can be found [25]. 
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Figure  9: Schema of activation functions. 

 
 
These activation functions Gl, as we have mentioned, need to be 
non-linear and differentiable. The most common activation 
functions for deep learning models are: 
 

3.2.3.1 ReLu: 
 
Rectified Linear Unit (ReLu) takes the max value between 0 and the 
input value zl. 
 

 
 
This means, that this function eliminates the negative values and 
makes them 0. Graphically, the ReLu activation looks like this 
 
 

 
 

Figure  10: ReLu activation function [26]. 
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As it can be seen in the graph, for values smaller than 0, the 
negative numbers, the derivative is equal to 0, so this function gives 
no backpropagation information to the network, that gets stuck on 
the same value and the weights stop learning. This is known as the 
dying ReLu problem, that makes the network stop learning. A 
variation of this function, the Leaky ReLu has been proposed to 
solve this problem. 
 

3.2.3.2 Leaky ReLu 
 
The Leaky ReLu is the same as the ReLu for the positive values, 
however, for the negatives, it adds a little leak or slop in the line. 
Now this function has a non-zero derivative, that is intended to be 
smaller than one so it doesn’t form a line with the positive side, 
therefore, 0<a<1. 
 

 
 
Graphically the Leaky ReLu function looks like the following 
graph: 
 

 
Figure  11: Leaky ReLu activation function [26]. 

 
3.2.3.3 Sigmoid 

 
This activation function values the outputs between 0 and 1. If the 
input is positive the value will be between 0,5 and 1, while if the 
input is negative, the value will be between 0 and 0,5. This function 
is not very often used in hidden layers as it produces what is called 
the vanishing gradient problems, which means that in the tails of 
the function the derivative approaches to zero. 
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Graphically the sigmoid function looks like the following graph: 
 

 
Figure  12: Sigmoid activation function [26]. 

 
3.2.3.4 Hyperbolic tangent 

 
The hyperbolic tangent (tanh) activation function is similar to the 
previous sigmoid function, however, this function outputs values 
between -1 and 1. This allows this function to maintain the sign of 
the input which can be useful for some applications. 
 

 
 
Graphically the sigmoid function looks like the following graph: 
 

 
Figure  13: tanh activation function [26]. 

 

3.2.4 Convolutions 

 
In mathematics convolution is a mathematical operation on two 
functions (f and g) that produces a third function (f*g) that 
expresses how the shape of one is modified by the other. In image 
processing, it is the process of transforming the image by applying 
a kernel over each of the pixels and its local neighbors across the 
entire image. In other words, convolutions are performed by 
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sliding one or more filters over the input layer. Each filter has a 
relatively small receptive field (width x height) but always extends 
through the entire depth of the input volume. At every step the dot 
product between the input values and the filter entries is calculated 
as it can be seen in the following image. 
 

 
 
Figure  14: Convolution operation on a 7x7 matrix with a 3x3 kernel [27]. 

 
 
The parameters of the filter will be applied to all the input values 
to the given filters. Therefore, these parameters will be shared 
across the image and allow us to learn the visual features and 
shapes found on the input image. Convolutions layers learn the 
patterns of the image, in the case of images, they learn the patterns 
found in 2D. This is key to understand some of their 
characteristics. The patterns they learn are translation invariant, 
this is, it doesn’t matter which part of the image they are found in. 
This makes these tools data efficient when processing images. On 
the other hand, convolutions allow to learn the spatial hierarchies 
of patterns. The first convolution layer will learn local patterns 
while the second convolution will learn larger patterns made of the 
local patterns found in the first operation. This allows these 
convolutions to be really efficient in image processing as they can 
learn complex and abstract visual concepts, which is key to feature 
classification [28]. 
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Figure  15: Spatial hierarchy of visual modules that combine into the ‘cat’ 
concept [16]. 

 
 
 

3.3 Types of GAN  
 
After having explained how GANs work and how to build them, 
some concrete GAN types will be explained. Although the final type 
of GAN selected for the XYU ring rendering style transfer has been 
a CycleGAN, other alternatives are studied in the following lines in 
order to better understand what a CycleGAN is.  
 

3.3.1 Conditional GAN 

 
Until now, in the previous chapters, the outputs of the GANs were 
random examples that mimicked the dataset, this is, unconditional 
generation. However, if we had conditional image generation, we 
could ask for an example of an specific class to be generated by the 
GAN [29]. Remembering the metaphor of the counterfeiters, 
maybe we don’t want to make a fake 5€ bill to fool the police, but 
we rather make a 500€ bill. To do so, in conditional GANs, apart 
from the random noise vector that the generator has as input, we 
will also provide a class and the generator will have to provide an 
example of that class. To be able to do so, we will need that our 
dataset is also labeled so the GAN during training learns what the 
features of each of the classes is. For example, in the counterfeit 
money metaphor, blue color would be a feature of the 5€ bill, while 
purple, would be a feature for the 500€ bill. 
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3.3.2 Pix2pix 

 
In the previous section, we have seen how giving a certain class to 
the conditional GAN to generate a certain type of image. In section, 
the input for the generator, won’t be a class but a picture. As we 
can imagine from its name, pix comes from image, this type of GAN 
will output the same image as the input but with a certain change. 
Therefore, this is an image-to-image translation kind of GAN, an 
special case of conditional GAN, whose condition is the whole 
image rather than a class [30]. In the following figure a famous 
image translation example from University of California, Berkeley 
can be seen, in this image, it can be seen how this style3 transfer 
works on different domains. 
 
 

 
Figure  16: Image-to-Image Translation with Conditional Adversarial 
Networks [10]. 

 
As it can be seen pix2pix is a really powerful tool that can be 
applied in a wide range of applications. However, as in conditional 
GANs we need labeled data. In the case of image-to-image 
translation, we need that the data is composed of paired images. 
Our dataset should consist of the same exact image but with the 
different style. For example, in the case of the Day to Night style 
transfer in the previous figure, the day picture and the night 
picture should be taken from the same point and position [31]. 

 
 

3 In this context, style refers to the textures, colors, and visual patterns in the image, at various 
spatial scales; while the content is the higher-level macrostructure of the image [16]. 
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3.4 CycleGAN 
 
The problem with the previous need of paired data was solved by 
the same UC Berkeley group that realized that we do not need 
perfect pairs, in fact, it is enough with just closing the cycle by 
translating from one domain to another and then back again [32]. 
This close cycle gave the name to this kind of GANs, the CycleGAN. 
This is the GAN type that will be later be used in the practical part 
of this Work. The CycleGAN is a technique that involves the 
automatic training of image-to-image translation models without 
paired examples that makes it perfect for the later practical 
application as no need of paired image dataset is needed.  
 
To achieve this cycle consistency two generators are needed, the 
fist generator (GAB) will translate from the domain A to B and the 
second generator (GBA) that will translate from the domain B back 
to A. Therefore, there will be two losses, one forward cycle-
consistency loss and another backward cycle consistency loss. But 
as all they mean is x*=GAB(GBA(x) ) and y*=GBA(GAB(y) ), we can think 
of them as essentially the same, but off by one [32]. 
 

3.4.1 Cycle consistency loss 

 
The cycle consistency loss, that can be expressed as //x-x*// or  
 //y-y*// depending on which of the styles we consider as the 
starting point, ensures that the original image and the output 
image after completing the cycle, the twice-translated image, are 
the same. Apart from this loss function, the total loss function in 
CycleGANs have other terms. 
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Figure  17: Schema of the Cycle consistency loss. 

3.4.2 Adversarial loss 

 
Apart from the cycle consistency loss mentioned before, we still 
have the adversarial loss that should be taken into account. Every 
translation by the GAB generator will be checked by the DB 
discriminator and the generator GBA will be controlled by the DA 

discriminator. Every time we translate from one domain to 
another, the discriminator will test if the output of the generator 
looks real. 
 
This component of the generator's loss that we are later going to 
implement in the practical part is similar to the previously 
mentioned loss for GANs, however, it is important to note that the 
criterion now is based on least squares loss, rather than binary 
cross entropy loss or W-loss used in general GANs. This loss 
function will ensure that the outputs of this CycleGAN look real, so 
it is key for the good functioning of the model. 
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This function has two terms, the first is the probability of the given 
image to be the real one rather than the fake one, the translated 
one. The second term is where the generator may get to fool the 
discriminator. The previous formula is only the formula for the DB 

discriminator, in the final loss there is an equivalent formula for 
DA. 
 
As in the general GANs, the adversarial loss measures if the 
generated images look real, if they are indistinguishable to the 
ones in the training set [33].  
 

3.4.3 Identity loss 

 
The identity loss measures if the output of the CycleGAN preserves 
the overall color temperature or structure of the picture. Although 
it is an optional term for the total loss, it will be considered in this 
Work for color preservation. Pixel distance is used to ensure that 
ideally there is no difference between the output and the input, this 
ensures that the CycleGAN only changes the parts of the image 
when it needs to. In the following figure, the effects of considering 
this Identity loss can be seen in two different examples [34]. 
 
 

 
Figure  18: Output image comparation with and without Identity loss [33]. 

 
 

3.4.4 Generator total loss 
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As explained by Zhu et al. [32], the full objective of the CycleGAN 
must be reducing this three loss functions. Actually, Zhu et al. in 
their article show that training the networks with only one of the 
functions doesn’t arrive to high-quality results. In the Previous 
formula, we can see that both the identity loss and cycle 
consistency functions are weighted by λident and λcyc, respectively. 
These scalars control the importance of each of the losses in the 
training. In our case, following the values for these parameters 
proposed in the article, λcyc will be 10, and λident will be 0.1, as this 
last function only  controls the tint of the input and output images, 
in our case, as the dataset is composed of the same colors, it doesn’t 
suppose any big problems. 
 
 

 
Figure  19: Loss function plot for the first 1400th steps of the training, 
corresponding to 14 epochs. 
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In the previous image, the different components of the generator 
loss, as well as the generator total loss and discriminator total loss 
can be seen in a chart. This chart corresponds to the training of one 
of the CycleGANs of this work and we can see how the cycle 
consistency loss has decreased during training, however, the 
adversarial loss has been increasing in the first steps but at the end 
of the plot, we can see that it will start decreasing. 
 

3.4.5 Generator architecture 

 
The generators in the CycleGAN are updated generators compared 
to the traditional GANs, this upgraded generators are based in U-
NET. This architecture framework it’s an encoder-decoder model 
that uses skip connections. Compared with the traditional model, 
that takes a noise vector as input, the U-net takes in an entire image 
and uses convolution layers in the encoder and can be thought as 
a classification model that finds the classes in the input, and 
outputs a value or some compressed data. Those important 
features are decoded to the output, another image. They can be 
then imagined as an autoencoder; however, we don’t want the 
output x* to be as close as possible to x, we want it to be conditioned 
with a certain style.  
 
Nevertheless, to prevent these layers from losing some 
information during encoding, the U-Net also introduces some skip 
connections between the decoder and encoder layers, allowing 
certain details that may have been lost during the encoding still be 
present on the later layers. 
 
 

 
Figure  20: Architecture of the generator [33]. Example of the orange2apple 
CycleGAN. 
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The encoder as it can be seen in the previous image is made of 
convolutional layers that reduce the resolution while the decoder 
is made of deconvolutional layers, transposed deconvolutions, that 
upscale the information back to an image with the same size as the 
input. In-between skip connections are created to permit that the 
information has an easier way to propagate through the network 
[35]. 
 

3.4.6 Discriminator architecture 

 
The discriminator of the CycleGANs is based in the PatchGAN 
architecture. The difference between this architecture and the 
previous generator, is that in this CycleGAN instead of having a 
single float as an output, is outputting a matrix of values. A 
PatchGAN architecture will output a matrix of values, each of them 
between 0 (fake) and 1 (real), classifying the corresponding 
portions of the image. The activation function for the training of 
the model in the practical part of this Work is the LReLu (Leaky 
Rectified Linear Activation)4. 
 

 
 
Figure  21: Example the classification of a portion of the image in the 
PatchGAN architecture [36]. 

 
In summary, if a fake image is passed to the discriminator, this 
should output a matrix of all zeros, on the contrary, if a real image 
is passed, it should output a matrix of only ones [36]. 

 
 

4 This function is different from the previously mentioned function as a new term is added:  
f(x)=max(0,x)+β∗min(0,x) 



 

43 
 

 

 
 
 
 
 
 
 
 
 
 
 

4 Practical case development 
 

4.1 Case description 
 

4.1.1 XYU ring5 

 
XYU is not only a ring but an algorithm to create them. This 
algorithm uses splines to generate infinite ring possibilities. The 
starting point is set by the user, who specifies the number of 
splines and the length and thickness of the ring. The control points 
of the splines are randomly selected and adapted to make them 
continuous on the ring. If the user does not like the result, the 
algorithm can be run again until an aesthetic shape is achieved.  
 

 
Figure  22: Original concept schema. 

 
 

 
 

5 XYU is the name of this ring project, it is not an acronym, but the name of this ring composed 
of 3 randomly chosen letters. 
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Inspiration can be quite a tricky topic, because I do believe every 
single random encounter I have had in my life has led me to this 
unique position where I am right now, writing to you about what it 
means to design, to do maths and to integrate both.  
 
There are infinite possibilities and universes in which this decision 
did not happen at all, as well as I am sure there are many others in 
which it also occurred. But if I had to point down a single event it 
would probably be how I realized AI was quickly taking over 
designers’ jobs, creating ads, banners... So I thought: how will 
designers face this new world where thousands of variants can be 
created with only one click?  
 
Maths can be the answer to this, the one that gives the input to 
generate these infinite possibilities if we integrate algorithms with 
the power of randomness. If creativity is imagining the impossible, 
why not have the infinite as the starting point?  XYU ring is not only 
an item but an infinite. This is not just a jewel, but as many as you 
want. This is not just a ring, it is an algorithm that designs them.  
 

 
 
Figure  23: Mood board (visualization of concepts and ideas) of the XYU ring 
and rendered images of different XYU rings created. 
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4.1.2 Actual model state 

 
XYU ring is not merely an ornament, but a proof of the infinite 
possibilities of computational design. This algorithm allows the 
users to design their own 3D ting example based on their 
preferences which are used by the algorithm to generate random 
rings. Each time the code is run, a different and unique ring is 
produced. This procedure permits to personalize each of the XYU 
ring examples. 
 
Once the users find the ring that they like, this is automatically 
modelled on Maya and the 3D object is sent to the jeweler. Each of 
the rings is 3D printed and cast, so each of the pieces are unique.  
 

 
Figure  24: Actual model’s program and steps followed. On top Matlab program 
screenshot where the algorithm is run. In the middle, Maya program with the 
3D object of the ring. On the bottom, blender program and the rendered image. 
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Description of the actually used programs and different steps 
followed to go from the initial starting data to the final design of 
the ring are shown in the previous figure. The algorithm is run on 
Matlab, the ring is later automatically translated into Maya MEL 
coding language where the ring is 3D modelled and .obj file is 
created. Finally, the realistic images of the ring are rendered using 
Blender program. 
 
To generate the 3D object and send the .obj file to the jeweler who 
will 3D print and cast it, Maya 3D computer graphics application is 
used. To do so, the information of the ring is passed to Maya using 
the Maya MEL coding language. This is, the output of the Matlab 
algorithm is a .txt file with the instructions of the curves that 
generate the different brands of the ring, the splines, as well as the 
circles that will be extruded along the splines to form the 3D object. 
Therefore, the information to 3D generate the ring is passed as 
coded instructions to Maya. 
 
 
 

 
 
Figure  25: Schema of how each of the brands of the ring are 3D modelled 
on Maya program. The points that compose the curve as well as the circle 
that will be extruded along this curve are passed to Maya program using 
Maya MEL coding language. 

 
 
 
The last stage of the process corresponds to the rendering of the 
final product. In this last step, Blender rendering program is used 
to generate realistic images on the ring and to show the final 
product to the costumer. 
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Rendering is the process of turning a 3D scene into a 2D image [37].  
A 3D scene is composed of various elements apart from the object 
we want to render, such as the background, the camera, the 
materials and the light.  This step is the most tedious part of the 
XYU ring generation. The rendering of images not only takes a long 
time to be calculated, but scenes need to be arranged and the 
images not always render as expected the first time. Actually, 
companies like Pixar that create whole animation films by 
rendering each of the video frames of their films,  have rendering 
directors to optimize this process [38]. 
 
To calculate how long it takes to render an image, apart from the 
time needed to calculate the color of each of the pixels, that is not 
the biggest one of the process; the scene setting time, the lightning 
configuration and the material generation and selection times 
should be added. A good rendered image of one of the XYU rings 
would take in total around an hour in the making. 

 

 
 
Figure  26: Rendering setting and image rendering times for 1000x1000 pixel 
size simple images. 
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As it has been seen, the original idea was not achieved as 
intermediate external programs need to be used in the process. In 
the following picture the actual process is shown in which 
intermediate steps for the 3D object and rendering generation are 
needed.  
 

 
Figure  27: Actual model schema: the algorithm run in Matlab, the 3D object 
modelled in Maya, the rendered image in Blender and the final product 
after being made by the jewel. 

 

4.1.3 New model proposal description 

 
The initial process in which the generation of rings was completely 
automatized has not been achieved yet. This limitation was the 
starting point of this Work. Therefore, finding a new approach for 
this ring design generation algorithm in which no need of the 
designer has been tackled in this Work which has resulted in this 
proposal of including a CycleGAN in the process that allows the 
algorithm to generate the rendered images of the ring and show 
them to the user. 
 

 
Figure  28: Proposed model idea. The algorithm in this case, apart from 
creating the ring is also responsible of generating the rendered images of 
it. A CycleGAN is added to the algorithm for this last part. 
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4.2 CycleGAN development 
 

4.2.1 CycleGAN description 

 
CycleGANs are used to translate image style such as horse2zebra, 
apple2orange, photo2Cezanne, winter2summer… and vice versa [39]. 
In this Work CycleGANs will be used for the last parts of the 
process of the design of the XYU rings, the presentation. To 
achieve this, two CycleGANs will be trained: a first sketch2object3D 
that will take a starting point a sketch of the shape of the ring (an 
image of the 3D view of the splines of which is composed) and will 
apply a style transfer to generate an of the actual 3D volume of the 
ring. This will be used to see the possibilities of CycleGAN, as the 
sketch2object3D is a simpler model, it can be trained with a simpler 
image dataset, as no renderings are needed to be done. This 
model’s training will serve as the starting point for the practical 
part of this Work. 
 
The second CycleGAN, sketch2rendering, will also start with the 
sketch and will apply a style transfer to generate a rendered image 
of the ring. In the following figure these two CycleGAN can be seen. 
Actually, the second CycleGAN, the sketch2rendering is the final 
objective of this Work, as renders are used in design to present 
final products, but long time and preparation are needed to obtain 
them. Training a CycleGAN that would render the generated rings 
would not only ease this process and reduce the process time but 
also automatize the process.  
 

 
Figure  29: Proposed CycleGANs, sketch2object3D and sketch2rendering. 
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4.2.2 Building the CycleGAN 

 
In this part of the Work the code used for training the CycleGAN 
will be introduced. This code is based on the generative model 
proposed by Zhu et al. in the paper Unpaired Image-to-Image 
Translation using Cycle-Consistent Adversarial Networks [32]. In the 
following lines the different elements of this code will be discussed 
and explained. The code is attached at the end of this Work. The 
CycleGAN will be implemented on Pytorch. 
 
Before starting with the CycleGAN code, a visualization function 
will be defined, and the image dataset imported. The first one, 
show_tensor_images will be the visualization function that will plot 
and print the tensor of images. The second, ImageDataset,  that is 
inspired by the dataset.py by aitorzip [40] will serve to setup the 
dataset with the following directory structure: 
 
 

. 
├── datasets                    
|   ├── <dataset_name>         # i.e. sketch2render 
|   |   ├── train A            # Training .jpg images of domain A 
|   |   ├── train B            # Training .jpg images of domain B 
|   |   ├── test A             # Testing .jpg images of domain A 
|   |   └── test B             # Testing .jpg images of domain B 

 
                
 

4.2.2.1 Building the generator 
 
As explained in the theoretical part of this Work, the generator is 
based on the U-Net architecture, which uses skip connections as 
described before. Between the encoding (contracting) and 
decoding (expanding) the residual blocks have been added. 
 

- Residual Block 
 
In CycleGANs after the expanding blocks, there are convolutional 
layers where the output is added to the original input to ensure that 
the network cannot completely change the image. This can be 
thought as a kind of skip connections that also allows the network 
to be deeper, as they help with the vanishing gradients issues that 
occur when the neural network gets too deep, and the gradients 
multiply in backpropagation become very small. 
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The ResidualBlock will perform two deconvolutions and an instance 
normalization. Afterwards, the input will be added to this output to 
form the residual block output. 
 

- Contracting and Expanding Block 
 
This is the decoding and encoding section of U-Net. The 
ContractingBlock will be the encoding that will perform a 
convolution followed by an instance normalization followed by a 
optional instance norm. The activation function will be the ReLu 
function. 
 
The ExpandingBlockwill be the decoding that will perform a 
convolutional transpose operation in order to upsample, with an 
optional instance norm. 
 
The FeatureMapBlock is the last and first layer of the generator. It 
maps the input and output to the desired number of channels. 
 
After defining the block classes, we can define the actual 
generator. This will be composed of 2 contracting blocks, 9 
residual blocks and 2 expanding blocks to transform the input 
image into an image of the other domain. This generator will have 
an upfeature layer at the start and a downfeature layer at the end. 
 

4.2.2.2 Building the discriminator 
 
The discriminator in the CycleGAN is based on the PatchGAN 
architecture as it has been previously explained. The discriminator 
will output a matrix of values classifying corresponding portions of 
the image as real or fake. The discriminator's final layer will simply 
map from the final number of hidden channels to a single 
prediction for every pixel of the layer before it. The discriminator 
will be based on the contracting path of the U-Net. It will be 
composed of a series of 3 contracting blocks and a final 
convolutional layer. 
 

4.2.2.3 Training parameters 
 
In this part of the code, the different parameters are defined, and 
the images of the dataset are loaded (an horizontal random flip is 
added to introduce some data augmentation).  
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4.2.3 Building the network 

 
Once the basic elements are defined, we can initialize the network. 
Our CycleGAN is composed of two generators and two 
discriminators: 
 

- gen_AB: generator for domain A to domain B 
- gen_BA: generator for domain B to domain B 
- disc_A: discriminator for domain A 
- dics_B: discriminator for domain B 

 
There is an option to load a pretrained model, which is useful to 
continue with the training of the CycleGAN loading a pretrained 
model but adding some modifications to the parameters. 
 

4.2.3.1 Discriminator Loss 
 

As explained before, the discriminator’s loss function is an 
adversarial loss function.  This function takes the discriminators 
predictions and the target labels and returns the adversarial loss. 
In our case, following the Zhu er al. recommendations [32], the 
adversarial loss calculation criterion is the mean squared error of 
this two elements. 
 

4.2.3.2 Generator Loss 
 
The generator loss in CycleGAN is compassed of 3 losses as it has 
been explained in the theoretical part. 
 

- Adversarial Loss 
- Identity Loss 
- Cycle Consistency Loss 

 
After calculating this losses, they are put together into the 
generator total loss. To sum these three components, 
lambda_identity and lambda_cycle will be used to weight the 
importance of this two components in the final loss. In our case the 
lambda_identity will be small because this is not an important 
component for our application. 
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4.2.3.3 CycleGAN training algorithm 
 

After all the components are coded, the training loop is created, 
the details of each iteration are as follows: 
 
 

 
1: for training_step do  

2: Dataloader returns random images batch (real_A, real_B) 

3: Use the generator for domain translation                                 

             fake_B=gen_AB(real_A) and viceversa 

4: Compute discriminator losses disc_A_loss, disc_B_loss 

5: Update discriminator gradients and optimizers 

6: Compute generator total loss gen_loss 

7: Update generators gradients and optimizers 

8:   if iteration_step % display_step == 0 then 

9:  Visualize the results 

10:  if iteration_step % save _step == 0 then 

11:       Save the model 

12:  iteration_step += 1 

 

 
4.2.3.4 CycleGAN testing 

 
Part of the image dataset has been set aside to be used with testing 
purposes. These images of both of the domains are saved in the 
testA/ and testB/ folders respectively. In this part of the code these 
images are loaded, and they are used as input for the model. The 
testing is used to make sure that when our model gets new images, 
images that it has not seen before, the output has the same 
conditions as the ones in the training set. Therefore, the testing 
algorithm is similar to the training algorithm but no loops are 
needed as no parameters are changed. The images are loaded and 
transferred to the other domain by the generators, then the loss is 
calculated and printed to be compared with the loss obtained in the 
training. 
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Figure  30: CycleGAN architecture schema. 
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4.2.4 Training the CycleGAN 

 
Once the algorithm to train and test the CycleGANs is explained the 
actual training process followed in this Work will be explained. 
First the sketch2object3D was trained, as a simple dataset was 
needed as an starting point, so in case any changes in the training 
image dataset should have been made, these would be easier to be 
done. During the training of these CycleGANs some needed 
changes on the initial idea and dataset have been found. On the 
following lines the process followed for training both of the 
CycleGANs will be explained as well as the problems encountered. 
 

4.2.4.1 Sketch2object3D: white background problem 
 
During the training of this sketch2object3D CycleGAN, a problem on 
the database images has been found. The white background 
images used for the training of the CycleGAN supposed a problem 
for the development and learning of the system that was 
uncappable of differentiating where the ring ends and the 
background starts. 
 

 
 
 
Figure  31: Result of the CycleGAN sketch2object3D (epoch 4, step 420). On 
top, the input images and bellow the images in the other domain generated 
by the CycleGAN. 
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Figure  32: Influence of the background color on the images of the first 60 steps of the 
training of the CycleGAN with white and blue backgrounds.  
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To solve this problem a new database with a colored background 
(blue color background images dataset) was created and the 
influence of the background on the development of the CycleGAN 
has been observed. Actually, in the previous picture, even in the 
first 60 steps of the training of GAN this influence can be seen. 
 
Solving this problem with the background has been fundamental 
for the training, as no learning could be achieved with the white 
background. Indeed, if we look closely to the generated images, 
they were closer to the form of the shadows that objects standing 
over some surfaces create. Actually, if we looked closely to the 
images with the white background, it would also be impossible for 
a person to differentiate the line in which the ring ends, and the 
background starts. 
 
This change on the color of the background allows the CycleGAN 
to be trained. In the following image, we can compare the training 
process of this CycleGAN with both of the databases and see how 
the first database, the one with the white background wouldn’t 
permit the CycleGAN to reach a good style transfer level. 

 

 
 
Figure  33: Training process steps 420 and 2800 with both background 
colors. The input images are followed by the images generated by the 
Cyclegan with the domain changed. 
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In the following parts of this Work, blue will be used in order to 
avoid white backgrounds. However, different blue tones will be 
found in the images, although all the backgrounds have the same 
blue color, #B9E2EA, the lighting will influence how the 
background is rendered. 
 

4.2.4.2 Sketch2rendering: wireframe thinckness problem 
 
Training the sketch2rendering CycleGAN some continuity problems 
on the sketches were found when the CycleGANs had to transfer 
the image from the sketch domain to the rendering domain. To 
solve this problem, it was decided to use thicker lines in the 
sketches and a new dataset was created. As it will be seen in future 
lines, going from thin lines to thicker ones permitted the CycleGAN 
to produce continuous rings 

 

 
 
Figure  34: Continuity problems found during sketch2rendering CycleGAN 
training with the thin lines sketch.  
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5 Results 
 

5.1.1 Sketch2object3D 

 
Although the sketch2object3D CycleGAN is not the final objective of 
this work, training this CycleGAN has served for learning about the 
possibilities and limitations of style transfer. Training this first 
CycleGAN showed the importance of the background color. The 
results of this sketch2object3D CycleGAN can be seen in the 
following image. Cyclegan trained after  
 
 

 
 
Figure  35: Collection of some results of the sketch2object3D CycleGAN. 
 
 



 

60 
 

5.1.2 Sketch2rendering 

 
In the following image some examples of the style transfer by the 
sketch2rendering CycleGAN trained in this work are shown, in the 
first image, some of the results of the first trained CycleGAN are 
shown, the one trained with thin line sketches of the different 
rings. On the second image the actual CycleGAN outputs are 
shown. 

 

 
Figure  36: Collection of some results of the first trained sketch2rendering. 

 

 
Figure  37: Collection of some results of the second trained sketch2rendering. 
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For comparison purposes, some of the ring sketches used to train 
the data have been modelled and rendered using the traditional 
procedure. In the following image, the outputs of the CycleGAN are 
show next to what they could be some expected rendered images 
using Maya modelling program and Blender rendering program. 
Although the data are unpaired images, in the following figure, the 
images are show as pairs of the input sketch and the generated 
image by the sketch2rendering CycleGAN and the rendered image 
using Blender. 

 

 
Figure  38: Different rings in the sketch domain and the rendered domain. 
The expected rendering has been generated with Blender and the other 
using  the sketch2rendering CycleGAN. 
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In the following images 360 degrees of the same XYU ring can be 
seen. On the left, the input image (sketch image) is shown and next 
to it an expected rendered image of the 3D object using Blender can 
be seen and next to it, the output of the sketch2rendering CycleGAN. 

 
 

 
 
Figure  39: Different views of the same object in the sketch domain and the 
rendered domain. The expected rendering has been generated with 
Blender and the other has been generated by the sketch2rendering 
CycleGAN. 
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Figure  40: Different views of the same object in the sketch domain and the 
rendered domain. The expected rendering has been generated with 
Blender and the other has been generated by the sketch2rendering 
CycleGAN. 
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6 Discussion and future work 
 
After having shown the possibilities of the applications of style 
transfers with CycleGANs with rendering purposes, in the 
following section, the artifacts found during the training and 
testing as well as some of the limitations found on the model will 
be considered. 
 
Although the model can achieve reasonable results in some cases, 
there are areas for improvements in future works. As it can be seen 
in the following lines, the results are far from uniformly positive 
and there are still some challenges and improvements to be done 
before good quality realistic images of the rings are generated by 
the CycleGAN. The following artifacts have been found in both the 
training and the testing and solving them is important for future 
works.  
 

6.1 Detected artifacts 
 

6.1.1 White spots 

 
During the training white blurry spots have been found on the 
output images. They have been usually found in the edge of the 
ring in areas where there is a strong shine on the ring or where the 
different bands of the ring intersected. 
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Figure  41: Examples of the white spots artifact. 
 

6.1.2 Continuity loss in the lines in the sketch transformation 

 
When the rendered images are transformed into the sketch 
domain, there is no continuity in the curves that form the ring due 
to the shiny parts of the rendered image. Although the domain 
change we are looking for in this Work is the sketch->rendering 
change, to train the CycleGAN the whole cycle is applied to the 
image, so solving this problem with the style transfer from the 
rendering domain to the sketch domain may be fundamental to 
obtain better results in the sketch->rendering transformation.  
 
 

 
 
Figure  42: Examples of the continuity loss in the sketch domain transformation. 

 

6.1.3 Aureole around the ring 

 
 
This may be one of the most commonly found artifacts in the 
model. It is a gradient or aureole around the edges of the ring. Due 
to the different lighting settings, there is non uniform background 
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color in the training dataset. Actually, the rendered images created 
using the Blender program show noise in the background, like if a 
photoshop Film Grain filter would have been applied to the 
background. This is due to the renderization parameters on 
Blender. In order to accelerate the renderization process, the 
number of calculation steps for the color of each pixel was reduced 
when the dataset was created. In order to see if this is the actual 
cause of this artifact, in future works a better-quality dataset 
should be created, not only for the rings themselves but also for the 
backgrounds. 
 
 

 
 
Figure  43: Examples of the aureole artifact. 

 

6.1.4 Checkerboard pattern 

 
This is one of the most typical artifacts in GANs, the reason for this 
checkboard like pattern in images is due to the upsampling process 
of the images from the latent space. This deconvolution “can easily 
have uneven overlap putting more of the metaphorical paint in 
some places than others” [41].  Solving this artifact may be on of 
the first problems to be tackled in future works. 

 

 
 

Figure  44: Examples of the checkerboard artifact. 
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6.2 Model limitations 
 
Apart from the artifacts described in the previous section, some 
limitations of the actual model have been found, and solving them 
would need to change the model itself, for example using paired 
data for the lighting setting instruction to know where the light is 
coming form or change how the lines in the sketch intersect to 
show which one is on top of the others. 

6.2.1 Lighting settings 

 
In the following image, different lightning settings have been used 
in the rendering of the same object with the same materials. 
Therefore, different images have been created. In order to 
improve the training of the CycleGAN it would be better if always 
the same rendering settings are used so the CycleGAN is able to 
learn the rendering style. Another solution, as previously 
mentioned could be to used labeled data, adding information about 
the light position and direction, so the network can learn the 
differences. However, this would complicate the generation of the 
datasets and really precise information would be needed to make 
sure that all the information about the lighting settings is included 
in the labels. 
 
 

 
 
Figure  45: Examples of the influence of the lightning settings on the final render. 
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6.2.2 2D perspective 

 
The sketch input image of the ring is an image of a 3D plot of the 
different splines that form the ring. Therefore, when in the 2D 
image two lines intersect; this may be because the lines actually 
intersect in the 3D space, or it may just be a consequence of the 
perspective. When created a plot of a 3D object, some of the 
information is lost, so there is no way for the CycleGAN to know 
which of the intersecting lines in the image is on top of which or if 
they are actually intersecting. A good way to solve this could be to 
a different representation for intersecting lines and the ones that 
aren’t, for example, the diagrams used for knot representation in 
 the study of mathematical knots [42] could be used. 
 
 

  
Figure  46: Example of two lines intersecting in the 2D image, and two 
different 3D examples of the actually intersecting and non intersecting 
cases. 
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7 Conclusions 
 
 
After having presented the obtained results in the CycleGAN 
training and having discussed the problems encountered, some 
conclusions around the initially set objectives have been made. 
These conclusions are discussed in the following lines  
 
First of all, it is concluded that the model can achieve compiling 
results for the rendering style transfer, that was the initially 
objective. Nevertheless, as it has been seen, there are areas for 
improvement in future works before high quality realistic images 
of the ring examples are generated by the CycleGAN. However, the 
results obtained exceed the initial expectations for this Work. 
Actually, this new model supposes a new approach for the XYU 
ring algorithm and even though perfect results have not been 
obtained, the reduction of the time and the allowance of a 
complete automatization of the different ring design generation, 
makes this Work the perfect starting point for future research and 
improvements. 
 
Secondly, this Work shows the possibilities of the intersection of 
computation and design, an intersection that allows the designers 
to focus on what really matters while the algorithms do the 
repetitive work. The rendering style transfer supposes going from 
the rendering of images that could take up to one hour on the 
making, to renders generated by the CycleGAN in seconds. 



 

70 
 

 
Therefore, it can be concluded that the research objective has been 
achieved, having developed a software that is capable of 
transferring the rendering style to the initial sketches of the ring. 
The contribution of this work to the XYU ring design generation 
algorithm supposes an inflexion point for the way that the rings are 
shown to the costumer, who now would be able to see real time 
rendered images of the ring that is generating while interacting 
with the algorithm. 
 
With regards to the initial planification, it can be concluded that is 
has been adequate and has managed to meet the milestones 
proposed. Some delay was suffered in the third milestone with the 
code development and the problems encountered with the 
databases, however, in the last part of the elaboration of this Work 
the delay has been overcome. Therefore, the initial objectives of 
this Work have been achieved on time. 
 
Last of all, in the previous chapter the problems encountered 
during the making of this Work have been discussed and they 
suppose the challenges to be solved in future works. Apart from 
these, some quantitative results for this model should be done. In 
future work, other types of GANs could be trained like pix2pix, 
BiGAN or StyleGAN and train them with paired data to compare 
them with this model. This quantitative comparison with other 
methods would help decide if CycleGANs that do not need of paired 
data, as in this case, are the best approach for this problem, or 
preparing a paired data to train an image to images translation 
GAN is worth the time and the effort. 
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8 Glossary of terms 
 
 
AI  Artificial Intelligence 
CNN Convolutional Neural Network  
GAN  Generative Adversarial Network  
VAE  Variational Autoencoders 
FMP  Final Master Project 
UOC  Universitat Oberta de Catalunya 
BCE  The Binary Cross Entropy  
ReLu  Rectified Linear Activation 
LReLu Leaky Rectified Linear Activation 
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10 Attachments 
 

10.1  Databases 
 
Some randomly selected .jpg images from the different datasets 
generated for this work are shown in this section. The aim of this 
section is to show the images that have been used in the training of 
the CycleGANs. 
 

10.1.1 Sketch dataset (first version, thin wire sketch) 

 
These .jpg images have been generated using Matlab program and 
the XYU ring algorithm. Actually, these images are a 3D plot of the 
splines that compose each of the rings, all with the same line 
thickness. 

 

 
Figure  47: Random images of the thin wire sketch dataset. 
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10.1.2 Sketch dataset (second version, thick wire sketch) 

 
These .jpg images have been created using the same algorithm as 
the previous dataset, however, when doing the 3D plot thicker lines 
have been used. The thickness has been varied to show different 
ring thicknesses. 

  

 
 
Figure  48: Random images of the thick wire sketch dataset. 
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10.1.3 Object3D dataset (first version, white background) 

 
These images are screenshots of the of the 3D visualization of the 
ring 3D objects (.obj files) in the MacOS preview application. 

 
 

 
 
Figure  49: Random images of the white background model dataset. 
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10.1.4 Object3D dataset (second version, blue background) 

 
As in the previous dataset, these images are screenshots of the 3D 
visualization of the XYU ring 3D objects, however, this time the 
background has been set to blue color, in order to have a non-white 
background. 
 

 
 
Figure  50: Random images of the blue color background model dataset. 
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10.1.5 Rendering dataset 

 
These images have been created using the Blender rendering 
program. As it can be seen, although the background color has 
always been the same blue #B9E2EA, the lighting setting has 
changed as well as the camera position and orientation, therefore, 
different shadow and lights can be seen across the dataset. 
 
 

 
 
Figure  51: Random images from the rendering dataset. 
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10.2  Code 
 
 
 
#Start by connecting gdrive into the google colab 
from google.colab import drive 
drive.mount('/content/gdrive') 
 
#file in which the sketch2render folder is saved 
%cd /content/gdrive/MyDrive/TFM / 
 
import torch 
from torch import nn 
from tqdm.auto import tqdm 
from torchvision import transforms 
from torchvision.utils import make_grid 
from torch.utils.data import DataLoader 
import matplotlib.pyplot as plt 
 
def show_tensor_images(image_tensor, num_images=25, size=(1, 28, 28)): 
 
    image_tensor = (image_tensor + 1) / 2 
    image_shifted = image_tensor 
    image_unflat = image_shifted.detach().cpu().view(-1, *size) 
    image_grid = make_grid(image_unflat[:num_images], nrow=5) 
    plt.imshow(image_grid.permute(1, 2, 0).squeeze()) 
    plt.axis('off') 
    plt.show() 
 
 
import glob 
import random 
import os 
from torch.utils.data import Dataset 
from PIL import Image 
 
class ImageDataset(Dataset): 
    def __init__(self, root, transform=None, mode='train'): 
        self.transform = transform 
        self.files_A = sorted(glob.glob(os.path.join(root, '%sA' % mode) + '/*.*')) 
        self.files_B = sorted(glob.glob(os.path.join(root, '%sB' % mode) + '/*.*')) 
        self.new_perm() 
        assert len(self.files_A) > 0, "Make sure you downloaded the images!" 
 
    def new_perm(self): 
        self.randperm = torch.randperm(len(self.files_B))[:len(self.files_A)] 
 
    def __getitem__(self, index): 
        item_A = self.transform(Image.open(self.files_A[index % len(self.files_A)])) 
        item_B = self.transform(Image.open(self.files_B[self.randperm[index]])) 
        if item_A.shape[0] != 3:  
            item_A = item_A.repeat(3, 1, 1) 
        if item_B.shape[0] != 3:  
            item_B = item_B.repeat(3, 1, 1) 
        if index == len(self) - 1: 
            self.new_perm() 
        return (item_A - 0.5) * 2, (item_B - 0.5) * 2 
 
    def __len__(self): 
        return min(len(self.files_A), len(self.files_B)) 
 

§ CycleGAN generator 
 
Residual Block 
 
class ResidualBlock(nn.Module): 
    def __init__(self, input_channels): 
        super(ResidualBlock, self).__init__() 
        self.conv1 = nn.Conv2d(input_channels, input_channels, kernel_size=3, padding=1, 

padding_mode='reflect') 
        self.conv2 = nn.Conv2d(input_channels, input_channels, kernel_size=3, padding=1, 

padding_mode='reflect') 
        self.instancenorm = nn.InstanceNorm2d(input_channels) 
        self.activation = nn.ReLU() 
 
    def forward(self, x): 
        original_x = x.clone() 
        x = self.conv1(x) 
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        x = self.instancenorm(x) 
        x = self.activation(x) 
        x = self.conv2(x) 
        x = self.instancenorm(x) 
        return original_x + x 
 

Contracting and Expanding Blocks 
 
class ContractingBlock(nn.Module): 
 
    def __init__(self, input_channels, use_bn=True, kernel_size=3, activation='relu'): 
        super(ContractingBlock, self).__init__() 
        self.conv1 = nn.Conv2d(input_channels, input_channels * 2, kernel_size=kernel_size, 

padding=1, stride=2, padding_mode='reflect') 
        self.activation = nn.ReLU() if activation == 'relu' else nn.LeakyReLU(0.2) 
        if use_bn: 
            self.instancenorm = nn.InstanceNorm2d(input_channels * 2) 
        self.use_bn = use_bn 
 
    def forward(self, x): 
        x = self.conv1(x) 
        if self.use_bn: 
            x = self.instancenorm(x) 
        x = self.activation(x) 
        return x 
 
class ExpandingBlock(nn.Module): 
 
    def __init__(self, input_channels, use_bn=True): 
        super(ExpandingBlock, self).__init__() 
        self.conv1 = nn.ConvTranspose2d(input_channels, input_channels // 2, kernel_size=3, 

stride=2, padding=1, output_padding=1) 
        if use_bn: 
            self.instancenorm = nn.InstanceNorm2d(input_channels // 2) 
        self.use_bn = use_bn 
        self.activation = nn.ReLU() 
 
    def forward(self, x): 
        x = self.conv1(x) 
        if self.use_bn: 
            x = self.instancenorm(x) 
        x = self.activation(x) 
        return x 
 
class FeatureMapBlock(nn.Module): 
 
    def __init__(self, input_channels, output_channels): 
        super(FeatureMapBlock, self).__init__() 
        self.conv = nn.Conv2d(input_channels, output_channels, kernel_size=7, padding=3, 

padding_mode='reflect') 
 
    def forward(self, x): 
 
        x = self.conv(x) 
        return x 
 

Building the generator 
 
class Generator(nn.Module): 
 
    def __init__(self, input_channels, output_channels, hidden_channels=64): 
        super(Generator, self).__init__() 
        self.upfeature = FeatureMapBlock(input_channels, hidden_channels) 
        self.contract1 = ContractingBlock(hidden_channels) 
        self.contract2 = ContractingBlock(hidden_channels * 2) 
        res_mult = 4 
        self.res0 = ResidualBlock(hidden_channels * res_mult) 
        self.res1 = ResidualBlock(hidden_channels * res_mult) 
        self.res2 = ResidualBlock(hidden_channels * res_mult) 
        self.res3 = ResidualBlock(hidden_channels * res_mult) 
        self.res4 = ResidualBlock(hidden_channels * res_mult) 
        self.res5 = ResidualBlock(hidden_channels * res_mult) 
        self.res6 = ResidualBlock(hidden_channels * res_mult) 
        self.res7 = ResidualBlock(hidden_channels * res_mult) 
        self.res8 = ResidualBlock(hidden_channels * res_mult) 
        self.expand2 = ExpandingBlock(hidden_channels * 4) 
        self.expand3 = ExpandingBlock(hidden_channels * 2) 
        self.downfeature = FeatureMapBlock(hidden_channels, output_channels) 
        self.tanh = torch.nn.Tanh() 
 
    def forward(self, x): 
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        x0 = self.upfeature(x) 
        x1 = self.contract1(x0) 
        x2 = self.contract2(x1) 
        x3 = self.res0(x2) 
        x4 = self.res1(x3) 
        x5 = self.res2(x4) 
        x6 = self.res3(x5) 
        x7 = self.res4(x6) 
        x8 = self.res5(x7) 
        x9 = self.res6(x8) 
        x10 = self.res7(x9) 
        x11 = self.res8(x10) 
        x12 = self.expand2(x11) 
        x13 = self.expand3(x12) 
        xn = self.downfeature(x13) 
        return self.tanh(xn) 
 

§ CycleGAN Discriminator 
 
class Discriminator(nn.Module): 
    def __init__(self, input_channels, hidden_channels=64): 
        super(Discriminator, self).__init__() 
        self.upfeature = FeatureMapBlock(input_channels, hidden_channels) 
        self.contract1 = ContractingBlock(hidden_channels, use_bn=False, kernel_size=4, 

activation='lrelu') 
        self.contract2 = ContractingBlock(hidden_channels * 2, kernel_size=4, 

activation='lrelu') 
        self.contract3 = ContractingBlock(hidden_channels * 4, kernel_size=4, 

activation='lrelu') 
        self.final = nn.Conv2d(hidden_channels * 8, 1, kernel_size=1) 
 
    def forward(self, x): 
        x0 = self.upfeature(x) 
        x1 = self.contract1(x0) 
        x2 = self.contract2(x1) 
        x3 = self.contract3(x2) 
        xn = self.final(x3) 
        return xn 
 

§ Training Parameters 
 
import torch.nn.functional as F 
 
adv_criterion = nn.MSELoss()  
recon_criterion = nn.L1Loss()  
n_epochs = 100 
dim_A = 3 
dim_B = 3 
display_step = 50 
save_step=50 
step_bins = 10 #for plotting 
batch_size = 1 
lr = 0.0002     
load_shape = 400 
device = 'cuda' 
 
transform = transforms.Compose([ 
    transforms.Resize(load_shape), 
    transforms.RandomHorizontalFlip(), 
    transforms.ToTensor(), 
]) 
 
import torchvision 
dataset = ImageDataset("sketchThickness2renderColorBlue_REDUCED", transform=transform) 
 

§ Building the network 
 
 
gen_AB = Generator(dim_A, dim_B).to(device) 
gen_BA = Generator(dim_B, dim_A).to(device) 
gen_opt = torch.optim.Adam(list(gen_AB.parameters()) + list(gen_BA.parameters()), lr=lr, 
betas=(0.5, 0.999)) 
disc_A = Discriminator(dim_A).to(device) 
disc_A_opt = torch.optim.Adam(disc_A.parameters(), lr=lr, betas=(0.5, 0.999)) 
disc_B = Discriminator(dim_B).to(device) 
disc_B_opt = torch.optim.Adam(disc_B.parameters(), lr=lr, betas=(0.5, 0.999)) 
 
def weights_init(m): 
    if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): 
        torch.nn.init.normal_(m.weight, 0.0, 0.02) 
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    if isinstance(m, nn.BatchNorm2d): 
        torch.nn.init.normal_(m.weight, 0.0, 0.02) 
        torch.nn.init.constant_(m.bias, 0) 
 
# Feel free to change pretrained to False if you're training the model from scratch 
pretrained = False 
if pretrained: 
    pre_dict = torch.load('Models/lr_0.000002/cycleGAN_850.pth') 
    gen_AB.load_state_dict(pre_dict['gen_AB']) 
    gen_BA.load_state_dict(pre_dict['gen_BA']) 
    gen_opt.load_state_dict(pre_dict['gen_opt']) 
    disc_A.load_state_dict(pre_dict['disc_A']) 
    disc_A_opt.load_state_dict(pre_dict['disc_A_opt']) 
    disc_B.load_state_dict(pre_dict['disc_B']) 
    disc_B_opt.load_state_dict(pre_dict['disc_B_opt']) 
else: 
    gen_AB = gen_AB.apply(weights_init) 
    gen_BA = gen_BA.apply(weights_init) 
    disc_A = disc_A.apply(weights_init) 
    disc_B = disc_B.apply(weights_init) 
 

§ Discriminator Loss 
 
def get_disc_loss(real_X, fake_X, disc_X, adv_criterion): 
 
    disc_fake_X_hat = disc_X(fake_X.detach())  
    disc_fake_X_loss = adv_criterion(disc_fake_X_hat, torch.zeros_like(disc_fake_X_hat)) 
    disc_real_X_hat = disc_X(real_X) 
    disc_real_X_loss = adv_criterion(disc_real_X_hat, torch.ones_like(disc_real_X_hat)) 
    disc_loss = (disc_fake_X_loss + disc_real_X_loss) / 2 
    return disc_loss 
 

§ Generator Loss 
 

Adversarial Loss 
 
def get_gen_adversarial_loss(real_X, disc_Y, gen_XY, adv_criterion): 
    fake_Y = gen_XY(real_X) 
    disc_fake_Y_hat = disc_Y(fake_Y) 
    adversarial_loss = adv_criterion(disc_fake_Y_hat, torch.ones_like(disc_fake_Y_hat)) 
 
    return adversarial_loss, fake_Y 
 

Identity Loss 
 
def get_identity_loss(real_X, gen_YX, identity_criterion): 
    identity_X = gen_YX(real_X) 
    identity_loss = identity_criterion(identity_X, real_X) 
 
    return identity_loss, identity_X 
 

Cycle Consistency Loss 
 
def get_cycle_consistency_loss(real_X, fake_Y, gen_YX, cycle_criterion): 
    cycle_X = gen_YX(fake_Y) 
    cycle_loss = cycle_criterion(cycle_X, real_X) 
 
    return cycle_loss, cycle_X 
 
 

Generator total Loss 
 
def get_gen_loss(real_A, real_B, gen_AB, gen_BA, disc_A, disc_B, adv_criterion, 
identity_criterion, cycle_criterion, lambda_identity=0.1, lambda_cycle=5): 
  
    # Adversarial Loss  
    adv_loss_BA, fake_A = get_gen_adversarial_loss(real_B, disc_A, gen_BA, adv_criterion) 
    adv_loss_AB, fake_B = get_gen_adversarial_loss(real_A, disc_B, gen_AB, adv_criterion) 
    gen_adversarial_loss = adv_loss_BA + adv_loss_AB 
 
    # Identity Loss 
    identity_loss_A, identity_A = get_identity_loss(real_A, gen_BA, identity_criterion) 
    identity_loss_B, identity_B = get_identity_loss(real_B, gen_AB, identity_criterion) 
    gen_identity_loss = identity_loss_A + identity_loss_B 
 
    # Cycle-consistency Loss  
    cycle_loss_BA, cycle_A = get_cycle_consistency_loss(real_A, fake_B, gen_BA, 

cycle_criterion) 
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    cycle_loss_AB, cycle_B = get_cycle_consistency_loss(real_B, fake_A, gen_AB, 
cycle_criterion) 

    gen_cycle_loss = cycle_loss_BA + cycle_loss_AB 
 
    # Total loss 
    gen_loss = lambda_identity * gen_identity_loss + lambda_cycle * gen_cycle_loss + 

gen_adversarial_loss 
 
    return gen_loss, gen_adversarial_loss, lambda_identity 

*gen_identity_loss,lambda_cycle*gen_cycle_loss, fake_A, fake_B 
 

§ CycleGAN training 
 
from skimage import color 
import numpy as np 
from torchvision.utils import save_image 
 
def train(save_model=True): 
    mean_generator_loss = 0 
    mean_discriminator_loss = 0 
    dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) 
    cur_step = 0 
    generator_loss = [] 
    generator_adversarial_loss = [] 
    generator_identity_loss = []  
    generator_cycle_loss= [] 
    discriminator_loss = []  
 
    for epoch in range(n_epochs): 
        for real_A, real_B in tqdm(dataloader): 
            real_A = nn.functional.interpolate(real_A, size=target_shape) 
            real_B = nn.functional.interpolate(real_B, size=target_shape) 
            cur_batch_size = len(real_A) 
            real_A = real_A.to(device) 
            real_B = real_B.to(device) 
 
            ### Update discriminator A ### 
            disc_A_opt.zero_grad() 
            with torch.no_grad(): 
                fake_A = gen_BA(real_B) 
            disc_A_loss = get_disc_loss(real_A, fake_A, disc_A, adv_criterion) 
            disc_A_loss.backward(retain_graph=True) 
            disc_A_opt.step()  
 
            ### Update discriminator B ### 
            disc_B_opt.zero_grad()  
            with torch.no_grad(): 
                fake_B = gen_AB(real_A) 
            disc_B_loss = get_disc_loss(real_B, fake_B, disc_B, adv_criterion) 
            disc_B_loss.backward(retain_graph=True)  
            disc_B_opt.step()  
 
            ### Update generator ### 
            gen_opt.zero_grad() 
            gen_loss, gen_adversarial_loss, gen_identity_loss, gen_cycle_loss, fake_A, fake_B = 
get_gen_loss( 
                real_A, real_B, gen_AB, gen_BA, disc_A, disc_B, adv_criterion, recon_criterion, 
recon_criterion 
            ) 
            gen_loss.backward() 
            gen_opt.step() 
 
            # Keep track of the average discriminator loss 
            mean_discriminator_loss += disc_A_loss.item() / display_step 
            discriminator_loss += [disc_A_loss.item()] 
 
            # Keep track of the average generator loss 
            mean_generator_loss += gen_loss.item() / display_step 
            generator_loss += [gen_loss.item()] 
            generator_adversarial_loss += [gen_adversarial_loss.item()] 
            generator_identity_loss += [gen_identity_loss.item()] 
            generator_cycle_loss += [gen_cycle_loss.item()]  
 
            ### Visualization code ### 
            if cur_step % display_step == 0: 
                print(f”Epoch {epoch}: Step {cur_step}: Generator (U-Net) loss mean: 

{mean_generator_loss}, Discriminator loss mean: {mean_discriminator_loss}”) 
                print(f”\t\t Generator (U-Net) loss: {gen_loss.item()}, Discriminator loss: 

{disc_A_loss.item()}”) 
                show_tensor_images(torch.cat([real_A, real_B]), size=(dim_A, target_shape, 

target_shape)) 
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                show_tensor_images(torch.cat([fake_B, fake_A]), size=(dim_B, target_shape, 
target_shape)) 

                mean_generator_loss = 0 
                mean_discriminator_loss = 0 
                x_axis = sorted([i * step_bins for i in range(len(generator_loss) // step_bins)] 
* step_bins) 
                num_examples = (len(generator_loss) // step_bins) * step_bins 
                plt.plot( 
                    range(num_examples // step_bins),  
                    torch.Tensor(generator_loss[:num_examples]).view(-1, step_bins).mean(1), 
                    label=”Generator Loss” 
                ) 
                plt.plot( 
                    range(num_examples // step_bins),  
                    torch.Tensor(generator_adversarial_loss[:num_examples]).view(-1, 
step_bins).mean(1), 
                    label=”Generator Adversarial Loss” 
                ) 
                plt.plot( 
                    range(num_examples // step_bins),  
                    torch.Tensor(generator_identity_loss[:num_examples]).view(-1, 
step_bins).mean(1), 
                    label=”Generator Identity Loss” 
                ) 
                plt.plot( 
                    range(num_examples // step_bins),  
                    torch.Tensor(generator_cycle_loss[:num_examples]).view(-1, 
step_bins).mean(1), 
                    label=”Generator Cycle Loss” 
                ) 
                plt.plot( 
                    range(num_examples // step_bins),  
                    torch.Tensor(discriminator_loss[:num_examples]).view(-1, 
step_bins).mean(1), 
                    label=”Discriminator Loss” 
                ) 
                 
                plt.legend() 
                plt.show() 
 
            if cur_step % save_step == 0: 
                if save_model: 
                    torch.save({ 
                        ‘gen_AB’: gen_AB.state_dict(), 
                        ‘gen_BA’: gen_BA.state_dict(), 
                        ‘gen_opt’: gen_opt.state_dict(), 
                        ‘disc_A’: disc_A.state_dict(), 
                        ‘disc_A_opt’: disc_A_opt.state_dict(), 
                        ‘disc_B’: disc_B.state_dict(), 
                        ‘disc_B_opt’: disc_B_opt.state_dict() 
                    }, f”Models/lambda_5_lr_0.0002/cycleGAN_{cur_step}.pth”) 
                     
            cur_step += 1 
train() 
 

§ CycleGAN testing 
 
transform = transforms.Compose([ 
    transforms.ToTensor(), 
]) 
 
#import the test imagedataset 
import torchvision 
dataset = ImageDataset("sketchThickness2renderColorBlue_REDUCED", transform=transform, 
mode='test') 
 
from skimage import color 
import numpy as np 
from torchvision.utils import save_image 
plt.rcParams["figure.figsize"] = (10, 10) 
 
def test(): 
    #this testing function shows the whole cycle 
    dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True) 
    mean_generator_loss = 0 
    mean_discriminator_loss = 0 
    generator_loss = [] 
    discriminator_loss = []  
 
    for epoch in range(n_epochs): 
      for real_A, real_B in tqdm(dataloader):     
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              real_A = nn.functional.interpolate(real_A, size=target_shape) 
              real_B = nn.functional.interpolate(real_B, size=target_shape) 
              cur_batch_size = len(real_A) 
              real_A = real_A.to(device) 
              real_B = real_B.to(device) 
 
              with torch.no_grad(): 
                  fake_A = gen_BA(real_B) 
                  fake_BAB = gen_AB(fake_A) 
                  fake_B = gen_AB(real_A) 
                  fake_ABA= gen_BA(fake_B) 
 
              # Keep track of the average discriminator loss 
              mean_discriminator_loss += disc_A_loss.item() / display_step 
              discriminator_loss += [disc_A_loss.item()] 
 
              # Keep track of the average generator loss 
              mean_generator_loss += gen_loss.item() / display_step 
              generator_loss += [gen_loss.item()] 
 
              print(f"Epoch {epoch}: Step {cur_step}: Generator (U-Net) loss mean: 

{mean_generator_loss}, Discriminator loss mean: {mean_discriminator_loss}") 
              print(f"\t\t Generator (U-Net) loss: {gen_loss.item()}, Discriminator loss: 

{disc_A_loss.item()}") 
              show_tensor_images(torch.cat([real_A, fake_B, fake_ABA]), size=(dim_A, 

target_shape, target_shape)) 
              show_tensor_images(torch.cat([real_B,fake_A,fake_BAB]), size=(dim_B, 

target_shape, target_shape))          
             
test() 
 

 
 
 

 
 
 

 


