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Abstract: Global sensitivity analysis is primarily used to investigate the effects of
uncertainties in the input variables of physical models on the model output. This
work investigates the use of global sensitivity analysis tools in the context of
variable selection in regression models. Specifically, a global sensitivity measure
is applied to a criterion of model fit, hence defining a ranking of regressors by
importance; a testing sequence based on the ‘Pantula-principle’ is then applied to
the corresponding nested submodels, obtaining a novel model-selection method.
The approach is demonstrated on a growth regression case study, and on a number
of simulation experiments, and it is found competitive with existing approaches to
variable selection.

Keywords: model selection, Monte Carlo, sensitivity analysis, simulation

JEL classification: C52, C53

1 Introduction

Model selection in regression analysis is a central issue, both in theory and in
practice. Related fields include multiple testing (Bittman et al. 2009; Romano and
Wolf 2005), pre-testing (Leeb and Poetscher 2006), information criteria (Hjort and
Claeskens 2003; Liu and Yang 2011), model selection based on Lasso (Brunea 2008),
model averaging (Claeskens and Hjort 2003), stepwise regression, (Miller 2002), risk
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inflation in prediction, (Foster and George 1994), directed acyclic graphs and
causality discovery (Freedman and Humphreys 1999).1

Model choice is also of primary concern inmany areas of applied econometrics,
aswitnessed for example by the literature on growth regression (Sala-i-Martin 1997).
Controlling for the right set of covariates is central in the analysis of policy impact
evaluations; this is embodied in the assumption of unconfoundedness (Imbens and
Wooldridge 2009). In economic forecasting, model selection is the main alternative
to model averaging, (Hjort and Claeskens 2003).

The analysis of the effects of pretesting on parameter estimation has a long
tradition in econometrics (Danilov and Magnus 2004) and in this context Magnus
and Durbin (1999) and co-authors proposed the weighted average least squares
estimator (WALS) and compared it with model averaging for growth empirics
(Magnus, Powell, and Prufer 2010).

Model selection is amajor area of investigation also in time-series econometrics
(Phillips 1997, 2003). The so-called London School of Economics (LSE)methodology
has played a prominent role in this area, advocating the general-to-specific (GETS)
approach to model selection (Castle, Doornik, and Hendry 2011; Hendry and Krolzig
2005) and references therein. In a widely cited paper, Hoover and Perez (1999)
(hereafter HP) ‘mechanized’—i.e. translated—the GETS approach into an algorithm
for model selection and they then tested the performance of the HP algorithm
on a set of time-series regression experiments, constructed along the lines of
Lovell (1983).

Model selection is also related to the issue of regression coefficients’ robustness
(i.e. lack of sensitivity) to the omission/inclusion of additional variables. Leamer
(1983) proposed extreme bound analysis, i.e. to report the range of possible
parameter estimates of the coefficient of interest when varying the additional
regressors included in the analysis, as an application of sensitivity analysis to
econometrics. Other applications of sensitivity analysis to econometrics include the

1 Model selection is also associated with current rules of thumb on the maximum number of
regression parameters to consider. This literature appears to have been initiated by Freedman
(1983), who considered the case of a first screening regression with 50 regressors and 100 data
points, where regressors that are significant at 25% significance level are kept in a second
regression. Freedman showed that the second regression is troublesome when one acts as if the
screening regression had not been performed and the ratio of number of observations to number of
regressors in the screening regression is kept in a fixed proportion as the number of observations
diverges. This study was followed by Freedman and Pee (1989), Freedman, Pee, and Midthune
(1992), who defined the rule of thumb that the ratio of the number of observations per regressor
should be at least equal to 4; this rule is included in Harrell (2001), who suggested to have it at
least equal to 10.
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local sensitivity to model misspecification developed in Magnus and Vasnev (2007)
and Magnus (2007).2

On the other hand, sensitivity analysis originated in the natural sciences, and is
generally defined as ‘the study of how the uncertainty in the output of a mathe-
matical model or system (numerical or otherwise) can be apportioned to different
sources ofuncertainty in its inputs’, (Saltelli, Tarantola, andCampolongo 2000). The
term global sensitivity analysis (GSA) is used to refer to sensitivity analysis
approaches that fully explore the space of uncertainties, as opposed to ‘local’
methods which are only valid at a nominal point (Saltelli and Annoni 2010). The
main tools used in GSA are based on a decomposition of the variance of the model
output (Sobol’ 1993).

Despite several uses of sensitivity in econometrics, the present authors are not
aware of systematic applications of the techniques of Global Sensitivity Analysis to
the problem of model selection in regression. With this in mind, the present paper
explores the application of variance-based measures of sensitivity to model
selection.

This paper aims to answer the question: “Can GSA methods help in model
selection in practice?”, rather than to propose a single algorithm with the aim to
dominate all alternatives. To this purpose, a simple algorithm is considered as a
representative of a novel GSA approach; the new algorithm is found to perform
rather well when compared with alternatives. This shows how GSA methods can
indeed bring a useful contribution to this field.

In particular, a widely-used measure in the GSA literature, called the ‘total
sensitivity index’ is employed to rank regressors in terms of their importance in a
regression model. The information on the ordering of regressors given by GSA
methods appears to be somewhat complementary to the one based on t-ratios
employed in the GETS approach; this suggests to consider viable ordering of
regressors combining the two orderings. Based on these insights, a GSA algo-
rithm is constructed which combines the two rankings.

The proposedGSA representative algorithmuses the ordering of the regressors
via GSA or the t-ratios within a testing strategy based on the ‘Pantula-principle’,
see Pantula (1989). For any ordering of the regressors, this amounts to a single
sequence of tests against the fullmodel, starting from themost restricted submodel

2 They show that local sensitivity measures provide complementary information with respect to
standard diagnostic tests formisspecification, i.e. that the two types of statistics are asymptotically
independent. In SA a local measure of sensitivity is one focused on a precise point in the space of
the input factor, e.g. a partial derivative of the output versus the input. With a global measure of
sensitivity the influence of a given input on the output is averaged both on the distribution of the
input factor itself and on the distributions of all the remaining factors, see Saltelli, Andres, and
Homma (1993).
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to the most unrestricted one.3 This implies both a reduction in the number of tests
for each given ordering (with an associated saving of computing times) and the
favorable control of the size of the testing sequence. The present application of the
‘Pantula-principle’ appears novel in the context of model selection.

The GSA algorithm is tested here using several case studies. A detailed
investigation of the performance of the GSA algorithm is first performed using the
simulation experiments of HP, who defined a set of Data Generating Processes
(DGPs) based on real economic data. Simulating these DGPs, one can record how
often the algorithm recovers the variables that are included in the DGP. This is
compared to the results of HP’s GETS algorithm, aswell as those of the Autometrics
GETS package (Pretis, Reade, and Sucarrat 2018).

In order to further compare the GSA approach to a wider set of model selection
procedures, the DGPs in Deckers and Hanck (2014) are also considered; this allows
a direct comparison with a number of procedures. Finally, the algorithm is applied
to a growth regression case study which is also taken from the same paper.

Overall, results point to the possible usefulness of GSA methods in model se-
lection algorithms.When comparing the optimized GSAandHP algorithms, the GSA
method appears to be able to reduce the failure rate in recovering the underlying
data generating process from 5 to 1% approximately—a fivefold reduction. When
some of the regressors are weak, the recovery of the exact DGP does not appear to be
improved by the use of GSA methods.

Comparing the GSA algorithm to a wider set of approaches considered in DH,
the results are competitive with alternatives, in the sense that the GSA algorithm is
not dominated by alternative algorithms in the Monte Carlo (MC) simulations. In
the empirical application on growth regression, not surprisingly, it identifies
similar variables to those found by othermethods.While these results do not prove
the GSA approach to dominate other existing approaches, they show that the GSA
approach is not dominated by any single alternative, and that it has the potential to
contribute to improve existing algorithms; the present study can hopefully hence
pave the way for future advances.

The rest of the paper is organized as follows. Section 2 defines the problem of
interest and introduce GSA and variance-basedmeasures. Section 3 presents some
theoretical properties of orderings based on the total sensitivity index, while
Section 4 presents the GSA algorithm. Results are reported in Sections 5 and 6,
where the former is a detailed investigation on datasets generated following the
paper of Hoover and Perez (1999), and the latter is a comparison with a wide range
of model selection procedures on simulated data sets and on a growth regression,
following Deckers and Hanck (2014). Section 7 concludes. Three appendices report

3 This sequence can still be interpreted as compliant to the GETS principle.
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proofs of the propositions in the paper, details on the DGP design in HP and a
discussion about the identifiability of DGPs. Finally, this paper follows the nota-
tional conventions in Abadir and Magnus (2002).

2 Model Selection and Global Sensitivity Analysis

This section presents the setup of the problem, and introduces global sensitivity
analysis. The details of the proposed algorithm are deferred to Section 4.

2.1 Model Selection in Regression

Consider n data points in a standardmultiple regressionmodel with p regressors of
the form

y = X1β1 +…Xpβp + ε = Xβ + ε (1)

where y = (y1,…, yn)′ is n × 1, X = (X1, …, Xp) is n × p, Xi ≔ (xi, 1,…, xi, n)′ is n × 1,
β = (β1,…, βp)′ is p × 1 and ε is a n × 1 random vector with distribution N(0, σ2In).
The symbol ′ indicates transposition.

Equation (1) describes both themodel and the DGP. In themodel, the coefficients
βi are parameters to be estimated given the observed data Z = (y, X). Each DGP is
described by Eq. (1) with βi set at some numerical values, here indicated as β0i,
collected in the vector β0 = (β01,…, β0p)′.

Some of the true β0i may be 0, corresponding to irrelevant regressors. Let
T≔ {i ∈ J : β0, i ≠ 0} be the set of all relevant regressor indices in the DGP, with r0
elements, where J≔ {1,…, p} indicates the set of the first p integers. Let also
M ≔ J\T indicate the set of all regressor indices for irrelevant regressors.4

Equation (1) also formally nests dynamic specifications, as detailed in Appendix
B below; in this case Xi contain lagged dependent variables, and (1) is generated
recursively.

Imposing the restriction βi=0 for some regressors i, one obtains a submodel5 of
model (1). Each submodel can be characterized by a set a, a ⊆ J, containing the
indices of the included regressors. For instance, a = {1, 5, 9}, indicates the
submodel including regressors numbered 1, 5, 9. Themodelwithout any restriction
on βi = 0 is called the general unrestricted model (GUM).

4 Here J\T denotes the set difference J\T≔ {i : i ∈ J, i ∉ T}; sums over empty sets are understood
to be equal to 0.
5 In the paper ‘submodel’ and ‘specification’ are used as synonyms.
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Alternatively, the same informationon submodela can be representedby a p× 1
vector γa = (γ1,…, γp)′, with j-th coordinate γj with value 1 (respectively 0) that

indicates the inclusion (respectively exclusion) of regressor j from the specification,
i.e. γj = 1(j ∈ a) and 1(⋅) is the indicator function.6 The GUMcorresponds to γ equal to
ı, a vector with all 1s. γT corresponds to the best selection of regressors, i.e. the same
one of the DGP; in the following the notation γT = γ0 is also used.

LetΓ be the set of allp× 1 vectors of indicators γ, Γ = {0, 1}p. Note that there are 2p
different specifications, i.e. 2p possible γ vectors in Γ. When p = 40, as some

experiments in Section 5, the number of specifications is 2p ≈ 1.0995 ⋅ 1012, a very
large number. This is why an exhaustive search of submodels is infeasible in many
practical cases, and model selection techniques focus on a search over a limited set
of submodels Γs ⊂ Γ.

Each submodel can be written as model (1) under the restriction

β = Hγϕ, (2)

whereHγ contains the columns of an identity matrix Ip corresponding to elements
γi equal to 1 within γ. Specification (2) is referred to as the ‘γ submodel’ in the
following. Also the ‘true’ vector β0 has representation β0 = H0ϕ0 where H0 is a
simplified notation for H0 = HγT = Hγ0.

The least squares estimator of β in submodel γ can be written as

β̂γ = Hγ(Hγ′ X′XHγ)−1Hγ′ X′y. (3)

The problemof interest is to retrieveT, or the corresponding γT, given the observed
data Z = (y,X), i.e. to identify the DGP.7

2.2 GSA Approach

General-to-specific (GETS) approaches such as the algorithm used by HP (described
in detail in Section 5) use t-ratios to rank regressors in order of importance, which
guides the selection of the set of submodels Γs. This study proposes instead to
decompose the selection of models in two stages:
(i) define an ordering of regressors based on their importance;

6 Similarly, the notation aγ ≔ {i1,…, ikγ}′ is used to indicate the index set corresponding to some
vector γ.
7 All empirical models are assumed to contain the constant; this is imposed implicitly by de-
meaning the y and Xi vectors. Hence in the following, the ‘empty set of regressors’ refers to the
regression model with only the constant.
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(ii) use a sequence of p tests that compare the GUMwith submodels which contain
the first hmost important regressors, starting from h = 0, 1, 2,… and ending at
the first submodel r that does not reject the null hypothesis.

In this paper the ordering in (i) based on the t-ratios is complemented with a
variance-based measure of importance from GSA, called the ‘total sensitivity
index’. The proposed algorithm, called the ‘GSA algorithm’, combines this new
ranking with the ranking by t-ratios.

The testing sequence is defined based on this new ranking; a ‘bottom-up’
selection process is adopted, which builds candidate models by adding regressors
in descending order of importance. This ‘bottom-up’ selection process follows the
‘Pantula principle’ and has well defined theoretical properties, see e. g. (Paruolo
2001), and it can still be interpreted as a GETS procedure.

The total sensitivity index inGSA is basedonsystematic explorationof the space
of the inputs to measure its influence on the system output, as is commonly prac-
ticed in mathematical modeling in natural sciences and engineering. It provides a
global measure of the influence of each input to a system.8 Reviews of global
sensitivity analysis methods used therein are given in Saltelli et al. (2012), Norton
(2015), Becker and Saltelli (2015), Wei, Lu, and Song (2015).9 The total sensitivity
index is a variance-based measures of sensitivity, which are the analogue of the
analysis of the variance, see Archer, Saltelli, and Sobol (1997).10

Given the sample data Z = (y, X), consider the γ submodel, see eqs. (1), (2) and

(3). Let q(γ) indicate the BIC of model fit of this submodel, q(γ) = log σ̂2
γ + kγcn,

with cn ≔ log(n)/n.11 Remark that q is a continuous random variable that depends
on the discretely-valued γ. The idea is to apply the total sensitivity index using q as
output, with γ as input. Although the BIC is used here as q, the measure of model
fit, other consistent information criteria or the maximized log-likelihood could be
used instead.

8 The ‘mechanistic’models in these disciplines aremostly principle-based, possibly involving the
solutionof somekind of (differential) equation or optimization problem, and theoutput—being the
result of a deterministic calculation—does not customarily include an error term.
9 Recent applications of thesemethods to the quality of composite indicators are given in Paruolo,
Saltelli, and Saisana (2013) and Becker et al. (2017).
10 Variance-based methods explore the entire distribution of each factor.
11 q can be taken to be any consistent information criterion where consistent information criteria
replace logn with some other increasing function f(n) of n with the property cn = f(n)/n→ 0. Here
the fact that ncn diverges is not used in the proofs. Note that q(γ) is a function of Z, but this is not
indicated in the notation for simplicity.
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The objective is to capture both the main effect and the interaction effects of
the input factors onto the output q, see Saltelli et al. (2012). The following section
defines the total sensitivity index.

2.3 Sensitivity Measures

LetE indicate the empirical expectation over Γ, i.e.E(h(γ))≔ (#(Γ))−1∑γ∈Γ(h(γ)), for
any function h. Let also V indicate the variance operator associated with E,

V(h) ≔ E(h2) − (E(h))2.
The γ vector is partitioned into two components γi and γ−i, where γ−i contains all

elements in γ except γi. LetE(⋅|b) andV(⋅|b) (respectivelyE(⋅) andV(⋅)) indicate the
conditional (respectively marginal) expectation and variance operators with respect
to a partition (a, b) of γ, where a and b are taken equal to γi and to γ−i.

Two commonly-accepted variance-based measures are reviewed here, the
‘first-order sensitivity index’ Si, Sobol’ (1993), and the ‘total-order sensitivity index’
STi, Homma and Saltelli (1996); both rely on decomposing the variance of the
output, V = V(q), into portions attributable to inputs or sets of inputs.

The first-order index measures the contribution to V = V(q) of varying the i-th
input alone, and it is defined as Si = V(E(q|γi))/V. This index can be seen as the

application of Karl Pearson’s correlation ratio η2, see Pearson (1905), to the present
context. This corresponds to seeing the effect of including or not including a
regressor, but averaged over all possible combinations of other regressors. How-
ever, this measure does not account for interactions with the inclusion/exclusion
of other regressors; hence it is not used in the present paper.

Instead, here the focus is placed on the total effect index, which is defined by
Homma and Saltelli (1996) as

STi = E(V(q|γ−i))
V

= 1 − V(E(q| γ−i))
V

. (4)

In the following, the numerator of STi is indicated as σ2
Ti = E(V(q|γ−i)), and the

shorthand ST for STi is often used.

Examining σ2
Ti, one can notice that the inner term,V(q|γ−i), is the variance of q

due inclusion/exclusion of regressor i, but conditional on a given combination γ−i
of the remaining regressors. The outer expectation then averages over all values of
γ−i; this quantity is then standardized by V to give the fraction of total output
variance caused by the inclusion of xi. The second expression shows that STi is
1 minus the first order effect for γ−i.

Thesemeasures are based on the standard variance decomposition formula, or
‘law of total variance’ (Billingsley 1995), Problem 34.10(b)). In the context of GSA,
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these decomposition formulae are discussed in Archer, Saltelli, and Sobol (1997),
Saltelli and Tarantola (2002), Sobol’ (1993), Brell, Li, and Rabitz (2010). For further
reading about GSA in their original setting, see Saltelli et al. (2012).

2.4 Estimation of the Total Sensitivity Index

In order to calculate the total sensitivitymeasure STi one should be able to compute
q(γ) for all γ ∈ Γ (i.e. estimate all possible submodels of the GUM) which is un-
feasible or undesirable. Instead, STi can be estimated from a random subset of Γ,
i.e. a sample ofmodels. The estimation of STi is performed using an estimator and a
structured sample constructed as in Jansen (1999), which is a widely used method
in GSA.

Specifically, generate a random draw of γ in Γ, say γ*; then consider elements

γ(i)* with all elements equal to γ* except for the i-th coordinate which is switched

from 0 to 1 or vice-versa, γ(i)
*i

= 1 − γ*i. Doing this for each coordinate i generates p

pairs of γ vectors, γ* and γ(i)* , that differ only in the coordinate i. This is then used to
calculate q(γ) and apply an estimator of Jansen (1999).

This process can be formalized as follows: initialize ℓ at 1, then,
1. Generate a random draw of γ, where γ is a p-length vector with each element is

randomly selected from {0, 1}. Denote this by γℓ.
2. Evaluate qℓ = q(γℓ).
3. Take the ith element of γℓ, and switch it to 0 if it is equal to 1, and to 1 if it is 0.

Denote this new vector with inverted ith element as γ(i)ℓ .
4. Evaluate qiℓ = q(γ(i)ℓ ).
5. Repeat steps 3 and 4 for i = 1, 2, …, p.
6. Repeat steps 1–5 N times, i.e. for ℓ = 1, 2, …, N.

The estimators for σ2
Ti and V are then defined as in Jansen (1999), see also Saltelli

et al. (2010):

σ̂2
Ti =

1
4N

∑
N

ℓ=1
(qiℓ − qℓ)2, V̂ = 1

N − 1
∑
N

ℓ=1
(qℓ − q)2, (5)

where q = 1
N ∑

N
ℓ=1qℓ. This delivers the following plug-in estimator for ST, ŜTi = σ̂2

Ti/V̂ .
Readers familiar with sensitivity analysis may notice that the estimator in (5) is
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different by a factor of 2 to the estimator quoted in Saltelli et al. (2010). The reason
for this is given in Appendix A.12

ŜTi is an accurate estimator for STi as the number N of models increases;13

hence, the following discussion is based on the behavior of STi.

3 Properties of Orderings Based on STi

This section investigates the theoretical properties of ordering of variables in a
regressionmodel based on ST, and shows that these orderings satisfy the following
minimal requirement. When the true regressors in T included in the DGP and the
irrelevant ones in M are uncorrelated, the ordering of regressors based on ST
separates the true from the irrelevant regressors in large samples.

Recall that STi = σ2
Ti/V = E(V(q|γ−i))/V, see (4). The large nproperties of STi are

studied under the following regularity assumptions.

Assumption 1: (Assumptions on the DGP). The variables wt ≔ (yt , x1, t ,…, xp, t , ϵt)′
are stationary with finite second moments, and satisfy a law of large numbers for
large n, i.e. the second sample moments of wt converge in probability to Σ, the
variance covariance matrix of wt.

Notice that these requirements are minimal, and they are satisfied by the HP DGPs
as well as the DH DGPs. The following theorem shows that for large n, a scree plot
on the ordered STi allows to separate the relevant regressors from the irrelevant
ones when true and irrelevant regressors are uncorrelated.

Theorem 2: (Ordering based on STi works for uncorrelated regressors inM and T).
Let Assumption 1 hold and assume that the covariance Σℓj between xℓ and xj equals
0 for all j ∈ T and ℓ ∈M. Define (ST(1), ST(2),…, ST(p)) as the set of STi values in
decreasing order, with ST(1) ≥ ST(2) ≥⋯ ≥ ST(p). Then as n → ∞ one has

12 A heuristic reason for this is that the method involves an exploration of models, with equal
probability to select γi = 0 or γi = 1. Note that in analyses with continuous variables, it is usually
advisable to use low-discrepancy sequences due to their space-filling properties, see Sobol’ (1967),
which give faster convergence with increasing N. However, since γ can only take binary values for
each element, low-discrepancy sequences offer no obvious advantage over (pseudo-)random
numbers.
13 For instance, it is consistent for STi for increasing N thanks for Law of Large numbers for i.i.d.
sequences applied to its numerator and denominator.
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(ST(1), ST(2),…, ST(p))→p (c(1), c(2),…, c(r0), 0,…0)
where (c(1), c(2),…, c(r0)) is the ordered set of ci > 0 values in decreasing order, where

ci ≔
1

4 ⋅ 2p−1
∑

γ−i∈Γ−i
log(σ2 +∑h, j∈T\aγ(i,1) β0, hΣhj.bγ(i,1) β0, j

σ2 + ∑h, j∈T\aγ(i,0) β0, hΣhj.bγ(i,0) β0, j
), (6)

see Appendix A for the definition of the relevant quantities in eq. (6). Hence the
ordered STi values separate the block of true regressors in T in the first r0 positions
from the irrelevant ones M in the last p − r0 positions of (ST(1), ST(2),…, ST(p)).
Proof. See Lemma 6 in Appendix A. □

Given the above, one may hence expect this result to apply to other more general
situations. However, this turns out not to be necessarily the case. The results in
Appendix A also show that one can build examples with correlated regressors
across T andM, where the ordering of regressors based on ST fails to separate the
sets of true and irrelevant regressors in large samples.14

In the end, the question of whether the ordering based on ST can help in
selecting regressors is an empirical matter. Section 5 explores the frequency with
which this happens in practice, based on simulated data from various DGPs.

4 Construction of the Algorithm

In order to construct an algorithm to perform model selection based on ST, an
initial investigation was performed to understand to what extent the ranking of
regressors provided by ST is complementary to that given by t-ratios. These ex-
periments are based on the MC design by HP; details of these experiments are
reported in Section 5. However, since the results provide the basis of the GSA
algorithm, they are also summarized here.

In short, 11 different datasets were simulated following the approach and
underlying DGPs defined by HP. For each DGP, the regressors were ordered using
both ST and the t-ratios. Then a metric was used which measures the success of
each ranking in assigning the regressors in the DGP with the highest ranks. This
gives a measure of the utility of each ranking in correctly identifying the DGP. It
was found that first, ST gave overall better rankings than t-ratios, but for some
DGPs t-ratios were still more effective.

14 Worked out examples of this are available from the authors upon request.
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This result pointed to the fact that the two measures are in some way com-
plementary, andmotivated the GSA algorithm proposed here, which combines the
search paths obtained using the t-ratios and the ST measures, and then selects the
best model between the two resulting specifications. The combined procedure is
expected to be able to reap the advantages of both orderings. For simplicity, this
algorithm is called the GSA algorithm, despite the fact that it exploits both the
orderings based on GSA and on the t-ratios. The rest of this section contains a
description of the GSA algorithm in its basic form and with two modifications.

4.1 The Basic Algorithm

The procedure involves ranking the regressors by t-ratios or ST, then adopting the
‘bottom up’ approach following the ‘Pantula principle’, where candidate models
are built by successively adding regressors in order of importance. The steps are as
follows.
1. Order all regressors by method m (i.e. either the t-ratios or ST).
2. Define the initial candidate model as the empty set of regressors (i.e. one with

only the constant term).
3. Add to the candidatemodel the highest-ranking regressor (that is not already in

the candidate model).
4. Perform an F test, comparing the validity of the candidate model to that of the

GUM.
5. If the p-value of the F test in step 4 is below a given significance level α, go to

step 3 (continue adding regressors), otherwise, go to step 6.
6. Since the F-test has not rejected the model in step 4, this is the selected model

γ(m).

In the following, the notation γ(t) is used (respectively γ(S)) to denote the model
selected by this algorithm when t-ratios (respectively ST) are used for the ordering.
Note that candidate variables are added starting from an empty specification; this
is hence a ‘bottom up’ approach induced by the ‘Pantula principle’.

One can observe that this ‘bottom up’ approach is in line with the GETS
philosophy of model selection; in fact it corresponds to the nesting of models
known as the ‘Pantula-principle’ in cointegration rank determination, see
Johansen (1996). Every model in the sequence is compared with the GUM, and
hence the sequence of tests can be interpreted as an implementation of the GETS
philosophy. Moreover, it can be proved that, for large sample sizes, the sequence
selects the smallest true model in the sequence with probability equal to 1 − α,
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where α is the size of each test. Letting α tend to 0 as the sample size gets large,
one can prove that this delivers a true model with probability tending to 1.15

As a last step, the final choice of regressors γ̂ is chosen between γ(t) and γ(S) as
the one with the fewest regressors (since both models have been declared valid by
the F-test). If the number of regressors is the same, but the regressors are different,
the choice is made using the BIC.

The GSA algorithm depends on some key constants; the significance level of
the F-test, α, is a truly ‘sensitive’ parameter, in that varying it strongly affects its
performance. Of the remaining constants in the algorithm,N, the number of points
in the GSA sampling, can be increased to improve accuracy; in practice it was
found that N = 128 provided good results, and further increases made little
difference.

In the following two subsections, two extensions to the basic algorithm are
outlined with the reasoning explained.

4.2 Adaptive-α

Varying α essentially dictates how ‘strong’ the effect of regressors should be to be
included in the final model, such that a high α value will tend to include more
variables, whereas a low value will cut out variables more harshly. The difficulty is
that some DGPs require low α for accurate identification of the true regressors inT,
whereas others require higher values. Hence, there could exist no single value of α
that is suitable for the identification of all DGPs.

A proposedmodification to deal with this problem is to use an ‘adaptive-α’, αϕ,
which is allowed to vary depending on the data. This is based on the observation
that the F-test returns a high p-value pH (typically of the order 0.2–0.6) when the
proposedmodel is a superset of the DGP, but when one ormore of the regressors in
T aremissing from the proposedmodel, the p-valuewill generally be low, pL (of the
order 10−3 say). The values of pH and pL will vary depending on the DGP and data
set,making it difficult to find a single value of αwhichwill yield good results across
all DGPs. However, for a given DGP and data set, the pH and pL values are easy to
identify.

Therefore, it is proposed to use a value of αϕ, such that for each data set,

αϕ = pL + ϕ(pH − pL) (7)

where pH is taken as the p-value resulting from considering a candidatemodel with

15 See for instance Paruolo (2001). Recall that anymodel whose set of regressors contains the DGP
is ‘true’.
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all regressors that have STi > 0.01 against the GUM, and pL is taken as the p-value
from considering the empty set of regressors against the GUM. The reasoning
behind the definition of pH is that it represents a candidate model which will
contain the DGP regressors with a high degree of confidence. Here ϕ is a tuning
parameter that essentially determines how far between pL and pH the cutoff should
be. Figure 1 illustrates this on a data set sampled fromDGP 6B. Note that αϕ is used
in the F-test for both the t-ranked regressors as well as those ordered by ST.

4.3 Skipping Regressors

In order to correct situations where the ordering of the regressors is not correct, a
different extension of the algorithm is to test discarding “weak” regressors in the
selected model. Here, a weak regressor is defined as being one with a value of ST
lower than a certain threshold, which is set as 0.2. When Step 6 is reached, if weak
regressors exist in the selected model, they are removed one at a time, each time
performing an F-test. If the F-test is satisfied, the regressor is discarded, otherwise
it is retained. This approach is used instead of an exhaustive search of the
combinations of remaining regressors, because occasionally there may still be too
many regressors left to make this feasible.

4.4 Full GSA Algorithm

Adding the extensions discussed in the previous two sections results in the final
full algorithm, which can be described as follows.

1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

Regressor index (in order of importance using ST)

p−
va

lu
e

Adaptive α

p−value

cutoff line

Figure 1: p-Values from F-test comparing candidatemodels to theGUM in a sample fromDGP6B,
for the six highest-ranked regressors. Here ϕ = 0.2 and αϕ is marked as a dotted line.
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1. Obtain two orderings of regressors, one by the t-ratios, and the other by ST,
using the BIC as the output (penalized measure of model fit) q.

2. Obtain pH as the p-value resulting from considering a candidatemodel with all
regressors that have STi > 0.01 against the GUM, and pL as the p-value from
considering the empty set of regressors against the GUM. Calculate αϕ using
(7), which is used in all subsequent tests.

3. Define the initial candidate model as the empty set of regressors (i.e. one with
only the constant term).

4. Add to the candidate model the regressor with the highest ST (that is not
already in the candidate model).

5. Perform an F test, comparing the validity of the candidate model to that of the
GUM.

6. If the p-value of the F test in step 4 is below αϕ, go to step 4 (continue adding
regressors), otherwise, go to step 7.

7. Since the F-test has not rejected the model in step 4, this is the selected model
γ(m).

8. Identify any remaining ‘weak’ regressors as those with ST < 0.2. Try removing
these one at a time: if removing a regressor satisfies the F-test, it is discarded;
otherwise it is retained. Repeat this procedure for all weak regressors.

9. Repeat steps 3–8, except use the ordering based on t-ratios, rather than on ST.
10. Compare between the final model selected by ST and the final model selected

by the t-ratios, by selecting the model with the fewest regressors (since both
have satisfied the F-test). If both final specifications have the same number of
regressors, chose the specification with the lowest BIC.

In the following section the performance of the algorithm is examined compared to
some benchmark test cases, with andwithout the extensions introduced in previous
sections. In the following, STfull indicates the full procedure as described above; STno-
skip refers to the same procedurewithout the skipping extension (i.e. without step 8);
finally STsimple is the one without step 8, and also without step 2 (adaptive-α). For
STsimple a fixed value of α is used.

5 The Experiments of Hoover and Perez

This section tests the GSA algorithm on a suite of DGP simulation experiments
developed by HP. These experiments consider a possibly dynamic regression
equation with n = 139 and exogenous variables, fixed across experiments, taken
from real-world, stationary, macroeconomic time series, in the attempt to represent
typical macroeconomic data. Several papers have used HP’s experiments to test the
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performance of other methods (Castle, Doornik, and Hendry 2011; Hendry and
Krolzig 1999). HP’s experiments are of varying degree of difficulty for model search
algorithms. Details on the design of HP DGPs are reported in Appendix B.

The features of HP’s experiments prompt a number of considerations. First,
because sample size is limited and fixed, consistency of model-selection algo-
rithms cannot be the sole performance criterion. Secondly, some of the DGPs in
HP’s experiments are characterized by a low signal-to-noise ratio for some co-
efficients; the corresponding regressors are labeled ‘weak’. This situation makes it
very difficult for statistical procedures to discover if the corresponding regressors
should be included or not. This raises the question of how to measure selection
performance in this context.

This paper observes that, in the case of weak regressors, one can measure
performance of model-selection algorithms also with respect to a simplified DGP,
which contains the subset of regressors with sufficiently high signal-to-noise ratio;
this is called the ‘Effective DGP’ (EDGP). The definition of the EDGP is made
operational using the ‘parametricness index’ introduced in Liu and Yang (2011)—
this concept is described in detail in Appendix C. For full transparency, results are
presented also relative to the original DGPs in cases where the EDGP is different.

5.1 Orderings Based on t and GSA

As mentioned in Section 4, the DGPs of HP were used as the basis for an initial
investigation into the comparative rankings of ST and the t ratios. Here, these
numerical experiments are described in more detail.

For each of the 11 DGPs under investigation, NR = 500 replications for Z were
generated; on each sample, regressors were ranked by the t-ratios and ST, using
N = 128 in (5). Both for the t-ratios ranking and the ST ranking, the ordering is from
the best-fitting regressor to the worst-fitting one.

In order to measure how successful the two methods were in ranking regressors,
the following measure δ of minimum relative covering size is defined. Indicate by
φ0 = {i1,…, ir0} the set containing the positions ij of the true regressors in the list i =
1,…, p; i.e. for each j one has γ0, ij = 1. Recall also that r0 is the number of elements in

φ0. Next, for a generic replication j, let φ(m)
ℓ = {i(m)

1 ,…, i(m)
ℓ } be the set containing the

first ℓ positions i(m)
j induced by the ordering of method m, m equal t, ST. Let b

(m)
j =

min{ℓ : φ0 ⊆ φ(m)
ℓ } be the minimum number of elements ℓ for which φ(m)

ℓ contains all

the true regressors. Observe that b(m)
j is well defined, because at least for ℓ = p one

always has φ0 ⊆ φ(m)
p = {1,…, p}. δ is defined to equal b(m)

j divided by its minimum;
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this corresponds to the (relative) minimumnumber of elements in the orderingm that
covers the set of true regressors.

Observe that, by construction, one has r0 ≤ b
(m)
j ≤ p, and that onewishes b(m)

j to

be as small as possible; ideally one would like to have to have b(m)
j = r0. Hence for

δ(m)
j defined as b(m)

j /r0 one has 1 ≤ δ(m)
j ≤ p/r0. Finally δ(m) is defined as the average

δ(m)
j over j = 1, …, NR, i.e. δ(m) = 1

NR
∑NR

j=1δ
(m)
j .

For example, if the regressors, ranked in descending order of importance by
methodm in replication j, were x3, x12, x21, x11, x4, x31,…, and the true DGP were x3,
x11 the measure δjwould be 2; in fact the smallest-ranked set containing x3, x11 has

four elements b(m)
j = 4, and r0 = 2.

The results over theNR= 500 replications are summarized in Table 1. Overall ST
appears to perform better than t-ordering. For some DGPs (such as DGP 2 and 5)
both approaches perform well (δ = 1 indicating correct ranking for all 500 data
sets). There are other DGPs where the performance is significantly different. In
particular the t-ratios is comparatively deficient on DGPs 3 and 6A, whereas ST
performs worse on DGP 8. This suggests that there are some DGPs in which STmay
offer an advantage over the t-ratios in terms of ranking regressors in order of
importance. This implies that a hybrid approach, using bothmeasures,may yield a
more efficient method of regressor selection.

5.2 Measures of Performance

The performance of algorithms was measured by HP via the number of times the
algorithm selected theDGP as a final specification. Here use ismade ofmeasures of
performance similar to the ones in HP, as well as of additional ones proposed in
Castle, Doornik, and Hendry (2011).

Recall that γT = γ0 is the true set of included regressors and let γ̂j indicate the
one produced by a generic algorithm in replication j = 1, …, NR. Define rj to be
number of correct inclusions of components in vector γ̂j, i.e. the number of

Table : Values of δ (average over  data replications per DGP), using t-test and ST. Mean refers
to average across DGPs. Comparatively poor rankings are in boldface.

DGP       A B    Mean

ST . . . . . . . . . . .
t-ratios . . . . . . . . . . .
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regression indices i for which γ̂j, i = γ0, i = 1, rj = ∑p
i=11(γ̂j, i = γ0, i = 1). Recall that r0

indicates the number of true regressors.
The following exhaustive and mutually exclusive categories of results can be

defined:
– C1: exact matches;
– C2: the selected model is correctly specified, but it is larger than necessary, i.e.

it contains all relevant regressors as well as irrelevant ones;
– C3: the selected model is incorrectly specified (misspecified), i.e. it lacks

relevant regressors.

C1 matches correspond to the case when γ̂j coincides with γT = γ0; the corre-

sponding frequency C1 is computed as C1 = 1
NR

∑NR
j=11(γ̂j = γT). The frequency of C2

cases is given by C2 = 1
NR

∑NR
j=11(γ̂j ≠ γ0, rj = r0). Finally, C3 cases are the residual

category, and the corresponding frequency is C3 = 1 − C1 − C2.
16

The performance can be further evaluated through measures taken from
Castle, Doornik, and Hendry (2011), known as potency and gauge. First the

retention rate p̃i of the i-th variable is defined as, p̃i = 1
NR

∑NR
j=11(γ̂j, i = 1). Then, po-

tency and gauge are defined as follows:

potency = 1
r0

∑
i:β0, i≠0

p̃i, gauge = 1
p − r0

∑
i:β0, i=0

p̃i.

Potency therefore measures the average frequency of inclusion of regressors
belonging to the DGP, while gaugemeasures the average frequency of inclusion of
regressors not belonging to the DGP. An ideal performance is thus represented by a
potency value of 1 and a gauge of 0.

In calculating thesemeasures, HP chose to discardMC replications for which a
preliminary application of the battery of misspecification tests defined in (15) in
Appendix A reported a rejection.17 This choice is called in the following ‘pre-search
elimination’ of MC replications.

16 C1 corresponds to Category 1 in HP; C2 corresponds to Category 2 + Category 3 − Category 1 in
HP; finally C3 corresponds to Category 4 in HP.
17 The empirical percentage of samples that were discarded in this way was found to be pro-
portional to the significance level α. This fact, however, did not influence significantly the number
of C1 catches. Hence the HP procedure was allowed to discard replications as in the original
version. For the GSA algorithm no pre-search elimination was performed.
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5.3 Benchmark

The performance of HP’s algorithm is taken as a benchmark. The original MATLAB
code for generating data from HP’s experiments was downloaded from HP’s home
page.18 The original scripts were then updated to run on the current version of
MATLAB. A replication of the results in Tables 4, 6 and 7 in HP is reported in the
first panel of Table 2, using a nominal significance level of α = 1, 5, 10% and

NR = 103 replications. The results do not appear to be significantly different from
the ones reported in HP.

When checking the original code, an incorrect codingwas found in the original
HP script for the generation of the AR series ut in Eq. (13), which produced simu-
lations of a moving average process of order 1, MA(1), with MA parameter 0.75
instead of an AR(1) with AR parameter 0.75.19 The script was hence modified to
produce ut as anAR(1) with AR parameter 0.75; this is called the ‘modified script’ in
the following.

Re-running the DGP simulation experiments using this modified script, the
results in the second panel in Table 2 were obtained; for this set of simulations

NR = 104 replications were used. Comparing the first and second panel in the table
for the same nominal significance level α, one observes a significant increase in C1
catches in DGP 2 and 7. One reason for this can be that when the modified script is
employed, the regression model is well-specified, i.e. it contains the DGP as a
special case.20 Table 2 documents how HP’s algorithm depends on α, the signifi-
cance level chosen in the test R in (15).

5.4 Alternative Algorithms

This section presents results using the performance measures introduced in
Section 5.2. The results compare the three variations of the ST algorithm with the

18 http://www.csus.edu/indiv/p/perezs/Data/data.htm.
19 Thismeans that the results reported in HP for DGP 2, 3, 7, 8, 9 refer to amisspecifiedmodel. The
MA process can be inverted to obtain a AR(∞) representation; substituting from the yt equation as
before, onefinds that theDGP contains an infinite number of lags on the dependent variable and of
the x*it variables, with exponentially decreasing coefficients. The entertained regression model
with four lags on the dependent variable and two lags on the x*it variables can be considered an
approximation to the DGP.
20 This finding is similar to the one reported in Hendry and Krolzig (1999), section 6; they re-run
HP experiments using PcGets, and they document similar increases in C1 catches in DGP 2 and 7 for
their modified algorithms. Hence, it is possible that this result is driven by the correction of the
script for the generation of the AR series.
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modified HP code. To compare with a similar but more recent GETS implementa-
tion, the Autometrics package ‘gets’, see Pretis, Reade, and Sucarrat (2018), is also
added as an additional algorithm in the comparison.

The performance ismeasuredwith respect to the true DGP or with respect to the
Effective DGP (EDGP) that one can hope to recover, given the signal to noise ratio.
Because the HP, GSA and Autometrics algorithms depend on tunable constants,
results are given for various values of these constants.

The procedure employed to define the EGDP is discussed in Appendix C; it
implies that the only EDGPs differing from the true DGP are DGP 6 and DGP 9. DGP
6 contains regressors 3 and 11, but regressor 3 is weak and hence EDGP 6 contains
only regressor 11. DGP 9 contains regressors 3, 11, 21, 29 and 37 but regressors 3 and
21 are weak and they are dropped from the corresponding EDGP 9. More details are
given in Appendix C.

Both the HP algorithm and Autometrics depend on the significance levels α,
whereas the GSA algorithm depends on the threshold ϕ (which controls αϕ) for
STno-skip and STfull and on α for STsimple. Because the values of α andϕ can seriously
affect the performance of the algorithms, a fair comparison of the performance of
the algorithms may be difficult, especially since the true parameter values will not
be known in practice. To deal with this problem, the performance of the algorithms
was measured at a number of parameter values within a plausible range.

Table : Percentages of Category  matches C for different values of α. Original script: data
generated by the original script, NR =  replications. The frequencies are not statistically
different from the ones reported in HP (Tables , , ). Modified script: data from modified script
for the generation of AR series, NR =  replications.

Original script Modified script

DGP α = . . . . . .

 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .
 . . . . . .
A . . . . . .
B . . . . . .
 . . . . . .
 . . . . . .
 .     
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This allowed two ways of comparing the algorithms: first, the ‘optimized’
performance, corresponding to the value of α or ϕ that produced the highest C1
score, averaged over the 11 DGPs. This can be viewed as the ‘potential perfor-
mance’. In practice, the optimization was performed with a grid search on α and ϕ
with NR = 103 replications, averaging across DGPs.

Secondly, a qualitative comparison was performed between the algorithms of
comparing their average performance over the range of parameter values. This
latter comparison gives some insight into the more realistic situation, where the
optimum parameter values are not known.

5.5 Results for optimal values of tuning coefficients

Table 3 shows the classification results in terms of C1 matches, as well as the
potency and gauge measures, for all algorithms at their optimal parameter values,

using NR = 104. Note that the value of α = 4 × 10−4 for Autometrics represents the
lowest value of α that it was possible to assign without errors occurring due to
singular matrices—likely due to issues with numerical precision. Results for the ST
algorithm are shown with and without the extensions discussed in Section 4.
Recovery of the true specification is here understood in the EDGP sense.

The C1 column measures the percentage frequency with which the algorithms
identified the EDGP. One notable fact is that the performance of the HP algorithm
has been vastly improved (compared to the results in HP’s original paper) simply
by setting α to a better value, in this case α = 4 × 10−4, compare with Table 2.

The comparison shows thatwith the full ST algorithm, the correct classification
rate (C1) is 98.9%, compared with 94.3% for HP, and 88.6% with Autometrics. It is
presumed that if it were possible to reduce further the value of α for Autometrics,
the mean C1 value would increase still further. However, it was not possible to test
this conjecture. Removing the ‘skipping’ extension, the average performance falls
to 96.7%, and further to 92.6% without the adaptive-α feature.

Examining the DGPs individually, the GSA algorithm performs well on all
DGPs, although there are slightly lower C1 values in DGPs 3 and 6A (around 96%).
For HP, these differences aremoremarked, with C1 = 62% for DGP 3, and C1 = 85.3%
for DGP 7. Autometrics also has a lower success rate of 74% for DGP 3, and 87% for
DGP 7. It is evident though that the adaptive-α and the skipping extensions
contribute significantly to the performance of the GSA algorithm in these DGPs.

The potency and gaugemeasures (also in Table 3) reveal a littlemore about the
nature of the errors made by the algorithms. Gauge is very low for the GSA and HP
algorithms, but higher for Autometrics. Higher gauge measures are found in DGP
6A, particularly for HP, indicating the inclusion of irrelevant regressors. The full
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GSAalgorithmhas gauges of atmost 0.06%across these data sets. Autometrics has
gauge valueswhich are relatively consistent around0.2–0.5% inmost cases, but as
low as 0.05% for DGP 8. This partially confirms the authors’ assertion that gauge is
close to constant across a variety of models, see Doornik (2009).

The potencymeasures show that the true regressors are being identified nearly
all the time for all three approaches. However, overall the GSA method has the
highest potency values of 98% or above, whereas HP has a lower value of 80% for
DGP 3. Autometrics yields potency values generally over 95%, with the exception
of DGP 3, which has a potency value of 90%.

5.6 Recovering the DGP

Although it is argued here that the signal-to-noise ratio inDGPs 6 and 9 is too low for
certain regressors to be identified, it is still worth looking at the results with respect
to the true DGP, shown in Table 4. All algorithms failed to identify the true DGP 9
even once out of the 104 runs. This fact is reflected in the potency, which drops from
100 to 50% (DGP 6), and about 60% (DGP 9). These results are mirrored in the
original results of HP. This suggest that GSAmay not help when regressors are very
‘weak’, but the same is true for HP and Autometrics. Put simply, the signal-to-noise
ratio is too low to identify the effect of these regressors (see the discussion of the
EDGP in Appendix C).

5.7 Robustness of Algorithms

As discussed earlier, the results in Table 3 are obtained after optimization of the
tuning parameters α andϕ. This provides a measure of potential performance, but
in reality the best α andϕwill not be known. For this reason it is indicative to show
the results when varying the tuning parameter.

Theupperpanel inFigure 2 showshow the categorizationof thefinalmodel varies
with ϕ in the full GSA algorithm. While the value of ϕ varies between 0.1 and 0.5, the
value of C1 (exact matches) is generally above 95%, and C2 (correct specification, but
with irrelevant regressors) and C3 (misspecification) are consistently very low.

In contrast, themiddle panel shows the effect of varying α for the HP algorithm.
It is clear that the peak performance of the algorithm is obtained in a small neigh-
borhood around a rather sharp maximum at a low α value—increasing α from this
value results in a rapid increase in C2, whereas decreasing it sharply increases C3.

Autometrics exhibits a similar sensitivity to α, although the decrease in C1 is
even steeper, when α is increased. As noted previously, Autometrics may yield
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even higher C1 values than those observed here, if it were possible to further reduce
α without numerical issues.

Overall, while it is difficult to make a perfectly fair comparison of the
robustness of the three algorithms, due to the incomparable scales of the opti-
mizing parameters, the GSA algorithm seems to be considerably less sensitive to
variation in its tuning coefficient on these data sets, since it indirectly specifies α
through ϕ. This has the advantage that the tuning parameter, ϕ, is somewhat
problem-independent.

6 Comparisons with Other Methods

In the previous section, a rather detailed comparison was given with the approach
of HP and Autometrics, since those approaches share some similarities with the
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Figure 2: Optimization of algorithms with respect to tuning parameters; upper panel: full ST
algorithm; middle panel: HP algorithm, lower panel: Autometrics. Percentages correspond to
averages over all EDGPs.
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proposed GSA algorithm. This section compares with a wider set of approaches
and also includes a real case study; specifically, the experiments in Deckers and
Hanck (2014) (henceforth DH) are considered. They consist of a comparison of a
nine-model selection approach (Section 6.1) in the DH DGPs, as well as an appli-
cation to a growth regression model (Section 6.2).

6.1 Simulation Experiments

To give a comparison of performance with a wider range of model selection
procedures, theDGP simulation experiment ofDeckers andHanck (2014) is used as a
test case. In their paper, the authors use a simple cross-section regression framework
to compare the performance of nine-model selection approaches, additionally
investigating the effect of altering tuning parameters. Here, the GSA algorithm is
applied to their test case, which allows a comparison with a number of competing
model selection procedures. These other methods are the “classical” hypothesis
testing procedure, which simply uses p-values (classical); the same procedure but
with the Bonferroni correction Bonferroni (1936) (Bonferroni); the step-upmethod of
Benjamini and Hochberg (1995) (BH); the bootstrap step-down method of Romano,
Shaikh, andWolf (2008) (Boot); the PcGets/Autometrics software package inKrolzig
and Hendry (2001); the HP approach as investigated in the previous section (HP);
Bayesian model averaging as in Ley and Steel (2009) (BMA); the “two million
regressions” approach in Sala-i-Martin (1997) (S-i-M); and the least absolute
shrinkage and selection operator (Lasso) of Tibshirani (1996). For full details on
these approaches the reader is referred to Deckers and Hanck (2014), and references
therein.

The DGPs are defined using (1) with p = 50 and n = 100 with X1, …, X50

distributed as amultivariate normal distributionwithmean zero, variance one and
common correlation ρ that can take values in {0, 0.3, 0.5}.

DGPs are classified according to how many βi are set to non-zero values.
1. Every tenth βi is set to 0.5, with the rest is set to zero (5 regressor indices in T).
2. Every fifth βi is set to 0.5, with the rest is set to zero (10 regressor indices in T).
3. Every second βi is set to 0.5, with the rest is set to zero (25 regressor indices inT).

DH point out that the value of βi = 0.5 is used because it results in population R2

values that are realistic for data sets encountered in growth econometrics. The
experiments are run here with 2000 replications for each case.

Tables 5, 6 and 7 give the results of the GSA algorithm added to the existing
results of the other methods. For consistency with DH, the performance measures
from their work are used. The false discovery rate (FDR) is defined as the expected
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number of falsely rejected hypotheses divided by the total number of falsely
rejected hypotheses—in this sense, it is similar to the gauge, but is normalized by
the number of correct rejections rather than the actual number of false hypotheses.
CR denotes the average number of correct rejections—this means that it is simply
the potency without the normalization by the number of false hypotheses.

The results of the model selection approaches apart from the GSA algorithm
are discussed in Deckers and Hanck (2014) in some detail—for this reason the
discussion here is limited to the relative performance of the GSA algorithm. Table 5
shows that in the case of five false hypotheses, the GSA algorithm has a CR of 4.27,
3.99 and 3.60 for ρ = 0, 0.3, 0.5 respectively. This puts it on a similar level, albeit

Table : Results of Monte Carlo experiment with five false hypotheses.

ρ =  ρ = . ρ = .

FDR CR FDR CR FDR CR

Classical: α = . . . . . . .
Classical: α = . . . . . . .
Classical: α = . . . . . . .
Bonferroni: α = . . . . . . .
Bonferroni: α = . . . . . . .
Bonferroni: α = . . . . . . .
BH: α = . . . . . . .
BH: α = . . . . . . .
BH: α = . . . . . . .
Bootstrap: α = . . . . . . .
Bootstrap: α = . . . . . . .
Bootstrap: α = . . . . . . .
PcGets/Autometrics . . . . . .
HP . . . . . .
Bayesian model averaging
m = k/, g = k−, random θ . . . . . .
m = , g = k−, random θ . . . . . .
m = k/, g = k−, fixed θ . . . . . .
m = , g = k−, fixed θ . . . . . .
m = k/, g = n−, random θ . . . . . .
m = , g = n−, random θ . . . . . .
m = k/, g = n−, fixed θ . . . . . .
m = , g = n−, fixed θ . . . . . .
Sala-i-Martin . . . . . .
Lasso . . . . . .
GSA algorithm . . . . . .
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slightly less, than the other methods. Particularly high CR values result from the
Lasso, Sala-i-Martin, and Autometrics methods, for example.

However, the FDR of the GSA algorithm is lower than most of the other
methods apart from the classical and Bonferroni approaches, with one or two
exceptions. Therefore the GSA algorithm could be viewed as giving a good, but
conservative performance. In fact, only in three experiments different versions of
BMA outperform the GSA algorithm in both CR and FDR simultaneously for ρ = 0.3
and 0.5. While the GSA algorithm is not an outright winner in this experiment, it
appears to be competitive with other approaches, even without altering the tuning
parameters from default values; this appears promising.

Table : Results of Monte Carlo experiment with  false hypotheses.

ρ =  ρ = . ρ = .

FDR CR FDR CR FDR CR

Classical: α = . . . . . . .
Classical: α = . . . . . . .
Classical: α = . . . . . . 

Bonferroni: α = . . . . . . .
Bonferroni: α = . . . . . . .
Bonferroni: α = . . . . . . .
BH: α = . . . . . . .
BH: α = . . . . . . .
BH: α = . . . . . . .
Bootstrap: α = . . . . . . .
Bootstrap: α = . . . . . . .
Bootstrap: α = . . . . . . .
PcGets/Autometrics . . . . . .
HP . . . . . .
Bayesian model averaging
m = k/, g = k−, random θ . . . . . .
m = , g = k−, random θ . . . . . .
m = k/, g = k−, fixed θ . . . . . .
m = , g = k−, fixed θ . . . . . .
m = k/, g = n−, random θ . . . . . .
m = , g = n−, random θ . . . . . .
m = k/, g = n−, fixed θ . . . . . .
m = , g = n−, fixed θ . . . . . .
Sala-i-Martin . . .  . 

Lasso . . . . . .
GSA algorithm . . . . . .
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The results of the same experiment with 10 false hypotheses are shown in
Table 6. Similar to the previous results, theGSA algorithmperforms a good-quality,
but slightly conservative model selection. The CR values show that it is correctly
rejecting 7.3–8.5 hypotheses depending on the correlation between variables.
Other methods, such as the Lasso and BMA, tend to have a higher CR. However the
GSA algorithm again has a very low FDR, which is only bettered by other ap-
proaches at the expense of a low CR. The exceptions to this are three instances of
the BMA approach, one at ρ = 0.3 and two at ρ = 0.5, where CR is marginally higher
and FDR marginally lower. Consider however that the BMA results here reflect the
performance at eight different values of tuning parameters, while the GSA algo-
rithm uses only default values.

Table : Results of Monte Carlo experiment with  false hypotheses.

ρ =  ρ = . ρ = .

FDR CR FDR CR FDR CR

Classical: α = . . . . . . .
Classical: α = . . . . . . .
Classical: α = . . . . . . .
Bonferroni: α = .  . . . . .
Bonferroni: α = . . . . . . .
Bonferroni: α = . . . . . . .
BH: α = . . . . . . .
BH: α = . . . . . . .
BH: α = . . . . . . .
Bootstrap: α = . . . . . . .
Bootstrap: α = . . . . . . .
Bootstrap: α = . . . . . . .
PcGets/Autometrics . . . . . .
HP . . . . . .
Bayesian model averaging
m = k/, g = k−, random θ . . . . . .
m = , g = k−, random θ . . . . . .
m = k/, g = k−, fixed θ . . . . . .
m = , g = k−, fixed θ . . . . . .
m = k/, g = n−, random θ . . . . . .
m = , g = n−, random θ . . . . . .
m = k/, g = n−, fixed θ . . . . . .
m = , g = n−, fixed θ . . . . . .
Sala-i-Martin . . . . . 

Lasso . . . . . .
GSA algorithm . . . . . .
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Finally, Table 7 gives the results in the case of 25 false hypotheses. Again the
results are similar to the other two cases. The GSA algorithm gives slightly lower
rates of correct rejection than Autometrics/HP, BMA, Sala-i-Martin and Lasso;
however it has a FDR which is lower than most of these approaches. The GSA
algorithm is outperformed both on CR and FDR only in two experiments by the
classical procedure and a bootstrap one.

The BMAapproach actually performs quitewell on this case study. However as
Decker and Hanck note, there is no one configuration of the BMA approach that
performs consistently the best—particular tuning parameter values are suited to
particular cases.

Overall, in spite of the fact that GSA was run with default tuning coefficients,
the results are encouraging for the GSA algorithm.While it does not outperform all
competitors, it has a performance which is competitive with other approaches and
can be adjusted to give higher potency by changing the values of its tuning
parameters.

6.2 An Empirical Growth Model

The final test case is also taken from DH and represents a real case study on
economic data. This case study (more details of which can be found in their paper)
takes the data set of Fernandez, Ley, and Steel (2001) to build an empirical growth
model. Growth models attempt to explain the differences in economic growth
across a set of countries, over a fixed period of time, in terms of the number of
candidate explanatory variables. This problem is of course different from the
previous test cases, in that y has not been generated from the candidate regressors
and therefore there is no “true DGP” contained within the set of candidates.
Indeed, cross-country growthmaywell be affected bymany other variables outside
of the list considered here.

The data set consists of n = 72 countries, whose growth is measured over the
period 1960–1992, aswell as p=41 explanatory variables. Table 8 shows the results
of the growth regression using the same list of model selection approaches
considered in the previous example, with the addition of the GSA algorithm. For
the classical, “boot” and BH columns, the number represents the level of signifi-
cance at which the hypothesis is rejected; if no number is reported the regressor is
not included in the final model. The BMA column can be interpreted as rejecting
the null hypothesis when the probability of inclusion is greater than 0.5. The S-i-M
column gives frequency of inclusion, with an asterisk denoting a significant
relation to growth, and a double asterisk indicating that variables are
always included. The FDP column refers to a method of Romano et al. (2006)
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which aims to ensure that the probability of the proportion of false rejections does
not exceed a set value. Finally, the H&K, Lasso andGSA columns use a 1 to indicate
that the variable is included, and a zero to indicate that it is not included.

The results show that the GSA algorithm agrees with the majority of other
approaches in selecting the regressors GDP level, Fraction Confucian and Fraction
Hinduasbeing robustly related to growth. The results are in fact broadly similarwith
H&Kand theLasso,with a fewexceptions. For example, theGSAalgorithm identifies
fraction protestant as an additional predictor of growth, which is not selected by
other algorithms apart from S-i-M. Similarly, primary exports in 1970 is found by the
GSA algorithm to be significant. However, the GSA algorithm does not select vari-
ables such as ethnologic fractionalization and higher education enrollment, which
are included bymost other approaches. Overall the performance of GSA algorithm is
slightly more parsimonious than other methods, and this agrees with the results
from the simulation experiments in the previous section, although the degree of
conservatism can be adjusted by the tuning parameter.

7 Conclusions

In the model selection problem, one has to choose which candidate regressors to
include in a regressionmodel. The approach in this paper is to view the problem as
a sensitivity analysis of a measure of fit in the space of candidate variables. One
can therefore calculate the sensitivity, e.g. of the BIC with respect to the presence
(or absence) of each candidate variable.

These interactions are in principle relevant, as the importance of including a
given regressor is conditioned by inclusion or exclusion of the other regressors. For
this reason it is appropriate to use ST, a sensitivitymeasure capable of appreciating
the sensitivity of a trigger for the presence of one regressor, inclusive of its inter-
action effects with triggers for all other regressors.

The proposed algorithm uses the ordering of the regressors via GSA or the
t-ratios within a testing strategy based on the ‘Pantula-principle’, see Pantula
(1989). This implies a reduction in the number of tests for each given ordering (with
an associated saving of computing times) and the favorable control of the size of
the testing sequence.

When compared to the general-to-specific algorithm described by HP, and to
Autometrics, the GSA algorithm performs well on the simulation experiments
investigated, both in the theoretical case where tuning parameters were known,
and in average performance in the practical situation when tuning parameters are
unknown. The robustness of the algorithm to its main tuning parameter is a
particularly positive feature, since the optimal values would not be known in a
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practical case. When compared to a wider range of approaches, the GSA approach
performs competitively, giving comparable performance to a range of well-
established approaches, without adjusting its tuning parameters in any way. This
shows that GSA methods can help in model selection.

This study is a first exploration of the use of GSA in the world of model
selection; it shows that GSA can be fruitfully used to order regressors by impor-
tance. These results call for more research on the use of GSA methods in model
selection.

Appendix A: Proofs

In this section, Assumption 1 is maintained throughout, σ2
Ti is first expressed as a

sum of terms involving σ̂2
γ for γ ∈ Γ in Lemma 3; next the large n behavior of σ̂2

γ is
discussed in Lemma 4. Lemma 5 states the probability limit of σ2

Ti. Lemma 6 shows
that, in case the true regressors in the DGP and the irrelevant ones are uncorrelated,
σ2
Ti →

p
0 for an irrelevant regressor i, while σ2

Ti →
p
ci > 0 for a relevant one, where →p

indicates convergence inprobability asn→∞. Under the sameconditions, Lemma6
proves Theorem2,which shows that for large samples, a screeplot on the ordered STi
allows to separate the relevant regressors from the irrelevant ones.

Let γi = ei′ γ and γ−i = Ai′ γ, where ei is the i-th column of the identity matrix of
order p, Ip and Ai is a p × (p − 1) matrix containing all the columns of Ip except the
i-th one. Next indicateq(γ) as q(γi, γ−i) or,more simply as q−i(γi). Denote by γ(i,0) the
vector corresponding to γi = 0, with the remaining coordinates equal to γ−i, and let
γ(i,1) the vector corresponding to γi = 1 with the remaining coordinates equal to γ−i.
Finally let Γ−i ≔ {γ−i = Ai′ γ, γ ∈ Γ}.
Lemma 3 (σ2

Ti as an average over γ−i). One has

σ2
Ti = E(V(q|γ−i)) =

1
4 ⋅ 2p−1

∑
γ−i∈Γ−i

(q−i (1) − q−i(0))2 (8)

and for q equal to BIC (or any other consistent information criterion)

q−i(1) − q−i(0) = log⎛⎜⎜⎝σ̂2
γ(i,1)

σ̂2
γ(i,0)

⎞⎟⎟⎠ + o(1), (9)

where o(1) is a non-stochastic term tending to0 for large n and σ̂2
γ ≔ n−1ε̂γ′ ε̂γ where ε̂γ

are the residuals of model γ.
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Proof. Note that for h = 1,2 one has E(qh ⃒⃒⃒⃒γ−i) = 1
2 (qh−i(1) + qh−i(0)) so that

V q|γ−i( ) = E q2
⃒⃒⃒⃒
γ−i( ) − E q|γ−i( )( )2

= 1
2

q2−i 1( ) + q2−i 0( )( ) − 1
4

q2−i 1( ) + q2−i 0( ) + 2q−i 1( )q−i 0( )( )
= 1
4

q−i 1( ) − q−i 0( )( )2  .
Hence one finds (8). When q is BIC, q(γ) = logσ̂2

γ + kγcn with cn ≔ log(n)/n. Other
consistent information criteria replace logn with some other increasing function
f(n) of nwith the property cn = f(n)/n→ 0, see Paulsen (1984) Theorem 1. Note also
that kγ(i,1) − kγ(i,0) = 1, and that one has

q−i(1) − q−i(0) = log⎛⎜⎜⎝σ̂2
γ(i,1)

σ̂2
γ(i,0)

⎞⎟⎟⎠ + (kγ(i,1) −kγ(i,0) )cn = log⎛⎜⎜⎝σ̂2
γ(i,1)

σ̂2
γ(i,0)

⎞⎟⎟⎠ + cn.

Because cn → 0, one finds (9). □

The asymptotic behavior of σ̂2
γ is next discussed. Let wt ≔ (yt , x1, t ,…, xp, t , ϵt)′,

where, without loss of generality, it is assumed that all variables have mean zero.
Denote Σ≔ E(wtwt′ ), where

Σ = ⎛⎜⎜⎝ Σyy Σyx σ2

Σxx 0
σ2

⎞⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Σyy Σy1 … Σyp σ2

Σ11 Σ1p 0
⋱

Σpp 0
σ2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.

Let Σij.v ≔ Σij − ΣivΣ−1vvΣvj indicate partial covariances, where v ≔ {i1,…, is} indicates
a set of indices. Note that Σxϵ = 0.

For each γ, let aγ ≔{i1,…, ikγ}′ indicate the set of indices ij such that γij = 1 in γ.
Similarly let bγ ≔ {i1,…, is}′ indicate the set of indices ij that belong to aγ \ T. The
representation β0 as β0 = H0ϕ0 is used here, whereH0 contains the r0 columns of Ip
corresponding to T, and ϕ0 contains the corresponding β0,i coefficients. Moreover
the matrix of regressors in the γ specification is written as XHγ, where Hγ

contains the columns of Ip with column indices aγ. Define also
Mγ ≔ In − XHγ(Hγ′ X′XHγ)−1Hγ′ X′.

Lemma 4 (Large sample behavior of σ̂2
γ). As n → ∞, one has

σ̂2
γ →

p
σ2 + ∑

h,j∈T\aγ
β0, hΣhj.bγβ0, j, (10)
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where T \ aγ is the set of indices of the true regressors omitted from the γ specifi-
cation, and bγ is the set of indices aγ \ T of the regressors included in the γ specifi-
cation except the ones that belong to the DGP. Remark that the sum in (10) is equal to
0 when γ is correctly specified (i.e. it contains all regressors in the DGP) i.e.
T \ aγ = ∅.

Proof. Because y = XH0ϕ0 + ε one has

σ̂2
γ = n−1y′Mγy = n−1ε′Mγε + 2n−1ε′MγXH0ϕ0 + n−1ϕ0′ H0′ X′MγXH0ϕ0

Because Σxϵ = 0, by the law or large numbers for stationary linear processes, see
e.g. Anderson (1971), one finds

n−1ε′Mγε→
p σ2 − ΣϵxHγ(Hγ′ ΣxxHγ)−1Hγ′ Σxϵ = σ2,

n−1ε′MγX→p Σϵx(Ip −Hγ(Hγ′ ΣxxHγ)−1Hγ′ Σxx) = 0.

Similarly

n−1H0′ X′MγXH0 →
p H0′ (Σxx −ΣxxHγ(Hγ′ ΣxxHγ)−1Hγ′ Σxx)H0

= H0′ Vγ(Vγ′ Σ−1xx Vγ)−1Vγ′ H0

whereVγ = Hγ,⊥ contains the columns in Ipnot contained inHγ, and the last equality
is a special case of a non-orthogonal projection identity, see e.g. eq. (2.13) in Paruolo
and Rahbek (1999) and references therein. Here H⊥ indicates a basis of the
orthogonal complement of the space spanned by the columns in H. Observe that
the (p − kγ) × r0 matrix Cγ ≔ Vγ′ H0 contains the columns of Ip−rγ corresponding to
the index set of regressors in vγ ≔ T \ aγ. Hence, using e.g. eq. (A.4) in Paruolo and
Rahbek (1999), one finds (Vγ′ Σ−1xx Vγ)−1 = Σvγvγ .bγ. Substituting one finds

n−1ϕ0′ H0′ X′MγXH0ϕ0 →
p
ϕ0′ Cγ′ Σvγvγ .bγCγϕ0.

Simplifying one obtains (10). □

Lemma 5 (Large sample behavior of σ2
Ti). As n → ∞ one has

σ2
Ti /

p
ci ≔

1
4 ⋅ 2p−1

∑
γ−i∈Γ−i

log

σ2 + ∑
h,j∈T\aγ i,1( )

β0, hΣhj.bγ i,1( )β0, j

σ2 + ∑
h,j∈T\aγ i,0( )

β0, hΣhj.bγ i,0( )β0, j

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

where aγ is the set of indices of the regressors in the γ specification, and bγ ≔ aγ \ T
includes the indices of regressors included in the γ specification except the ones that
belong to the DGP.
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Proof. Apply Lemma 3 and 4. □

Lemma 5 shows that the limit behavior of σ2
Ti depends on the covariance structure Σ.

Some covariance structures imply that, in the limit, the value of ST for true regressors
is greater than the value of ST for irrelevant regressors. There also exist other
covariance structureswhich can imply a reverse ordering.21 In the special casewhen
true and irrelevant regressors are uncorrelated, the next Lemma 6 shows that ST
converges to 0 for irrelevant regressors, while ST converges to a positive constant for
true regressors. This result proves Theorem 2 that shows that the ordering based on
ST separates true and irrelevant regressors in this special case.

Lemma 6 (Orthogonal regressors inM and T). Assume that Σℓj = 0 for all j ∈ T and
ℓ ∈M. Thenwhen i ∈M one has, as n→∞,σ2

Ti →
p
0, whereas otherwisewhen i ∈ T one

finds

σ2
Ti →

p
ci > 0. (11)

Proof. From Lemma 4, one finds

q−i 1( ) − q−i 0( ) = log

σ2 + ∑
h,j∈T\aγ i,1( )

β0, hΣhjγ(i, 1) .bβ0, j

σ2 + ∑
h,j∈T\aγ i,0( )

β0, hΣhjγ(i,0) .bβ0, j

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + op 1( ), (12)

Assume that Σℓj ≠ 0 for some j ∈ T and ℓ ∈M; then for some γ−i ∈ Γ−i one has
Σhj.bγ(i,1) ≠ Σhj.bγ(i,0) in the numerator and denominator on the r.h.s. of (12); let c ≠ 1
indicate the corresponding ratio. Hence (q−i(1) − q−i(0))2 converges in probability
to log2c > 0, and because the terms in E(V(q|γ−i)) = 1

4⋅2p−1 ∑
γ−i∈Γ−i

(q−i(1) − q−i(0))2, see
Lemma 5, are non-negative, one concludes that σ2

Ti →
p
ci > 0.

Assume instead that Σℓj = 0 for all j ∈ T and ℓ ∈M and i ∈M. Then T \ aγ(i) =
T \ aγ−i and, because Σℓj = 0 for all j ∈ T and ℓ ∈M, one has Σjbγ(i,⋅) = 0. This implies
Σhj.bγ(i,⋅) ≔ Σhj − Σhbγ(i,⋅)Σ

−1
bγ(i,⋅)bγ(i,.)

Σbγ(i,⋅) j = Σhj. Hence

q−i 1( ) − q−i 0( ) = log

σ2 + ∑
h,j∈T\aγ−i

β0, hΣhjβ0, j

σ2 + ∑
h,j∈T\aγ−i

β0, hΣhjβ0, j

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ ⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ + op 1( ) = op 1( ),

for all γ−i ∈ Γ−i because the numerator and denominator are identical. Thus
(q−i(1) − q−i(0))2 converges in probability to log21 = 0 for all γ−i ∈ Γ−i, and this
implies σ2

Ti →
p
0. □

21 Worked out examples illustrating both situations are available from the authors upon request.
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Appendix B: HP design and algorithm

B.1 HP DGPs. HP’s experiments are constructed as follows. Following Lovell
(1983), HP chose a set of 18major US quarterly macroeconomic variables. Only two
variables considered in Lovell (1983) were discarded inHP, namely the linear trend
and the ‘potential level of GNP in $1958’, because they were no longer relevant or
available. Unlike in Lovell (1983), HP applied 0, 1 or 2 differences to the data; the
order of differencing was selected by HP in order to obtain stationary variables
according to standard unit root tests, see their Table 1.

The values of these (differenced) 18 major US quarterly macroeconomic series
are then fixed in HP’s experiments; they are here indicated as x*it, where t = 1,…, n
indicates quarters and i = 1, …, k, with k = 18 indexes variables. The values of yt
were then generated by the following scheme

yt = ∑
k

i=1
β*i x*it + ut , ρ(L)ut = ϵt , (13)

where εt are i.i.d. N(0, σ2
ϵ), and ρ(z) = 1 − ρz for all DGPs except for DGP 3, for

which ρ(z) = 1 − ρ1z − ρ2z2. Here β*i for i = 1, …, k and σ2
ϵ are known constants,

which define the DGP. In practice εts are simulated using a computer random
number generator, ut is then calculated as an autoregressive series of order 1,
AR(1), with coefficient ρ. ut is then fed into the equation for yt, where x*it are kept
fixed and do not change across replications.

It is useful to express (13) as a special case of (1). To this end one can substitute
(yt −∑k

i=1β*i x*it) in place of ut in the dynamic equation of ut; one hence finds the
following equivalent representation of the DGP

yt = ρyt−1 + ∑
2k

i=1
βixit + ϵt (14)

for all DGPs except for DGP 3, where βi = β*i and xit = x*it for i = 1, …, k while
βi = −ρβ*i and xit = x*it−1 for i= k+ 1,…, 2k. ForDGP 3, one has yt = ρ1yt−1 + ρ2yt−2 + ϵt.
Both these representations are of the form (1), and the parameters can be estimated
as in (3).

Regressions in HP were performed setting the elements xi,t in column Xi equal
to variable xit from (14), for i = 1,…, 2kwith 2k = 36, and setting the elements xi,t of
the remaining columns Xi for i = 2k + 1,…, p, i.e. from 37 to 40, equal to the first,
second, third and fourth lag of yt. Therefore, four lags were always considered in
estimation regardless of how many lags are in the DGP, and the only part of the X
that changes across replications is block of the last four columns.

224 W. Becker et al.



HP defined 11 DGPs by choosing values for the parameters ρ, β*i and σ2
ϵ. Table 9

summarizes the chosen parameter values. The choice of these values was made to
reflect the coefficient estimates obtained on US data, using personal consumption
expenditure as dependent variable, following the rationale in Lovell (1983).
Because they were chosen as explanatory variables for a consumption equation,
not all the macroeconomic time series were included in the DGP; in particular only
(the second differences of the) Government purchases on goods and servicesG and
the (first differences of the)M1 monetary aggregate, and their respective first lags,
were included in the experiments.

B.2 HP algorithm. This subsection gives an overview of the algorithm
proposed by HP, following Hansen (1999). The algorithm proposed in HP aimed to
provide a close approximation to a subset of what practitioners of the LSE
approach actually do; further details can be found in the original reference.

The HP algorithm can be described by a choice of a triplet (R, f , Γs) composed
of (i) a test procedure R, (ii) a measure of fit f and (iii) a subset Γs of all models Γ,
Γs ⊆ Γ. For any model γ, the test procedure R is defined as

R(γ) = 1(min
1≤ℓ≤v

pℓ ≤ α) (15)

where pℓ are the p-values of v specification tests and α is the chosen significance
level. Note that R(γ) = 0 when all v tests do not reject the null, which corresponds
to the hypothesis of correct specification and/or constant parameters.22

HP’s measure of fit f is based on the least-square estimate of σ2, the regression
variance, which equals σ̃2

γ ≔
1

n−kγε̂γ′ ε̂γ, where kγ and ε̂γ are the number of regressors
and the residuals in model γ. HP’s measure of fit is f(γ) = σ̃γ, which should be
minimized. Finally the subset Γs is selected recursively, going from general to
specific models, starting from the GUM, γ = ıp; the recursion continues as long as
R(γ) = 0. Details on HP’s choice of Γs are given in the next subsection.

Overall the HP algorithm selects a model γ̂ as the preferred model using the
rule

γ̂ = arg min
γ∈Γs :R(γ)=0

f(γ).

The above description shows that theHPalgorithmdepends on α, which is a tuning
parameter, as well as on the choice of specific path Γs. For large n, Hansen (1999)

22 The tests are the following: (1) Jarque Bera test for normality of residuals; (2) Breusch Pagan
residual autocorrelation tests; (3) Engle’s ARCH test on residuals; (4) Chow sample-split parameter
stability tests; (5) Chow out-of-sample stability test using the first 90% of observations versus the
last 10%; (6) F test of the restrictions imposed by model γ versus the GUM. The tests are performed
on the first 90% of observations during the search.
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noted that γ̂ corresponds approximately to minimizing the information criterion
HP(γ) = logσ̂2

γ + kγ/n, where σ̂2
γ ≔

1
n ε̂γ′ ε̂γ is theML estimator of σ2. This differs from

Akaike’s information criterion AIC(γ) = logσ̂2
γ + 2kγ/n and from the Bayesian in-

formation criterion of Schwarz BIC(γ) = logσ̂2
γ + kγlog(n)/n by the different choice

of penalty term.23

B.3HP’s choice of searchpaths. The choice of subset Γs of Γ is a critical aspect
of the HP algorithm, as well as of any selection method based e.g. on information
criteria, see Section 5.2. in Hansen (1999) and Burnham and Anderson (2002).

In particular, HP select a subset Γs as follows. All paths start from the GUM
regression, and the regressors are ranked in ascending order according their t-ratios.
The 10 lowest variables in this list are then candidates for elimination; this starts an
iterative elimination path. Each candidate model γ* then becomes the current
specification provided R(γ*) = 0. In this stage, the first 90% of the observations are
used in the specification tests. Each search is terminated when for any choice of
regressor the test R rejects.

At this final stage, theHP algorithm reconsiders all the observations in a ‘block
search’; this consists in considering the joint elimination of all the regressors with
an insignificant t-ratios. If the R tests for the block search does not reject, the
resulting model becomes the terminal specification. Otherwise, the specification
that entered the final stage becomes the terminal specification. Once all 10 search
paths have ended in a terminal specification, the final specification is the one
among these with lowest f(γ) = σ̃γ.

Appendix C: Effective DGP

This appendix describes how the notion of ‘weak regressors’wasmade operational
in the present context. The ‘Parametricness Index’ (PI), Liu and Yang (2011), is used
here to identify the ‘effective DGP’ (EDGP). Parametricness, in the sense of Liu and
Yang, is a measure dependent both on sample size and the proposed model; a
model is parametric if omission of any of its variables implies a marked change in
its fit, and nonparametric otherwise.24 Here parametricness is taken as a sign of
detectability, i.e. of a sufficiently high signal-noise ratio. This concept is applied
both to complete specifications as well as to single regressors; in particular the

23 Remark that information criteria are equivalent to LR testing with a tunable significance level;
see for instance Poetscher (1991).
24 For example, consider a data set generated by a sine function, with added noise. If it is
proposed to model this with a quadratic equation, the data/model should be considered
nonparametric. However, if the proposed model included sinusoidal terms, it should be consid-
ered parametric.
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EDGP is defined as the subset of DGP regressors which the PI would classify as
parametric.

Considering a model γk ∈ Γ, one can express the regression fit as ŷk = Pky,
wherePk is the projectionmatrix on col(XHγk), and col indicates the column space;
let rγk be the dimension of col(XHγk). The index PI is defined in terms of an
information criterion IC, which depends on λn, d and σ̂2. Here λn is a nonnegative
sequence that satisfies λn ≥ (log n)−1, d is a nonnegative constant and σ̂2 is a
consistent estimator of σ2 such as ‖y − ŷk‖2/(n − rγk)with γk consistent for γT. In the
application γk = γT was used. The information criterion IC is defined by

ICλn , d(γk , σ̂2) = ‖y − ŷk‖2 + λnlog(n)rkσ̂2 − nσ̂2 + dn1/2log(n)σ̂2 (16)

where ‖ ⋅ ‖ represents Euclidean distance; here the values λn = 1 and d = 0 are used,
as suggested in Liu and Yang (2011).

Let now γT be the DGP; PI is defined in the present context as,

PI =
⎧⎪⎪⎨⎪⎪⎩

inf
γk∈Γ1(γT)

 
ICλn , d(γk , σ̂2)
ICλn , d(γT, σ̂2)  if rγ0 > 1

n  if rγT = 1

(17)

where Γ1(γT) is the set of submodels γk of the DGP γ
T
such that rγk = rγT − 1, i.e. all

submodels obtained by removing one regressor at a time (with replacement).25

The reasoning is that if the model is parametric (and correctly specified for the
data), removing any of the regressors will have amarked impact on IC. In contrast,
if (some of the) regressors are just incremental terms in a nonparametric approx-
imation, removing one of these regressors will have little effect on IC. Liu and Yang
(2011) show that PI converges to 1 for a nonparametric scenario, and goes to infinity
in a parametric scenario. The authors suggest to take PI = 1.2 as a cutoff point
between parametric and nonparametric scenarios; this threshold was adopted in
the present paper.

PI is applied in this paper at the level of eachDGP; if PI indicates that theDGP is
nonparametric, it is also investigated which of the submodels is responsible for
this and label the corresponding omitted variables as ‘weak’. As in the rest of the
paper, aMCapproach is used. Five thousanddatasets are generated fromeachDGP
and PI is calculated for each sample, hence obtaining a distribution of PI values.
Table 10 summarizes the MC distribution of PI values through the empirical dis-
tribution function Fm(x) = m−1∑m

j=11(PIj ≤ x), wherem =NR and PIj is the PI value in
replication j = 1,…, NR. Quantiles of PI are indicated as PIα, with α = 0.01, 0.1, 0.9,

25 In the original paper γT is replaced by the model γ̂k, selected by a weakly consistent infor-
mation criterion, such as BIC.
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0.99, and theMCmeanPI is indicated asEN(PI), where for simplicity the subscriptR
is omitted from NR.

The reference threshold is PI = 1.2, and FN(1.2) shows the frequency of PI being
below this limit; in otherwords this gives an estimate for the DGP to be classified as
nonparametric. There is a very clear distinction: DGPs 6 and 9 are regarded as
nonparametric 98 and 100%of the time respectively. In contrast, all other DGPs are
always regarded as parametric, with the slight exception of DGP 3, which is a little
less clear cut.

Examining the quantiles, DGP 3 has a mean PI value of 2.54 and PI0.1 = 1.53,
which puts it in the parametric class in the large majority of cases. DGP 6 has a
mean PI of 0.53, and PI0.9 = 0.79, making it almost always nonparametric. DGP 9
has PI0.99 = 0.93, making it the most obviously nonparametric DGP. Of the

Table : Distribution of PI values for DGPs –. Fn(⋅) is theMC cumulative distribution function of
PI and PIα is the α-quantile of Fm(⋅). DGPs where EDGP ≠ DGP are in boldface.

DGP DGP indices FN(.) PI. PI. EN(PI) PI. PI. EDGP indices

 {} – – – – – – {}
 {} . . . . . . {}
 {, } . . . . . . {, }
 {} . . . . . . {}
 {} . . . . . . {}
 {, } . . . . . . {}
A {, } . . . . . . {, }
B {, } . . . . . . {, }
 {, , } . . . . . . {, , }
 {, , } . . . . . . {, , }
 {, , , , } . . . . . . {, , }

Table : Distribution of ICRs for DGPs  and . Notation as in Table . Variables that are
excluded from the EDGP are in boldface.

DGP Variable FN(.) ICR. ICR. E(ICR) ICR. ICR.

 x . . . . . .
x . . . . . .

 x . . . . . .
x . . . . . .
x . . . . . .
x . . . . . .
x . . . . . .
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remaining DGPs, all are well above the threshold and can be considered
parametric.

Next it was further investigated which regressors were causing the non-
parametricness, i.e. which regressors are ‘weak’, examining the individual IC ra-
tios for each regressor of a given DGP, see (17). Let ICR(i) indicate the IC ratio
between the DGP and the submodel of the DGP where variable i is removed.
Table 11 reports the distribution of ICR(i) for DGPs 6 and 9, which are the
nonparametric DGPs. One can clearly see that in DGP 6, it is x3 that is causing the
nonparametricness, since it has a mean ICR(3) of 0.53. Removing this regressor
improves the information criterion given the data. The same is true for x3 and x21 in
DGP 9, which both have ICRswith amean of around 0.8. In contrast, removing any
of the other regressors has a significant impact on the quality of the model fit. In
practice, therefore, one could consider these as the weak regressors.

Therefore, in DGPs 6 and 9, the variables in boldface inTable 11 are excluded
from the EDGP. The EDGP are defined as the remaining regressors in each case, see
the last column in Table 10.
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