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ABSTRACT Monitoring the spread of disease-carrying mosquitoes is a first and necessary step to control
severe diseases such as dengue, chikungunya, Zika or yellow fever. Previous citizen science projects have
been able to obtain large image datasets with linked geo-tracking information. As the number of international
collaborators grows, the manual annotation by expert entomologists of the large amount of data gathered by
these users becomes too time demanding and unscalable, posing a strong need for automated classification
of mosquito species from images. We introduce the application of two Deep Convolutional Neural Networks
in a comparative study to automate this classification task. We use the transfer learning principle to train two
state-of-the-art architectures on the data provided by the Mosquito Alert project, obtaining testing accuracy
of 94%. In addition, we applied explainable models based on the Grad-CAM algorithm to visualise the most
discriminant regions of the classified images, which coincide with the white band stripes located at the legs,
abdomen, and thorax of mosquitoes of the Aedes albopictus species. The model allows us to further analyse
the classification errors. Visual Grad-CAM models show that they are linked to poor acquisition conditions
and strong image occlusions.

INDEX TERMS Asian tiger mosquito, Aedes albopictus mosquito, alert project, class activation map,
convolutional neural network, explainable deep learning.

I. INTRODUCTION
Developing automated tools for identifying and classify-
ing mosquito species can be beneficial to entomologists
who study the life cycle, distribution, ecology, behaviour,
and population dynamics of mosquitoes in order to min-
imise or monitor the spread of mosquito-borne diseases [1].
Conventional approaches used in ecology are highly depen-
dent on human expertise, spectral analysis of wingbeat wave-
forms [2], [3] and larval DNA analysis [4]. Since these
approaches cannot be commonly used to study larger pop-
ulations of mosquitoes, the development of automated tools
to classify mosquito species is demanded. The vision-based
classification of mosquito species has recently been used in
several studies [5]–[9] and shown promising results when
applied to images captured in laboratory settings. However,
the development of tools trained with a wide range of images
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captured in uncontrolled conditions (i.e., taken by volunteers
using smartphones) could enable the ecologist to identify
larger numbers of species of mosquitoes to address environ-
mental concerns caused by the spread of these species [10].

The Mosquito Alert citizen science platform [1] was
launched in 2014 to help combating the spread of
disease-carrying mosquitoes in Spain. The purpose of this
project, coordinated by a team in a small network of aca-
demic institutions in Spain (CEAB-CSIC, UPF, CREAF, and
ICREA), is to raise awareness among the population and
build expert-validated citizen science networks to monitor
and control disease-carryingmosquitoes. The platform brings
together citizens, entomologists, public health authorities and
mosquito control services to help reduce mosquito-borne
diseases in Spain, and is currently expanding and adjusting
its tools for combating disease-carrying mosquitoes across
Europe and worldwide.

The Asian tiger mosquito (Aedes albopictus) is one of
the first disease-carrying species that was targeted in the
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platform. This species is invasive in Europe and landed in
Spain in 2004 near Barcelona, where it currently resides.
Since then, it has invaded all of the eastern coasts of Spain and
has rapidly invaded the southern and western (inland) regions
of the Iberian Peninsula.

The data collection method for this platform is mainly
based on images of tiger mosquitoes and mosquito breed-
ing sites submitted by residents. The submitted images are
then inspected, each validated and classified through visual
inspection by a team of three entomologists, along with
another expert in the event of a dispute, to be included in the
database and the public online map with a classification label.
However, the potential increase in the number of images
submitted as the project expands makes the hand-crafted
inspection of the images one of the scalability challenges
of the project. The team has therefore already begun to
develop automated tools to obtain integrated and real-time
information on the spread of mosquitoes in order to promote
the development of preventive strategies to combat various
mosquito-borne diseases [10].

Following [10], we proposed an explainable deep learning
architecture to classify Aedes albopictus from other mosquito
species. More specifically, inspired by the VGG architec-
ture [11] and the Grad-CAM visualisation [12], we pro-
posed to use a deep convolutional neural network (CNN)
in which the CNN component extracts discriminative fea-
tures, and the Grad-CAM explains the CNN learnt features
(see Figure 1). We used the concept of transfer learning
to address small sample sizes in the target domain. Our
architecture was then adapted from the ImageNet domain by
fine-tuning with 6378 (tiger and non-tiger mosquitoes) sam-
ples in the target domain. Deep learning models are usually
trained using millions of samples. When we compare this
scale to the total number of images in the Mosquito Alert
project, we can consider this classification task as a sort
of small sample size problem. The Grad-CAM visualisation
component gives fine-grained explanations of the predicted
classes to explain to researchers or entomologists how the
proposed architecture sees or perceives Aedes albopictus
species. The accuracy obtained (close to 94%) are consistent
with [10] (where ResNet 50 was used as a decision rule
instead of VGG).

The explainability allows us to examine the regions that the
model uses to distinguish the tiger mosquitoes. It also enables
us to extract the relevant cues for evaluating classification
errors and fine-tuning the architecture’s parameters. In addi-
tion, the visualisation component allows entomologists to
identify the key mosquitoes’ body regions used by deep
learning to classify the associated classes. In our experiments,
we compared VGG16 [11] and ResNet50 [13] architectures
to show the effect of fine-tuning on samples belonging to
the target domain. We also determined the morphological
characteristics of the Aedes albopictus species selected by
CNNs to show the superiority of the proposed methodology
compared to entomologists, where the input images are not
of sufficient quality for visual inspection.

The rest of this paper is organised as follows: Section II
surveys the previous studies. The proposed methodology
is detailed in Section III. Section IV presents experiments
results. Finally, Section V concludes the paper.

II. RELATED WORK
Rapid and accurate identification of insects has important
applications like detection of disease vectors and understand-
ing of biological diversity. Due to the variety of species
and similarities between families of the same species, insect
identification has always been a challenging task for entomol-
ogists and taxonomists. Many studies have proposed auto-
mated systems [2], [3], [14]–[21] to identify and classify
insects. Among different species of insects, the identification
of mosquitoes is important due to their impact on the out-
breaks of infectious diseases such as yellow fever, dengue,
Zika and chikungunya. Strategies for automatic mosquito
detection can be categorised into audio and visual feature
analysis categories. In order to analyse the audio features,
researchers mainly used acoustic wingbeat recordings [2],
[3], [14], [15]. For instance, Cator et al. [22], [23] used optical
sensors to record the wingbeat audio of the Aedes aegypti
mosquito species. They observed that the male and female
species shifted their wingbeat frequency to match during
mating.

Recently, convolutional neural networks (CNN) achieved
expert-level performance in different tasks, ranging from
image analysis [24] to health risk assessment [25]. Several
studies have trained different CNN architectures on small
image datasets captured in laboratory settings to track, iden-
tify and classify mosquitoes [5], [8].

Schreiber et al. [26] used CNN to classify adult Aedes
aegypti mosquito species by analysing wingbeat audio
recorded by smartphones. They trained a binary, multiclass
and ensemble of binary classifiers with the recording spec-
trogram to represent mosquito wingbeat frequency over time.
Since wingbeat recordings were performed in an environment
with minimal background noise, the efficiency of classifiers
in the processing of recordings in a noisy environment may
be reduced. In addition, this method is expensive due to the
expense of optical sensors and the difficulty of obtaining
high-quality audio recordings.

Faud et al. [27] and Ortiz et al. [8] suggested CNN-based
mosquito classification techniques for larvae images. They
fine-tuned pre-trained CNNs with a small dataset and
achieved high classification accuracy. Their approaches can
identify whether a mosquito from larvae is a vector. Since
data acquisition and experiments were carried out in the
laboratory setting, the use of these tools by taxonomists and
health workers in the field is not feasible. Pre-trained CNN
architectures were investigated in [9] to identify six different
species of mosquitoes with similar morphological structure.
On a small sample of data set, they used transfer learning
to train the proposed architecture. They achieved high clas-
sification accuracy and could locate each mosquito species’
discriminative regions. However, the images were gathered
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FIGURE 1. The pipeline of the proposed methodology for the classification of in-the-wild tiger mosquitoes species, where
the Grad-CAM component gives fine-grained explanations of the predicted classes.

in a laboratory setting, and data augmentation technique was
used to increase the number of samples. As a result, the dis-
criminative regions for some of the mosquito images could
needlessly be transformed, resulting in inaccurate identifica-
tion of the species of mosquitoes.

Motta et al. [28] implemented an automatedmorphological
classification tool using LeNet, AlexNet and GoogLeNet to
facilitate the automatic classification of adult mosquitoes.
The main objective was to develop a tool that entomologists
and health workers can use in real-world settings to encour-
age volunteers to participate in controlling the vector-borne
disease. Although they reported fine-grained classification
accuracy, the generalisability of these methods for the clas-
sification of data acquired in-the-wild is not remarkable.

Rodriguez et al. [29] have created an application to facil-
itate the verification of submitted photos by citizens for the
Alert project. This application could verify a portion of the
collected reports which enabled entomologists to focus on
larger reports. They compared the performance of Naive
Bayes, K-nearest neighbour, decision tree and random forest
classifiers when applied to features such as date of sub-
mission, location and user history (previous valid reports,
submission frequency, accuracy, and mobility).

Pataki et al. [10] trained a deep learning model using the
mosquito alert [1] data set and looked at several aspects of the
data collected from citizens, such as the quality, geographical
diversity and number and usefulness of the submitted images.
The quality and usefulness of citizen-submitted mosquito
images were evaluated over time and place. They also looked
at the current regional distribution and dynamics of invasive
species, which is a practical way to keep track of the spread
of vectors in colonised territories.

Motivated by [9], [10], [28] and owning to the availability
and pervasive usage of smartphones that allow volunteers
to send pictures of mosquitoes species, we fine-tuned the

FIGURE 2. Anatomy of Aedes albopictus mosquito. This image is taken
from https://us.biogents.com/aedes-albopictus-asian-tiger-mosquito/.

pre-trained VGG16 [11] on ImageNet [30] to classify Aedes
albopictusmosquito species. To fine-tune the model, we used
images taken with smartphones and digital cameras by cit-
izen scientists participating in the Mosquito Alert platform.
The experimental results show 94% accuracy in the classi-
fication of tiger mosquito species, where the morphological
characteristics inspected by the networks are consistent with
the visual elements used by expert annotators. The use of
Grad-CAM [12] has shown that the key components of tiger
mosquito specimens that support network convergence are
the white band on the legs, abdomen patches, head, and
thorax, see Figure 2 for the anatomy of Aedes albopictus.
Details of the proposed methodology are given in the follow-
ing section.

III. METHODOLOGY
We formulate this task as a binary classification problem in
which the response Y ∈ {0, 1} is predicted given the input
image X ∈ RC×H×W with number of channels C , height H
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and width W , and the loss is measured by the cross-entropy.
Given a dataset of n mosquito images D = {(xi, yi)}ni=1, our
goal is to learn a neural network F(x) = E[Y|X = x] that
minimises the loss function in a way that yi = 1 if the i-th
sample is Aedes albopictus, and yi = 0 otherwise. Instead of
using a random weight initialisation, we used a pre-trained
VGG16 (F) [11] with ImageNet [30] as a starting point for
learning rich representations of features. We used the transfer
learning concept to fine-tuneF to the mosquito classification
task, providing a faster and easier convergence while using a
limited number of training images. Since the input size of F
is 3 × 224 × 224, we need to scale H and W in our dataset.
In addition to scaling, we normalise input images using
z-score method (see Eq. 1) with which the dataset has mean
and standard deviation values of 0 and 1, respectively.

z =
x − X̄
σ

,

X̄ =
1
n

∑n
i=1 xi, σ =

√
1
n

∑n
i=1(xi − X̄ )2.

(1)

where X̄ and σ are themean and standard deviation of dataset.
The modified VGG16 architecture consists of 13 convolu-
tion layers with stride 1 × 1 and padding [1, 1, 1, 1]. Each
convolution layer follows by a max-pooling and rectifier
linear unit (ReLU). The architecture tail contains two fully
connected, ReLU and dropout layers, which are serially con-
nected. Finally, there is a softmax module which is followed
by a cross-entropy loss function to map the feature vector
into tiger or non-tiger mosquito classes. The pipeline of the
architecture is presented in Figure 1.
The softmax also calculates the gradients of the identified

class that is used in the backpropagation phase. This gradient
generates the heatmaps of the convolutional feature maps.
The neuron importance weights (α) are given by the winning
class gradients and feature maps of the last convolutional
layer. We used Grad-CAM [12] visualisation algorithm to
compare the gradient of a predicted class with its final con-
volutional layer and to weight it against the corresponding
class. This module helps to generate explanation by using
the preserved spatial information in the convolutional layers
during training phase and generate a heatmap visualisation
that focus on the region of interest (ROI) with a higher
resolution.

Gradient-based Class Activation Maps (Grad-CAMs) are
generated from the gradient score of the predicted class
ỹ = F(x ′) with respect to the feature map of the last con-
volution layer. More formally, for resized input image x ′, let
Ak (i, j) denote the k-th activation unit in the last convolutional
layer, the neuron importance weight corresponding to class c
for unit k is given by Eq. 2

αck (i, j) =
1

H ′ ×W ′

H ′∑
i=1

W ′∑
j=1

∂ ỹc

∂Ak (i, j)
. (2)

where α describes the importance of visual patterns at differ-
ent spatial locations for a given class c. Double summation

in Eq. 2 resemblances the global average pooling over height
and width to obtain a feature map of shape [k, 1, 1]. To gener-
ate the heatmap LGrad−CAM , in which the ROI is highlighted,
we apply ReLU activation function to the weighted sum of
the alpha values as in Eq. 3.

LcGrad−CAM = ReLU

(∑
k

αckAk

)
(3)

As a result of applying global average pooling and ReLU
activation function, the size of the heatmap is smaller than the
original input image. The generated heatmap must therefore
be up-sampled to fit the size of the original input image.
Figure 3 shows four samples of the dataset along with the
generated heatmap.

FIGURE 3. Examples of tiger mosquito images’ heatmap visualisation
from the last convolutional layer.

IV. EXPERIMENTS
We evaluate our methodology in three experiments: (1) train-
ing and validation of the deep architecture on data set
annotated by expert entomologists; (2) training the model
on data annotated by expert entomologists and testing it
with data submitted by volunteers, i.e., tiger mosquitoes
with not-classified confidence level; and (3) explainability.
We present the experiments’ characteristics by providing
descriptions of the data set, the architecture and the visual
analysis of ROIs using Grad-CAM.

A. DATA SET
The Mosquito Alert platform [1] to monitor and control
diseases-carrying mosquitoes is open sourced.1 The data col-
lection process for this platform relies on images mosquitoes
and mosquito breeding sites submitted by volunteers. The
photos submitted are then inspected, validated and classified
by a team of three expert entomologists and, in case of doubt,
by a super-expert assigning a final classification, in coordi-
nation with the other three experts.

Each image is categorised into one of four classes (Aedes
albopictus, Aedes aegypti, other species, cannot tell). The
experts mark each image’s classification as confirmed, prob-
able, or not-classified in each category. In this work, we used
3364 images labelled as confirmed Aedes albopictus cases

1The curated database with the images can be found
at http://www.mosquitoalert.com/en/mosquito-images-dataset
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FIGURE 4. Sample of tiger [first row] and non-tiger [second row] mosquitoes from the Mosquito Alert
data set.

as positive samples (i.e., tiger), and 3014 Aedes aegypti and
other species as negative samples, i.e., non-tiger. As a result,
the architecture is trained using a total number of 6378 tiger
and non-tiger images. Figure 4 shows five tiger and five other
mosquito species samples collected in the wild.

B. ARCHITECTURE DETAILS AND EVALUATION METRICS
For a fair comparison, the following hyperparameters were
used in all classification models. Both VGG16 [11] and
ResNet50 [13] architectures were pre-trained on Ima-
geNet [30] with input size of H ′,W ′ = 224. All models
were trained end-to-end in PyTorch [31] using the Tesla
K80 GPU, where the implementations are available at.2

In the training of the two architectures, stochastic gradient
descent with momentum algorithm [31] was used to update
learning parameters with initial learning rate and momentum
of 0.001 and 0.7, respectively. The learning rate decays by
a factor of gamma = 0.1 every 7 epochs using StepLR
scheduler. We fed networks with a mini-batch size of 64 and
the optimisation stopped after 25 epochs. In the experiments,
we did not use data augmentation to avoid unrealistic changes
in micro-morphological patterns of mosquitoes’ body that
could have skewed the final results. We also checked the
validation in each epoch to manage the small sample size.

We used the accuracy and loss of classification to measure
the performance of the model. To provide more insight into
the performance of predictivemodel, we calculated precision,
recall, and F1, see Eq. 4.

Precision =
TP

TP+ FP
, Recall =

TP
TP+ FN

,

F1 = 2×
Precision× Recall
Precision+ Recall

. (4)

where TP, FP and FN stand for true positive, false positive
and false negative, respectively.

C. EXPERIMENTAL RESULTS
In our experiments, we first assess the efficiency of the pro-
posed approach in annotated cases by expert entomologists.

2The implementation is available at: https://github.com/ageryw/Mosquito
Classification

This is then compared to the output of themodel in classifying
images that have been tagged as not-classified. In addition,
we randomly selected 150 mosquito images (clear and dam-
aged images of tiger and non-tiger) to observe the predictive
scores concerning their visualisation in order to explain the
main sources of CNN-induced errors.

In the first training policy, we considered the labelled
images by experts and used the k-fold cross-validation strat-
egy to evaluate the classifier performance on unseen data.
We set the number of folds to five. In this way, the model
was trained on four subsets and validated on the remaining
subset. The model’s performance is tracked by its accuracy
and loss obtained by each fold’s weighted mean operation,
see Figures 5 and 6. We also computed each fold’s accuracy
and reported the average 5-fold results in Table 1 with the
95% confidence interval.

TABLE 1. The average classification accuracy and loss of VGG16 and
ResNet50 are reported at 95% confidence intervals.

Figures 5 and 6 demonstrate that the VGG 16 architecture
achieves a good trade-off between efficiency and number of
parameters and outperforms ResNet50 during training and
validation in both experimental setups. In theory, any deep
CNN architecture can be used with our approach. However,
given that deep CNN requires training on large labelled data
sets, the use of deeper architectures such as VGG19 [11],
ResNet101 [13] or GoogLeNet [32] in our task with a limited
number of representative data can reduce generalizability.
This statement was validated by comparing the performance
metrics of VGG16 and ResNet50 for this study.
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TABLE 2. Performance of the proposed approach compared to competing methods considering class-wise recall, precision, and F1 score. Here, TP, TN, FP
and FN stand for true positive, true negative, false positive and false negative, respectively.

FIGURE 5. Training progress in the accuracy and loss of (a) VGG16 and
(b) ResNet50. Each plot contains progress for 5 folds.

FIGURE 6. Validation progress curves obtained during 5-fold cross
validation for [left] VGG16 and [right] ResNet50.

Tables 2 reports precision, recall and F1 metrics for
fine-tuned VGG16 and ResNet50 on the second experiment
setup. In this setup, we used labelled mosquito datasets val-
idated by a team of experts (confirmed Aedes albopictus)
to train and Not-classified tiger mosquito images to test the
models. Not-classified cases are tiger mosquitoes submitted
by volunteers but not confirmed by expert entomologists of
the Mosquito Alert Platform. Although Pataki et al. [10]
reported a higher True Positive (TP) rate, they predict the pos-
itive class at the cost of accepting more non-tiger mosquitoes
as tiger mosquitoes, i.e., a significantly higher False Posi-
tive (FP) rate.

Figure 7 shows the accuracy and loss for the second set of
experiments in which, compared to ResNet50, VGG16 has

FIGURE 7. [left] Accuracy and [right] Loss of VGG16 and ResNet50 in
training with expert-annotated data and testing with volunteer-annotated
images.

FIGURE 8. Sample of images for error analysis, showing (a) correct
predictions and (b) prediction with errors.

relatively higher accuracy and less loss. In order to under-
stand the primary source of CNN-induced error, we randomly
picked 150 mosquito images (clear and damaged images of
the tiger (positive) and non-tiger (negative)) to observe their
visualisation prediction scores. The tiger mosquito image is
described as a clear image if the image was taken in moderate
lighting, the legs are not broken, the white stripes on the legs,
abdomen and thorax are visible, and the head is observable.
We observed that the model could distinguish between tiger
mosquitoes and non-tiger mosquitoes with lower accuracy
when the images were of poor quality, distorted, occluded
due to pose, or when the mosquito’s size was relatively small
compared to the image itself, see Figure 8.

Therefore, training the model with more data not only
reduces errors caused by poor image quality but also
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FIGURE 9. Examples of Grad-CAMs for the (a) tiger and (b) non-tiger
mosquitoes species generated from the last convolutional layer.

improves the model’s ability to discriminate morphologi-
cal patterns and, as a result, the mosquito type. The use
of a Grad-CAM [12], a heatmap that highlights supportive
pixels in the image for the classifier, revealed that for an
image predicted as tigers (see Figure 9(a)), the major key
parts strongly activated around the thorax and central part
of the mosquito. For non-tiger mosquito input images (see
Figure 9(b)), however, the legs and abdomen are strongly
highlighted and the areas around the wings are slightly
highlighted.

In order to gain insight into the network, we also created
the heatmap of the shallow, middle and deep layers of the
CNN model. Figure 10 provides an example of Grad-CAM
visualisations for a tiger mosquito image at these layers.
We observed that the legs, antennae, and proboscis are high-
lighted as key parts in the shallow layers. The head, thorax,
and abdomen are strongly highlighted in the middle layers,
while portions of the legs are marginally highlighted. Finally,
in the deeper layer, the areas around the thorax are highlighted
that direct the network to determine the class of the input
image. The Grad-CAMs generated, specifically, at deeper
layers of the trained model indicate that the areas used by
the model to detect the type of mosquito are similar to those
used by the entomologists.

It should be noted that human experts use a hierarchical
structure based on three main features of different weights to
achieve a standardised classification. In fact, the observation
of white stripes in the thorax leads to immediate identification
of Aedes albopictus with a high degree of certainty. The
stripes in the abdomen and the rear legs are inspected in case
of doubt. In mosquitoes, antennae are usually used to classify
gender, although there is a very high gender divergence in
cephalic areas. In this data set, the majority of tiger mosquito
images belong to females. As a result, in addition to the

FIGURE 10. Visualisation of discriminative regions of images predicted as
tiger mosquitoes; the white stripes in the legs and antennae are slightly
highlighted in the shallow layers, whereas the thorax is strongly
highlighted in the middle and deeper layers.

FIGURE 11. (a) Examples of tiger input images predicted as non-tiger.
(b) Examples of non-tiger input images predicted as tiger. The Grad-CAMs
were generated from the last convolution layer.

determination of the species, what is discriminated with in
shallow layers could be correlated to gender.
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FIGURE 12. Visualisation of discriminative regions for tiger images
predicted as non-tiger in the shallow, middle and deeper layers and their
respective accuracy.

FIGURE 13. Visualisation of discriminative regions for non-tiger images
predicted as tiger in the shallow, middle and deeper layers and their
respective accuracy.

Figure 11 shows examples of misclassified images with
Grad-CAMS and their prediction scores. For tiger images
that have been misclassified as non-tiger, the morphological
patterns of the mosquito body (e.g., legs and thorax) are
severely damaged or occluded, see Figure 12. On the other
hand, for non-tiger mosquitoes, that have been misclassified

as tiger, themorphological similarity of key parts (e.g., striped
legs and abdominal patches) to tiger mosquitoes is the main
cause of the error, see Figure 13.

To sum up, after careful examination of the misclassified
tiger images, we found the following two explanations for
model confusion:

1) The thorax or abdominal parts, which are more infor-
mative for themodel in themiddle and deeper layers for
identifying tiger mosquitoes, are damaged or occluded
in the input image.

2) The legs, which are important for the model in shallow
layers to locate the mosquito, are either broken or invis-
ible in the input image.

V. CONCLUSION
Mosquitoes are the vectors for infectious diseases such as yel-
low fever, malaria, dengue, Zika, and chikungunya. An esti-
mated 228 million cases of malaria infection with an overall
death toll of 405,000 cases have been recorded in 2019 [33],
requiring efficient mechanisms for early detection and con-
trol of mosquito-borne diseases. Mosquito Alert [1] is an
expert-validated citizen science platform launched in 2014 to
monitor and control disease-carrying mosquitoes. On this
platform, people can upload images and reports of tiger
mosquitoes and other invasive mosquitoes to be validated by
expert entomologists. As the platform expands, support tools
have been provided to assist experts in the validation of the
reports submitted.

Pataki et al. [10] used mosquito Alert [1] data set and
developed a deep learning model to distinguish between tiger
and non-tiger mosquitoes. However, the objective of that
work was not to enhance the classification efficiency of the
model. Instead, they were mainly concerned with assessing
the usability of the labelled images in terms of space and
time, as well as the geographic distribution and dynamics of
invasive species. In this study, we developed a vision-based
approach to enhance the validation process and characterise
morphological features of tiger mosquitoes. We presented a
deep convolutional neural network based onVGG16 architec-
ture [11] to identifyAedes albopictus. This approach achieved
a good trade-off between efficiency and number of param-
eters and outperformed competing approaches in the exper-
imental setups. The data standardisation and fine-tuning of
the architecture on Mosquito Alert data set helped to address
the small sample size problem and to achieve training and
validation accuracy of 94.61 ± 0.24% and 93.86 ± 0.54%,
respectively.

In addition, we studied the discriminative regions of
tiger mosquitoes by visualising the target position using the
gradient-weighted class activation map. By visualising the
discriminative regions, we have identified the white band
stripes in the legs, the abdominal patches, the head, and thorax
as themain regions used by the classifier to classify the differ-
ent species. We also observed that most of the classification
errors were caused by significant damage to the main areas
of the mosquito body.
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For future work, as the Mosquito Alert platform is scaling
to cover broader geographical areas outside Spain, this study
will be expanded to the classification of multiple species
of mosquitoes and their breeding sites. We also plan to
develop an end-to-end deep learning architecture to learn
the most discriminating features from the key regions iden-
tified by heatmap visualisation. We plan to incorporate the
explainability criteria into the learning loop, combining the
heatmaps associated to each class with an anatomical model
of the relevant regions of the animal in terms of discrim-
inability. Failure from focusing on the key regions should
result on a penalty on the learning loss, promoting classifiers
that focus on the a priori knowledge of the classification
task.
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