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Abstract: Today, the use of SCADA data for predictive maintenance and forecasting of wind turbines
in wind farms is gaining popularity due to the low cost of this solution compared to others that require
the installation of additional equipment. SCADA data provides four statistical measures (mean,
standard deviation, maximum value, and minimum value) of hundreds of wind turbine magnitudes,
usually in a 5-min or 10-min interval. Several studies have analysed the loss of information associated
with the reduction of information when using five minutes instead of four seconds as a sampling
frequency, or when compressing a time series recorded at 5 min to 10 min, concluding that some,
but not all, of these magnitudes are seriously affected. However, to our knowledge, there are no
studies on increasing the time interval beyond 10 min to take these four statistical values, and how
this aggregation affects prognosis models. Our work shows that, despite the irreversible loss of
information that occurs in the first 5 min, increasing the time considered to take the four representative
statistical values improves the performance of the predicted targets in normality models.

Keywords: wind turbine; fault diagnosis; renewable energy; extreme learning machines (ELM);
feature engineering; normal behaviour models

1. Introduction

Energy is one of the most important aspects of the evolution of our society. Easy and
cheap access to energy has always been a challenge, and nowadays there is the added
factor of pollution that can be caused by the type of energy source employed. Increasingly,
carbon and gas-based energies are being restricted in favour of green energies, gathered
from the sun, tides, or wind, to name but a few. These renewable energy sources are
an excellent choice because they are clean and can exist, in different forms, over a wide
geographical area. This is another important point in democratising access to energy, as for
many countries it is not possible to access carbon-based energy.

One of the greatest financial effects on the Levelised Cost of Energy (LCOE) of wind
turbines (WT) is linked to the operations and maintenance (O&M) tasks. Various systems
have been proposed to decrease the O&M costs. In [1–3], the reader can find an overview
of several strategies that could be used. One of the options is to detect, as soon as possible,
abnormal behaviour in WTs, before failures occur. Then, because the missfunction can be
solved faster and without important damages on the WT subsystems, the LCOE is reduced.
There are various ways to deal with that, and in this work a data-driven Normal Behaviour
Model (NBM) will be used, based on our previous work [4], exploring how the temporal
scale affects the results of the prediction system.

Typically, WTs have a SCADA system that provides a set of data to monitor the
status of the subsystems [5]. This data comes from many sensors placed in different
parts of the WT, and comprises the minimum value, maximum value, mean value, and
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standard deviation of various physical measurements, such as temperature, pressure,
voltage, current, etc., in various parts of the subsystems.

Generally, the methodologies for condition-monitoring using SCADA data are based
on signal trending strategies, artificial neural networks, and physical models. Machine
learning algorithms are habitually used to perform some type of exploration and/or
analysis on the data. This can be done, for example, for predicting failures in wind turbines
using SCADA data [6]. The problem linked with using classification models to predict
failure states are related to the extremely unbalanced scenario, in which almost all the
examples are from one class (healthy state) and very few examples from the other class
(alarm state) [7], in addition to the errors present in the labels of the data, which make
it even more complicated to use it, unless a huge human expert-based pre-processing is
carried out beforehand. This is why the use of normality models was proposed in [4]
for predicting one variable generated by a subsystem, using the rest of the variables, and
comparing it with the real value in order to detect if the prediction is out of the norm,
in which case that will indicate that the subsystem deteriorates. In this first work, the model
was implemented using extreme learning machines (ELM), comparing the experimental
results with other well-known machine learning approaches such as partial least squares
(PLS), support vector machines (SVM), or deep artificial neural networks (DANN). One of
the reasons to use ELMs is the speed of training, which is done quickly by calculating an
inverse Moore–Penrose matrix and simple matrix algebra manipulations. Having a fast
training system enables parameters to be tuned very quickly, so that models can be tested
and adapted in a very short time. Details on the ELM algorithm and its implementation
can be found in [4].

The information gathered by the SCADA system is habitually provided at a frequency
of 10-min intervals, but in some cases the system reports values every 5 min, obtaining
6 or 12 samples every hour, respectively. Recently, some works have investigated the
effect of the sampling frequency in SCADA systems. For example, in [8] a technique for
wind turbine performance monitoring based on high-frequency SCADA data is presented.
The data is provided every 4 s and its use is demonstrated to be beneficial for performance
monitoring purposes. As stated by the authors, the dynamic behaviour of the WT is
understood, learned, and reproduced by multivariate non-parametric regression models,
using data at a sampling frequency of 4 s. The use of 5-min data typically smooths out
these dynamics and does not allow for the precision that high-frequency data provides.
The recommendations provided by [9] also highlights that 5-min data is not suitable as
a standalone solution, but is a good and important complement for designing condition
monitoring systems (CMS). Another interesting work [10] compares SCADA data for
low and high frequency data, providing evidence for monitoring at higher resolutions in
practical scenarios. Therefore, high-frequency data seems to be a good choice to develop
CMS and provide more intelligence for wind farm management.

To our best knowledge, however, there are no works on investigating the effect of the
aggregation of data to higher temporal periods, such as 20-min or 60-min data obtained
from the 5-min ones. The interest of such aggregation is basically to simplify models and
systems in a way that less information needs to be stored, transmitted, and processed
by them. In this paper we explore this effect in depth and demonstrate experimentally
that aggregation to longer time periods from 5-min data does not degrade the results but
instead tends to generate better normality models when predicting a target variable using
the rest of the variables of the system/subsystem and computing the error deviation from
the real target variable.

The rest of the paper is organised as follows: In Section 2, the approach is briefly
presented, describing the characteristics of the SCADA database, the normalisation method,
and the details of the ELM technique used for building the models. Section 3 contains the
experimental results, while in Section 4 they are discussed and compared to highlight their
interest. Finally, Section 5 is dedicated to conclusions and outlining future work.
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2. Materials and Methods

In the following section a brief explanation of the effects of the sampling frequency
and time-window considered for the data will be presented, together with details on the
normality models based on ELM and of the database used to carry out the experiments.

2.1. The SCADA Data and the Loss of Information Due to Averaging

Replacing the instantaneous values of a variable by a value averaged over a period
introduces an error. Therefore, in general, the error due to averaged values is expected to
increase as the period of averaging of the data increases. This error is also likely to be highly
dependent on the variability of the data. The main factor in this uncertainty is the variability
of wind speed and direction, and the frequencies contained in the signals. Therefore the
averaging can be crucial if the signal has frequencies higher than the sampling/averaging,
or of little relevance if it hardly varies at all in an averaging period.

The autocorrelation of the signals involved will bring meaningful information. For ex-
ample, if a signal has very low autocorrelation for certain time lags, this implies a very little
statistical similarity between samples separated by these time lags. Thus, averaging over a
similar period of time results in the signal significantly losing information. On the other
hand, a signal with a high autocorrelation for a given time lag will suffer a minimal loss of
information when averaged over periods close to such time lag. This dependence of the
quality of SCADA data on its autocorrelation and the averaging period has already been
studied previously in [11] and specially in [8], where a study with high-frequency SCADA
data of a wind farm is presented, reporting that the autocorrelation of the variables shows
a clear pattern consisting of a drop that fits an exponential that depends on the time of av-
eraging. The exponential slope differs for each variable; for instance, the most pronounced
is observed in the generated active power. In general, significant information losses due to
5-min aggregations, more commonly presented in SCADA systems, are reported especially
in the following four variables: The wind speed, the orientation, the main rotor speed,
and, as previously mentioned, the generated active power. In these cases, the normalized
autocorrelation is practically zero in time lags of five minutes onwards.

2.2. Normality Models Based on ELM

In wind turbine prognosis, cases representing a malfunction of a particular system or
subsystem are extremely rare. Furthermore, the inconsistency of labelling when dealing
with extreme imbalance in class representation suggests using a normality model associated
with a regression technique rather than classification-based models. The critical point
is to train a normality model using collections of data recorded in different operating
regimes when the turbines are operating correctly. For the model to be sufficiently accurate,
the records must be rich enough to represent different wind and weather conditions.
Accordingly, we propose an SLFN (see Figure 1) trained under the ELM paradigm because
it performs very well and the training process is fast and effective [4].

The procedure is simple. From a set of L variables of a given subsystem at the instant
i, organised in the vector xi = [x0 · · · xL−1]

T , we make the prediction of another target
variable of this same subsystem and at the same instant of time, ti. It is important to note
that we will also have the real measure of ti, but in our estimation of it, named ŷi, we will
only use xi.

The underlying idea is that when the system is working properly, the estimate pro-
vided by the normality model and the measurement of the target signal will be nearly
the same, and its scatter plot will fit well on a 45-degree line. However, when systems
deteriorate, measurements and estimates begin to diverge. If the system malfunction
persists, the slope of the regression line built by integrating this new data begins to change.

Given that the input variables can have a highly different dynamic range, we apply a
Z-score normalisation (see Figure 1). The normalised variables are the inputs of the SLFN.
If we follow the signal flow of Figure 1 we will see that, for a network with H hidden nodes,
the variables are multiplied by the input weights of the network, organised as the matrix
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W of dimensions L × H, and the biases are added, as the vector b of H elements, to finally
obtain the signal at each node. Then, to calculate the estimation ŷi we multiply the signal
of each node by the output weights, arranged in the vector o, also of H elements. Finally,
the activation function (sign function in this case) is applied to this result. Mathematically,
for the time instant i we will have:

ŷi = sig
(

xT
i W + bT

)
o. (1)

Half of the data is used to train the model. The training data, after normalisation, is
organised into the matrix X = [x1 · · · xi · · · xN ] of size L × N, together with the correspond-
ing target for each sample, the vector t = [t1 · · · ti · · · tN ]

T . The goal is to find the weights
W, b i o that better fit the following equation:

sig(XTW + ubT)o = t, (2)

u being the N × 1 all-ones vector. In order to simplify the notation let us define the N × H
matrix H as:

H = sig(XTW + ubT). (3)

According to the ELM paradigm, once H is determined, W and b are randomly
selected, so H will be completely defined. A zero-mean, unit-variance Gaussian distribution
function is used to generate these random values. Then, the output weight matrix o,
provided that

(
HTH

)−1 is non singular, can be computed as:

o =
(

HTH
)−1

HTt = H†t, (4)

where H† is the Moore–Penrose inverse.
Once the network SLFN is defined, i.e., when H, W, b, and o are determined, the es-

timation of the target will just be derived by applying Equation (1) to the input vector,
containing the normalised input variables at the desired instant of time.

Figure 1. Structure of the SLFN in terms of the parameters that define it (W, b, and o), the vector of input features (x),
the z-score normalisation process and the output vector (ŷ).



Appl. Sci. 2021, 11, 6405 5 of 19

ELM is used in this work following the same strategy of [4]. This technique, used in
its original formulation is characterised by providing the solution that approximates all
the training points with the minimum mean square error. This property is very interesting
when we have an over-representation of the normal state, as the ELM model captures it
very well. This makes the ELM very robust even with the inclusion of a small proportion
of wrongly-labelled data. Moreover, training an ELM is a fast process, allowing one to try
several architectures and/or parameters in a short time. Finally, the experimental results
obtained in this work will be compared with the above-mentioned work, making it easier to
see the effect of the temporal-aggregation strategy. We refer the reader to [4] and references
therein for more details on normality models and the ELM technique.

2.3. Experimental Data

An extensive 3-year SCADA database of five Fuhrländer FL2500 2.5 MW wind turbine
is presented. Data is generated by the wind turbine’s SCADA, collected via an Open
Platform Communications (OPC), following the IEC 61400-25 format. Every five minutes,
events and statistics indicators are recorded. The reported values for each sensor are:
Minimum, maximum, mean, and standard deviation. The database contains 312 analogous
variables from 78 different sensors. Variables are stored with a name symbolising the
(sub)system and the variable type, separated by an underscore; the first term is the main
physical system, e.g., generator = wgen, transmission = wtrm, nacelle = wnac, etc. The sec-
ond term is the variable type of the 5-min interval; min = minimum, avg = average, etc.
The third and fourth terms are the final name of the variable. All events in the database are
originally labelled with one of the following three numbers: ‘0’ indicates normal operation,
‘1’ indicates a warning state (in this case the turbine is working but should be checked
as soon as possible), and ‘2’ indicates an alarm state (in this case the turbine is stopped).
Alarms are very scarce in all wind turbine databases, because most of the time the turbine
is working properly. A warning that is not properly checked and addressed could result
in an alarm. Therefore, in our database we merge the two labels (‘1’ and ‘2’) in the same
group, reducing the problem to a 2-classes scenario (operation and failure). The goal will
be to detect in advance when it will be that a wind turbine will start working with potential
problems, which would lead to a warning or an alarm state. In the experiments, only some
of the variables will be used; those related to the system of the analysed subsystem. The
database was provided by Smartive (http://smartive.eu) (accessed on 1 June 2021) and
has been used in other publications ([4,12–14]).

The SCADA database consists of 502 variables, one of which is a timestamp,
another is the turbine identifier, 188 are system alarms, and the remaining 312 are
derived from physical magnitude readings made by the sensors installed in each turbine.
Specifically, there are 78 physical magnitudes collected by their respective sensors,
split into four variables: The mean during the data collection interval, the maximum,
minimum, and standard deviation during that interval. The SCADA data of these WTs
are provided by default using a 5-min timeslot. Then, aggregations of the data are
performed from the 5-min values to longer time intervals of 10, 15, 30, and 60 min
to perform the experiments. Only the average values were used in the experiments,
although it is trivial to extend them to maximum or minimum values, for example.
In the same way, the alarms are reallocated to the corresponding timeslot according to
the time interval extension.

http://smartive.eu
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2.4. Gearbox

To carry out the experiments, the Gearbox system was chosen, following the line of
work developed in [4] and very similarly in [15], by making models of normality from
simple neural networks used as regressors. The gearbox is the part of the turbine that
has the greatest impact on maintenance, repair, and manufacturing costs. As can be seen
in Table 4 of the report from NREL [16], the drivetrain, to which the gearbox belongs
to, represents the second most expensive element to maintain, no matter the way the
amortised cost of generation is calculated (CapEx & LCOE). Notice in the same table that
the costs of failure or maintenance of the tower module (i.e., foundations, maintenance
of the concrete/metal structure of the tower) are higher, but we have not focused on the
detection of foundation failures, as this is a system that tends to have fewer failures and is
not as important for the operators.

In the case we are dealing with, we will estimate a target variable from different
predictors that, according to an expert, are relevant to characterise the gearbox system.
They are listed in Table 1, while Table 2 summarises the codes in the database associated
with the alarms in the Gearbox system, together with a brief description. The data recording
period, for each of the WTs and for each time scale, is represented in Table 3. The temporal
representation of the distribution of alarms generated by the Gearbox system for each WT
can be seen in Figure 2.

Table 1. The variables and the target selected by an expert as being relevant for the gearbox operation
with a brief description.

Variable Name Description

wgen_avg_RtrSpd_IGR Rotor speed
wtrm_avg_TrmTmp_GnClWtBkw Generator cooling system, cold side (inlet from radiator)
wtrm_avg_TrmTmp_GnClWtFrw Generator cooling system, hot side (outlet to radiator)
wgdc_avg_TriGri_PwrAt Wind Turbine active power
wnac_avg_ExlTmp Ambient temperature, outside the nacelle
wnac_avg_WSpd1 Wind speed in m/s (provided by anemometer, outside nacelle)
wtrm_avg_TrmTmp_Brg2 Temperature transmission bearing 2 (main bearing system)

Target Name Description
wtrm_avg_TrmTmp_Brg1 Temperature transmission bearing 1 (main bearing system)

Table 2. Description of the error codes provided by the SCADA database that are associated to any malfunction of the
transmission chain system.

Alarm Code Description

id_1271 MGB FuseTripCoolWatPp, trip of the water pump’s fuse in charge of cooling the gearbox oil.
id_1369 MGB Temp OilSump < SL, the temperature of the oil sump is below the expected result for a operation regime.
id_1544 PT100 defective, temperature sensor PT100 defective.
id_2302 MGB TempBear150 > SH, the temperatue of output high speed bearing super high.
id_2306 MGB Temp ErrTimeLimit, the timeout at reading the gearbox temperature sensors.

Table 3. Temporal distribution of data, depending on temporal granularity and turbine identifier.

WT id 60 min 30 min 15 min 10 min 5 min

80 1 January 2012 01:00 1 January 2012 01:00 1 January 2012 01:00 1 January 2012 01:00 1 January 2012 01:05
81 1 January 2012 01:00 1 January 2012 01:00 1 January 2012 01:00 1 January 2012 01:10 1 January 2012 01:10

start 82 1 January 2012 01:00 1 January 2012 01:00 1 January 2012 01:00 1 January 2012 01:00 1 January 2012 01:05
83 1 January 2012 01:00 1 January 2012 01:00 1 January 2012 01:00 1 January 2012 01:00 1 January 2012 01:05

80 8 December 2014 06:00 8 December 2014 06:00 8 December 2014 06:15 8 December 2014 06:10 8 December 2014 06:15
81 8 December 2014 06:00 8 December 2014 06:00 8 December 2014 06:15 8 December 2014 06:10 8 December 2014 06:15

end 82 8 December 2014 06:00 8 December 2014 06:00 8 December 2014 06:15 8 December 2014 06:10 8 December 2014 06:15
83 8 December 2014 06:00 8 December 2014 06:00 8 December 2014 06:15 8 December 2014 06:20 8 December 2014 06:20
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Figure 2. Cont.
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Figure 2. Time distribution of alarms generated by the Gearbox system for each WT (#80, #81, #82,
and #83) and separated by its type. The horizontal axis, common to all the plots, is the time reference.
The vertical lines indicate the temporal location of the occurrence of each type of alarm. The thick
horizontal lines indicate the presence of data and the thin horizontal lines indicate the absence of
data. The alarm type identifier is detailed in Table 2.

2.5. Type of Chosen Signals

In this section, the simultaneous representation of the data at different time scales
is presented. It is not an exhaustive description of each signal but a representation for a
slow variation signal (a temperature at a point of the turbine) and a fast variation signal
(the power generated) in order to visually contrast the statistical data obtained from the
5-min average with those of the 60-min average. The variation of the temperature in a
point of the turbine, which corresponds to the variable wtrm_avg_TrmTmp_GbxBrg151 in
our model, is presented in Figure 3. The whole set of available data for WT#81, with values
obtained at a 5-min time scale (blue) and 60-min time scale (brown) is depicted at the top
of the Figure. The bottom part of this Figure shows a detail of this signal in which the level
of resolution provided by the temperature sensors and the signal quantification process is
observed. Visually, it can be seen that both representations preserve the signal detail in a
similar way. In Figure 4, the active power generated by the turbine wgdc_avg_TriGri_PwrAt
is shown, which is a faster variation signal. The upper part shows the whole signal recorded
in the database for the WT#81, again superimposing the 5-min resolution with the 60-min
resolution. The bottom part shows a detail of this signal.

Figure 5 shows the details of the signal wtrm_avg_TrmTmp_Brg1 used as a target to
build the model. It can be seen that it is again a slow-varying signal where the fact of
changing the time scale of the data seems to have little effect. It is observed that the
temperature in many moments remains constant. Finally, from the inspection of the signals,
values equal to zero appear occasionally both in the target and in some of the variables.
This phenomenon can be seen in Figure 6, where on the 5-min scale there are points
that randomly turn to zero. These points correspond to an error of the sensors, of the
transmission of signals, or of the SCADA system itself, since the physical process of heat
transfer that is measured does not have the capacity to vary so quickly. These points,
which would clearly introduce an error, will be discarded when making the models.
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Figure 3. wtrm_avg_TrmTmp_GbxBrg151 signal. The top is a representation of the whole set of data available from the WT#81
for the time scales of 5 min (blue) and 60 min (brown). Below is a zoom of this signal.

Figure 4. wgdc_avg_TriGri_PwrAt signal. The top is a representation of the whole set of data available from the WT#81 for
the time scales of 5 min (blue) and 60 min (brown). Below is a zoom of this signal.
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Figure 5. wtrm_avg_TrmTmp_Brg1 signal. The top is representation of the whole set of data available from the WT#81 for the
time scales of 5 min (blue) and 60 min (brown). Below is a zoom of this signal.

Figure 6. Detail of the wtrm_avg_TrmTmp_Brg1 used as a target. We note that on the 5-min scale (blue), some zero values
appear occasionally. This phenomenon occurs randomly on the 5-min scale. At larger scales it disappears due to the
averaging effect.

3. Results

In this section we present some experiments, based on the signal representation
described above for time scales of 5, 10, 15, 30, and 60 min. Specifically, three type of
experiments are conducted. In the first one, a target variable is estimated using other
variables, while the data is used at different time-windows, from 5 min to 60 min. In the
second experiment, we repeat the previous experiment but explore the effect of changing
the number of the nodes in the SLFN network. Finally, the third experiment explores the
effect of estimating a target when a variable correlated with the target is not considered as
one of the input variables. Again, the performance of the models when aggregating the
data from 5-min to 60-min records are compared.
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The same SLFN-type network structure is used, of a specific size, which has been
found to work correctly for this type of purpose [4,15], except for the second experiments in
which we validate the effect of this size, in order to obtain a comparable statistical feedback
between experiments. The experiments are carried out for the set of variables and targets
described in Figure 7.

wgen_avg_RtrSpd_IGR

wtrm_avg_TrmTmp_GnClWtBkw 

wtrm_avg_TrmTmp_GnClWtFrw 

w
gdc_avg_TriG

ri_Pw
rA

t

wnac_avg_ExlTmp wnac_avg_WSpd1
wtrm_avg_TrmTmp_Brg1

wtrm
_avg_TrmTm

p_Brg2

Figure 7. Internal view of a wind turbine. The main parts of the transmission chain are visible:
Main bearing, gearbox, brake, generator, power control, and ambient sensors. The actual physical
position where the sensors are located, for the variables listed in Table 1, are indicated by arrows.

3.1. Experiment 1

In this experiment, a regression model is built to estimate the target wtrm_avg_TrmTmp_Brg1
from the variables indicated in Table 1. The experiment consists of taking half of the avail-
able data to train the model, then testing it with the remaining half of the data. The par-
ticularity is that the models are trained and tested using different temporal aggregation.
It starts with the default 5-min data provided by the SCADA system and increases to 10,
15, 30, and 60 min. In all cases, the performance of the network is evaluated through the
root mean square error(RMSE) and the performance of the model is provided both in the
training and test phases. In all cases, a SLFN network of 40 hidden nodes is used. For each
data aggregation and for each individual WT, 25 models have been trained and the average
result is provided.

Numerical values for this experiment are presented in Table 4, in which the temporal
aggregation providing the lower RMSE for each WT is highlighted in bold.
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Table 4. Results obtained averaging the RMSE of 25 models both in the training and test steps
when trained with data of different temporal scales. In all cases, the trained network a SLFN with
40 hidden nodes. The best values for all the WTs (highlighted in bold), are obtained when using
60-min aggregation.

RMSE

WT_id 5 min 10 min 15 min 30 min 60 min

80 0.9419 0.8835 0.9013 0.8622 0.8548
81 0.9641 0.9218 0.9694 0.8622 0.9096

Training 82 1.9675 1.9386 2.0395 1.9727 1.8542
83 0.9792 0.9999 0.9848 0.9328 0.9098

80 1.2313 1.1700 1.1733 1.2094 1.1414
81 3.3673 3.2796 3.2759 3.0293 2.7340

Test 82 2.4562 2.3924 2.3594 2.3460 1.9705
83 2.3632 2.3699 2.2608 2.1164 1.8810

The results presented in Table 4 have been obtained using the same network model in
all the cases (SLFN of 40 hidden nodes), to fairly compare the results between WTs and the
different temporal aggregations. We have already studied SLFNs and shown that they work
well for this purpose regardless of how they are trained, but there is always an optimal
value for the network size (number of nodes) that achieves the best performance [4].

3.2. Experiment 2

To check how the network size can affect the results when changing the temporal
aggregation, the same experiment of Section 3.1 is repeated, but now the number of nodes
of the SLFN are changed to 30, (Table 5), 50 (Table 6), and 60 (Table 7). Likewise, in Figure 8
the RMSE obtained by a network of H hidden nodes for the range 3 ≤ H ≤ 90 and for each
one of the WTs is depicted, when the models are trained with 5-min data and 60-min data.

Table 5. Results obtained by averaging the RMSE of 25 models both in the training and test steps
when trained with data of different temporal aggregation. In all cases, the trained network is a SLFN
with 30 hidden nodes. The minimum values, highlighted in bold, are obtained when 60-min temporal
aggregation is used in all WTs.

RMSE

WT_id 5 min 10 min 15 min 30 min 60 min

80 1.1329 1.1540 1.1616 1.0955 1.0876
81 1.1369 1.1301 1.1522 1.1183 1.1157

Training 82 2.1591 2.2547 2.2765 2.2210 2.1099
83 1.1560 1.1387 1.1599 1.0820 1.1101

80 1.4261 1.4087 1.4689 1.3606 1.3408
81 3.4268 3.3469 3.3642 3.1364 2.7909

Test 82 2.5473 2.4813 2.4294 2.3299 2.0261
83 2.4484 2.4414 2.3644 2.1850 2.0420
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Table 6. Results obtained by averaging the RMSE of 25 models both in the training and test steps
when trained with data of different temporal aggregation. In all cases, the trained network is a SLFN
with 50 hidden nodes. The minimum values, highlighted in bold, are obtained when 60-min temporal
aggregation is used in all WTs.

RMSE

WT_id 5 min 10 min 15 min 30 min 60 min

80 0.8279 0.8294 0.7929 0.7590 0.7788
81 0.7896 0.8501 0.8009 0.7809 0.7495

Training 82 1.7718 1.7437 1.8209 1.7915 1.7439
83 0.8792 0.8899 0.8233 0.8402 0.8165

80 1.1227 1.1235 1.0766 1.0123 1.0572
81 3.3120 3.2281 3.1987 2.9994 2.6630

Test 82 2.4299 2.3658 2.3636 2.2869 1.9865
83 2.3006 2.3108 2.1712 2.0670 1.8304

Table 7. Results obtained by averaging the RMSE of 25 models both in the training and test steps
when trained with data of different temporal aggregation. In all cases, the trained network is a SLFN
with 60 hidden nodes. The minimum values, highlighted in bold, are obtained when 60-min temporal
aggregation is used in all WTs.

RMSE

WT_id 5 min 10 min 15 min 30 min 60 min

80 0.7244 0.7091 0.7004 0.6702 0.6981
81 0.7413 0.7524 0.7127 0.6868 0.6723

Training 82 1.5828 1.6552 1.7083 1.5828 1.5679
83 0.7930 0.7589 0.7639 0.7425 0.7245

80 1.0282 1.0155 0.9925 0.9641 0.9903
81 3.3127 3.2158 3.1985 2.9432 2.6237

Test 82 2.3972 2.3464 2.3563 2.2557 1.9317
83 2.2666 2.2465 2.1481 2.0148 1.7600

(a)

Figure 8. Cont.
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(b)

(c)

(d)

Figure 8. RMSE achieved by a hidden H-node network both in the training and test steps when
trained with 5-min and 60-min data: (a) WT#80, (b) WT#81, (c) WT#82, and (d) WT#83.
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3.3. Experiment 3

In this third experiment, the same target wtrm_avg_TrmTmp_Brg1 is re-estimated, in the
same conditions as in Section 3.1, except that now the temperature wtrm_avg_TrmTmp_Brg2 is
not included as a predictor. Therefore, a very important reference is drawn because there is
an important degree of correlation between these two temperatures (target and predictor).
Under these conditions, the predictions are expected to be less accurate. The performance
of the models made for each WT and for data with different temporal aggregation are
summarised in Table 8. The experiment uses the same type of network, with the same size
(40 hidden models), where each value in the table is the result of averaging the performance
of 25 models.

Table 8. Results obtained by averaging the RMSE of 25 models both in the training and test steps
when trained with data of different temporal aggregation. In all cases, the trained network is a SLFN
with 40 hidden nodes. The minimum values, highlighted in bold, are obtained when 60-min time
aggregation is used in all WTs. Notice that now the results are less accurate than those in Table 3.

RMSE

WT_id 5 min 10 min 15 min 30 min 60 min

80 3.2367 3.1966 3.1894 3.0865 2.9774
81 2.6836 2.6648 2.6396 2.5883 2.5166

Training 82 4.5850 4.6142 4.5633 4.4968 4.3784
83 3.1191 3.1055 3.0547 3.0083 2.9019

80 4.0724 3.9918 3.9882 3.8870 3.7598
81 5.0538 5.0294 5.0006 4.8525 4.6026

Test 82 4.8108 4.7921 4.7446 4.6730 4.5200
83 4.6635 4.6540 4.5470 4.4431 4.2168

4. Discussion

For the first experiment (Section 3.1), the results shown in Table 4 indicate that the
models using 60-min aggregation are the ones that best fit the data. Note that in this
experiment, the target to be estimated is a slowly varying temperature with a dynamic
range of variation from 0 ◦C to 55 ◦C. In this case, the model fits very well, possibly due to
the fact that one of the input variables is also a temperature value in the same transmission
chain, as shown in Figure 7, although the dynamic range of the target is from 0 ◦C to 55 ◦C,
for the input variable the range is from 10 ◦C to 70 ◦C (see Figure 3). Another way to
visually observe the results presented in Table 4 is by means of the regression line obtained
when training and testing a model. Figure 9 compares, for the WT#81, the regression line
obtained using 5-min and 60-min data. As can be seen, the best adjustment is obtained
when using 60-min data, with a regression value of R = 0.99745, while R = 0.99682 using
5-min data. When these models are tested with the second half of the available data, the
difference is even more visible in favour of the model using 60-min data. In Figure 10,
the curve on the left shows the line obtained in the test of the 5-min model, obtaining a
regression value of R = 0.9224, while on the right the 60-min model obtains a better result
with R = 0.9487.



Appl. Sci. 2021, 11, 6405 16 of 19

Figure 9. Regression lines obtained in the training step for the WT#81 model using 5-min data and (left) 60-min data (right).
In both cases, a SLFN network of H = 40 hidden nodes is trained to build the model.

This same result can be visualised in terms of the deviation of the regression lines
of the output data with respect to the 45-degree line that would represent the perfect
estimation. Note that in these two representations the data and target axes have been
extended beyond the dynamic range of the data in order, first, to make the deviation of
the regression lines more evident and, second and more importantly, to show how the two
models detect the presence of inconsistent values between the prediction made of the target
and the measurement obtained from it. This happens when the variables are changing
because of a failure (warning or alarm), which generates a bad estimation detected by our
normality model, or are due to a miss-function of some sensor. Indeed, in some cases the
problem is due to a failure of the sensors that is particularly difficult to detect in other
ways. It occurs when the signals are ‘stuck’ and the sensor sends the same value every
5 min. This can happen both in the variables and in the target. This type of failure is not
detected by the outlier tests, and hence it is transparent in the pre-processing stages, but
the normality model can allow one to detect them.

Results obtained for experiment 2 (Section 3.2) show that 60-min aggregation obtains
the best results in all the cases, except for a couple of cases in which 30-min aggregation
is proven to be better, only for the WT#80. As shown in Figure 8, in the training step the
effect of the value of H is not noticeable, but in the test step we can observe how 60-min
aggregation always outperforms the original 5-min time window, specially for WT#81,
WT#82, and WT#83. For this specific experiment, H = 60 seems to provide even better
results than H = 40, but checking the numbers in detail, available in Table 4–7 (for H = 40,
H = 30, H = 50, and H = 60, respectively), we can confirm that H = 40 is the only
one in which the 60-min aggregation is always the best one in the test phase. The results
for H = 50 and H = 60 have one case in which 30-min aggegation is better than 60-min
aggregation. Finally, for H = 30 the results are all better for 60-min aggregation but they
are worse when compared with H = 40.

In [4], the ELM paradigm was validated by addressing the problem of the optimal
size of the SLFN network. Given the simplicity of SLFN, its architecture only depends
on the number of hidden nodes H (and to a much lesser extent on the activation function
considered). As detailed in [4], the accuracy in the training phase is increased when H is
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increased, but in the test phase there is a value of H at which the accuracy starts to stabilise
and the improvements are no longer significant.

Figure 10. Regression lines obtained in the test step for the WT#81 model using 5-min data and (left) 60-min data (right). In
both cases, a SLFN network of H = 40 hidden nodes is used to test the models.

In fact, from this stabilisation point, there is a wide range of H values that provide
good performance in the test phase. It is worth noting that the optimal measure of H,
the value in which the best accuracy is obtained in the test phase, varies slightly for each
WT. Beyond these values, if the number of nodes continue to increase, the test results
will worsen due to an over-fitting problem in the training. As shown in the experiment,
the network starts to work well from 40 hidden nodes onward. The improvements in the
test phase obtained by using 50 and 60 nodes are very small, although still appreciable.

Finally, and with regard to the third experiment (Section 3.3), it confirms that not using
a signal as an input variable highly correlated with the target when estimating it (the temper-
ature wtrm_avg_TrmTmp_Brg2 in the case of our target temperature wtrm_avg_TrmTmp_Brg1),
which makes it more difficult to predict the target temperature. However, more impor-
tantly is that despite the reduction on the performance, it is again observed that the models
trained with 60-min data are the ones that perform better in terms of RMSE, both in the
training and in the test step.

While it has been already proved in [4] that the regression models are able to detect
the deterioration of the systems and in a quasi identical way as in [15], in the experimental
results it is shown that averaging the SCADA system results beyond the default 5-min data
provided by modern WTs, which allows for models that better fit the data. This happens
persistently when calculating the projections over a longer period of time and for all the
experiments, based on the signal representation described, for time scales of 5, 10, 15,
30, and 60 min.

Although it is likely that some of the improvements in prognosis systems that will
be seen in the near future will come from the possibility of using high-frequency SCADA
data, as that will prevent the loss of information on some of the most important variables
in the WT systems, what is currently happening is that there are a large number of wind
farms in operation around the world that need to be properly operated and maintained
in order to be as competitive as possible to have a long useful life. Most of these parks
operate on SCADA systems that perform 5-min prognosis, or even 10-min prognosis in the



Appl. Sci. 2021, 11, 6405 18 of 19

oldest ones, and therefore these are the data available for the design and exploitation of the
prognosis models. This work suggests that models developed and operated at 60 min fit the
data better than models developed and operated at 5 min, detecting anomalous situations
without losing performance, but on the contrary, even improving them. This is not a minor
issue because wind farms can have tens or hundreds of WTs and at the same time each
turbine consists of a large number of systems and subsystems. The fact of monitoring them
at 60 min reduces the computational requirements by a factor of 12 compared to working
at 5 min, while also reducing the requirements associated with the time and transmission
of these data.

5. Conclusions

High-frequency sampling is a preferable option when designing wind farm prognosis
systems, as it allows to better capture the dynamics of the variables involved in wind
turbine monitoring [8,10]. Low frequency sampling (5 min) commonly used in the SCADA
system removes much of the information from the measured signals, so that information is
lost. This is the case, for example, of the power signal, in which the information provided
by the SCADA system contains already less information compared to the original one
because the medium and high frequency components have already been lost due to the
long sampling period. However, this does not imply that these variables cannot be used
for wind turbine prognosis, as has been shown in other studies [4,9,12,17].

When high-frequency sampling is not an option or not available, or if a simpler system
has to be designed, to process, store, and send smaller amounts of data, aggregation to
longer time window frames is a possible and useful option. This option has been explored
in this work, and experimental results show that models using 60-min aggregated data
outperform results obtained with the original 5-min data. Three different experiments
demonstrate that better predictions were obtained using 60-min data, which simplifies the
model and the amount of data to store, process, send, and/or display.

To our knowledge, this is the first work investigating this option and the results make
it interesting and potentially useful. Our experimental results suggest that averaging
over long periods of time improves performance because the variability of a signal is
usually reduced. In future work we will deeply investigate that, and will consider other
subsystems and target variables, along with the possibility of extending the models beyond
normality models.
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Abbreviations
The following abbreviations are used in this manuscript:

CMS condition monitoring systems
DANN deep artificial neural networks
ELM extreme learning machines
LCOE levelised cost of energy
NBM normal behaviour model
O&M operation and maintenance
OPC Open Platform Communications
RMSE root-mean-square error
PLS partial least squares
RMSE root mean square error
SCADA supervisory control and data acquisition data
SLFN single-hidden layer feedforward neural networks
SVM support vector machines
WT wind turbine
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