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The idea

• The first idea
Machine Learning based defect on printed paper 

detection, in high-speed printing systems

Missing nozzles, bleeding, misregistration, spray, 
scratches, ghosting, picking, offsetting, wrinkling, etc.

• The complexity
• The final idea

Machine Learning based scratches on printed paper 
detection, in high-speed printing systems



The approach and method

Phase 1
State-of-the-art research

Phase 2
Creation of the datasets

Phase 3
The experiments



State-of-the-art research

• Print quality and reliability are more and more demanding over time.
• Defects in printed matter may cause customer complaints.
• Defects in printed matter may require complete reprint.
• Print shops want to avoid printing material waste and look for increased profit margin.
• Human inspection requires dedicated operators per printer.
• Human inspection accuracy fluctuates, defects are overlooked and speed is limited.
• Some applications may require 100% inspection rate, which is not possible at high-

speeds.

• Automation is a must for defect detection and classification.



State of the art research

• Deep learning has been successfully applied to classification tasks in 
many fields due to its good performance in learning discriminative 
features but the application to printing defect classification is very 
rare.

• Pre-processing may be required to remove noise, remove scanning or 
camera artifacts, blurring, etc.

• The kind of defect has to be considered for its own characteristics:
• SCRATCHES are difficult to detect with general purpose methods. Specific Scratch Detector 

may be required.



State of the art research

• Small and imbalanced datasets is a problem.
• Augmentation.
• Oversampling.
• Undersampling.
• Synthetic Sampling with Data Generation.
• Pre-train networks and transfer learning to avoid overfitting.

• Real-time (due to high-speed printing) is a problem.
• Use model weighting and model pruning techniques.
• Using GPU (or FPGA) instead of CPU can help with real-time (or very fast) 

requirements.
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Creation of the datasets

Augmentation

from tensorflow.keras.preprocessing.image import ImageDataGenerator

datagen = ImageDataGenerator(
rotation_range = 10, fill_mode = 'nearest', # Rotation
width_shift_range = 0.2, # Horizontal shift
height_shift_range = 0.2, # Vertical shift
horizontal_flip = True, # Horizontal flip
vertical_flip = True, # Vertical flip
zoom_range = 0.2, # Zoom
brightness_range = [0.2, 1.2]) # Brightness



The experiments



The experiments
Model: "sequential“
_________________________________________________________________
Layer (type)                    Output Shape             Param #   
=================================================================
conv2d (Conv2D)                 (None, 318, 318, 32)     896       
max_pooling2d (MaxPooling2D)    (None, 159, 159, 32)     0         
conv2d_1 (Conv2D)               (None, 157, 157, 32)     9248      
max_pooling2d_1 (MaxPooling2D)  (None, 78, 78, 32)       0      
conv2d_2 (Conv2D)               (None, 76, 76, 32)       9248      
max_pooling2d_2 (MaxPooling2D)  (None, 38, 38, 32)       0         
conv2d_3 (Conv2D)               (None, 36, 36, 64)       18496     
max_pooling2d_3 (MaxPooling2D)  (None, 18, 18, 64)       0         
conv2d_4 (Conv2D)               (None, 16, 16, 64)       36928     
max_pooling2d_4 (MaxPooling2D)  (None, 8, 8, 64)         0         
flatten (Flatten)               (None, 4096)             0         
dense (Dense)                   (None, 64)               262208    
dropout (Dropout)               (None, 64)               0         
dense_1 (Dense)                 (None, 2)                130       
=================================================================
Total params: 337,154
Trainable params: 337,154
Non-trainable params: 0
_________________________________________________________________

# Configures and runs the model WITHOUT Augmentation
# GPU 37s

# Model architecture
model_exp1 = Sequential()

model_exp1.add(Conv2D(32, (3, 3), activation = 'relu’,
input_shape = (320, 320, 3)))

model_exp1.add(MaxPooling2D(pool_size = (2, 2)))

model_exp1.add(Conv2D(32, (3, 3), activation = 'relu'))
model_exp1.add(MaxPooling2D(pool_size = (2, 2)))

model_exp1.add(Conv2D(32, (3, 3), activation = 'relu'))
model_exp1.add(MaxPooling2D(pool_size = (2, 2)))

model_exp1.add(Conv2D(64, (3, 3), activation = 'relu'))
model_exp1.add(MaxPooling2D(pool_size = (2, 2)))

model_exp1.add(Conv2D(64, (3, 3), activation = 'relu'))
model_exp1.add(MaxPooling2D(pool_size = (2, 2)))

model_exp1.add(Flatten())
model_exp1.add(Dense(64, activation = 'relu'))
model_exp1.add(Dropout(0.24))
model_exp1.add(Dense(2, activation = 'softmax'))

# Shows model summary
model_exp1.summary()

# Compiles the model
model_exp1.compile(loss = 'binary_crossentropy’, metrics = ['accuracy'])

# Trains the model
history_exp1 = model_exp1.fit(x_train, y_train, epochs = 35, validation_data = (x_valid, y_valid), verbose = 1)



The experiments
Model: "sequential_8"
_________________________________________________________________
Layer (type)                    Output Shape             Param #   
=================================================================
conv2d_40 (Conv2D)              (None, 62, 62, 32)       896       
max_pooling2d_40 (MaxPooling2D) (None, 31, 31, 32)       0         
conv2d_41 (Conv2D)              (None, 29, 29, 32)       9248      
max_pooling2d_41 (MaxPooling2D) (None, 14, 14, 32)       0         
conv2d_42 (Conv2D)              (None, 12, 12, 32)       9248      
max_pooling2d_42 (MaxPooling2D) (None, 6, 6, 32)         0         
conv2d_43 (Conv2D)              (None, 4, 4, 64)         18496     
max_pooling2d_43 (MaxPooling2D) (None, 2, 2, 64)         0         
flatten_8 (Flatten)             (None, 256)              0         
dense_16 (Dense)                (None, 64)               16448     
dropout_8 (Dropout)             (None, 64)               0         
dense_17 (Dense)                (None, 2)                130       
=================================================================
Total params: 54,466
Trainable params: 54,466
Non-trainable params: 0
_________________________________________________________________

# Configures and runs the model WITHOUT Augmentation
# GPU 33s

# Model architecture
model_exp9 = Sequential()

model_exp9.add(Conv2D(32, (3, 3), activation = 'relu',
input_shape = (64, 64, 3)))

model_exp9.add(MaxPooling2D(pool_size = (2, 2)))

model_exp9.add(Conv2D(32, (3, 3), activation = 'relu'))
model_exp9.add(MaxPooling2D(pool_size = (2, 2)))

model_exp9.add(Conv2D(32, (3, 3), activation = 'relu'))
model_exp9.add(MaxPooling2D(pool_size = (2, 2)))

model_exp9.add(Conv2D(64, (3, 3), activation = 'relu'))
model_exp9.add(MaxPooling2D(pool_size = (2, 2)))

model_exp9.add(Flatten())
model_exp9.add(Dense(64, activation = 'relu'))
model_exp9.add(Dropout(0.24))
model_exp9.add(Dense(2, activation = 'softmax'))

# Shows model summary
model_exp9.summary()

# Compiles the model
model_exp9.compile(loss = 'binary_crossentropy’, metrics = ['accuracy'])

# Trains the model
history_exp9 = model_exp9.fit(x_train, y_train, epochs = 35, validation_data = (x_valid, y_valid), verbose = 1)



The experiments
Comparison summary of experiment charts



The experiments
Comparison summary of experiment table



The experiments

• No  significant difference between the results when using imbalanced or balanced
datasets.

• No significant difference between the results when using color or grayscale datasets.
• Significant difference between the results when using 320x320px and 64x64px datasets.

• Better results with 64x64px tiles datasets.

• The model doesn’t do a good job when training using 320x320px tiles.

• Data augmentation has a positive impact in the training of the models.
• The best-found dataset-training combination: Experiment 14 (64x64px Grayscale 

Balanced Augmentation).
• Accuracy of 79% after 400 Epochs, that requires 18 minutes of execution time using a Tesla K80 GPU in Google Colab.

• Accuracy of 75% after 100 Epochs, that requires 4 minutes of  execution time using a Tesla K80 GPU in Google Colab.



Conclusions

• SCRATCHES are difficult to detect with general purpose methods. 
• Scratches have special characteristics (very thin, very light contrast vs. 

background) that may require Specific Scratch Detector systems. 

• The difference between a tile with or without scratch can be very 
subtle and can often be confused with noise in the image. This may 
also be hard for the machine learning system to detect.

Tiles with subtle scratch (LEFT) vs. images without scratch (RIGHT)



Conclusions

• It is not easy to create a good dataset from scratch. 
• Obtaining images that would be representative enough of the real world, 

image quality, quantity of elements, and balanced enough so it can be used in 
a machine learning system.

• Creating a good dataset is time consuming and, even part of the 
process can be automated (tiling, conversion to grayscale, etc.), there 
is still a classification that needs to be done by expert human eyes.



Conclusions

• Using Undersampling to create balanced datasets is a valid method but 
may remove important data that could potentially create a better dataset.

• Undersampling is omitting information.

• Data Augmentation has a positive impact in the training of the models.
• Resulted to be a valid method to increase the number of samples in the dataset.
• The technique has to be designed accurately so no noise is introduced into the 

dataset.
• The accuracy grows much more over epochs, even it requires more epochs to reach 

better accuracy.



Conclusions

• The model requires more development for datasets without 
augmentation.

• Most of them show a divergence between the accuracy during training and the 
accuracy during validation, around Epochs 10 to 20.

• Machine learning has been tested as a solution to detect scratches in 
printed content, without needing to compare the printout with the original 
image.

• Required a dataset created in-purpose and a model to be trained.
• The accuracy has been found to be up to 75% to 79%, which is higher than the 

accuracy of 67% reported in previous studies using specific scratch detection 
systems.



Limitations

• An accuracy of 75% to 79% may not be enough for systems requiring high-
precision.

• Machine Learning works as a black box.
• It’s almost impossible to troubleshoot what rules have been applied to determine if a tile has 

or has not a scratch on it.

• Printing at very-high-speeds (up to 1000fpm in HP PageWide Web Presses) 
makes it unrealistic to capture every single printed frame (page), have it 
converted to grayscale, tiled, and verified by the trained machine learning model 
fast enough to report findings. If the application accepts sampling (analyze only a 
subset of captures), that would be enough but, for applications requiring high 
level of inspections, the solution may not work because of technology limitations 
(network bandwidth, processor, display, etc.



Summary

• The idea
• The approach and method
• State-of-the-art research
• Creation of the datasets
• The experiments
• Conclusions
• Limitations
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