
Machine Learning based
scratches on printed
paper detection,
in high-speed
printing systems

Universitat Oberta de Catalunya
Màster Universitari en Enginyeria Informàtica
Treball Final de Màster - Intel·ligència Artificial

Professor responsable de l’assignatura: Carles Ventura Royo
Consultor: Antonio Burguera Burguera
Alumne: Jordi Falcés i Valls

Idioma: Anglès

Gener de 2021
Image source: International Telecommunication Union (ITU) is the United Nations, https://www.itu.int/

The student

Jordi Falcés i Valls

Bachelor’s Degree
Computer Science Engineering

Master’s Degree
Computer Science Engineering

Customer Assurance Master Engineer
HP PageWide Industrial

Agenda

• The idea
• The approach and method
• State-of-the-art research
• Creation of the datasets
• The experiments
• Conclusions
• Limitations
• Summary

The idea

• The first idea
Machine Learning based defect on printed paper

detection, in high-speed printing systems

Missing nozzles, bleeding, misregistration, spray,
scratches, ghosting, picking, offsetting, wrinkling, etc.

• The complexity
• The final idea

Machine Learning based scratches on printed paper
detection, in high-speed printing systems

The approach and method

Phase 1
State-of-the-art research

Phase 2
Creation of the datasets

Phase 3
The experiments

State-of-the-art research

• Print quality and reliability are more and more demanding over time.
• Defects in printed matter may cause customer complaints.
• Defects in printed matter may require complete reprint.
• Print shops want to avoid printing material waste and look for increased profit margin.
• Human inspection requires dedicated operators per printer.
• Human inspection accuracy fluctuates, defects are overlooked and speed is limited.
• Some applications may require 100% inspection rate, which is not possible at high-

speeds.

• Automation is a must for defect detection and classification.

State of the art research

• Deep learning has been successfully applied to classification tasks in
many fields due to its good performance in learning discriminative
features but the application to printing defect classification is very
rare.

• Pre-processing may be required to remove noise, remove scanning or
camera artifacts, blurring, etc.

• The kind of defect has to be considered for its own characteristics:
• SCRATCHES are difficult to detect with general purpose methods. Specific Scratch Detector

may be required.

State of the art research

• Small and imbalanced datasets is a problem.
• Augmentation.
• Oversampling.
• Undersampling.
• Synthetic Sampling with Data Generation.
• Pre-train networks and transfer learning to avoid overfitting.

• Real-time (due to high-speed printing) is a problem.
• Use model weighting and model pruning techniques.
• Using GPU (or FPGA) instead of CPU can help with real-time (or very fast)

requirements.

Creation of the datasets

Defect
generation

(RGB)

Tiling
(64x64px and
320x320px)

Conversion to
Grayscale

Manual
human

selection

Balancing
(Undersampling)

Augmentation

Creation of the datasets

Defect
generation

(RGB)

Creation of the datasets

Defect
generation

(RGB)

Creation of the datasets

Tiling
(64x64px and
320x320px)

Creation of the datasets

Conversion to
Grayscale

Creation of the datasets

Manual
human

selection

Creation of the datasets

Balancing
(Undersampling)

Creation of the datasets

Augmentation

from tensorflow.keras.preprocessing.image import ImageDataGenerator

datagen = ImageDataGenerator(
rotation_range = 10, fill_mode = 'nearest', # Rotation
width_shift_range = 0.2, # Horizontal shift
height_shift_range = 0.2, # Vertical shift
horizontal_flip = True, # Horizontal flip
vertical_flip = True, # Vertical flip
zoom_range = 0.2, # Zoom
brightness_range = [0.2, 1.2]) # Brightness

The experiments

The experiments
Model: "sequential“

Layer (type) Output Shape Param #
===
conv2d (Conv2D) (None, 318, 318, 32) 896
max_pooling2d (MaxPooling2D) (None, 159, 159, 32) 0
conv2d_1 (Conv2D) (None, 157, 157, 32) 9248
max_pooling2d_1 (MaxPooling2D) (None, 78, 78, 32) 0
conv2d_2 (Conv2D) (None, 76, 76, 32) 9248
max_pooling2d_2 (MaxPooling2D) (None, 38, 38, 32) 0
conv2d_3 (Conv2D) (None, 36, 36, 64) 18496
max_pooling2d_3 (MaxPooling2D) (None, 18, 18, 64) 0
conv2d_4 (Conv2D) (None, 16, 16, 64) 36928
max_pooling2d_4 (MaxPooling2D) (None, 8, 8, 64) 0
flatten (Flatten) (None, 4096) 0
dense (Dense) (None, 64) 262208
dropout (Dropout) (None, 64) 0
dense_1 (Dense) (None, 2) 130
===
Total params: 337,154
Trainable params: 337,154
Non-trainable params: 0

Configures and runs the model WITHOUT Augmentation
GPU 37s

Model architecture
model_exp1 = Sequential()

model_exp1.add(Conv2D(32, (3, 3), activation = 'relu’,
input_shape = (320, 320, 3)))

model_exp1.add(MaxPooling2D(pool_size = (2, 2)))

model_exp1.add(Conv2D(32, (3, 3), activation = 'relu'))
model_exp1.add(MaxPooling2D(pool_size = (2, 2)))

model_exp1.add(Conv2D(32, (3, 3), activation = 'relu'))
model_exp1.add(MaxPooling2D(pool_size = (2, 2)))

model_exp1.add(Conv2D(64, (3, 3), activation = 'relu'))
model_exp1.add(MaxPooling2D(pool_size = (2, 2)))

model_exp1.add(Conv2D(64, (3, 3), activation = 'relu'))
model_exp1.add(MaxPooling2D(pool_size = (2, 2)))

model_exp1.add(Flatten())
model_exp1.add(Dense(64, activation = 'relu'))
model_exp1.add(Dropout(0.24))
model_exp1.add(Dense(2, activation = 'softmax'))

Shows model summary
model_exp1.summary()

Compiles the model
model_exp1.compile(loss = 'binary_crossentropy’, metrics = ['accuracy'])

Trains the model
history_exp1 = model_exp1.fit(x_train, y_train, epochs = 35, validation_data = (x_valid, y_valid), verbose = 1)

The experiments
Model: "sequential_8"

Layer (type) Output Shape Param #
===
conv2d_40 (Conv2D) (None, 62, 62, 32) 896
max_pooling2d_40 (MaxPooling2D) (None, 31, 31, 32) 0
conv2d_41 (Conv2D) (None, 29, 29, 32) 9248
max_pooling2d_41 (MaxPooling2D) (None, 14, 14, 32) 0
conv2d_42 (Conv2D) (None, 12, 12, 32) 9248
max_pooling2d_42 (MaxPooling2D) (None, 6, 6, 32) 0
conv2d_43 (Conv2D) (None, 4, 4, 64) 18496
max_pooling2d_43 (MaxPooling2D) (None, 2, 2, 64) 0
flatten_8 (Flatten) (None, 256) 0
dense_16 (Dense) (None, 64) 16448
dropout_8 (Dropout) (None, 64) 0
dense_17 (Dense) (None, 2) 130
===
Total params: 54,466
Trainable params: 54,466
Non-trainable params: 0

Configures and runs the model WITHOUT Augmentation
GPU 33s

Model architecture
model_exp9 = Sequential()

model_exp9.add(Conv2D(32, (3, 3), activation = 'relu',
input_shape = (64, 64, 3)))

model_exp9.add(MaxPooling2D(pool_size = (2, 2)))

model_exp9.add(Conv2D(32, (3, 3), activation = 'relu'))
model_exp9.add(MaxPooling2D(pool_size = (2, 2)))

model_exp9.add(Conv2D(32, (3, 3), activation = 'relu'))
model_exp9.add(MaxPooling2D(pool_size = (2, 2)))

model_exp9.add(Conv2D(64, (3, 3), activation = 'relu'))
model_exp9.add(MaxPooling2D(pool_size = (2, 2)))

model_exp9.add(Flatten())
model_exp9.add(Dense(64, activation = 'relu'))
model_exp9.add(Dropout(0.24))
model_exp9.add(Dense(2, activation = 'softmax'))

Shows model summary
model_exp9.summary()

Compiles the model
model_exp9.compile(loss = 'binary_crossentropy’, metrics = ['accuracy'])

Trains the model
history_exp9 = model_exp9.fit(x_train, y_train, epochs = 35, validation_data = (x_valid, y_valid), verbose = 1)

The experiments
Comparison summary of experiment charts

The experiments
Comparison summary of experiment table

The experiments

• No significant difference between the results when using imbalanced or balanced
datasets.

• No significant difference between the results when using color or grayscale datasets.
• Significant difference between the results when using 320x320px and 64x64px datasets.

• Better results with 64x64px tiles datasets.

• The model doesn’t do a good job when training using 320x320px tiles.

• Data augmentation has a positive impact in the training of the models.
• The best-found dataset-training combination: Experiment 14 (64x64px Grayscale

Balanced Augmentation).
• Accuracy of 79% after 400 Epochs, that requires 18 minutes of execution time using a Tesla K80 GPU in Google Colab.

• Accuracy of 75% after 100 Epochs, that requires 4 minutes of execution time using a Tesla K80 GPU in Google Colab.

Conclusions

• SCRATCHES are difficult to detect with general purpose methods.
• Scratches have special characteristics (very thin, very light contrast vs.

background) that may require Specific Scratch Detector systems.

• The difference between a tile with or without scratch can be very
subtle and can often be confused with noise in the image. This may
also be hard for the machine learning system to detect.

Tiles with subtle scratch (LEFT) vs. images without scratch (RIGHT)

Conclusions

• It is not easy to create a good dataset from scratch.
• Obtaining images that would be representative enough of the real world,

image quality, quantity of elements, and balanced enough so it can be used in
a machine learning system.

• Creating a good dataset is time consuming and, even part of the
process can be automated (tiling, conversion to grayscale, etc.), there
is still a classification that needs to be done by expert human eyes.

Conclusions

• Using Undersampling to create balanced datasets is a valid method but
may remove important data that could potentially create a better dataset.

• Undersampling is omitting information.

• Data Augmentation has a positive impact in the training of the models.
• Resulted to be a valid method to increase the number of samples in the dataset.
• The technique has to be designed accurately so no noise is introduced into the

dataset.
• The accuracy grows much more over epochs, even it requires more epochs to reach

better accuracy.

Conclusions

• The model requires more development for datasets without
augmentation.

• Most of them show a divergence between the accuracy during training and the
accuracy during validation, around Epochs 10 to 20.

• Machine learning has been tested as a solution to detect scratches in
printed content, without needing to compare the printout with the original
image.

• Required a dataset created in-purpose and a model to be trained.
• The accuracy has been found to be up to 75% to 79%, which is higher than the

accuracy of 67% reported in previous studies using specific scratch detection
systems.

Limitations

• An accuracy of 75% to 79% may not be enough for systems requiring high-
precision.

• Machine Learning works as a black box.
• It’s almost impossible to troubleshoot what rules have been applied to determine if a tile has

or has not a scratch on it.

• Printing at very-high-speeds (up to 1000fpm in HP PageWide Web Presses)
makes it unrealistic to capture every single printed frame (page), have it
converted to grayscale, tiled, and verified by the trained machine learning model
fast enough to report findings. If the application accepts sampling (analyze only a
subset of captures), that would be enough but, for applications requiring high
level of inspections, the solution may not work because of technology limitations
(network bandwidth, processor, display, etc.

Summary

• The idea
• The approach and method
• State-of-the-art research
• Creation of the datasets
• The experiments
• Conclusions
• Limitations

Image source: International Telecommunication Union (ITU) is the United Nations, https://www.itu.int/

	Machine Learning based scratches on printed paper detection,�in high-speed�printing systems
	The student
	Agenda
	The idea
	The approach and method
	State-of-the-art research
	State of the art research
	State of the art research
	Creation of the datasets
	Creation of the datasets
	Creation of the datasets
	Creation of the datasets
	Creation of the datasets
	Creation of the datasets
	Creation of the datasets
	Creation of the datasets
	The experiments
	The experiments
	The experiments
	The experiments
	The experiments
	The experiments
	Conclusions
	Conclusions
	Conclusions
	Conclusions
	Limitations
	Summary
	Slide Number 29

