

Combining Generic Programming and Service-Oriented

Architectures for the Effective and Timely Development of Complex

e-Learning Systems

Santi Caballé

Open University of Catalonia, Department of Computer Science, Multimedia, and Telecommunication

Rambla. Poblenou, 156. 08018 Barcelona, Spain
scaballe@uoc.edu

Abstract

Over the last years, e-Learning needs have been

evolving accordingly with more and more demanding

pedagogical and technological requirements. On-line

learning environments no longer depend on

homogeneous groups, static content and resources,

and single pedagogies, but high customization and

flexibility are a must in this context. As a result,

current educational organizations’ needs involve

extending and moving to highly customized learning

and teaching forms in timely fashion, each

incorporating its own pedagogical approach, each

targeting a specific learning goal, and each

incorporating its specific resources. Moreover,

organizations’ demands include a cost-effective

integration of legacy and separated learning systems,

from different institutions, departments and courses,

which are implemented in different languages,

supported by heterogeneous platforms and distributed

everywhere, to name some of them. Therefore, e-

Learning applications need to be developed in a way

that overcome these demanding requirements as well

as provide educational organizations with fast,

flexible and effective solutions for the enhancement

and improvement of the learning performance and

outcomes. To this end, in this paper, an innovative

engineering software technique is introduced that

combines the Generic Programming paradigm and

Service-Oriented Architectures in the form of Web-

services for the effective and timely construction of

flexible, scalable, interoperable and robust

applications as key aspects to address the current

demanding and changing requirements in software

development in general and specifically in the e-

Learning domain. This results in a generic, reusable,

extensible platform called Collaborative Learning

Purpose Library for the systematic development of

collaborative learning applications that help meet

these demanding requirements.

1. Introduction

Over the last decade, educational organizations’

needs have been changing in accordance with ever

more complex pedagogical models as well as with

technological evolution resulting in e-Learning

environments with very dynamic and changing

teaching and learning requirements [1]. In particular,

these needs involve extending and moving to highly

customized learning and teaching forms in timely

fashion, each incorporating its own pedagogical

approach, each targeting a specific learning goal, and

each incorporating its specific resources.

Organizations’ demands also include a cost-effective

integration of legacy and separated learning systems,

from different institutions, departments and courses,

which are implemented in different languages,

supported by heterogeneous platforms and distributed

everywhere, to name some of them [1], [2].

In addition, collaborative learning environments [3],

[4] must provide advanced enablement for distribution

both of collaborative activities and of the necessary

functionalities and learning resources to all

participants, regardless the location of both participants

and resources. The aim is to enable the collaborative

learning experience in open, dynamic, large-scale and

heterogeneous environments [5].

From this view, one of the main challenges in the

development of modern e-Learning systems is to

overcome important non-functional requirements

arisen in distributed environments such as scalability,

flexibility, availability, interoperability, and integration

of different, heterogeneous, and legacy learning

systems. Specific requirements include:

These requirements represent a great challenge for

the latest trends of software development to be

completely satisfied. To this end, software techniques

and paradigms have been evolving all the time to

mainly provide higher levels of abstraction so that

developers can reuse and integrate not only

functionality and components but more complex yet

larger pieces of software. Moreover, although

transparency has been greatly enhanced by current

software techniques, the barrier of technology

incompatibilities and the dependencies between

components and clients make the transparency

capability still difficult.

In this paper, an innovative approach of software

engineering is presented which combines two

emerging paradigms, namely generic programming [6]

and service-oriented architectures [7]. These two views

are later on merged by means of a recently well-

known software development technique, namely

Model-Driven Architecture [8]. This results in a

generic, reusable, extensible platform called

Collaborative Learning Purpose Library (CLPL) [9],

which help overcome the demanding requirements

appearing in the development of complex software in

the collaborative learning domain.

The paper is organized as follows: Section 2 shows

the background and related technologies involved in

this approach. Section 3 describes the CLPL platform

as a result of the described technologies while Section

4 shows the experience in the development of a

complex collaborative learning application by using

the CLPL. Section 5 ends the paper by summarizing

the approach presented and drawing the main

conclusions.

2. Background and related work

In this section, a brief overview of the existing

technologies and paradigms related to this work is

presented, namely Computer-Supported Collaborative

Learning, Generic Programming, Service-Oriented

Architecture, and Model-Driven Architecture. This

overview will serve as background for the next

sections.

2.1. Computer-Supported Collaborative

Learning

Computer-Supported Collaborative Learning

(CSCL) is one of the most influencing research

paradigms dedicated to improve teaching and learning

with the help of modern information and

communication technology [3], [4]. Collaborative or

group learning refers to instructional methods where

students are encouraged to work together on learning

tasks. As an example, project-based collaborative

learning proves to be a very successful method to that

end [4]. Therefore, CSCL applications aim to create

virtual collaborative learning environments where

students, teachers, tutors, etc., are able to cooperate

with each other in order to accomplish a common

learning goal.

To achieve this goal, CSCL applications provide

support to three essential aspects of collaboration,

namely coordination, collaboration and

communication; with communication being the base

for reaching coordination and collaboration [9].

Collaboration and communication might be

synchronous or asynchronous. The former means

cooperation at the same time and the shared resource

will not typically have a lifespan beyond the sharing

while the latter means cooperation at different times

being the shared resource stored in a persistent support.

The representation and analysis of group activity

interaction is an important issue in CSCL for the

support of coaching and evaluation in online

collaborative earning environments [3]. Interaction

analysis relies on information captured from the

actions performed by the participants during the

collaborative process. To this end, fine-grained

notifications and complex information collected from

the learners’ interaction are provided to give immediate

feedback about others’ activities and about the

collaboration in general [10].

2.2. Generic Programming

In all advanced forms of engineering it can be

observed that new products are usually developed by

reusing tried and tested parts rather than developing

them from scratch. The reuse of previously created

product parts leads to reduced costs and improved

productivity and quality to such an extent that

industrial processes will take a great leap forward.

Generic Programming (GP) [6], [11] has emerged over

the last years to facilitate this possibility in the

software engineering field.

GP is an innovative paradigm that attempts to make

software as general as possible without losing

efficiency. It achieves its goal by identifying

interrelated high-level family from a common

requirement set [6]. By the application of this

technique, especially in design phases, software is

developed offering a high degree of abstraction which

is applicable to a wide range of situations and domains.

By applying GP to develop computer software

important objectives are achieved:

• Reuse. This means to be able to reuse and extend

software components widely so that it adapts to a

great number of interrelated problems.

• Quality. Here ”quality” refers to the correctness

and robustness of implementation which provides

the required degree of reliability.

• Efficiency. It is also essential to guarantee the

efficiency of components as if this not done the

performance repercussions will be noted, just as

with lack of quality, in all of the systems involved.

• Productivity. Inherent to reutilization is the saving

through not having to create software components

again that already exist. Hence, there is an increase

in computing production.

• Automation. The aim is to automate the processes

so that general requirements with a high level of

abstraction and specially designed tools can be

used to produce operative programmes.

• Personalisation. As the general requirements are

made more particular, so the product that is

generated becomes more optimised to meet the

specific needs of the client.

GP also represents one important technique to

achieve effective Product Lines (PL) following the

Product-Line Architecture(PLA) approach [6]. PLA

promotes developing large families of related software

applications quickly and cheaply from reusable

components. In PLA, a certain level of automation is

provided in the form of generators (also known as

component configuration tools) to realize solutions for

large parts of the systems being developed.

2.3. Service-Oriented Architecture

Service-Oriented Architecture (SOA) [7] represents

the next step in the software development to help

organizations meet their ever more complex set of

needs and challenges, especially in distributed systems

[1], [5]. This is achieved by dynamically discovering

and invoking the appropriate services to perform a

request from heterogeneous environments, regardless

of the details and differences of these environments.

By making the service independent from the context,

SOA provides software with important non-functional

capabilities for distributed environments (such as

scalability, heterogeneity and openness), and makes the

integration processes much easier to achieve.

SOA relies on services. According to W3C [7], a

service is a set of actions that form a coherent whole

from the point of view of service providers and service

requesters. In other words, services represent the

behaviour provided by a provider and used by any

requesters based only on the interface contract. Within

SOA, services

• stress location transparency by allowing services

to be implemented, replicated and moved to other

machines without the requester’s knowledge,

• enable dynamic access as services are located,

bound and invoked at runtime,

• promote interoperability making it possible for

different organisations supported by

heterogeneous hardware and software platforms to

share and use the same services,

• facilitate integration of other existing systems and

thus protect previous investments (e.g. legacy

assets),

• rely on encapsulation as they are independent from

other services and their context,

• enhance flexibility by allowing services to be

replaced without causing repercussions on the

underlying systems involved,

• foster composition from other finer-grained

services.

Although SOA can be realised with other

technologies, over the last few years Web services has

come to play a major role in SOA due to lower costs of

integration along with flexibility and simplification of

configuration. According to W3C, a Web service is a

software system identified by a URI, whose public

interfaces are defined and described using XML [7].

Other systems may interact with the Web service in a

manner prescribed by its definition, using XML-based

messages conveyed by internet protocols.

The core structure of Web services is formed by a

set of widely adopted protocols and standards [7], such

as XML, SOAP, WSDL, and UDDI, which provide a

suitable technology to implement the key requirements

of SOA. This is so because these protocols allow a

service to be platform - and language - independent,

dynamically located and invoked, interoperable over

different organization networks, and supported by large

organisations (e.g., W3C consortium).

2.4. Model-Driven Architecture

The Model-Driven Development (MDD) paradigm

and the framework supporting it, namely Model-

Driven Architecture (MDA) [12] have been recently

attracting a lot of attention given that it allows software

developers and organizations to capture every

important aspect of a software system through

appropriate models [13]. MDA provides great

advantages in terms of complete support to the whole

cycle development, cost reduction, software quality,

reusability, independence from the technology,

integration with existing systems, scalability and

robustness, flexible evolution of software and

standardization, as it is supported by the Object

Management Group (OMG).

In proposing MDA, two key ideas have had

significant influence in OMG aiming at addressing the

current challenges in software development [12]:

service-oriented architectures (SOA) and product line

architectures (PLA). As to the former, SOA provides

great flexibility to system architectures by organizing

the system as a collection of encapsulated services.

Hence, SOA relies on services which represent the

behavior provided by a component to be met and used

by any other components based only on the interface

contract. As to the latter, PLA promotes developing

large families of related software applications quickly

and cheaply from reusable components.

There are many views and opinions about what

MDA is and is not. However, the OMG, as the most

authoritative view, focuses MDA on a central vision

[12], [13]: Allow developers to express applications

independently of specific implementation platforms

(such as a given programming language or

middleware). To this end, OMG proposes the

following principles for MDA developments: first, the

development of a UML-based Platform Independent

Model (PIM), second, one or several models which are

Platform Specific Models (PSM). Finally, a certain

degree of automation by means of descriptions is

necessary for mapping from PIM to PSM.

3. A generic, service-oriented collaborative

learning platform

The software engineering paradigms and

techniques described in the last section are here

merged and taken one step further by the development

of a generic, robust, interoperable, reusable,

component-based and service-oriented Collaborative

Learning Purpose Library (CLPL) [5], [9].

The CLPL is based on the GP and SOA paradigms

so as to enable a complete and effective reutilization of

its generic components as a skeleton for the

construction of any collaborative learning application

by means of implementing the conceptualization of the

fundamental needs existing in any collaborative

learning experience.

The CLPL also provides full support to

distribution, reusability, flexibility and interoperability

as key aspects to address the current non-functional

needs in software development in general, and

specifically in the CSCL domain. To this end, Web-

services are the implementation technology chosen for

the CLPL given the widely adopted protocols and

standards, which represents the very rationale of the

this technology. These standards represent a suitable

context to guarantee interoperability and scalability by

taking great advantage of the distributed technologies.

In this section, first the main guidelines of the

development of the CLPL are discussed and justified

by means of the use of GP, SOA, and MDA principles.

Then, the architecture of this platform is briefly

described.

3.1. CLPL development

There a great deal of similarities between the

pervasive and challenging collaborative learning needs

and the benefits provided by SOA. As a result of this

matching, SOA appears to be the best choice to support

the development of the CLPL. Indeed, SOA enhances

educational organizations by increasing the flexibility

of their pedagogical strategies, which can be

continuously adapted, adjusted, and personalized to

each specific target learning group. Moreover, SOA

facilitates the reutilisation of successful collaborative

learning experiences and makes it possible for the

collaborative learning participants to easily adapt and

integrate their current best practices and existing well-

known learning tools into new learning goals.

Over the last years, CSCL has become a complex

and extensive domain. Therefore, the application of the

GP principles appear to be a good choice for the

development of the CLPL by, first, identifying those

parts which are common to most applications of the

CSCL domain. Then, proceed to isolate the

fundamental parts in the form of abstractions from

which the basic requirements are obtained. Finally,

encourage the greatest possible reusability of the

resulting generic components for the construction of as

many CSCL applications as possible.

In order to turn the CLPL into an effective software

platform, its development was based on the MDA

approach. This paradigm fits very well in combination

with the GP and SOA principles due to the clear

separation of a generic, reusable technology-

independent model from a different, flexible

technology-dependent implementation models.

To this end, the first step was to create a PIM by

applying the following Generic Programming ideas

[11]: (i) define the semantics of the properties and

domain concepts, (ii) extract and specify the common

and variable properties and their dependencies in the

form of abstractions found in the CSCL domain, and

(iii) isolate the fundamental parts in the form of

abstractions from which the basic requirements were

obtained, analysed and designed as a traditional three-

layer architecture (i.e. presentation, business and

information). To this end, the PIM was expressed using

UML as the standard modelling language promoted by

the OMG.

The second step was to build two different PSM

from the unique PIM achieved: A Java implementation

in the form of a generic component-based library and a

collection of WSDL files organized in directories that

are automatically turned into generic web-services

implemented in the desired programming language and

allowing developers to implement the services

according to specific needs. On the one hand, the Java

programming language provides great predisposition to

the adaptation and correct transmission of generic

software design, which make the software highly

reusable. It lacks of full interoperability between

different programming languages though. On the other

hand, in order to increase flexibility and

interoperability, the SOA-based PSM provides great

predisposition to be involved in distributed

environments supporting different middleware and

programming languages.

Finally, in order to automate as much as possible

the transition from the PIM to the appropriate PSM, the

latest research results are leading us to deal with XMI

files (see [12] for details), which are XML-tagged files

as the result of coding UML diagrams. In combination

with XSL style sheets, it is possible to turn the PIM’s

XMI files into WSDL files, which represent the input

for a Web-service working environment to transform

them into a specific-language architecture design

(PSM). Lack of comply with standard of the existing

UML case tools is the major problem to face next as

well as how to provide a more complete and detailed

realization of the desired PSM.

The development of the CLPL fully followed the

first and second steps while ongoing work is dealing

with the last by introducing certain level of automation

by means of WSDL descriptions.

3.2. CLPL architecture

The CLPL is mainly made up of five components

which are independent according to its general internal

functionality (see complete description in [9]):

CSCL User Management component: this contains

all the logics related to the CSCL system user

management which can act as a group coordinator,

group member, group-entity and system administrator.

It tackles both the basic user management functions in

a learning environment and the user profile

management. The latter implements the user and group

models within a collaborative environment.

CSCL Security Management component: this

contains all the generic descriptions of the measures

and rules decided to carry out the authentication and

authorization issues and so protecting the system from

both the unknown users and the intentional or

accidental bad use of its resources. Its genericity lets

programmer implement them with the ultimate

cryptographic security mechanism existing.

CSCL Administration Management component: this

contains those specific data (through log files) and

processes (statistical computations) so as to carry out

all system's control and maintenance with the aim to

administer the system correctly and to improve it in

terms of performance and security.

CSCL Knowledge Management component: This

supports a complete process of information and

knowledge management. First, this component collects

and classifies the system log files made up of all the

events occurring in a certain workspace over a given

period of time. Then, it performs the statistical analysis

on the event information as well as the management

and maintenance of the knowledge generated from this

analysis.

CSCL Functionality component: this defines the

three elemental parts involved in any form of

cooperation, namely coordination, communication and

collaboration [4]. Coordination involves the

organization of groups to accomplish the important

objectives of members such as workspace organization

and group structure and planning. Collaboration lets

group members share any kind of resources while

communication represents the basis of the whole

component since it enables coordination and

collaboration to be achieved by providing them with

low-level communication support. Furthermore, this

component implements the presentation to users of the

knowledge extracted by the previous component in

terms of immediate awareness and constant feedback

of what is going on in the system.

4. A CLPL application: a structured

discussion forum

To illustrate the approach, a Web-based structured

discussion forum called Discussion Forum (DF)1 [5],

[9] was developed to validate the possibilities offered

by the CLPL. The aim was demonstrate both the

1 The DF is found at http://einfnt2.uoc.edu:8090/df/login.php

effectiveness of developing a complex system in terms

of quality, productivity and cost and the provision of

new opportunities to learning methodologies, such as

learning by discussion, that gives significant benefits to

students in the context of project-based learning, and in

education in general. This applications is currently

running at the Open University of Catalonia2 providing

support to the discussion in several on-line courses.

In this section, first the pedagogical requirements of

the DF are described and then some guidelines that

conducted its design are provided. Finally, the

implementation and deployment of the DF is reported.

4.1. Pedagogical background

In collaborative learning environments, the

discussion process forms an important social task

where participants can think about the activity being

performed, collaborate with each other through the

exchange of ideas that may arise, propose new

resolution mechanisms, and justify and refine their

own contributions and thus acquire new knowledge.

To this end, a complete discussion and reasoning

process is proposed based on three types of generic

contributions, namely specification, elaboration and

consensus [9]. Specification occurs during the initial

stage of the process carried out by the tutor or group

coordinator who contributes by defining the group

activity and its objectives (i.e. statement of the

problem) and the way to structure the group activity in

sub-activities. Elaboration refers to the contributions of

participants (mostly students) in which a proposal, idea

or plan to reach a solution is presented. The other

participants can elaborate on this proposal through

different types of participation such as questions,

comments, explanations and agree/disagree statements.

Finally, when a correct proposal of solution is

achieved, the consensus contributions take part for its

approval (this includes different consensus models

such as voting); when a solution is accepted the

discussion terminates.

4.2. The design of the application

The design of the DF includes certain thematic

annotation cards (such as idea, evaluation, reply that

structure the elaboration phase and can offer full help

2 The Open University of Catalonia (UOC) is located in

Barcelona, Spain. The UOC offers distance education

through the Internet to 35,000 students

support as well. All events generated are to be recorded

as user actions, which are then analyzed and presented

as information to participants either in real time (to

guide directly students during the learning activity) or

after the task is over (in order to understand the

collaborative process). To that end, the CSCL

Knowledge Management and CSCL Functionality

components provided full support to the event

management. In particular, during the elaboration

phase, a complete treatment of the structured task

performance events generated enables the system to

keep participants aware of the contributing behavior of

others, to check certain argumentative structures during

discussion and also to open up the possibility to

provide feedback based on the data produced. Equally,

group analysis outcomes produced by the treatment of

group functioning events constitute an important data

source that can assist in achieving a more satisfactory

solution to the problem during the consensus phase.

Furthermore, the coordinator can use this same

information to organize well-balanced groups during

the specification phase.

Personal features of the discussion group

participants (their role, collaboration preferences and

so on) were taken into account and a user and group

model were designed so as to allow participants to add

new services whilst their needs evolve as the

discussion moves forward. All these user features were

included by the CSCL User Management component

through the user profile management subsystem,

providing a solid support for building and maintaining

the user and group model.

Therefore, the DF constitutes a valuable learning

resource that takes advantage of the CLPL to greatly

improve essential features of a discussion process such

as awareness of participant contributions.

4.3. Implementation and deployment issues

By taking great advantage of the service-oriented

approach of the CLPL functionalities, the primary

principle was in the DF implementation was to provide

a broad set of independent fine-grained Web-services

grouped by a particular purpose [5], such as the

authentication process and the presentation of the

feedback extracted [10].

A clear, independent, and separated vision of each

single behavior of the DF into fine-grained task-

specific web-services resulted in a natural distribution

of the application into different nodes in a network.

This distribution was driven by matching the web-

service purposes and the node configuration and

location in the network. According to this view [5], the

web services in the user interface layer should be

allocated nearby the client; the business web-services

would be better suited if allocated in those nodes with

high-performance processors, and, finally, the data

web-services could be attached or nearby the database

supported by nodes with high storage capability. As to

the database, it can be also distributed as it is clearly

separated from the data web-services, which would be

in charge of updating and keeping the consistency of

the different instances of the database.

The ultimate goal was to enhance and improve the

effectiveness of the learning experience in terms of

non-functional requirements, such as robustness,

scalability, interoperability and so on. Indeed, by

installing and deploying replicas of the web-services

all over the network fault-tolerance is easily achieved

by redirecting a request to an exact replica of the web-

service when a node is down. Concurrency and

scalability become natural in this context by

parallelizing the users’ requests using as many replicas

as necessary. Finally, interoperability is inherent in the

context of web-services technology as they are fully

independent from hardware platforms and

programming languages.

In overall, the reuse of the CLPL’s components in

all phases of the DF development provided a severe

reduction of cost in terms of time and effort while

keeping quality and robustness high. This allowed the

provision and later extensions of a complex application

to support collaborative learning in timely fashion.

5. Conclusions

This paper proposes a step further in the current

software development methodologies by taking

advantage of the most advance and latest techniques in

software engineering, such as Generic Programming

and service-oriented architectures. The goal is to

greatly improve software development in terms of

quality, productivity and cost, as well to provide

effective solutions to meet demanding non-functional

requirements. To this end, an architectural solution in

the form of a generic, service-oriented computational

model called CLPL is provided to help develop

complex, modern and advanced CSCL applications.

Both the development experience of the CLPL and of a

specific application based on this platform is reported

to validate the key ideas proposed in this paper.

 Ongoing work is to automatically describe WSDL

files from the PIM model so that it is possible to

generate PSM implementations of the CLPL in

different programming languages and middleware.

Acknowledgments
This work has been partially supported by the Spanish MCYT

project TSI2005-08225-C07-05.

6. REFERENCES

1. Pankatrius, V., Vossen, G., Towards E-Learning Grids:

Using Grid Computing in Electronic Learning.

Proceedings of IEEE Workshop on Knowledge Grid and

Grid Intelligence, Halifax, New Scotia, Canada, (pp. 4-

15), 2003.

2. Zaheer Abbas, Muhammad Umer, Mohammed Odeh,

Richard McClatchey, Arshad Ali, Farooq Ahmad, A

Semantic Grid-based E-Learning Framework (SELF).

Proceedings of CCGrid 2005, Cardiff, UK, 2005.

3. Koschmann, T., Paradigm shifts and instructional

technology. In T. Koschmann (Ed.), CSCL: Theory and

Practice of an Emerging Paradigm, Mahwah, New

Jersey, Lawrence Erlbaum Associates, (1-23), 1996.

4. Dillenbourg, P, Introduction; What do you mean by

“Collaborative Learning”? P. Dillenbourg (Ed.),

Collaborative learning. Cognitive and computational

approaches, 1-19. Oxford: Elsevier Science, 1999.

5. Caballé, S., Xhafa, F., Daradoumis T. A Service-

oriented Platform for the Enhancement and

Effectiveness of the Collaborative Learning Process in

Distributed Environments. Proceedings of the GADA

2007. Algarve, Portugal. LNCS, 2007.

6. K. Czarnecki, & UW Eisenecker (2000). Generative

Programming: Methods, Techniques, and Applications.

Boston, MA: Addison-Wesley.

7. Web Services Architecture Document. W3C Working

Group, 2004 http://www.w3.org/TR/ws-arch/ (Web

page as of November 2007).

8. Object Management Group: Model-Driven Architecture

http://www.omg.com/mda (web page as of November

2007).

9. Caballé, S., Daradoumis, Th., Xhafa, F. (2007). A

Generic Platform for the Systematic Construction of

Knowledge-based Collaborative Learning Applications.

Architecture Solutions for e-Learning Systems. Idea

Group Press.

10. Zumbach, J., Hillers, A., & Reimann, P. (2003).

Supporting Distributed Problem-Based Learning: The

Use of Feedback in Online Learning. T. Roberts (Ed.),

Online Collaborative Learning: Theory and Practice (pp.

86-103), Hershey, PA: Idea Group Press.

11. Caballé, S., & Xhafa, F. (2003). A Study into the

Feasibility of Generic Programming for the

Construction of Complex Software. In: Proceedings of

the 5th GPCE/Net.Objectsdays 2003.

12. Object Management Group: Model-Driven Architecture

http://www.omg.com/mda (web page as of November

2007).

13. K. Czarnecki. Overview of Generative Software

Development (2005). In J.-P. Banâtre et al. (Ed.),

Unconventional Programming Paradigms (UPP) 2004,

Lecture Notes in Computer Science: Vol. 3566 (pp.

313-328). Berlin: Springer-Verlag.

