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A sustainable strategy for Open Streets in (post)
pandemic cities
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Cities world-wide have taken the opportunity presented by the COVID-19 pandemic to

improve and expand pedestrian infrastructure, providing residents with a sense of relief and

pursuing long-standing goals to decrease automobile dependence and increase walkability.

So far, due to a scarcity of data and methodological shortcomings, these efforts have lacked

the system-level view of treating sidewalks as a network. Here, we leverage sidewalk data

from ten cities in three continents, to first analyse the distribution of sidewalk and roadbed

geometries, and find that cities present an unbalanced distribution of public space, favouring

automobiles at the expense of pedestrians. Next, we connect these geometries to build a

sidewalk network –adjacent, but irreducible to the road network. Finally, we compare a no-

intervention scenario with a shared-effort heuristic, in relation to the performance of sidewalk

infrastructures to guarantee physical distancing. The heuristic prevents the sidewalk con-

nectivity breakdown, while preserving the road network’s functionality.
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Called variously “Open”, “Slow”, “Safe”, or “Shared” streets,
the vision of limiting traffic on urban roadways to free up
public space for pedestrians and cyclists clearly predates

2019—but the pandemic crisis has emboldened it decisively. By
2021, it has become clear that outdoor transmission of SARS-
CoV-2 is rare1, and yet a preceding lack of evidence, along with
an exacerbated public risk perception based on uncertainty2–4,
resulted in outdoor physical distancing recommendations, which
in turn placed more pressure on streets in general, and sidewalks
in particular. City-dwellers had then to learn on-the-fly how to
move around in the public space of the city, while at the same
time keeping a distance of at least 1.5 m from their fellow
citizens5–7. It was at this point that cities world-wide took the
opportunity presented by the pandemic to improve and expand
pedestrian infrastructure8, not only to help people comply with
recommendations, but also to promote social benefits in terms of
health, environmental sustainability, and economics that are
associated with active forms of transportation9,10.

Now, as vaccine-driven herd immunity presses ahead11 in
some countries, the long-term effects of the COVID-19 crisis on
people’s daily habits remains unclear. Many public transit systems
have not recovered from the precipitous drop in ridership seen
over the past year12–14, while car use has remained steady, or is
even expanding13. Furthermore, the potential emergence of new
strains and future epidemics (for which outdoor transmissibility
is unpredictable)15,16 calls for better preparedness and planning.
In this context, some cities are making Open Street programs
permanent, but many others are not. Among those pushing for
permanence, e.g., the C40 Cities Climate Leadership Group, there
are common goals (sustainability, equitable space share, active
mobility) but no clear city-level methodological guidelines.
Should cities strive for distance goals (1, or 10, or 100 walkable
kilometers)? Should they rather pay attention to routing and
connectivity? Such a challenging shift in urban design calls for
interdisciplinary efforts to understand how cities might be
reformed efficiently and safely17, towards a more sustainable
future.

While the term “public space” may conjure up images of parks
and greenways18, we focus here on perhaps the most important
–and surely the most overlooked– public space of all: the side-
walk. It is precisely on sidewalks that most cities have imple-
mented ad hoc interventions (from temporary sidewalk
widenings to complete pedestrianisation) to give pedestrians
more space and to avoid large gatherings, measures which serve
to provide people with a sense of relief –with evolutionary
grounds19– in terms of perceived risk3,20,21. So far, these inter-
ventions have been mostly local and manual, and have not
directly benefited from a complex systems approach of treating
urban sidewalks as a network, in part due to a generalized lack of
publicly available data on sidewalk infrastructure worldwide.

In this work, we address the problems of space equity and
traffic-restricted streets from the perspective of complex net-
works. We bridge the mentioned data gap by collecting com-
prehensive datasets of sidewalk and road infrastructure from ten
world cities across three continents. First, we quantify the share of
public space allotted to pedestrians versus cars, taking the mea-
sure of “arrogance of space” as defined by Colville-Andersen22 to
a city-wide level, and showing for the first time, to the best of our
knowledge, on such a large scale how planning choices can leave
pedestrians with less room to walk. In addition to quantifying the
need for space for pedestrians, it is also important to measure the
overall connectivity of the sidewalk infrastructure. Thus, building
from the same sidewalk geometry data, we develop a method to
automatically construct city-scale sidewalk networks, which we
apply to our cities of study. Next, we assess the potential decline
in connectivity suffered by the sidewalk networks as a

consequence of social distancing recommendations, leveraging
tools from percolation theory. Up to now, nearly no quantitative
analysis exists, to the best of our knowledge, regarding the
robustness of sidewalk networks, with or without social distan-
cing considerations. Anchoring our analysis to the World Health
Organization (WHO) and National Association of City Trans-
portation Officials (NACTO) recommendations6,23, we provide a
baseline from which to adjust urban infrastructure, considering
the delicate trade-offs between the sidewalk and road networks.
Our proposal can either be applied in the context of a pandemic
–as an extraordinary and temporary intervention–, or as a long
term strategy to rebalance the distribution of public space.

Results
From pedestrian space to sidewalk networks. As a first step to
quantify urban pedestrian space, we have collected geodatasets
from ten cities distributed across three continents, each com-
prised of a set of road and sidewalk information representing the
geographic extent of those two features (see Supplementary
Note 1 for more information). From these data, we can map out
the space allocated to cars and pedestrians respectively, both for
the city as a whole and within specific districts (see Fig. 1). Even
at a small scale (Fig. 1a), it is already apparent that area desig-
nated to vehicles takes most of street space in the scenes. Scaling
up this analysis to the city-wide level (Fig. 1b), we see that, even in
a best-case scenario (Paris, France), sidewalks occupy just under
half of the available space (fs= 0.44); at the other extreme, Denver
devotes as little as 16% of its public space to sidewalks. Moreover,
these fractions are not homogeneously distributed across the
urban landscape. Indeed, the arrogance of space22 is, in general,
aggravated as we move out from the city center, as can be seen in
the case of Denver, where darker reds are concentrated in the
peripheral areas surrounding the lighter downtown. However,
exceptions do arise: in Paris, for example, districts with a higher
share of sidewalk space are more evenly distributed throughout
the city, possibly indicating enclaves of older, more walkable
neighborhoods amid modernized, car-friendly areas.

Moving from a city-wide to a global scale, the box plots in
(Fig. 1c) summarize the district-level street space distributions
across all 10 cities of study. In the lower end of the distributions, a
few cities present an alarming lack of sidewalk infrastructure,
with some districts allocating just 10% of their street space to
sidewalks. With the exceptions of Boston and Paris, which both
present relatively compact distributions of sidewalk share, most of
the cities exhibit large heterogeneities in their distributions of the
space devoted to pedestrians. Note that the box plots in Fig. 1c
have been organized in ascending order, taking the average
fraction of sidewalk in each city as a criterium. Remarkably, this
results in a natural ordering of the cities by continent.

This initial analysis provides a glimpse of how street space is
currently distributed in cities around the world, and allows us to
hypothesize that social distancing measures could pose a variety
of challenges, both within cities and among countries and
continents. Validating this requires us to look beyond share of
space dedicated to pedestrians at a specific location, to the service
that sidewalks provide as urban transportation infrastructure. To
this end, it is necessary to translate sidewalk geometries into a
connected structure: a sidewalk network.

Building mainly from planimetric data, we follow a mini-
malistic (yet accurate) approach to sidewalk network construc-
tion. First, a node is placed whenever pedestrians have the choice
either to change direction, or to change the surface on which they
are walking. As such, edges are laid to link two nodes on the same
surface (e.g., two corners of a block), or else to link the closest
node across the street (e.g., a crosswalk). The resulting structure is
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an undirected, spatially-embedded, weighted network, where
edges can be assigned a variety of relevant attributes (length,
width, slope, etc.). A detailed description of the network
construction process can be found in the Supplementary Note 1.

Physical distancing on sidewalk networks. With our newly-
constructed sidewalk networks at hand, we can proceed to engage
the problem of social distancing on sidewalks in a systematic way,
as has been done with respect to other contexts such as public
transportation24,25. In this section, we first test the networks’
present capability to provide for recommended safe distancing.
We then go on to asses the potential of an automated heuristic to
improve the current situation, emphasising sidewalk connectivity,
as well as trade-offs with the urban road network.

Status quo. The natural approach to assessing the feasibility of
interpersonal distancing on sidewalks from a network perspective
is through targeted edge percolation. Percolation theory has been
used to gain insights into a wide range of structural and beha-
vioral features of networked systems, such as robustness, epi-
demic spreading, vital node identification, or community
detection26, and has been extensively employed in the urban
context27–30, also in relation to walkability31. Applied to our
problem, targeted edge percolation translates to removing side-
walk segments that cannot guarantee a prescribed distance
between people. Note that this does not translate to advocating
the blockage of insufficiently-wide sidewalks as a policy. Instead,
we take a similar perspective to Li et al.27 by identifying certain
network edges as dysfunctional. In our case, this occurs at the
point in which the sidewalk is too crowded to afford a given
interpersonal distance, and a risk-averse pedestrian, due to sub-
jective fears that might be more or less justified, would not use the

edge in order to avoid exposing herself to close contact with
others.

Given the uneven distribution of activities and population
across the city, it is of course possible that, for example, a narrow
sidewalk is sufficient on a small street with little foot traffic.
Similarly, the widest sidewalk on a commercial artery may not
withstand strict inter-personal distancing, due to high foot traffic
demand. To take this into account, we define the condition for
sidewalk edge removal considering a combination of structural
and dynamical aspects of the network, i.e., taking into account
sidewalk width and pedestrian flows, respectively. Building from
static information on the width of each sidewalk segment w,
obtained in the previous section, we calculate the effective width
weff per segment, which encodes information from the estimated
pedestrian flows. Accordingly, weff decreases when the level of
flow from a given side of the segment results in the formation of
multiple lines of pedestrians; and increases to infinity when flows
are sufficiently low that an encounter between two pedestrians
coming from opposite directions is not likely. Pedestrian-only or
shared-space streets, as well as crosswalks, also have their weff set
to infinity, and are thus not removed. Figure 2a–d highlights the
steps involved, and a detailed description of both processes –the
estimation of pedestrian flows and the subsequent calculation of
effective sidewalk width– can be found in “Methods”. Sidewalk
segments are thus removed from the network if their effective
width falls below a predetermined threshold τ, which indicates a
prescribed interpersonal distance, see Fig. 2e-f. Coherently, τ is
initially set to 0 and incremented until no more network edges
may be removed.

Percolation analysis typically takes the relative size of the giant
connected component (GCC) as a proxy for network function-
ality, since a minimally functional network should provide for
movement between a large enough fraction of nodes. While

Fig. 1 Maps and statistics on arrogance of space. The distribution of street space between cars and pedestrians varies widely both within and among
cities, but is everywhere biased towards cars. a Close-up snapshots representing the area for motor vehicles (red) and sidewalks (blue). White area
corresponds to buildings. Clear to the naked eye, the majority of street space is devoted to cars. b A more general view of the cities under scrutiny confirms
indeed that roads take up most of the space. Only Paris presents a few districts where the sidewalk share of street space fs is above 50%. c Box plots
(median in dark gray) displaying the distribution of space for all the cities for which the sidewalk geometries were gathered. The x-axis is sorted from
lowest to highest average sidewalk share, 〈fs〉marked in red. Interestingly, none of the cities achieve a median (nor average) fs of 50% or higher. In general,
cities present a remarkable internal heterogeneity, which implies that some districts (dots) suffer from a double inequity (with respect to cars, and also
with respect to other areas of the city). It is clear that European cities rank best in the plot, possibly because they typically have larger “historical centers”,
where street space tends to be shared.
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pedestrian behavior is known to be highly distance-constrained32,
the GCC provides a clear indicator of system-level connectivity
that is relevant regardless of the fact that agents on the network
mostly perform their dynamics on a local scale31. Thus, as τ
increases, we monitor the relative size of the GCC, defined as a

fraction of the largest connected component, C1, and the network
size, N: GCC= C1/N. The GCC informs us to what extent the
network is still functional27,30, i.e., navigable. As a reference, we
will focus on 1.5 and 2 m, which can be regarded as the minimal
width range necessary for an individual to maintain social

Fig. 2 Sidewalk occupancy estimation. a–d The effective width of a sidewalk (weff) encapsulates a sidewalk’s structural (physical) aspects, and its
dynamical performance in terms of pedestrian traffic. The dynamical aspects are estimated with a number of steps that include (a) demographic and
service-location (POI: points-of-interest) aspects (pedestrian origin-destination matrix), (b) edge betweenness-based (Eij) pedestrian flow, and (d)
empirical calibration from actual sidewalk occupancy data. The physical attributes (c) are those related with the sidewalk network construction and
Geographic Information Systems (GIS) operations involved (see Supplementary Note 1), from which shortest path counts ϕ can be obtained. e This
pipeline results in the simplified consideration of a number of walking lines (pedestrians are represented as orange and blue dots), which determine, given
the raw width of a sidewalk, how much space between lines is available (weff). f In turn, weff is the attribute guiding the percolation protocol. In the
example, the segment on the left allows 1.5 m between pedestrians, and is not removed (green); on the contrary, the segment on the right can only
guarantee weff= 1m, and for τ= 1.5 it will be removed (red color). Maps in (a) derived from municipal open data sources (see Supplementary Table 1).
Imagery in (c) courtesy of: Google, © 2021 Aerodata International Surveys, CNES /Airbus, Maxar Technologies. Street networks in (c) courtesy of
OpenStreetMap Contributors.
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distancing recommendations6, considering a small buffer distance
separating pedestrians from the roadbed and from the buildings
running parallel to the sidewalk23, see Fig. 2c.

Correspondingly, we represent two dashed vertical lines at τ=
1.5 and τ= 2 m in (Fig. 3a). Following the decline of GCC, we see
how the sidewalk networks in Boston (green), New York (red)
and Paris (blue) break down, as we iteratively remove sidewalks
segments of effective width below a threshold of τ meters.
Boston’s sidewalk network collapses before reaching τ= 0.5 m, as
indicated by the peak of the second giant component33,34 SLCC
= C2/N (circles in the plot). At a width of 1.5 m, it is already
below 20%. New York, instead, reaches the critical percolation
point soon after the first limiting width, τc ≈ 1.6 m, and
deteriorates rapidly thereafter. Beyond a threshold of τ= 2.5 m
the network has totally collapsed. Paris, finally, shows a much
slower rate of decline: its giant component still holds ~80% of the
sidewalk network together at τ= 2, and its critical point is not in
sight even at τ= 3.5. These three percolation profiles –and those
for the other seven cities, see Supplementary Note 4 and

associated figures– present markedly diverse behaviors, and raise
questions regarding the differences of the underlying structures.
From a topological perspective, the three sidewalk networks in
Fig. 3–and the rest of cities studied here– are similar, with an
homogeneous degree distribution around a well-defined average
degree 〈k〉, in line with other urban infrastructure network29,35.
Consequently, a random percolation process renders a similar
outcome for all of them: see Supplementary Note 5. The
difference might be sought in the specificities of the interplay
between the uneven distribution of the physical features of
sidewalks36 (particularly, their width) both across space and
between various segments and the pedestrian demand on those
segments. Deeper insights into such interplay are offered in
Supplementary Notes 4 and 5.

The maps in (Fig. 3b-d) present three snapshots of the
percolation process for New York, i.e., before (Fig. 3b), around
(Fig. 3c) and after (Fig. 3d) τc. Visible to the naked eye, the city
exhibits a large giant connected component (red) in the initial
stage, although some isolated areas emerge in the periphery. For
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Fig. 3 Effective width (weff) percolation in Boston, New York, and Paris. a Change in the size of the giant component GCC of the sidewalk network of
Boston (green), New York City (red) and Paris (blue), as edges are iteratively removed at the threshold τ, from lower to higher weff. The evolution of the
second largest connected component SLCC is represented as well (right y-axis). The three cities react differently to sidewalk segment removal, with a
collapsed sidewalk network in Boston and New York beyond τ= 2m. As a visual aid, two dashed vertical lines at 1.5 and 2m refer to the minimal width
range necessary for an individual to maintain social distancing recommendations. b–d Sidewalk edges are colored according to the connected component
they belong to. These panels correspond to three snapshots of New York’s breakdown around its critical percolation point τc≈ 1.6 m: from a pre-critical
state (τ < τc), to a dysfunctional stage at τ ≫ τc, where several small clusters coexist (note that sidewalk nodes are colored according to the connected
component to which they belong).
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intermediate τ values, much of the borough of Queens is already
detached from the GCC. By τ > 2, most of the city has been
divided into small, localised clusters, and only the central
borough of Manhattan, together with the southern Bronx, retain
a functional walking infrastructure.

Open Streets on interdependent networks. Treating the problem of
sidewalk physical distancing from a network perspective allows us
to propose improvements to the status quo that take into account
the system-wide effects of any local intervention. Pandemic-
related or not, all of the street pacification37,38 solutions that have
been implemented in recent years by cities on an ad hoc basis,
e.g., for selected streets in commercial arteries, involve redis-
tributing limited street space from cars to pedestrians8,39. This
creates a sensitive situation: the sidewalk and road networks of a
city are coupled, and their interdependency shapes the conditions
for their simultaneous operation40,41. Thus, while closing a street
to traffic may improve the robustness of the sidewalk network, it
necessarily comes at a cost for the road network. This interplay
–any change in one network affects the other– demands a
balanced approach: one that guarantees the sustainability of both
structures. In this context, network analysis stands as a key tool to
design strategies that may help determine how many (and which)
streets can be pacified, while avoiding the collapse of the road
network’s functionality.

Towards this objective, we propose a greedy heuristic to
designate Open Streets. We iterate over the segments eij of the

sidewalk network in ascending order of weff, setting τ ¼ weff
ij and

selecting the corresponding road segment adjacent to eij. We then
consider removing the sidewalk segment, or removing its
neighboring road segment and converting the roadbed to a
pedestrian area. To do so, we determine which structure suffers
least, in terms of connectivity loss (giant component relative size),
when the corresponding edge is removed. If the greatest loss is for
the sidewalk (road) network, we remove the road (sidewalk) edge.
Note that such drastic action –edge removal– does not necessarily
translate into complete segment blockage if actually implemented:
road edge removal could correspond to street pacification, which
may often imply speed reduction or traffic lane(s) loss37,39. In the
case of an equivalent loss for both interdependent structures, the
road edge is preserved (the corresponding sidewalk edge is
removed) with probability p � Er

ij, where Er
ij is the edge

betweenness centrality42–44 of the adjacent road segment (i, j),
which quantifies the amount of shortest paths that traverse each
network edge and is related to road flow45,46 and congestion43,47.
Conversely, the road segment (i, j) is removed (sidewalk is
preserved) with probability 1− p. Because of the stochastic element
introduced by this tie-breaking mechanism, the process was run 40
times for each city. The rationale behind this tie-breaking criterium
is to set a bias towards preserving high-betweenness road segments,
which are fundamental to ease traffic flow and prevent
congestion43,48,49. Admittedly, raw betweenness values might not
be accurate for traffic flow predictions, and yet they allow for a
rough estimation of road importance within the network, which
suffices for our purpose. This conservative strategy towards central
roads will, in turn, restrain (as we will see) an excessive increase in
travel time, alongside the more general goal of sustaining
connectivity.

Figure 4 describes the outcome of this process for Boston, Paris
and New York (panels a, b and c). The dashed line reproduces the
evolution of GCCs if no intervention takes place (GCC in Fig. 3),
as a baseline reference. The blue and red solid, bold lines
represent, respectively, the average evolution of the sidewalk and
road networks’ giant component under our proposed heuristics,
GCC�

s and GCC�
r , in which the effort to sustain both networks’

functionality is shared. Notably, the collapse of Boston’s sidewalk
network is delayed significantly: in the range 1.5 < τ < 2 the GCC
witnesses gains of more than 60%. This success is at an affordable
cost for the road network, which in the same range has lost
roughly 5% of its connectivity. Worth mentioning, the stochastic
rule in the heuristic renders heterogeneous results (individual
realizations of the heuristic are represented by thin lines around
the bold averages). This degree of variability is not observed in the
other two cases (Paris and New York), with over 95% of the
sidewalk network still connected in both cities, at a thresholding
width of 2 m, and a compact distribution of the individual
realisations. Furthermore, the sustainability of the sidewalk
network is compatible with very little-to-no harm to the integrity
of the road network, whose giant component GCC�

r still connects
almost 100% of nodes in its structure, for both cities. Note that
this strategy does not imply that any segment below 2m of
effective width has been pacified, but just enough that both
structures could endure.

The process, despite positive results, has unavoidably damaged the
road network to some extent. Besides a small loss in connectivity, the
gray line in Fig. 4a, b and c monitors how much travel times have, on
average, increased due to street pacification (Δ〈L〉). Note that these
travel times take into account the varying speed limits of different
road segments (see Supplementary Note 3), and are not merely
topological or distance-based. It turns out that, both in Paris and
New York city, average travel times for vehicles have increased by no
more than a factor of 1.2, if we set a limit at τ= 2m; on the other
hand, Boston’s increase at τ= 2 is by a factor of 1.8. Disaggregated
analysis of the increase in travel times is shown in the hex-binned
panels (Fig. 4d, e and f), to the level of individual path duration
distribution up to 20min. Layered on top of the hex-bins, the plots
show the median (dots), surrounded by the area ranging between the
10 and 90 percentiles (transparent blue). Clearly, we can observe that
most travel times for New York and Paris suffer an increase factor of
1.5 or less, suggesting that the final travel time (L�ij) comes at an
acceptable cost. The situation is worse for Boston, where the median
trend shows a doubling of travel times.

Supplementary Note 4 and associated figures reproduce the same
results for the other seven cities studied here. The shared-effort
strategy renders an extraordinary improvement for all cities, with a
pedestrian GCC ≈ 0.75 or more at τ= 2m, and a road network GCC
mostly undamaged. Again, these improvements have only a
moderate effect on travel times in general, with the exception of
Montreal, which shows a trend similar to Boston’s. These relatively
homogeneous results are striking, considering the highly diverse
baselines (no intervention) of the ten cities: some collapse early on,
while others endure even at high τ values.

The insets in (Fig. 4d, e and f), and the corresponding ones in
Supplementary Figures 4–10, provide further analysis regarding
the effects our heuristic may have on road congestion.
Specifically, we analyze the impact on network edge betweenness,
which is closely related to network congestion43,44. Overall, we
observe a contained increase in the betweenness of roads. There
are a limited number of edges that see a large increase or decrease
in the betweenness. Clearly, some of the interventions proposed
by the automated heuristic may require more fine-grained
analysis to understand the microscopic impacts on the road
networks of a given city. Still, in light of these results, we can
conclude that road edge removal has mostly relied on mild-to-low
centrality edges, as we expected, enabling large increases in
sidewalk connectivity, but with limited harm to the backbone of
the road structure, all while preserving to a large extent the
original pattern of pressure on the road network.

The proposed heuristic is successful at both preventing an early
collapse of sidewalk and road networks, and at maintaining
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Fig. 4 Results of the Open Streets shared-effort heuristic. As can be seen in (a), (b), and (c), applying the process to Boston, New York City and Paris
leads to significant gains for the sidewalk network with respect to the case of no intervention (blue dashed line). In addition, the road network begins to
lose some connectivity as higher-width sidewalks are pedestrianised, but these losses are relatively small. The (d), (e) and (f) show the distribution of the
increase in average path lengths (in minutes) for drivers when the process has been run up to sidewalks of 5 m in width. While removed streets from the
road network clearly implies longer travel times for cars, these plots show quite forcefully that the costs are relatively low and concentrated around short-
to-medium paths. Figure insets analyse the effects the heuristic has on the betweenness of roads, Er corresponds to the initial betweenness value and Er* to
the road betweenness after the heuristic has been applied.
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vehicle travel times at a reasonable level. In addition, as a
necessary side-effect, street pacification alters the street space
share between sidewalks and roads39 discussed in the beginning
of this work. Figure 5 repeats the results shown in Fig. 1 for the 10
cities under study, except that the area corresponding to pacified
roadbeds is now assigned to the existing sidewalk. The scatter plot
in Fig. 5a plots the post-intervention sidewalk space share f �s
against the original fs for each district (smaller dots), as well as
global city averages (larger dots). The marginal distributions pre-
(top) and post-intervention (right) are also shown, evidencing a
notable shift towards more balanced road-sidewalk space share.
Figure 5b shows the new distribution of space share in each city,
preserving the order as they were laid out in (Fig. 1). Clearly, the
post-intervention scenario is more compact, with most cities
–and districts within them– presenting a balanced 0:4 < f �s < 0:6.

Conclusion
The disruptions to daily life provoked by the COVID-19 pan-
demic have uncovered, or in some cases intensified, the need to
rethink public space share, and to bolster active forms of mobility
through concrete interventions. The idea of Open Streets—whe-
ther expressed through temporary or permanent sidewalk
widenings, stringent speed limits or total traffic closures– is
simple yet bold in a world of cities where automobiles still, by and
large, dominate. Nevertheless, despite the significant public
attention given to the issue, it is difficult if not impossible to find
a large-scale, quantitative assessment of the way in which cities
might handle the interlocking challenges that pedestrianisation
and street pacification pose in pandemic and post-pandemic
cities. Such a gap is not surprising: a lack of wide-spread data and
standardized methods has prevented the development of a lit-
erature on the subject comparable to that of their counterpart
road networks, making sidewalk networks perhaps the most
neglected piece of our urban transportation infrastructure since
long before the pandemic’s emergence. This work is, to the best of

our knowledge, the first to address, in a systematic and city-wide
manner, the inadequacy of our cities’ sidewalk infrastructure for
an equitable public space sharing, in the context of the ongoing
pandemic and beyond.

This inadequacy is already apparent from the general evidence
of the imbalanced distribution of public space. The informal
impression that most street space is devoted to cars is accurately
confirmed for a diverse selection of cities which, we suspect, are
good representatives of the situation elsewhere –at least with
regard to large urban areas. Notably, the inequalities between
cities seem to indicate a range of possible functional distributions
of urban street space, opening up possibilities for a reorganization
of that space towards more socially optimal arrangements. Con-
necting these sidewalk geometries with two simple rules (change
in direction or surface), we construct city-wide, richly-attributed
sidewalk networks. These are represented as undirected, spatially-
embedded, weighted structures, which can now be analysed
within the framework of urban complex networks. A flow-sen-
sitive, width-based targeted attack percolation process carried on
the cities of study reveals that current sidewalk infrastructure
becomes, if no intervention is in place, severely fragmented when
stringent social distancing recommendations are taken into
account, with many parts of the city mutually inaccessible
on foot.

City governments have and exercise the power to facilitate
physical distancing by pacifying streets, even at the cost of
increasing inefficiencies for drivers. Without the underlying
structure of the sidewalk network, however, it is not possible to
assess the consequences of manually selected interventions at the
neighborhood or city-wide levels. Road networks must be treated
with care in order not to collapse vehicle mobility in cities. Street
pacification thus demands that careful attention be given to the
interdependencies between a city’s sidewalk and road networks,
making a systemic, data-driven strategy necessary. To this end,
we propose an heuristic that emphasizes the connectivity of both
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the sidewalk and road networks, as well as the efficiency of the
latter, with considerable gains for all the cities studied –despite
the inherent limitations of working in a domain where empirical
data are scarce. Also, an added benefit of the proposed strategy
renders a more balanced distribution of street space for all cities
under study.

We foresee that richly-attributed sidewalk networks will trigger
much needed research on a wealth of topics that precede, and will
no doubt extend beyond, the current health crisis. To start with,
future efforts may try to overcome some of the idealisations in the
present work, addressing, for example, the open discussion con-
cerning which aspects of the built environment have an impact on
pedestrian demand, including (but not limited to) block size,
intersection density, diversity of services, and quality of
infrastructure50, or the interplay between pedestrian routing and
safety17, to name a few.

It appears clear that the pandemic has revealed an underlying
tension concerning the design of our public space. By now, some
major cities such as Paris and Barcelona have committed to
maintaining and expanding the street pacification strategies
implemented over the past year. As such strategies become
another among many20,51 long-term actions towards the end of
car-dominated cities, empirically-grounded, systems-level plan-
ning tools like the one developed here will become increasingly
relevant. Beyond this, the horizons for the study of sidewalks as
networks are broad. Starting with the general lack of available
public data on sidewalk infrastructure, these efforts can take
several directions, from a theoretical understanding of the fea-
tures of sidewalk networks, to practical issues like customized
accessible sidewalk routing for those with and without mobility
constraints52.

Methods
Data sources. All data used was derived from publicly available open data sources.

Open data on public space. As mentioned in the main text, public data on sidewalk
infrastructure is not standardised to the same extent as road network data. Many
municipal open data portals lack clearly available sidewalk data entirely. When
available, sidewalk datasets generally take the form either of sets of sidewalk cen-
terlines, or sets of sidewalk polygons. The latter is considerably more common, and
also provides implicit information on the width of sidewalks. For this reason, the
sidewalk data gathered for this work was restricted to cities with an available
sidewalk polygon dataset. However, the algorithm for network construction could
be easily adapted for other types of sidewalk data.

Supplementary Table 1 lists the public sources from which sidewalk geometries
have been collected. Note that the formats in which these data are encoded varies
from city to city.

OpenStreetMap road networks. Road network geometries were extracted from
OpenStreetMap (OSM)53 using the OSMnx Python package54, which provides a
simple interface for querying OSM data. The package was used to extract the edges
and nodes of the “Drive” and “Walk” networks of each city. The “Drive” network
was used as a basis for sidewalk network construction, and later as the road
network for the purposes of the Street Pedestrianization process (see final two
sections below). The “Walk” network, which was filtered to only include those
edges with a “highway” tag of “pedestrian”, “path”, or “living street”, was incor-
porated into the sidewalk network.

Population data. Empirical population data from open government sources serves
as one of the three empirical inputs, along with point-of-interest (POI) data and
empirical pedestrian count data (both described below), for the estimation of our
pedestrian OD matrices for each city of study. As the cities are located in various
countries, the population data came from differing sources, which are enumerated
in Supplementary Table 2. However, all sources were made up of relatively small
polygons (containing from 1 to a handful of city blocks, depending on the city),
allowing for a good level of spatial resolution. The distribution of population
density across all 10 cities is visualized, along with the POI data described below, in
Supplementary Fig. 3.

Point-of-interest data. POI data was used along with the population data described
above, and empirical pedestrian count data, to estimate our pedestrian OD
matrices for each city of study. All POI data except for Denver’s was derived from

Foursquare55,56, a location-based social network. Foursquare POIs are hier-
archically categorized into different uses (i.e., Restaurant→ Chinese Restaurant),
but these were not used. Instead, all POIs were considered homogeneously
attractive to pedestrians. Potential duplicate POIs, those sharing the same category
and location, were filtered from the dataset. Denver’s POIs were derived from
OpenStreetMap53, which provides a similar format to Foursquare, in addition to
also being crowd-sourced. More information on the spatial distribution of these
points, which differed depending on the city, can be found in Supplementary Fig. 3.

Street space distribution calculations. For the purposes of this study, urban
space was divided into 4 broad categories: Road, Sidewalk, Buildings, and Parkland.
The focus of our analysis of public space was on the distribution of street space
between cars and pedestrians. Accordingly, Buildings and Parkland were not
considered in this work. For the purposes of calculating the area taken up by Road,
datasets of roadbed polygons were used, when available. Otherwise, roadbed
polygons were calculated as the area left over after subtracting all other categories
of public space from the city (Buildings, Parkland, and Sidewalk).

Sidewalk network construction. Sidewalk networks were constructed using the
two inputs of municipal sidewalk geometry data and road data from
OpenStreetMap53. Each sidewalk geometry was assigned to a city block, and nodes
were placed along the edge of the sidewalks at the points closest to that block’s
corresponding road network intersection. Sidewalk geometries in line form were
split at the location of these nodes to form network links. Finally, crossings were
added to connect adjacent nodes from different blocks. More details on sidewalk
network construction can be found in Supplementary Note 1.

Pedestrian dynamics, sidewalk occupancy and effective width. Access to real
data on sidewalk use and demand is scarce and difficult to obtain. Open source
alternatives (e.g., Twitter geotagged samples57) offer sparse datasets (in time and
space) which make it nearly impossible to extract sidewalk occupancy with ade-
quate precision. In addition, most of this data is quite noisy if one needs to
precisely determine whether a data point is on the sidewalk.

Given these difficulties, and inspired by Yang et al.58, we obtain time-resolved
sidewalk demand using a series of estimated Origin-Destination (OD) matrices,
generated independently for each city of study. Each OD matrix is built upon three
empirical inputs: geographic population data obtained from government Open
Data portals (see Supplementary Table 3), point-of-interest (POI) data from
Foursquare55,56 (a location-based social network), and real pedestrian flow samples
obtained through the company TC-Street (https://www.tc-street.com/). Each entry,
oij, of the resulting OD matrix (of size N ×N, where N is the number of nodes in
the city’s sidewalk network) represents the amount of people, per time step, who
begin a journey departing from location i to destination j. Note that, as defined, the
OD matrix has units pedestrians per time-step, and thus, can be used to estimate
time-resolved sidewalk demand. As in45,46,48, the OD matrix will be fed to the
calculation of the edge betweenness centrality of our distance weighted sidewalk
networks. The effective edge betweenness will keep consistency with respect to the
units of the OD matrix, thus it will provide us with the expected amount of
pedestrians that get into each network edge per time step. Eventually, with some
minimal additional considerations, this will result in the necessary time-resolved
pedestrian occupancy of each sidewalk segment.

OD matrix estimation. Each OD matrix is constructed following the common
gravitational analogy wherein those nodes of the sidewalk network containing the
most services (i.e., having the most mass) are the most attractive to pedestrians58.
To this end, we start by defining two vectors, p 2 RN and s 2 RN that correspond,
respectively, to the population and the number of POIs present at each network
node. Population data are aggregated in non-overlapping small polygons (e.g.,
census tracts in the US). Thus, every network node falls within exactly one
population polygon. The assignment of population to a node i, pi, is simply an even
distribution of the population in its polygon among the nodes of the sidewalk
network that fall within it. Thus, if a polygon has a population of 100, and contains
4 nodes, each node will be assigned 25 pedestrians. On the other hand, the
assignment of POIs to a node i, si, is simply performed considering the closest
Euclidean distance. This procedure can be efficiently performed using a Voronoi
tessellation with cell centers corresponding to the network nodes: for each node i,
si, will count the number of POIs that fall within i’s Voronoi cell.

Subsequently, on the basis of vectors p and s, we estimate the different entries of
the OD matrix. It is well-known that pedestrian mobility is strongly constrained by
distance32. As such, we bias pedestrian destinations towards closer POIs.
Specifically, we offset the attraction of the mass of POIs at a node i, si, by a distance
decay, following a half-normal distribution with a scale parameter σ. Applied to our
problem, we fit σ such that 95% of trips fall within a Euclidean distance equivalent
to the length a pedestrian will walk in 20 min at 5 km/h (1.4 m/s)59, giving σ= 855
for a distance of ~1670 m. According to this scheme, the attraction of a destination
j from a location i can be obtained as:

aij ¼
sjf ðdij; σÞ

∑N
k¼1 skf ðdik; σÞ

ð1Þ
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where f(d; σ) is the probability density function of the aforementioned half-normal
distribution, and d indicates the Euclidean distance between i and j. Note that, Eq.
(1) is normalized to ensure that ∑jaij= 1 for any i. Thus, each row ai⋅ can be
thought of as a vector describing the probability of a pedestrian choosing to visit
POI at node j ≠ i if she resides at node i. We finally obtain the entries oij of the OD
matrix as:

oij ¼ piaijuj ð2Þ
where uj∈ [0, 1] represents the pedestrian demand for urban services at location j
per time step. In the extreme, uj= 1 indicates that, at each time step, every citizen
will start a trip to use a service at location j. Lower values indicate less frequency on
the usage of services. The parameter uj is obtained considering real sidewalk
pedestrian counts, as shown later on.

Pedestrian flows estimation. So far, oij encodes the number of pedestrians departing
from i and heading towards j per time step. The occupancy of each individual
sidewalk segment will depend on the routes that those pedestrians will take,
considering all intermediate edges. To find out these occupancies, we employ the
edge betweenness, a well-known centrality measure for networks.

Edge betweenness accounts for the fraction of shortest paths that pass through
each edge (i, j), of a network. Although it is usually considered a structural
descriptor, with a minimum change in our interpretation47,60 it can also take a
temporal dimension crucial to estimate traffic across a network’s nodes and edges.
To see how, let us consider a discrete process that generates elements (pedestrians,
packets, etc.) at node k with a fixed destination ℓ, at a rate okℓ. After their
generation, and during the following time steps, these elements traverse the
network, following a shortest path, towards their destination ℓ. Once arrived, the
elements are removed from the network. In this situation, each edge (i, j) traversed
by the navigating element can keep record of the elements that traverse it per time
step. Assuming a non-congested regime, a single shortest path between k and ℓ, and
assuming that all elements have the same velocity, elements should pass through
the network edges at rate okℓ. If we now restrict the betweenness computation of

edge (i, j) to only those paths that go from k to ℓ, EðijÞ
k‘ , the rate at which elements

pass through the edge should be equivalent to: ok‘E
ðk‘Þ
ij . Note that Eðk‘Þ

ij is 1if all

shortest paths between k and ℓ traverse edge (i, j); otherwise Eðk‘Þ
ij is the fraction of

shortest paths between k and ℓ traverse edge (i, j), as in the original definition of
betweenness centrality42.

Following a similar reasoning, we can account for all generation rates indicated
by our OD matrix to estimate the input rate of any edge of the network. This brings
us to a generalisation of the concept of betweenness to consider specific OD
matrices45,46:

Eij ¼ ∑
k≠‘

ok‘E
ðk‘Þ
ij ¼ ∑

k≠‘
ok‘

ϕk‘ði; jÞ
ϕk‘

; ð3Þ

where ϕkℓ corresponds to the number of shortest paths between k and ℓ, ϕkℓ(i, j) to
the number of shortest paths between k and ℓ that traverse edge (i, j), and okℓ to the
generation rate of elements willing to navigate from k to ℓ (that is, the entries of our
OD matrix). This modified version of the edge betweenness centrality is computed
with an efficient adaptation of the Brandes algorithm61.

Fitting pedestrian demand. We cannot continue the proposed pipeline unless we
find a way to determine uj, i.e., pedestrian demand for urban services at location j
per time step. Only then can the OD matrix be conveniently scaled (Eq. (2)), and
plugged into Eq. (3). First, since uj is a rate, we need to define a suitable time-step.
We settle on one minute as an appropriate length, allowing for fine-grained detail
while not relying excessively on the quality of our input data. Then, we take daily
pedestrian count data for a selected sidewalk segment in the center of Barcelona,
provided by TC-Street. These coarse-grained data are adequately disaggregated at
the scale of our time-step to obtain sidewalk demand per minute. For this down-
sampling we, first, collected a realistic service usage distribution from Google
Places, estimating hourly flows across that segment. Subsequently, flows within
each hour were divided uniformly to obtain a flow-per-minute. The highest of
those flows (≈11 people per minute in the afternoon peak hour) was selected to
represent a worst-case scenario.

This value represents the empirical betweenness at the selected sidewalk, and
parameter uj can now be fitted so that our observation (11 people per minute)
matches the betweenness of the corresponding sidewalk segment as defined in Eq.
(3). The value of uj was found to be 0.0127, which corresponds to a scenario in
which 1.27% of the city population begins their designated OD-trip each minute.
Due to the lack of data elsewhere, we set uj= u ∀ j, so that each element of oij is
scaled by the same amount. For the same reason, u= 0.0127 is used as well on the
other cities under study. We are aware that this represents an oversimplification
regarding the demand landscape for urban services, but we believe it to be a useful
approximation based on widely-available data sources, making the approach
scalable.

Sidewalk occupancy estimation. Up to now, our modified version of the directed
betweenness of a given sidewalk segment, Eij and Eji, indicates the average number
of pedestrians that enter the sidewalk edge (i, j) from each end node per minute.

We now address how this translates to time-resolved sidewalk occupancy, and how
it relates to social distancing. Assuming, as before, that pedestrians walk at 1.4 m/s,
the time tij that a pedestrian takes to traverse the sidewalk segment (i, j) can be
obtained. Since pedestrians are assumed to enter and leave sidewalk segments at
the same rate, the expected number of pedestrians walking from i to j on a given
sidewalk segment at any moment can be estimated as:

hij ¼ tijEij ð4Þ
Equation (4) provides the occupancy of each sidewalk of the network, but it

does not incorporate any internal pedestrian dynamics –density-related speed
changes59, pedestrian groupings, gait-related heterogeneities. In this simplified
setting, we assume the flow within sidewalks is organised in lines, see Fig. 3a. From
this assumption, we devise a simple formula to calculate the number of lines that
would be formed by incoming pedestrians from each end. Simply stated, if the
length of the segment is not sufficient to guarantee a given distance between
consecutive pedestrians entering from the same end, a new line is formed. The
number of lines qij on a given sidewalk segment can be obtained as:

qij ¼
hij
h�ij

& ’
ð5Þ

where h�ij ¼ lij=d is the maximum number of pedestrians that a single line on a
segment of length lij can contain, while maintaining a distance d (taken here as 2
m) between consecutive pedestrians. Finally, if the total number of lines present on
a segment (q̂ij ¼ qij þ qji) is larger than 1, the effective width of the sidewalk (in
meters) is obtained as:

weff
ij ¼

wij � 1� 0:5q̂ij
q̂ij � 1

ð6Þ

where wij is the raw width of the sidewalk segment, and 1 m is subtracted from the
raw width to account for a small buffer distance separating pedestrians from the
roadbed (0.5 m) and from the buildings running parallel to the sidewalk (0.5 m).
Also, each line is assumed to span 0.5 m, i.e., the shoulder breadth of an adult
pedestrian. In the denominator, q̂ij � 1 accounts for the number of empty spaces
separating the adjacent lines of pedestrians (see Fig. 2b for a visual representation

of this calculation). If q̂ij ≤ 1, then weff
ij ¼ 1, i.e., the segment has such low

pedestrian flow that (i, j) is never deleted in the percolation process. Finally, note
that the effective width of a segment can be negative. This corresponds to the (sadly
frequent) situation in which q̂ij > 1 and wij ≤ 2, and it explains why some cities
have a GCC < 1 already at the onset of the percolation process, when τ= 0 (see for
instance Boston and New York in Fig. 3a, and several more in Supplementary
Note 4). Supplementary Table 3 details reports on both the percentage of “frozen”

(weff
ij ¼ 1) and negative (weff

ij < 0) links for each city.

Effective width percolation. As described in the text, for the purposes of perco-
lation, the edges of the sidewalk network were sorted by effective width weff from
lowest to highest, excluding pedestrian streets, crosswalks, and low-flow links (see
above on sidewalk occupancy estimation), whose widths are set to infinity.
Accordingly, the first edge to be percolated is the narrowest sidewalk in the net-
work, and percolated edges become progressively wider from there. Networks were
imported from geometric (ShapeFile) format into the Python implementation of
the Igraph library62.

Calculating the change in street space distribution after intervention. As
described in the text, pacifying traffic to convert a road segment into an Open
Street necessarily increases the amount of street space dedicated to pedestrians39.
Each road segment was assigned a portion of the total roadbed area which, when
the segment is blocked, is considered as “sidewalk” for the purposes of calculating
the distribution of street space. Similar to the method used to calculate sidewalk
width, this area was taken as the part of the total roadbed area that was closer to the
given road segment than to any other segment.

Data availability
The sidewalk networks used to produce the results of this work are available at OSF
with the identifier https://doi.org/10.17605/OSF.IO/94TDC. The data on empirical
segment-level pedestrian flows used to estimate the OD matrices are available from
TC-Street, but were used under license for the current study, and are not publicly
available. Data are however available from the authors upon reasonable request and
with permission of TC-Street. All other data sources used are available from open
data providers (see the data sources section of “Methods”, and Supplementary
Notes 1, 2, and 3).

Code availability
The software code used to estimate the pedestrian OD matrices for each city, as well as the
code to calculate the time-resolved edge betweenness of the sidewalk networks, is available at
Github with identifier https://doi.org/10.5281/zenodo.4849662 (alternatively, https://github.
com/COSIN3-UOC/sidewalk_networks).
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