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1. Introduction 

1.1. Context and justification of this work 

After the global crisis caused by COVID-19, companies have begun to recognize 
the important role real-time analytics play when going through intense and 
disruptive crises. These analytics enable a broad range of use cases that 
significantly enhance decision making when relevant business events happen 
(i.e., from keeping abreast of supply-chain issues all the way to ensuring timely 
deliveries to customers’ homes) (Gartner, 2021). 
 
Currently, counting with business events information in real time has been 
possible despite its high economic barrier of entry, although only for organizations 
with an adequate budget for it. Additionally, these types of solutions enable 
continuous artificial intelligence systems which, in turn, empower decision-
making for different functions within the organizations. 
 
However, the current scenario of available infrastructure for real-time data 
streaming is basically composed of isolated private offers. These non-
homogeneous offers integrate different technological stacks to solve needs which 
organizations or individuals are willing to pay for. However, Frischmann 
(Frischmann, 2007) defends that this regime might stifle “the generation of 
positive externalities through the downstream production of public goods and 
non-market goods”.  
 
As Frischmann argues, “the general value of commons as a resource 
management principle is that it maintains openness, does not discriminate among 
users or uses of the resource, and eliminates the need to obtain approval or a 
license to use the resource”. A great example of IT common resources that satisfy 
these requirements are the World-Wide-Web as well as the Email Service. 
 
We can mention email as an enabler of an innumerable quantity of downstream 
producers of public and non-market goods. Public goods include all the direct 
benefits individuals obtain by being able to connect with people and institutions 
as well as how companies and governments obtain greater efficiency by using it. 
Also, individuals are indirectly benefited by this increase in efficiency in the public 
and private sector. On the other hand, non-market goods are also generated by 
the downstream producers of email (i.e., a government increased efficiency to 
reduce air pollution). 
 
In this context, the need of adopting a common infrastructure that efficiently 
solves the management of data in real time arises. Moreover, it is also necessary 
to provide flexibility and dynamism as well as allowing creative innovations to be 
built on top of this common infrastructure. Basically, a common resource 
infrastructure would enable the generation of a wide range of productive 
processes. The outputs of these processes would be public and nonmarket goods 
that generate positive externalities that benefit society as a whole. 
 
Thus, this work will focus on the establishment of an open access network or 
commons network for real time event data streaming. The overall objective is to 
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solve the problems at hand as well as to enable downstream innovation 
opportunities in entrepreneurship and many other activities.  
 

1.2. Objectives of this work 

 
 First, the main objective of this work is to apply the main principles of open access 
infrastructures to define a real-time event data streaming open network. 
According to Navarro (Navarro, 2001) these principles are:  
 

• Non-discriminatory and open access: Access is open because everybody 
has the right to join and use the infrastructure according to the access 
rules.  

• Open participation: Everybody has the right to join the community to 
participate in the construction, operation, provision, and governance of the 
infrastructure.  

 
 Secondly, it will also be required to research and select the most optimal existing 
software for this open event-streaming network. In this sense, all considered 
software shall be open source to remove all barriers of entry regarding licensing 
costs.  
 
 Thirdly, explore the need to design protocols and software components to 
achieve the common resource management principle. All products generated, 
whether documentation or software code, shall also be licensed as open source. 
 
 Finally, this work aims to establish the foundation for a standard for event data 
streaming in the same way email protocols conform a standard for mail 
interchange. In the future, the foundation established by this document could take 
the form of an Internet Society RFC, in the same way as email protocols like 
SMTP, IMAP, etc.  
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1.3. Approach and methodology 

 
The approach to follow on this work is composed of the following phases: 
 

1. Research Open Access Networks principles and Event Streaming 
technologies. 

2. Analyze the output of the research with the focus of establishing an open 
access network for event streaming. 

3. Design a system architecture that enables open participation for Event 
Streaming and provides extensibility capabilities to participants.  

4. Describe the components of the architecture that should be developed 
highlighting both software and communications requirements. 

5. Identify existing software and protocols that can be leveraged for the 
architecture components. 

6. Describe the high-level implementation requirements that should be 
considered when building the architecture components. 

7. Propose an initial implementation strategy that covers the 
requirements and maximizes its leverage on existing technologies. 

8. Describe a strategy to prove the concept of an Event Streaming Open 
Network before developing a complete implementation. 
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1.4. Work Breakdown Structure 

We provide the work planning in Figure 1. 
 

 

Figure 1. Work planning and Gantt chart.  



 

9 

1.5. Summary of products obtained 

 
The main product of this work will be the design of the open network for event 
data streams. This overall design includes: 
 
1. Overall architecture of the network, including computing infrastructure and 

networking requirements. 
2. Selection of open-source tools leveraged for different functions of the network. 
3. Definition of specialized protocols for network management data interchange. 
4. Functional description of required software components whose behavior 

cannot be leveraged by existing tools. 
 
Additionally, a demonstration environment shall be deployed in the cloud as a 
proof of concept. 

1.6. Brief description of the other chapters of the report 

Chapter 1: The Emergence of Event Streaming 
Describe the current landscape of event streaming technologies focusing on the 
paradigm shift that event-driven architectures impose on software development.  
 

Chapter 2: The need for an Open Network 
Delineate the current state of event streaming adoption and justify the need of an 
open network.  
 

Chapter 3: Event Streaming Open Network Architecture 
Proposal of an initial architectural design for an event streaming open network. 
This proposed design includes the participant nodes software components, 
computing infrastructure needs and networking resources requirements.  
 

Chapter 4: Event Streaming Open Network Protocol 
Design description of the protocols that the network requires for administrative 
data interchange. The design includes the recommended networking protocol 
stack to be used in the network. 
  

Chapter 5: Implementation approach 
A thorough description of an initial implementation is provided, which includes the 
rationale for leveraging existing open components. Also, a description is provided 
for the software components that need to be built from scratch. 
 

Chapter 6: Proof of Concept 
Implementation of the main components with minimum functionalities that prove 
the feasibility of the overall Event Streaming Open Network. 
 

Chapter 7: Summary and Conclusions 
Summary of the results of this work together with some insights for improvement 
and potential impact on society. 
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2. The Emergence of Event Streaming 

2.1. Introduction to Event Streaming 

Event Streaming is a concept that requires some explanation. Currently, there is 
no clear consensus on the definition of Event Streaming, but we can find it in 
technology articles as well as in market analysis reports. While there are scientific 
articles about the implementation of this technology, these studies were made by 
the academic sector for exceptional use cases, like the Event Streaming Service 
for ATLAS in LHC1. Thus, we will consider more relevant to this work the market 
definitions for event streaming.  
 
In this sense, analysts at Gartner mentions in a report named “How to Identify 
Your Event-Driven Architecture Use Cases to Select the Best-Fit Event Broker“ 
(Guttridge, 2021) that:  
 
“Event streaming aims to provide reliable event ingestion and distribution using 
numerous data sources, including web browsers, desktop clients and Internet of 
Things (IoT) devices and providing that data to subscribers for processing.” 
 
One important difference to bear in mind is that all event streaming is data 
streaming but not vice versa. This is basically because of the broad generality of 
the concept of data. To the contrary, an event is a very well-defined structure of 
data. For data to be an event means that the information conveyed includes 
context details. In this line, James Urquhart’s book “Flow Architectures” provides 
an excellent explanation for this difference between data and events. 
 
In Figure 2 we can see a diagram both for a data stream and an event stream. In 
the former data is sent as it arrives through the network without adding any 
context. The raw data stream imposes on the consumer the need to add context 
information when the data arrives. This context details addition can be achieved 
by different techniques: (i) knowing the source of the stream (i.e., the MAC 
address of the device), (ii) looking for hints in the data stream itself (i.e., GPS 
latitude and longitude), (iii) capturing a timestamp from the consumer’s own clock 
to identify when a state change occurred; etc. 

 
1  ATLAS is one of two general-purpose detectors at the Large Hadron Collider (LHC). It 

investigates a wide range of physics, from the search for the Higgs boson to extra dimensions 
and particles that could make up dark matter. The ATLAS experiment at the LHC is gradually 
transitioning from the traditional file-based processing model to dynamic workflow management 

at the event level with the ATLAS Event Service (AES). The AES assigns fine-grained processing 
jobs to workers and streams out the data in quasi-real time, ensuring fully efficient utilization of all 
resources, including the most volatile. 
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Figure 2. Difference between a data stream and an events stream. 
 

In the case of event streaming, the producer must assure that there are context 
details included within the payload itself. In Urquhart's opinion, this fact is what 
turns a data stream into an event stream. The context added to the transmitted 
data allows the consumer to better understand the nature of the data. Also, this 
greatly simplifies the behavior to be programmed in the consumer, avoiding the 
need of additional functionalities to understand when and where the event 
occurred. Moreover, according to the author, event streaming will dominate 
streams used to integrate systems across organization boundaries. 
 
Nevertheless, the consumer must be able to interact with the producer and 
interpret the received data. The producer must be able to produce events and to 
transmit them in a format known by the consumer. Thus, there are two main 
needs for this to be accomplished: (i) an interface by which the consumer can 
contact and initiate a connection with the producer and (ii) a protocol by which 
the producer and consumer agree to format, package, and transport the data. 
 

2.2. State of the art of Event Streaming 

When a concrete use case is detected that can benefit from Event Streaming, it 
is needed to determine the different components that are involved. We can 
consider that one application has access to a resource for which it notifies 
changes as events to other actors. This application will be named as the 
Producer. On the other hand, we will have another application (or set of 
applications) interested in these events, which we will name Consumers.  
 
Currently, the state of the art for Event Streaming includes a middle-man system, 
called Event Broker, which is in charge of receiving events from producers and 
making them available for consumers. We can see this architecture in Figure 3. 
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Figure 3. Simple architecture of an Event Streaming integration 
 
 In the rest of this section, we will use Figure 3 to describe all the components 
required for an Event Streaming implementation 

2.2.1. Infrastructure 

In Figure 3, we can see a common layer of infrastructure for all components. This 
layer includes the capabilities of compute, network and storage, which are 
needed to implement an overall Event Streaming solution. Moreover, this layer 
involves hardware, software, servers, storage and network devices, network 
protocols, operating systems, databases as well as all required operational tools 
for them to work cohesively. 
 
The main promise of the infrastructure layer is to deliver core network, storage 
and compute resources on which event-driven computing is built upon. 
Additionally, we can consider these capabilities to be in the commodity phase, 
meaning that there are widely adopted standards for virtualization, container 
management, databases querying languages, etc. 
 
Nevertheless, it’s relevant to consider how public and private cloud computing 
provide this layer of capabilities given the connected nature of event streams. 
Some examples of public cloud computing providers and private cloud ISVs 
(Independent Software Vendors) are: 
 

Public Cloud providers: 
 

1. Amazon Web Services, Microsoft Azure & Google Cloud Compute 
These vendors provide computing infrastructure as a utility by means of a 
broad portfolio of Platform as a Service components, ranging from server 
hosting to data analytics and services for Internet of Things. 
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Private Cloud ISVs: 
 

1. VMware ESX, Microsoft Hyper-V, XEN, KVM 
Virtualization is the base infrastructure allocation technologies for on-
premises data centers, meaning it enables private clouds.  

2. Hewlett-Packard, Dell, Cisco, Juniper, Netapp, Hitachi 
For large Data Centers or on-premises installations, these companies 
provide networking and storage components. 

 
For both Public and Private Cloud, we must also mention Kubernetes, an open-
source project of the CNCF (Cloud Native Computing Foundation). The CNCF is 
a non-profit organization that supports and curates the development of many 
distributed technologies. Kubernetes provides distributed deployment and an 
operation platform for container-based workloads. Over the last years, 
Kubernetes has become the de facto standard for container orchestration and 
management, and it has been implemented both by Public Cloud providers as 
well as Private Cloud ISVs: 

• Amazon Web Services provides EKS (Elastic Kubernetes Service) 

• Google Cloud Compute provides GKE (Google Kubernetes Engine) 

• Azure provides AKS (Azure Kubernetes Service) 

• VMWare provides support for Kubernetes in its hypervisor product called 
vSphere.  

2.2.2. Integration Components 

To integrate a stream of events between producers and consumers, a network-
based integration mechanism is needed. This mechanism will allow both the 
producers and consumers to be disparate, meaning that they can be instances 
of programs developed in different programming languages, with separate code 
bases. In the same way we can develop a SMTP client using Java or Python, we 
can have producers built in Java and consumers built in Python, or any other mix. 
 
However, it’s important to notice that a network-based integration like this 
requires (i) an interface that enables defining, creating and controlling stream 
connections; and (ii) a protocol that defines how and when data will be 
transmitted between the two actors (producer and consumer), including 
formatting and flow control. 
 
Regarding the interface, there is not common consensus on a specification yet. 
Nevertheless, there are standards such as HTTP, WebSocket and MQTT that 
define how to establish and maintain streaming connections. On the other hand, 
there’s also the need for an API that enables publish-and-subscribe relationships. 
Therefore, there are four popular protocols that serve this purpose: MQTT, 
AMQP, Apache Kafka and RabbitMQ. None of these are yet a commodity 
standard for the goal of publish-and-subscribe needs. Urquhart argues that the 
adoption of Event Streaming largely depends on counting with a technology for 
this purpose in the commodity phase. 
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Finally, Discovery APIs are largely nonexistent, except for those cases of 
proprietary solutions. In this sense, Discovery as an Event Streaming component 
is its Genesis phase. 

2.2.2.1. Interfaces 

Network interfaces include low-level mechanisms that define the data structure 
for the communication among producers and consumers. These interfaces are 
APIs (Advanced Programming Interfaces) that enable event streaming. Software 
uses streaming APIs to initiate connections with other software at a level of 
abstraction that both parties understand.  
 
 Urquhart defines two interfaces needed to enable consumers to identify usable 
streams and connect to them: 

1. Logical connection Interface: 
This interface establishes a contract between the producer and the 
consumer about how data is to be structured and delivered. This will allow 
consumers to send authentication information to establish subscriptions, 
manage subscriptions while valid, and close subscriptions when no longer 
needed. 

2. Discovery Interface 
A Discovery Interface would be helpful to understand what event streams 
are available for consumption from a given producer. This interface would 
also be employed to determine the qualities of a stream, such as required 
technology, metrics about stream volume, payload schemas, financial 
fees, etc. 

 
 Some examples of current interfaces follow: 

1. Apache Kafka Consumer API, Apache Kafka Connect 
Apache Kafka is an open-source project of the Apache Foundation. It is 
currently widely used in commercial streaming solutions and its API is a 
critical piece to show what is possible with Event Streaming today. The 
Consumer API is the one used by external entities that connect with an 
Apache Kafka instance to subscribe to event streams. Apache Connect is 
a framework built upon the Consumer API and it’s meant to simplify the 
interaction with Apache Kafka in common high-throughput scenarios. 

2. EdgeX API 
EdgeX Foundry is an open-source platform specification for industrial IoT 
applications. It defines a common set of services as well as an API for 
devices and supporting services to communicate with one another. 

3. CNCF CloudEvents Subscription API 
CloudEvents is a specification for describing events that shows great 
promise for an Event Streaming. It’s defined as a common metadata model 
that can be mapped to any number of connections or protocols. 
CloudEvents is simple and capable of carrying a wide variety of payload 
types. 

2.2.2.2. Protocols 

 The protocol component refers to the agreed-to criteria by which a producer and 
a consumer will exchange and interpret event streams. There are two 
subcomponents worthy of mentioning out separately: 
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1. Metadata format 
Protocol format for describing metadata that can be used to understand 
payload formatting, encrypt/decrypt payloads, understand origin, etc. 

2. Payload format 
Protocol format for understanding the specific data payloads sent by a 
producer. These formats will vary significantly from use case to use case, 
but standard payload format may be defined for common streams in each 
industry or market. 

 
 Currently, we can find the following technologies providing the Protocol 
component: 

1. CNCF CloudEvents 
As mentioned previously, CloudEvents is a project of the CNCF. 
Regarding protocols, it’s aiming to allow the event processing across 
different vendors. For instance, processing events produced by AWS SQS 
in a private Apache Kafka deployment. It is currently binding HTTP, MQTT, 
Apache Kafka and NATS. Also, it defines a set of metadata, and the 
bindings define specific structures that combine metadata and payload 
data for the target protocol or interface. 

2. NATS Client Protocol 
NATS (Neural Autonomic Transport System) is a CNCF project that 
delivers simple, secure messaging for several high-performance uses. 
However, NATS counts with a simple protocol for publishing and 
subscribing to a topic of interest or queue. It is worth mentioning that while 
NATS is an open-source project, the protocol is proprietary. 

3. MQTT (Message Queueing Telemetry Transport) 
MQTT is a lightweight publish-and-subscribe protocol that handles many 
of the same functions as the NATS Client protocol does. Additionally, it 
incorporates features to manage functionalities like expiration, rate 
limiting, length limiting as well as other control functionalities. MQTT is 
widely adopted mainly in IoT environments, and it is vendor neutral. 

4. AMQP (Advanced Message Queueing Protocol) 
AMQP has been defined by OASIS (Organization for the Advancement of 
Structured Information Standards), a standards body focused on 
promoting product-independent data standards like HTML and XML. 
AMQP is focused on enabling common message exchange between any 
message-aware software, regardless of use case, networking 
environment, etc. AMQP expressly declares it’s goal to be the integration 
of organizations. 

5. HTTP (Hypertext Transfer Protocol) 
HTTP is the de facto standard for the World Wide Web. Also, it is used by 
applications to interact with HTTP servers through REST APIs as well as 
for machine-to-machine communication, device operations, 
microservices, etc. The main inhibitor for HTTP to become the standard 
protocol for an Event Streaming is that it does not currently support a 
publish-subscribe method. 

6. WebSocket 
WebSocket enables bidirectional communication between actors over 
HTTP. The fact that it is built on top of HTTP provides great compatibility 
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with most of the internet security and network services. WebSocket could 
be used to carry formats like CloudEvents.  

2.2.3. Interaction Components 

 The Interaction Components are inspired in modern Event-Driven Architecture 
nomenclature involved in creating value on both ends of a connection. These 
components implement a function that can be generalized in: 
 

• Source components: software that collects data which can be hardware 
devices with sensors, webhooks, API, databases, etc. Any component that 
gathers data to put into a stream can be considered a Source. There is a 
broad variety of possible sources, ranging from IoT devices to databases. 
Thus, any piece of software that receives data in a non-stream format and 
places that data in an event stream is a Source. 

• Processor components: software whose main behavior is to listen to an 
event stream, process it and return output events. Processes may act both as 
consumer and producer. 

• Queue components: mechanisms for collecting, storing, and forwarding 
streaming events on behalf of producers and consumers. Basically, queues 
are like buffers that enable producers to deliver their event stream payloads 
without direct interaction with the consumer. Also, queues enable consumers 
to receive event data only when they are ready and available to process it. 
The main advantage of queues is that they decouple the producer from the 
consumer -or consumers- of the event stream while enabling asynchronous 
communications and independent operations. 

• Sink components: software whose purpose is to display or store the results 
of processor components. This can be an application that delivers event data 
to a dashboard or into a database. It also represents that the stream stops in 
a sink. 

 
 As a conclusion, in Figure 4 we can see all the components that have been 
described as the state of the art of Event Streaming. In this diagram the color 
determines the stage of commoditization of the different components. Green 
represents that the component is closer to be considered a commodity, while red 
means that there are currently proprietary solutions in place. 
 

 

Figure 4. Current maturity stage for the Event Streaming components. 
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3. The need for an Event Streaming Open 
Network 
 
According to Urquhart (Urquhart, 2021), Event Streaming plays a key role in how 
the economic system evolves. Society is rapidly digitalizing and automating the 
exchanges of value that constitute the economy. Also, considerable time and 
energy is spent to assure that key transactions can be executed with reduced 
human involvement with better, faster, and more accurate results. 
 
However, most of the integrations executed today across organizational 
boundaries are not in real time and they currently require employing mostly 
proprietary formats and protocols. On the other hand, some industries have 
adopted data formats for exchanging information between organizations, such as 
Electronic Data Interchange (EDI). However, those integrations are limited to 
specific use cases and represent a small fraction of all needed organizational 
integrations.  
 
Even when application programming interfaces exist for event streaming, these 
are largely proprietary. For instance, Twitter offers an API for consuming social 
media streams, but it is not implemented by other parties. Thus, there is no 
consistent and common consensus on a mechanism for the exchange of events 
across organizations. This results in a completely custom landscape for real-time 
cross-organization integration. In this scenario, development teams must invest 
plenty of time into understanding and defining a common interface for data 
exchange. 
 
In this context, we can now introduce how this landscape would radically change 
with the adoption of an Event Streaming Open Network. When needing to 
integrate real-time information across organizations, developers would have a 
common basis for finding, publishing, and subscribing to event streams. Also, 
given a set of standard formats to encode and transmit events, developers could 
use the programming language of their choice.  
 
Overall, this set of standards would drastically reduce the cost of real-time 
integration, which would also enable experimentation by users. This 
experimentation can create an innovation space for new uses of event streaming.  
 

3.1. Necessities for broad Event Streaming adoption 

In this section, we will describe the main needs for the broad adoption of Event 
Streaming. The focus will be made on detecting and describing the missing 
capabilities that could not only enable but also accelerate the event data 
integration among different organizations. The different necessities detailed in 
this section will serve as input for an architecture design. 



 

18 

3.1.1. Necessity 1: Availability of an Events Public Registry 

A public registry of an organization’s available event streams does not exist. We 
will argue in this section why this is the core component that an Event Streaming 
Open Network can provide. 
 
Nowadays, when an organization needs to publish an event stream or event flow, 
they usually follow some form of the following steps: 
 
1. Develop and deploy a producer application that writes events to a queue. 
2. Create all necessary networking permissions for external public access to the 

queue. 
3. Inform the remote user the access information (i.e., Hostname/IP, protocol, 

and port) together with the required client details and technology for accessing 
the stream (i.e., Apache Kafka Protocol, RabbitMQ API, etc.). 

4. Create credentials for consumer authentication and authorization access to 
the queue. 

5. Develop and deploy a consumer application that reads the queue. 
 
Now, we can compare this process to a simple email interaction: 
1. Sender opens a graphical Mail User Agent application and sends an email to 

an email address formatted as user@domain. 
2. The message is sent to an SMTP server that routes it to the destination SMTP 

servers for the given domain. Once received, the message is put into the user 
mailbox. 

3. When the recipient checks its mailbox by IMAP or POP3, the new email is 
transferred to the Mail User Agent. 

 
In these two scenarios, we can see that the information needed to be exchanged 
offline by the actors is completely different in size and content.  
 
First, in the case of email, there is a shared naming space given by the Domain 
Name Service (DNS). The email format has been standardized by the IETF in 
RFC 5321, section 2.3.11. Thus, there is a common naming space that is used 
for referencing mailboxes in the format user@domain. Thus, the offline details 
communicated by the peers is only the recipient email address. There is no 
analogous standard nor an open alternative for Event Streaming. 
 
Therefore, in the case of Event Streaming, users need to perform plenty of offline 
communication to agree not only on the technology to use but also on the queue 
to use. For instance, two organizations may be currently using Apache Kafka and 
need to share an event stream among themselves. The organization having the 
source of the stream should provide the following details to the consumer 
organization: 
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• Bootstrap servers: Fully Qualified Domain Name list of the Apache Kafka 
brokers to start the connection to the Apache Kafka Brokers. Example: 
tcp://kf1.cluster.emiliano.ar:9092, tcp://kf2.cluster.emiliano.ar:9092, 
tcp://kf3.cluster.emiliano.ar:9092 

• Topic or Queue name: name of the topic resource in the Apache Kafka 
Cluster 

• Authentication information: User and password, TLS Certificate, etc. 
 
In the case these organizations were not both using Apache Kafka, the use case 
cannot be simply solved without incurring in development or complex 
configurations as well as adopting proprietary components. 
 
We can conclude that an Event Streaming Open Network should provide a global 
accessible URI for streams in a similar fashion than email, to reduce offline 
developers’ interactions. This means being able to name event streams in a 
common naming space like DNS, as well as providing a mechanism for users to 
discover the location and connections requirements. 

3.1.2. Necessity 2: Establishment of a User Space for Events 

Another need for broad adoption is due to the inexistence of a common and 
agreed user convention. In the general literature, we cannot find reference to the 
types of users that would consume or produce events to and from an event 
stream.  
 
In this sense, it is also appropriate to consider the email use case. Basically, an 
email user only needs to know the email address, the password, the URL of a 
web mail client or the details of IMAP/POP3 server connection. Once the user 
has this information, it’s possible to access an email space or mailbox where the 
user can navigate the emails in it. Also, IMAP provides the possibility for the user 
to create folders and optionally share them with other users. 
 
There is no analogous service currently available for Event Streaming analogous 
to the email case. This means that the user concept in Event Streaming is limited 
to authentication and authorization. Thus, the user does not have access to a 
“streambox”. The result is the impossibility for a person or an application to 
possess a home directory containing all the streams owned by the user. 
 
As a conclusion for this section, we can mention that it is necessary to embrace 
a user space resource for Event Streaming. This resource should not only solve 
the users’ motivations and requirements but also reduce the offline verbal 
communications and custom development dependencies. In the next sections, 
we will refer to this component as the Event User Space Service. 
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3.1.3. Necessity 3: An Agnostic Subscription Protocol 

A third need for wide adoption is an agnostic protocol to manage subscriptions to 
event streams. For this need to be solved, it would be necessary first to count 
with an Event User Space Service. Then, in case a user has created a stream 
and wants to enable public subscriptions by other users, there is no general 
protocol to inform other parties of this subscription intention nor its confirmation.  
 
The result is the inability for the users to seamlessly subscribe to an event stream. 
They either must employ protocols like MQTT or, in the need of employing other 
application protocols like Apache Kafka, hardcode the subscription details in the 
different software implementations. This means that there is no general 
subscription protocol for Event Streaming that is agnostic of the application 
protocol employed. This protocol implements both the Metadata Payload Format 
and Payload Format. 
 
A good example to illustrate the difference between a control protocol that 
implements a Metadata Payload Format from a payload protocol that implements 
a Payload Format is how SIP (Session Initiation Protocol) works with RTP (Real 
Time Protocol) to provide VoIP capabilities. The former is a control protocol that 
initiates and maintains a session or call while the latter is the one responsible for 
carrying the payloads, which in the case of VoIP it would be coded audio. 
 
Consequently, a similar definition of protocols could potentially mitigate this 
limitation for Event Streaming. If a protocol can be used to establish and maintain 
the subscriptions relationships while another different protocol is used for the 
events payload, all the current application protocols implementations could be 
supported.  
 
Additionally, by counting also with an Event Streaming Public Registry, it would 
be possible to provide URI for streams in a similar way as email works with the 
“mailto” URI. For instance, in web pages one can find that email addresses are 
linked to mailto URIs which, when clicked, open the default email user application 
(i.e., Microsoft Outlook) to send an email to the referenced email address. 
 
If a user counts with a user space or streambox, then a user application like an 
email client could provide access to it. Then, if the user clicks on a link of a stream 
URI (i.e. “stream:myeventflow”), the streambox application would open and 
subscribe to the given stream. 
 
Currently, the Metadata Payload Format as well as the Payload Format are both 
provided by the queue or log application protocol. In the case of Apache Kafka, 
both formats are implemented within the Apache Kafka Protocol. This introduces 
a barrier for interoperability among different technologies, meaning that flows of 
event data cannot be seamlessly connected, without relying on custom 
development or proprietary software licensing. 
 
We can conclude that there is an actual need for an open specification of an 
Event Subscription Service for event streams, which implements what Urquhart 
calls Metadata Payload Format. This specification could be materialized in a 
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network protocol that introduces an abstraction for the event queue or log 
technologies implemented by different organizations.  

3.1.4. Necessity 4: An Open Cross-sector Payload Format 

Currently, the different implementations of Event Streaming combine both the 
Payload Format with the Metadata Format. This means that the same protocol 
utilized for payload transport is used for subscription management. 
 
In Figure 5, we can see how these two formats are combined in the case of 
Apache Kafka. 
 

 

Figure 5. Apache Kafka Protocol combines the metadata and the payload 
formats. 

 
When a producer intends to publish events to a queue or, using Apache Kafka 
terminology, when a producer intends to write records to a topic, first it needs to 
initiate a connection to at least one of the Apache Kafka Brokers. In that initial 
exchange of TCP packages, the producer is authenticated, authorized, and 
informed with topic details. This set of transactions would belong to a protocol 
that implements a Metadata Payload Format. Afterwards, when the Producer 
starts writing the events to the topic, it encapsulates the event payload in a Kafka 
Protocol message. This latter behavior makes use of a Payload Format. Thus, 
we can observe how both theoretical formats are coupled in a single protocol. 
Similar behavior of a coupled Metadata and Payload Format in one single 
protocol happens also in AMQP, MQTT and RabbitMQ. 
 
As for the consumer, the behavior is the same with the difference that the initial 
intention is to subscribe to a queue or, in Apache Kafka terminology, to consume 
records of a topic. Then, a set of TCP packages encapsulating the Apache Kafka 
protocol authenticates, authorizes, and informs the Consumer with topic details 
for consumption. Afterwards, the consumer can start polling for new records in 
the different partitions of the topic. It is worth mentioning that the consumer needs 
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to implement more queue management logic than the Producer, especially when 
multiple replicas of a consumer type are deployed. 
 
If we focus on the Payload Format, there is the need for an implementation-
agnostic payload format suitable for Event Streaming. In this sense, CloudEvents 
project of the CNCF proposes a specification and a set of libraries for this 
purpose. The goal is to use CloudEvents specification as a Payload Format 
regardless of the Payload Protocol being used. For instance, we could transmit 
events in the CloudEvents format using the Kafka or AMQP Protocol.  
 
In Figure 6 we can observe an UML diagram of the CloudEvents object that could 
be used to serialize the data before the producer sends the event, as well as to 
deserialize it once a consumer receives it. 
 
  

 

Figure 6. CloudEvents Payload Format UML diagram. 
 
The general structure of the CloudEvents Payload Format includes a 
standardized methodology to include event data in an event message. For 
instance, instead of defining a customized JSON structure for sending the events 
of temperature changes measured by a device, a CloudEvent object could be 
used. Temperature could be included as an attribute in the CloudEvent object.  
 
We can then conclude that while there is no current protocol candidate that 
implements the Metadata Format, CloudEvents is a good candidate for the 
Payload Format needed in an Event Streaming Open Network. In this way, the 
different CloudEvents libraries made available in several programming could be 
leveraged. 
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3.2. Solving Event Streaming necessities with an Open 
Network 

In the previous sections, we described the main different necessities currently 
inhibiting the broad adoption of Event Streaming. In this section we will argue how 
Internet standards are developed and why this is the case for an Event Streaming 
Open Network. 
 
There are two main ways in which standards can be developed adopted: 
 

1. First, there are organizations that produce standards for different sectors. 
For instance, there is the ISO (International Standards Organization) that 
develops and publishes worldwide technical, industrial, and commercial 
standards; the W3C (World Wide Web Consortium) which defines 
standards such as HTML or CSS; and the IETF (Internet Engineering Task 
Force), which produces documents called RFC (Request For Comments) 
that contain specifications for important Internet protocols such as DNS, 
FTP, SMTP, IMAP, POP3, IMAP, SIP, RTP, etc. 
 

2. Secondly, we have the private sector that continuously innovates to 
efficiently and rapidly solve new problems. The goal of the private sector 
is not necessarily to provide open standards but to solve problems in more 
convenient way than their competitors. This does not eliminate the 
possibility that standards can be achieved, which can happen because of 
a broad adoption and the Network Effect. 

 

Therefore, standards are produced both by standards organizations and by 
the market competition. While it is evident that most of the market products do 
not become standard, also not all standards defined by standards organizations 
become widely adopted. 
 
An interesting example of this phenomenon is the case of ISDN (Integrated 
Services Digital Network), a set of communications standards for the 
transmission of voice, video, and data over the PSTN (Public Switched 
Telephone Network) developed by the ITU-T (Telecommunication 
Standardization Sector) in 1988. ISDN pretended to use the existing public 
telephone network to transmit digital data in a time when the Internet connectivity 
access was not as broadly available as it is today. The main competitor of this 
standard was the incipient Internet itself, which could be used to transmit the 
same data. 
 
The Internet alternative needed a protocol to support the same services offered 
by ISDN, which was initially developed by the conjoint effort of the academic and 
private sector. Consequently, in 1992 the Mbone (Multicast Bone) was created. 
This project was an experimental network backbone built over the Internet for 
carrying multicast IP traffic, which could be used for multimedia content. After 
some important milestones of this project, the SIP (Session Initiation Protocol) 
was defined in 1996 and was published as a standard protocol in IETF’s RFC-
3261. The reality today is that SIP has completely won the standards battle for 
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multimedia transmission over the Internet, and ISDN usage has been on 
continuous decline. 
 

This lesson teaches us that it is not enough to define standards if these are 
not implemented and broadly adopted. Also, it shows the need for open 
standards instead of proprietary specifications. However, having open 
standards is not enough to guarantee adoption and this will greatly depend on 
market factors. If a given problem can be quickly solved using existing open 
specifications and implementations, it may have chances of becoming a 
standard. Then, it does not really matter if initially there is no standards 
organization behind the specification as long as it is openly accessible. 
Afterwards, it could be officially standardized with the support of a standards 
organization. 
 
As for Event Streaming, we see a similar scenario set-up in the market today. 
There are currently several open specifications and implementations for Event 
Streaming, like AMQP (Advanced Messaging Queueing Protocol), supported by 
RabbitMQ. However, while AMQP can be used for several purposes, Kafka 
Protocol specializes on Event Streaming Processing and its specialized features 
make it more convenient than RabbitMQ.  
 

An Event Streaming Open Network would imply at least the definition of an 
open specification and an open-source implementation that solves the 
currently necessary components mentioned previously in this chapter.  
 
However, there is a relevant difference between an Event Streaming Network 
with other open networks, like guifi.net. The reason is that guifi.net possesses 
governance over the network and there is a community behind for management 
and operation. In the case of Event Streaming, if we guide ourselves by the 
history of the most widely adopted protocols on the Internet, the governance 
should be similar to that of the World Wide Web or Email.  
 
Both the World Wide Web and Email have open specifications as well as open-
source implementations. We can mention the Apache Web Server as an open-
source implementation of the HTTP protocol; Postfix for SMTP; and Bind for DNS. 
Nevertheless, the governance for these protocols’ specifications relies on the 
IETF. 
 
In order to define the characteristics of an Event Streaming Open Network, we 
will first focus on the definition of shared and openly accessible infrastructure. 
First, we will show how DNS complies with the criteria to be considered an 
infrastructure resource. Then, we will demonstrate how this is also true for Event 
Streaming. Finally, we will review the principles of Free, Open & Neutral Networks 
and why they should be followed for an Event Streaming Open Network. 
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3.2.1. Open Access Infrastructure Resources 

 
The literature about Commons Infrastructure (Frischmann, 2007) defines a set of 
criteria to evaluate if a resource can be considered an infrastructure resource. 
This analysis is relevant since it can provide some arguments to prove the need 
of an infrastructure of commons for Event Streaming, which could then be 
materialized in an Open Network for Event Streaming. The demand-side criteria 
for evaluating if a given resource can be considered as an infrastructure resource 
are: 
 
1. The resource can be consumed nonrivalrously. 
2. Social demand for the resource is driven primarily by downstream productive 

activity that requires the resource as an input. 
3. The resource is used as an input into a wide range of goods and services, 

including private goods, public goods and/or non-market goods. 
 
First, a nonrival good describes the “shareable” nature of a given good. 
Infrastructures are shareable in the sense that the resources can be accessed 
and used by multiple users at the same time. However, infrastructure resources 
vary in their capacity to accommodate multiple users, and this variance in the 
capacity differentiates nonrival resources from partially rival resources. A nonrival 
resource represents those resources with infinite capacity, while a partially rival 
resource has finite but renewable capacity. As an example, Broadcast Television 
is a nonrival resource since additional users do not affect the capacity of the 
resource. On the other hand, natural oil resources are completely rival since its 
availability is limited and it is not renewable. In the middle, we have partially rival 
resources like a highway, which may be congested. This last characteristic is also 
true for the Internet since it supports additional users without degrading the 
service to existing users to a certain extent. 
 
Secondly, infrastructure resources consumption is primarily driven by 
downstream activities that require this resource as an input. This means that the 
broad audience consumes infrastructure resources indirectly. For instance, 
highway infrastructure is used to transport every kind of physical good which 
people and organizations purchase. This facilitates the generation of positive 
externalities for society through the downstream production of public goods and 
non-market goods. These positive externalities might be suppressed under a 
regime where resource availability is driven solely based on individuals’ 
willingness to pay. 
 
Regarding willingness to pay, it is relevant to analyze this factor more 
exhaustively. Frischmann states that if infrastructure access is allocated based 
on individuals’ willingness to pay the potential positive externalities of that 
infrastructure might be stifled. Thus, infrastructure resources behave differently 
than end-user products: if the former are made available solely based on the end-
user demands and willingness to pay, those needed infrastructure resources 
might never be made available. As an example, we can mention that if airports 
were built based on individuals’ willingness to pay for them, they might not even 
be built. However, individuals are willing to pay for the airport's downstream 
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activities, such as purchasing a flight or consuming air-transported goods. Then, 
a whole set of positive externalities are generated by the existence of an airport 
in a city. 
 
In the third place, infrastructure resources are used as input for a wide range of 
outputs. This criterion emphasizes both the variance of the downstream outputs 
and their nature. Thus, the infrastructure resources possess a high level of 
genericness which enable productive activities that produce different goods with 
high variance. If we consider how an airport complies with this criterion, we can 
mention that not only airports serve individuals that need to travel by air but are 
also used to transport many kinds of physical goods. These goods then enable 
other activities throughout the downstream value chain. Then, the output variance 
of the activities that take airport infrastructure as input is significantly high. 
 

3.2.1.1 Open Access DNS Resource Example 

 
Now, we will provide as an example how DNS complies with these criteria and 
why it can be considered an infrastructure resource. 
1. DNS infrastructure is a partially rival resource because individuals and 

organizations can register domains in the Domain Name addressing space. It 
is partially rival because not every actor can acquire the same domain name. 
However, the access to registering domain names is open and non-
discriminatory. Moreover, DNS is also prone to congestion, which emphasizes 
its partially rival nature. 

2. DNS infrastructure demand is driven principally by downstream products and 
services. An average Internet user is not paying directly for this infrastructure, 
but all the Internet services the user consumes pay for DNS infrastructure. 
This is true for all the Internet services due to the ubiquitous nature of DNS 
infrastructure. 

3. All Internet services take as input DNS infrastructure and produce a broad 
variety of outputs, which then generate positive externalities to society as a 
whole by means of private goods, public goods and/or non-market goods. 

 
We can conclude that DNS complies with Frischmann criteria for being 
considered as an infrastructure resource. The resource is represented both by 
the domain name that can be and by the querying capacity of DNS servers. 
 

3.2.1.2 Flow: Open Event Streaming Resource  

Now, we can evaluate how an Event Streaming Open Network can comply with 
the infrastructure resource criteria together with the FONN principles.. 
 
To begin with, we need to define what elements could be considered as 
infrastructure resources in an Event Streaming Open Network. First, the resource 
must be capable of delivering streams of events to consumers. Secondly, it must 
also permit producers to write events to the stream. Thirdly, each stream must be 
identifiable (i.e., URI) and able to be located (i.e., URL). From now on, we will 
use “Flow” to refer to the infrastructure resource of an Event Streaming 
Open Network. 
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The first Frischmann criterion requires the resource to be consumed 
nonrivalrously. Complete nonrivalrously for any Internet Service cannot be 
achieved due to the possibility of congestion and potential unavailability of 
different elements of the network. The same would be true for a Flow resource. 
Moreover, the public naming addressing space for Flows would be limited to the 
same level as that of domain names.  
 
We will continue now with the third criterion. To illustrate the potential of Flow 
being used as inputs for downstream activities, we will refer to Urquhart’s vision 
for Event Streaming. He lists two areas in which significant changes can happen: 
 
1. The use of time-critical data for customer experience and efficiency. This is 

driven because today’s consumers are increasingly expecting great 
experiences, and organizations are almost always motivated to improve the 
efficiency of their operations. 
 

2. The emergence of new businesses and business models. Businesses and 
institutions will quickly discover use cases where data processed in a timely 
manner will change the economics of a process or transaction. They may 
even experiment with new processes, made possible by this timely data flow. 
Thus, flow resources will also enable innovation. These innovations are 
responsible for generating positive externalities. 

 
Then, we have demonstrated why Flow resources can be considered as 
infrastructure resources using Frischmann’s Demand-side Theory of 
Infrastructure. These resources can be managed in an open manner to maximize 
positive externalities, which basically means maintaining its open access, not 
discriminating, and eliminating the need to obtain licenses to use the resources. 
Consequently, managing infrastructure resources in this manner eliminates the 
need to rely on either market actors or governments. 
  
Lastly, the adoption of an Event Streaming Open Network implies taking Flow 
resources as inputs for productive activities. These inputs would then be used 
downstream to generate private goods, public goods and/or non-market goods. 
Additionally, we can assure that most of the consumers of Flow would not directly 
consume Flow resources. They would consume the outputs of downstream 
activities that use Flow as input. Again, the consumers may not be willing to pay 
for Flow resources directly. 
 

We can conclude this section mentioning that an Event Streaming Open 
Network would enable one infrastructure resource called Flow. The access 
to this resource can be managed in an openly manner: maintaining open 
access, not discriminating users or different uses of the resource, and 
eliminating the need to obtain approval or a license to use the resource. 
  



 

28 

3.2.2.  Free, Open & Neutral Networks (FONN) 

The main principles of a Free, Open & Neutral Network are: 
 

• It is open because it is universally open to the participation of everybody 
without any kind of exclusion nor discrimination, and because it is always 
described how it works and its components, enabling everyone to improve 
it. 

 

• It is free because everybody can use it for whatever purpose and enjoy it 
independently of his network participation degree. 

 

• it is neutral because the network is independent of the contents, it does 
not influence them and they can freely circulate; the users can access and 
produce contents independently to their financial capacity or their social 
condition. The new contents produced are orientated to stimulate new 
ones, or for the network administration itself, or simply in exercise of the 
freedom of adding new contents, but not to replace or to to block other 
ones. 

 

• It is also neutral with regard to the technology, the network can be built 
with whatever technology chosen by the participants with the only 
limitations resulting of the technology itself. 

3.2.2.1. Non-discriminatory and open access 

 Services such as DNS, the World Wide Web and Email do not discriminate and 
are open-accessible. Basically, people and organizations can access these 
networks as long as they can register an Internet Domain and host the required 
server components. Nowadays, there are alternatives to avoid having to register 
a domain name to have a web page or an email, such as Cloud WordPress 
Hosting or Gmail. However, we will focus on the network participants that provide 
services to end-users. 
 
In the case of Guifi.net, we can highlight how this principle has been adopted in 
the fact that everybody can take part in the project without discrimination. 
Moreover, an emphasis is made in easing the participation of the disadvantaged 
collectives, with less resources or less opportunities to access information 
technologies, telecommunications, and the Internet. 
 

An Event Streaming Open Network should provide resources in a similar 
way than the most widely adopted Internet Services. Thus, individuals and 
organizations must be able to register Flow address spaces for which the 
existing DNS infrastructure could be leveraged. Moreover, the specification 
of the protocols that implement the Metadata and Payload formats must 
also be openly accessible. 
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3.2.2.2. Open participation 

Internet Services like DNS, WWW and Email provide individuals and 
organizations with different ways of participation. First, anybody can obtain the 
protocols’ specification and build a custom implementation, which would result in 
a new product compatible with the protocols. Secondly, anybody can register a 
domain name and set up servers using compatible products. Thirdly, anybody 
can join and participate in the IETF, the institution that governs the specifications 
for these protocols. 
 
As for Guifi.net, not only anybody can extend the network with new nodes but 
also can also participate in existing projects of network extension. Also, the 
participants can add services on top of the network such as VoIP, FTP servers, 
broadcast radios, etc. 
 
 Regarding active participation on an Event Streaming Open Network, we can 
highlight the possibility for individuals and organizations to expand the services 
provided by the open network. This extensibility could be made possible by 
different uses of the event payloads and will vary significantly depending on the 
sector. Since we have already proved how Flow is an infrastructure resource, 
innovation would play its part and its results would be materialized in services 
expansion. 
 

We can conclude that the same kind of openness of DNS, WWW and Email 
is necessary for an Event Streaming Open Network. Anybody should be 
able to obtain the specifications to build an implementation of the service. 
Also, since it should leverage the DNS infrastructure, anybody would be 
able to register Flow address spaces. Lastly, the specification could be 
governed by an institution such as the IETF, due the dependency of Flow 
with other Internet Services governed by this institution. 

  



 

30 

4. Event Streaming Open Network Architecture 
 
In this chapter, we will describe the overall architectural proposal for an Event 
Streaming Open Network. This description will include the different actors in play, 
the software components required, as well as the network protocols that should 
be specificized. 
 

4.1 Architecture overview 

 In Figure 7 we illustrate a high-level overview of an architecture proposal for the 
Open Network. 
 

 

Figure 7. High-level overview of the Event Streaming Open Network 
 
We can identify different Network Participant (NP) in Figure 7 represented by 
different colors. The different NPs act as equals when consuming or 
producing events as part of the Flows they own. All of NPs implement the 
Event Streaming Open Network Protocol, which Is described in the next 
chapter. 
 
In the diagram, an initial flow starts on the orange NP to which a user in the blue 
NP is subscribed. After processing the events received in the first flow, the results 
are published to a new flow in NP blue, to which the orange NP is subscribed as 
well. Now, the green participant is subscribed to the same flow, enabling 
downstream activities across the rest of the network participants. 
 
It is possible to observe how the high-level architecture allows sharing the 
streaming of events across different network participants and their users. Also, 
there is also the need for security, in order to allow or deny the access to write to 
and read from flows. 
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Figure 8. Event Streaming Open Network Architecture components 
 
Regarding security, the architecture considers the integration with an 
Identity & Access Management service, which could implement popular 
protocols such as OAuth, SAML or SASL. However, the network should also 
enable anonymous access in the same way FTP does. This means that a given 
NP could publicly publish flow and allow any party to subscribe to it. 
 
For example, nowadays the Network Time Protocol (NTP) is used to synchronize 
the day and time on servers. There are many NTP servers available that allow 
anonymous access, meaning that the service is openly available. The same must 
be considered for the Event Streaming Open Network. 
 
Additionally, the NP must be able to expand the capacity to support any number 
of flows, as well as extending the network with new services. Not only NP must 
be able to include any given set of data within events but also, they must be able 
to build applications and services on top of the network by employing the 
architecture primitives. 
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Now, we provide a brief description of all the components that appear in the 
diagram of Figure 8. In the next sections further details of the components are 
provided. 
 

• Flow Events Broker (FEB): a high-available and fault-tolerant service that 
provide queues to be consumed by network services, by users, and their 
applications. An example of an Event Queue Broker can be Apache Kafka, 
AWS SQS or Google Cloud PubSub. The payload format implemented by 
these tools are what in 3.1.4 we called Event Streaming Payload Format. 

 

• Flow Name Service (FNS): a DNS-based registry that acts as an 
authoritative server for a set of domain names, which are used to represent 
flow addresses in a flow namespace. These domains contain all the 
necessary information to resolve flow names into flow network locations. This 
component refers to what in 3.1.1 we named Event Streaming Registry. 

 

• Flow Namespace User Agent (FNUA): an application similar to User Mail 
Agents like Microsoft Outlook or Gmail. This application provides access to 
flow namespaces to users of the network.  
The definition of this component implies the specification of a dedicated 
protocol. We will refer to this protocol as FNAP (Flow Namespace 
Accessing Protocol). 

 

• Flow Namespace Accessing Agent (FNAA): the server-side of the Flow 
Namespace User Agent. This component is the one that must provide 
convenient integration methods for GUI. This component refers to what in 
3.1.2 we named Event User Space Service. 
This component must implement the same protocol selected for the Flow 
Namespace User Agent: FNAP (Flow Namespace Accessing Protocol). 
 

• Flow Processor (FP): a flow processing instance used to set up subscriptions 
that connect local or remote flows on demand. This component implements 
the processing part of what in 3.1.3 we called Event Subscription 
Service. This component will be created and managed by a FNAA instance, 
and the communication is held through an Inter-process Communications 
(IPC) interface. Also, this service must implement an Event Payload Format, 
for which we will mainly consider CNCF’s CloudEvents and Protobuf. 
 

• Flow Namespace Accessing Protocol (FNAP): the protocol implemented in 
the Flow Namespace Accessing Agent as well as in the Flow Namespace 
User Agent. The former will act both as a server and a client while the latter 
only as a client. This protocol is described in the next chapter. 

 

4.1.1. Flow Events Broker (FEB) 

The FEB implementation that we will mostly consider is Apache Kafka. This 
open-source project is quickly becoming a commodity platform, and major cloud 
providers are building utilities for it. However, as a design decision, it should be 
possible to use the same protocols to support other applications, such as 
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RabbitMQ, Apache Pulsar or the cloud-based options like AWS SQS or Azure 
Events Hub. 
 
Apache Kafka is the ecosystem leader in the Event Streaming space, considering 
mainly adoption. There is a growing set of tools and vendors supporting its 
installation, operation, and consumption. This fact makes Apache Kafka much 
more appealing to enterprise developers. However, the broker should provide a 
common set of functionalities which can be seen in the diagram of Figure 9. 
 

  

Figure 9. High-level overview of the Event Queue Broker component 
interactions. 

 
The selection of the Events Broker will impact on the implementation of the Flow 
Namespace Accessing Agent. This last component will be responsible for 
knowing how to set up and manage flows on top of different Events Brokers. 
 

4.1.2. Flow Name Service (FNS) 

 
FNS is a core component for the overall proposed architecture. This component 
provides all needed functionalities for obtaining Flow connection details based on 
a Flow URI (Uniform Resource Identifier). Thus, it is required to define a URI 
format for Flow resources and to specify mechanisms for resource location 
resolution. 
 

In this section, we will focus on describing both the URI for Flow as well as 
the DNS mechanism for obtaining Flow network location details. 

4.1.2.1. Leveraging DNS infrastructure 

 
As mentioned previously, this component must maximize its leverage on the 
existing Internet DNS infrastructure. The reason for this requirement is to avoid 
defining new protocols and services that prevent broad adoption. Currently, DNS 
is the de facto name resolution protocol for the Internet, and there exist libraries 
for its usage on every programming language.  
 
Whereas DNS is mainly used to resolve FQDN (Fully Qualified Domain Names) 
into IP addresses, there are many other functionalities provided by the global 
DNS infrastructure. Theoretically, DNS is an open network of a distributed 
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database. Individuals and organizations that want to participate in the network 
need to register a domain name and set up Authoritative DNS servers for 
domains. 
 
It is not in the scope of this work to detail the different available usages of DNS 
functionalities, but we can mention that it provides special Resource Records 
(i.e., types of information for a FQDN) that are solely used by special protocols. 
For instance, the MX Resource Records are used by SMTP servers to exchange 
email messages. 
 
For the Flow Open Network, it will be required to define a URI format for flows as 
well as the mechanism to resolve an URI into all the needed information to 
connect to a flow. In the case of email, a URI is the email address while the 
connection details will be the SMTP server responsible for receiving emails for 
that account. For instance, an email URI could be user@domain.com while its 
connection details could be smtp://mail.domain.com. The way in which the 
connection details are obtained is by resolving the MX DNS Resource Records 
of domain.com, which in this example is mail.domain.com. 

4.1.2.2. Flow URI 

 
As we mentioned previously, the first needed element is a URI definition for flow 
resources. These resources identification must capture the following details: 

• Domain, a registered domain in which create flow resources references. For 
example, airport.com. 

• Flow Namespace, a subdomain which is solely used by users to host flow 
names. This subdomain must be delegated to the Flow Name Server 
component and desirable should not be used for any other purpose other than 
flow. 

• Flow Name, a name for each flow that must be unique within its domain. The 
combination of flow name and flow domain results in an FQDN. For instance, 
we could have a flow named arrivals of the domain flow.airport.com. Thus, 
the FQDN of the flow would be arrivals.flow.airport.com. Also, the name 
can contain dots so that the following FQDN could be also used: 

airline.arrivals.flow.airport.com. 

 
 Thus, the general syntax of a flow URI would be: 
  

flow://<flow_name>.<flow_namespace>.<domain> 

 
 This URI has the advantage that is similar to “mailto” URI and could be 
implemented in HTML to refer to flow resources. Some examples:  
 

• flow://entrances.building.company.com 

• flow://exits.building.company.com 

• flow://temperature.house.mydomain.com 

• flow://pressure.room1.office.mydomain.com 
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The flow URI must unequivocally identify a flow resource and provide, by means 
of DNS resolution mechanisms, all the information required to use the flow. 
Among these parameters, at least the following should be resolvable: 
 

• Event Queue Broker protocol utilized by the flow. For instance, if Apache 
Kafka is used, the protocol would be “kafka”; In case RabbitMQ is used by the 
flow, “amqp”. Also, it must be informed if the protocol is protected by TLS. 

• Event Queue Broker FQDN or list of FQDNs that resolve to the IP address 
of one or a set of the Event Queue Brokers. For instance, kafka-
1.mycompany.com, kafka-2.mycompany.com. 

• Event Queue Broker Port used by the Event Queue Brokers. For instance, 
in the case of Kafka: 9092, 9093. 

• Event Queue Broker Transport Security Layer can be implemented. Thus, 
it is needed to know if the connection uses TLS before establishing it. 

• Queue Name hosted in the Event Queue Broker, which must be equal to that 
of the corresponding flow name. 

 
Refer to Annex C to see some examples of the URI definition. 
 

4.1.2.3. Flow name resolution 

 
 In Figure 10, we can see how a Flow FQDN can be resolved by means of the 
Flow Name Service. 
 

 

Figure 10. High-level overview of the interactions with the Flow Name Service 
component. 

 
In order to illustrate the Flow Name resolution procedure by the FNAA (Flow 
Namespace Accessing Agent), we can consider the following flow URI: 
 
flow://notifications.calendar.people.syndeno.com 

 
First, the FNAA will perform a query to the DNS resolvers. These will perform a 
recursive DNS query to obtain the authoritative name servers for the Flow 
Namespace: people.syndeno.com. Thus, the authoritative name servers for 
syndeno.com will reply with one or more NS Resource Record containing the 
FQDN for the authoritative name servers of people.syndeno.com. 
 
Secondly, once these name servers are obtained, the FNUA will perform a PTR 
query on the Flow FQDN adding a service discovery prefix. The response of the 
PTR query will return another FQDN compliant with SRV DNS Resource Records 
(RFC-2782) and DNS Service Discovery (RFC-6763).  
 
Refer to Annex B to review the resolution process. 
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4.1.3. Flow Namespace Accessing Agent (FNAA) 

The Flow Namespace Accessing Agent is the core component of a Network 
Participant. This server application implements the Flow Namespace Accessing 
Protocol that allows client connections. 
 
In the diagram of Figure 11 we can see the different methods that the FNAA must 
support.  
 

 

Figure 11. High-level overview of the interactions among FNAA servers. 
 
The clients connecting to a FNAA server can be remote FNAA servers as well as 
FNUA. The rationale is that users of a NP connect to the FNAA by means of a 
FNUA. On the other hand, when a user triggers a new subscription creation, the 
FNAA of his NP must connect as client to a remote FNAA server. 

4.1.4. Flow Processor (FP) 

Whenever a new subscription creation is triggered and all remote flow connection 
details are obtained, the FNAA needs to set up a Processor for it. The 
communications of the FNAA to and from the FP is by means of an IPC interface. 
This means that there can be different implementations of Processors, one of 
which will be the Subscription Processor.  
 
In the diagram of Figure 12, we can see the initial interface methods that should 
be implemented in a Flow Processor.  
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Figure 12. High-level overview of the IPC interface for the FNAA server and 
Flow Processors communications. 

 
Depending on the use of the processor, different data structures should be added 
to the different methods. In the case of a Subscription Processor, the minimum 
information will be the remote and local Flow connection details. Moreover, the 
interface also should include methods to update the Processor configuration and 
to destroy it, once a subscription is revoked. Finally, due to the nature of the 
stream communication, there could also be methods available to pause and to 
resume a Processor. 
 
There can be different types of Processors, which we can see in Figure 13. 
 

 
 

Figure 13. Different types of Flow Processors that could be supported by the 
FNAA server 

 
In Figure 13, we can see that there are different types of Flow Processors: 

• Bridge Processor: Consumes events from a Flow located in an Event 
Broker (i.e., Apache Kafka) and transcribes them to a single Flow (local or 
remote). 

• Collector Processor: Consumes events from N Flows located in an Event 
Broker and transcribes the aggregate to a single Flow (local or remote). 

• Distributor Processor: Consumes events from a single Flow and 
transcribes or broadcast to N Flows (local or remote). 

• Signal Processor: Consumes events from N Flows and produces new 
events to N Flows (local or remote) 
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To implement the previously described Subscription Processor, we can utilize 
some form of the Bridge Processor. Although we are initially considering the basic 
use case of subscription, it must be possible for the network to extend the 
processor types supported. In any case, the different FNAA servers involved must 
be aware the supported processor types, with the goal of informing the users the 
capabilities available in the FNAA server. For instance, the fact that a FNAA 
supports the Bridge Processor should enable the subscription commands in the 
FNAA, for users to create subscriptions using the Bridge Processor. 
 
In summary, the IPC interface should support all the possible processors that the 
network may need although we are initially considering the subscription use case. 

4.1.5. Flow Namespace User Agent (FNUA) 

The FNUA is an application analogous to email clients such as Microsoft Office 
or Gmail. These applications implement either different network protocols to 
access mailboxes by means of IMAP and/or POP3. In the case of FNUA, the 
protocol implemented is the FNAP (Flow Namespace Accessing Protocol). 
 
The FNUA is an application that acts as a client for the FNAA server. Only users 
that possess accounts in a Network Participant should be able to login to FNAA 
to manage Flow Namespaces. The FNUA could be any kind of user application: 
web application, desktop application, mobile application or even a cli tool. 
 
In the Diagram of Figure 14 we can see the actions that the user can request to 
the FNUA. 
 

 
Figure 14. High-level overview of the interactions between a user and the Flow 

Namespace User Agent component. 
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The main goal of the FNUA is to provide the user with access to Flow 
Namespaces and the flows hosted in them. A user may have many Flow 
Namespace and many Flows in each of them. By means of the FNUA, the 
user can manage the Flow Namespaces and the Flows in them. Also, the 
FNUA will provide the capabilities required to subscribe to external Flows, 
whether local to the FNAA, local to the NP or remote (in a different NP FNAA 
server). 
 

4.2. Communications Examples 

In this section, two usage examples of Network Participants communications are 
provided. The first one, we call unidirectional, since one NP subscribes to a 
remote Flow of a different NP. The second one, we call it bidirectional, since now 
these NP have mutual subscriptions. 

4.2.1 Unidirectional Subscription 

In the diagram of Figure 15, we can see an integration between two NP. In this 
case, there is a FlowA hosted in the Orange NP to which the FlowB in the Blue 
NP is subscribed. Both FlowA and FlowB count with a queue hosted in the Flow 
Events Broker, which could be an Apache Kafka instance for example. However, 
it must be possible to employ any Flow Events Broker of the NP’s choice. 
 
The steps followed to set up a subscription to a remote flow are: 
1. A user of the Blue NP creates a new subscription to remote FlowA by means 

of the Flow Namespace User Agent (FNUA). 
2. The FNUA connects to the Flow Namespace Accessing Agent (FNAA) of the 

Blue NP to inform the user request. 
3. The FNAA in the Blue NP discovers the remote FNAA to which it must 

connect to obtain the flow connection parameters. First, it needs to 
authenticate and, if allowed, the connection parameters will be returned. 

4. Once the FNAA in the Blue NP has all the necessary information, it will set 
up a new Processor that connects the flow in the Orange NP to a flow in the 
Blue NP. 

5. Once the subscription is brought up, every time a Producer in the Orange NP 
writes an event to FlowA, the Flow Processor will receive it, since it is 
subscribed to it. Then, the Flow Processor will write that event to FlowB in 
the Blue NP. 

6. From now on, every Consumer connected to FlowB will receive the events 
published on FlowA. 

 
In case the user owner of FlowA in the Orange NP wishes to revoke the access, 
it must be able to do so by means of security credentials revoking against the 
Identity & Access Manager of the Orange NP. 
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Figure 15. Example of a unidirectional subscription among two Network Participants. 
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4.2.2 Bidirectional Subscription 

 
In Figure 16 we can see an example of all the components needed to set up a 
flow integration between two different NP. In this case, there are two flows being 
connected: 

• FlowA of the Orange NP with FlowB of the Blue NP 

• FlowC of the Blue NP with FlowD of the Orange NP 
 
Each Flow has its corresponding Queue hosted in the NP Flow Events Broker. 
Also, there is one Flow Processor for each connection, meaning that these 
components are in charge of reading new events on source flows to write them 
to the destination flows as soon as received. 
 
Also, we can see that in order to connect FlowB to FlowA, a connection from the 
Blue NP’s FNAA has been initiated against the Orange NP’s FNAA. This 
connection uses the FNAP to interchange the flow connection details. 
Analogously, the FNAA connection to set up the integration of FlowC with FlowD 
has been initiated by the Orange NP’s FNAA. 
 
After the flow connection details are obtained, the different Flow Processors are 
set up to consume and produce events from and to the corresponding Queue in 
the different NPs. 
 
Once the two processors are initialized, all the events produced to FlowA in the 
Orange NP will be forwarded to FlowB in the Blue NP; and all the events produced 
to FlowC in the Blue NP will be forwarder to FlowD in the Orange NP. 
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Figure 16. Example of a bidirectional subscription among two Network Participants. 
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5. Event Streaming Open Network Protocol  
The protocol to be used in an Event Streaming Open Network is a key component 
of the overall architecture and design. This chapter is dedicated to thoroughly 
describe this protocol. 

5.1. Protocol definition methodology 

It is now necessary to specify the protocol needed for the Flow Namespace 
Accessing Agent or FNAA, which we have named the Flow Namespace 
Accessing Protocol or FNAP. In the diagram of Figure 17 we can see how an 
FNAA client connects with a FNAA server by means of the FNAP. 
 

 

Figure 17. FNAA client and server communicate using FNAP. 
 
In order to define a finite state machine for the protocol and the different stimuli 
that cause a change of state, the model presented by M.Wild (Wild, 2013) in her 
paper “Guided Merging of Sequence Diagrams” will be employed. This model is 
beneficial since it provides an integrated method both for client and server 
maintaining the stimuli relationship that trigger a change of state in each 
component. 
 
In Figure 18 we have the method proposed by Wild for SMTP, in which there are 
boxes representing states and arrows representing transitions. Each transition 
has a label composed of the originating stimulus that triggers the transition and a 
subsequent stimulus effect triggered by the transition itself. For instance, when a 
client connects to an SMTP Server, the client goes from “idle” state to “conPend” 
state. The label of this transition includes “uCon” as the stimulus triggering the 
transition, which triggers the effect “sCon”. Then, on the diagram for the server 
we can see that the “sCon” triggers the transition from “waiting” state to 
“accepting” state in the server.  
 

 

Figure 18. Merged Sequence Diagram for SMTP proposed by Wild, 2013. 
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This method will be used to define the states and transitions for the Flow 
Namespace Accessing Protocol both for client and server. 

5.2. Flow Namespace Accessing Protocol (FNAP) 

 
Using the model proposed by Wild described previously, we define the finite-state 
machine for the FNAA Server, which we can see in Figure 19. 
 

 

Figure 19. Finite-state machine for the Flow Namespace Accessing Protocol. 
 
The model in right side of Figure 19 shows that the FNAA server starts in a 

“waiting” state, which basically means that the server has successfully set up 
the networking requirements to accept client connections. Then, when a client 
connects, a transition is made to “accepting” state, in which internally the 
authentication procedure is made. If the authentication is successful, a transition 
is made to “ready” state, meaning that the client can now execute commands 
on the FNAA server.  
 
The commands that the client can execute are specified in Figure 11. For each 
command that the client executes, a transition is made to “cmdRecvd” state. 
Then, a response is returned to the client, transitioning again to “waiting” state. 
When the client executes the “Quit” command, a transition is made to the 

“waiting” state and the server must free all used networking resources for the 
now closed connection. 
 
On the left side of Figure 19, we also have the client state machine with its 
corresponding transitions. The client triggers a connection to the server and once 
established, an authentication is needed. Once the authentication is correctly 
done, the client can start requesting commands to the server. For each command 
executed by the client, a transition is made to “cmdPend” state, until a response 
is returned by the server. 
 
 Eventually, a “Quit” command will be executed by the client and the connection 
will be closed.  
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6. Implementation 
In this section, we provide an approach for the overall implementation of the 
proposed Event Streaming Open Network. Considering the components defined 
previously for the architecture, we will define which existing tools can be 
leveraged and those that require development. 
 

6.1. Objectives 

The objective of this implementation is to provide specifications for an initial 
implementation of the overall architecture for the Event Streaming Open Network. 
Whenever it is possible, existing tools should be leveraged. For those 
components that need development, a thorough specification is to be provided. 
 
Finally, a subset of core functionalities for a Proof of Concept must be defined. 

6.2. Implementation overview 

 
In Figure 20, we have a diagram of the overall implementation proposal. The 
components that have the Kubernetes Deployment icon are the ones to be 
managed by the FNAA server instance. Then, we have a Kafka Cluster that 
provides a Topic instance for each flow. Finally, the DNS Infrastructure is 
leveraged. 
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Figure 20. Implementation overview using Kubernetes, Apache Kafka, DNS Bind9 and the Flow CLI tool. 
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6.2. Existing components 

In this section, we describe the existing software components that can be 
leveraged for implementation.  

6.2.1. Flow Events Broker 

Since there are currently many implementations for this component, it is 
necessary to develop the needed integrations of other components of the 
architecture to the main market leaders. Thus, we will consider the following Flow 
Events Broker for the implementation: Apache Kafka, AWS SQS and Google 
Compute PubSub. 
 

In summary, this component does not need to be developed from scratch. 
However, the FNAA will need to be able to communicate with the different 
Flow Events Broker, meaning that it must implement their APIs as a client. 

6.2.2. Flow Name Service 

This component can be completely implemented by leveraging on the ISC 
Bind9 software component, which is the de facto leader for DNS servers. A 
given NP will need to deploy a Bind9 Nameserver and enable both DNSSEC and 
DNS Dynamic Update. 
 
The impact of adopting Bind9 for the implementation means that the FNAA 
component needs to be able to use a remote DNS Server to manage the Flow 
URI registration, deregistration and execute recursive DNS resolution. 
 

6.3. Components to be developed 

In this section, we describe a set of tools that require development. These 
components, especially the FNAA, are the core components of every Network 
Participant. Moreover, these are the components that implement the network 
protocol FNAP. 
 
Since these are the core components of the network, they are the natural 
candidates for validation. In the next chapter, we will show the feasibility of 
the core network components in the form of a Proof of Concept. 
 

6.3.1. Flow Namespace Accessing Agent 

The Flow Namespace Accessing Agent is a server component that triggers the 
creation of child processes that implement the different Flow Processors. This 
means that the instance running the FNAA will bring up new processes for each 
processor. One way of implementing this functionality can be a parent process 
that creates new child processes for each processor. However, this would imply 
the need of creating and managing different threads in a single FNAA instance. 
 
The problem with the approach of a parent process and child processes for the 
FNAA is on the infrastructure level. The more processor a FNAA needs to 
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manage, the more compute resources the FNAA would need. In the current cloud 
infrastructure context, this is problem because it means that additional compute 
resources should be assigned to the FNAA, depending on the quantity of 
processors and the required resources for each of them. In summary, this 
approach would be vertically scalable but not horizontally scalable. 
 
Then, to avoid the scalability issue, the approach we propose is by implementing 
a Cloud Native application. By leveraging on Kubernetes, it is possible to trigger 
the creation of Deployments, which are composed of Pods. Each Pod can contain 
a given quantity of containers, which are processes running in a GNU/Linux 
Operating System. In this way, we can dedicate a Pod to run the FNAA server 
and different Pods to run the Processors. This approach provides a convenient 
process isolation and enables both horizontal and vertical scalability. 
 
Moreover, the way in which the FNAA would bring up and manage Processor 
instances would be though an integration with the underlaying Kubernetes 
instance, by means of the Kubernetes API. The result is a Cloud Native 
application that leverages the power and flexibility of Kubernetes to manage the 
Processor instances. 
 
On the other hand, the programming language for the FNAA must also be 
defined. For this, we consider that it must be possible to implement the FNAA 
and the Flow Processors in different programming languages. For the FNAP it is 
recommended to employ Golang, since Kubernetes CLI tool is implemented in 
this language and there are several libraries available for integration. As for the 
Flow Processors, it must be possible to use any programming language as long 
as the IPC interface is correctly implemented. 
 
Regarding the IPC interface for the communications between the FNAA and the 
Flow Processors, the recommendation is to employ gRPC together with Protobuf. 
The rationale for choosing this this technology is the fact that gRPC enables 
binary communications, which are the desired type of communication for systems 
integration. Then, both the FNAA and the Flow Processors must share this 
Protobuf interface definition and implement it accordingly through gRPC.  
 
Finally, the FNAA must implement the protocol we have named FNAP, which 
provides the main set of functionalities for the Event Streaming Open Network. 

The implementation of FNAP must be stateful, in the sense that it is 
connection-based. Additionally, the implementation must be text-based, with 
the goal that humans can interact with FNAA servers in the same way that it is 
possible for SMTP servers. The transport protocol must be TCP with no special 
definition for a port number, since the port should be able to be discovered by 
means of DNS SRV Resource Records. 
 
Regarding security for the FNAA servers, TLS must be supported. This means 
that any client can start a TLS handshake with the FNAA servers before issuing 
any command.   
 

In conclusion, the implementation of the FNAA over Kubernetes provides 
the needed flexibility and set of capabilities required for this component. It 
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is recommended to implement the FNAA in Golang and enable the 
implementation of Flow Processors in any programming language as long 
as the Protobuf interface is correctly implemented. Finally, the FNAA must 
implement the protocol FNAP in a connection-based and text-based 
manner. 

6.3.2. Flow Namespace User Agent 

 
The Flow Namespace User Agent (FNUA) can have different implementations as 
long as they comply with the protocol FNAP.  
 
We propose the initial availability of a CLI tool that acts as a Flow Namespace 
User Agent. This CLI tool must provide a client implementation of all the 
functionalities available in the FNAA server. Among the functionalities to be 
implemented as a must, we can mention: 

• Discover the FNAA server for a given Flow URI. 

• Connect to the FNAA server to manage Flow Namespaces and Flows, as 
exemplified in Figure 14: 

 
Additionally, the FNUA should be able to discover the Authoritative FNAA server 
for a given Flow Namespace. This discovery shall be performed by leveraging on 
the DNS-SD specification. Refer to Annex D to review the discovery process. 
 
Regarding the implementation of the CLI tool, it is recommended to employ 
Golang together with Cobra, a library specialized to create CLI tools. In Figure 
21, we have a diagram that shows the different functionalities that the CLI tool 
should implement. 
 
 

 

Figure 21. Flow CLI parameters diagram. 
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7. Proof of Concept 
 
In this section, we will focus on providing a minimum implementation of the main 
Event Streaming Open Network component: the Flow Namespace Accessing 
Agent. This implementation should serve as a Proof of Concept of the overall 
Event Streaming Open Network proposal. 
 
As described in the previous section, the Flow Namespace Accessing Agent 
(FNAA) is the main and core required component for the Open Network. All 
Network Participants must deploy an FNAA server instance in order to be part of 
the network. The FNAA actually implements a server-like application for the Flow 
Namespace Accessing Protocol (FNAP). Then, the first objective of this Proof 
of Concept is to show an initial implementation of the FNAA server 
component. 
 
On the other hand, the FNAA is accessed by means of a Flow Namespace User 
Agent (FUA). This component acts as a client application that connects to a 
FNAA. Also, this component can take different forms: it could be a web-based 
application, a desktop application or even a command line tool. For the purposes 
of this Proof of Concept, we will implement a CLI tool that acts as a client 
application for the FNAA. Thus, the second objective of this PoC is to provide 
an initial implementation of the FNUA client component. 
 
In the following sections, we will first describe the minimum functionalities 
considered for validating the overall proposal for the Event Streaming Open 
Network. This minimum set of requirements for both the FNAA and the FNUA will 
compose the Proof of Concept. 
 
Afterwards, we will describe the technology chosen for the initial implementation 
of both the FNAA and the FNUA. Then, a description of how these tools work in 
isolation will be provided. Subsequently, we will review different use cases to 
prove how the network could be used by network participants and its users. 
 
Lastly, we will provide a conclusion for this Proof of Concept, where we 
mentioning if and how the minimum established requirements have been met or 
not. 
 

6.4. Minimum functionalities  

Network Participants system administrators must be able to run a Server 
Application that acts as FNAA. 
 
Users using a Client Application actiong as a FNUA must be able to: 

1. Access the flow account and operate its flows. 
2. Create a new flow. 
3. Describe an existing flow. 
4. Subscribe to an external flow. 
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7.2. FNAA - Server application 

The FNAA server application must implement FNAP as described in Section 6. 
Basically, the FNAA will open a TCP port on all the IP addresses of the host to 
listen for new FNUA client connections. 
 
The chosen language for the development of the FNAA is GoLang. The reason 
for choosing GoLang is because Kubernetes is written in this language and there 
is a robust set of libraries available for integration. Although there is no integration 
built with Kubernetes for this Proof of Concept, the usage of GoLang will enable 
a seamless evolution of the FNAA application. In future versions of the FNAA 
codebase, new functionalities leveraging Kubernetes will be easier to implement 
than if using a different programming language. 
 
When the FNAA server application is initialized, it provides debug log messages 
describing all client interactions. In order to start the server application, a Network 
Participant system administrator can download the binary and execute it in a 
terminal: 
 
ignatius ~ 0$./fnaad  

server.go:146: Listen on [::]:61000 

server.go:148: Accept a connection request. 
 
Now that the 61000 TCP port is open, we can test the behaviour by means of a 
raw TCP using telnet command in a different terminal: 
 
ignatius ~ 1$telnet localhost 61000 

Trying 127.0.0.1... 

Connected to localhost. 

Escape character is '^]'. 

220 fnaa.unix.ar FNAA 

 
We can now see that the server has provided the first message in the connection: 
a welcome message indicating its FQDN fnaa.unix.ar. 
 
On the other hand, the server application starts providing debug information for 
the new connection established: 
 
ignatius ~ 0$./fnaad  

server.go:146: Listen on [::]:61000 

server.go:148: Accept a connection request. 

server.go:154: Handle incoming messages. 

server.go:148: Accept a connection request. 

 

7.3. FNUA - Client application 

In order to test the FNAA server application, a CLI-based FNUA application has 
been developed. The chosen language for this CLI tool is also GoLang. The 
reason for choosing GoLang for the FNUA is because of its functionalities for 
building CLI tools, leveraging on the Cobra library. 
Thus, the FNUA for the PoC is an executable file that complies with the diagram 
in Figure 20. 
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One of the requirements for the flow CLI tool is a configuration file that defines 
the different FNAA servers together with the credentials to use. An example of 
this configuration file follows: 
 
ignatius ~/ 0$cat .flow.yml  

agents: 

  - 

    name: fnaa-unix 

    fqdn: fnaa.unix.ar 

    username: test 

    password: test 

    prefix: unix.ar- 

  - 

    name: fnaa-emiliano 

    fqdn: fnaa.emiliano.ar 

    username: test 

    password: test 

    prefix: emiliano.ar- 

 

namespaces: 

  - 

    name: flows.unix.ar 

    agent: fnaa-unix 

  - 

    name: flows.emiliano.ar 

    agent: fnaa-emiliano 

 
In this file, we can see that there are two FNAA instances described with FQDN 
fnaa.unix.ar and fnaa.emiliano.ar. Then, there are two namespaces: one called 

flow.unix.ar hosted on fnaa-unix and second namespace flows.emiliano.ar 
hosted on fnaa-emiliano. This configuration enables the FNUA to interact with 
two different FNAA, each of which is hosting different Flow Namespaces. 
 
Once the configuration file has been saved, the flow CLI tool can now be used. 
In the following sections, we will show how to use the minimum functionalities 
required for the Open Network using this CLI tool. 
 

7.4. Use cases  

7.4.1. Use case 1: Authenticating a user 

After the connection is established, the first command that the client must execute 
is the authentication command. As previously defined in Chapter 5, every FNAA 
client must first authenticate in order to execute commands. Thus, the 
authentication challenge must be supported both by the FNAA as well as the 
FNUA.  
 
It is worth mentioning that the chosen authentication mechanism for this PoC is 
SASL Plain. This command can be extended furtherly with other mechanisms in 
later versions. However, this simple authentication mechanism is sufficient to 
demonstrate the authentication step in the FNAP. 
 
The SASL Plain Authentication implies sending the username and the password 
encoded in Base64. The way to obtain the Base64 if we consider a user test with 
password test, is as follows: 
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ignatius ~ 0$echo -en "\0test\0test" | base64 

AHRlc3QAdGVzdA== 

 
Now, we can use this Base64 string to authenticate with the FNAA. First, we need 
to launch the FNAA server instance: 
 
ignatius~/ $./fnaad --config ./fnaad_flow.unix.ar.yaml 

main.go:41: Using config file: ./fnaad_flow.unix.ar.yaml 

main.go:57:     Using config file: ./fnaad_flow.unix.ar.yaml 

server.go:103: Listen on [::]:61000 

server.go:105: Accept a connection request. 

 
Then, we can connect to the TCP port in which the FNAA is listening: 
 
ignatius ~ 1$telnet localhost 61000 

Trying 127.0.0.1... 

Connected to localhost. 

Escape character is '^]'. 

220 fnaa.unix.ar FNAA 

AUTHENTICATE PLAIN 

220 OK 

AHRlc3QAdGVzdA== 

220 Authenticated 

 
Once the client is authenticated, it can start executing FNAP commands to 
manage the Flow Namespace of the authenticated user. For simplicity purposes, 
in this Proof of Concept, we will be using a single user. 
 
In the case of the CLI tool, there is no need to perform an authentication step, 
since every command the user executes will be preceded by an authentication in 
the server. 

7.4.1. Use case 2: Creating a flow 

Once the authentication is successful, the client can now create a new Flow.  The 
way to do this using the CLI tool would be: 
 
ignatius ~/ 0$./fnua create flow time.flow.unix.ar 

Resolving SRV for fnaa.unix.ar. using server 172.17.0.2:53 

Executing query fnaa.unix.ar. IN 33 using server 172.17.0.2:53 

Executing successful: [fnaa.unix.ar. 604800 IN SRV 0 0 61000 

fnaa.unix.ar.] 

Resolving A for fnaa.unix.ar. using server 172.17.0.2:53 

Executing query fnaa.unix.ar. IN 1 using server 172.17.0.2:53 

Executing successful: [fnaa.unix.ar. 604800 IN A 127.0.0.1] 

Resolved A to 127.0.0.1 for fnaa.unix.ar. using server 172.17.0.2:53 

C: Connecting to 127.0.0.1:61000 

C: Got a response: 220 fnaa.unix.ar FNAA 

C: Sending command AUTHENTICATE PLAIN 

C: Wrote (20 bytes written) 

C: Got a response: 220 OK 

C: Authentication string sent: AHRlc3QAdGVzdA== 

C: Wrote (18 bytes written) 

C: Got a response: 220 Authenticated 

C: Sending command CREATE FLOW time.flow.unix.ar 

C: Wrote (31 bytes written) 

C: Server sent OK for command CREATE FLOW time.flow.unix.ar 

C: Sending command QUIT 

C: Wrote (6 bytes written) 
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The client has discovered the FNAA server for Flow Namespace flow.unix.ar by 
means of SRV DNS records. Thus, it obtained both the FQDN of the FNAA 
together with the TCP port where it is listening, in this case 61000. Once the 
resolution process ends, the FNUA connects to the FNAA. First, the FNUA 
authenticates with the FNAA and then it executes the create flow command. 
 
If we were to simulate the same behavior using a raw TCP connection, the 
following steps would be executed: 
 
ignatius ~ 1$telnet localhost 61000 

Trying 127.0.0.1... 

Connected to localhost. 

Escape character is '^]'. 

220 fnaa.unix.ar FNAA 

AUTHENTICATE PLAIN 

220 OK 

AHRlc3QAdGVzdA== 

220 Authenticated 

CREATE FLOW time.flows.unix.ar 

220 OK time.flows.unix.ar 

 
Now, the client has created a new flow called time.flows.unix.ar located in the 
flows.unix.ar namespace. The FNAA in background has created a Kafka Topic 
as well as the necessary DNS entries for name resolution. 

7.4.2. Use case 3: Describing a flow 

Once a flow has been created, we can obtain information of if by executing the 
following command using the CLI tool: 
 
ignatius ~/ 1$./fnua describe flow time.flow.unix.ar 

Resolving SRV for fnaa.unix.ar. using server 172.17.0.2:53 

Executing query fnaa.unix.ar. IN 33 using server 172.17.0.2:53 

Executing successful: [fnaa.unix.ar. 604800 IN SRV 0 0 61000 

fnaa.unix.ar.] 

Nameserver to be used: 172.17.0.2 

Resolving A for fnaa.unix.ar. using server 172.17.0.2:53 

Executing query fnaa.unix.ar. IN 1 using server 172.17.0.2:53 

Executing successful: [fnaa.unix.ar. 604800 IN A 127.0.0.1] 

Resolved A to 127.0.0.1 for fnaa.unix.ar. using server 172.17.0.2:53 

C: Connecting to 127.0.0.1:61000 

C: Got a response: 220 fnaa.unix.ar FNAA 

C: Sending command AUTHENTICATE PLAIN 

C: Wrote (20 bytes written) 

C: Got a response: 220 OK 

C: Authentication string sent: AHRlc3QAdGVzdA== 

C: Wrote (18 bytes written) 

C: Got a response: 220 Authenticated 

C: Sending command DESCRIBE FLOW time.flow.unix.ar 

C: Wrote (33 bytes written) 

C: Server sent OK for command DESCRIBE FLOW time.flow.unix.ar 

Flow time.flow.unix.ar description: 

flow=time.flow.unix.ar 

type=kafka 

topic=time.flow.unix.ar 

server=kf1.unix.ar:9092 

Flow time.flow.unix.ar described successfully 

Quitting 

C: Sending command QUIT 

C: Wrote (6 bytes written) 
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In the output of the describe command we can see all the necessary information 
to connect to the Flow called time.flow.unix.ar: (i) the type of Event Broker is 
Kafka, (ii) the Kafka topic has the same name of the flow and (iii) the Kafka 
Bootstrap server with port is provided. If we were to obtain this information using 
a manual connection, the steps would be: 
 
ignatius ~ 1$telnet localhost 61000 

Trying 127.0.0.1... 

Connected to localhost. 

Escape character is '^]'. 

220 fnaa.unix.ar FNAA 

AUTHENTICATE PLAIN 

220 OK 

AHRlc3QAdGVzdA== 

220 Authenticated 

DESCRIBE FLOW time.flows.unix.ar 

220 DATA  

flow=time.flows.unix.ar 

type=kafka 

topic=time.flows.unix.ar 

server=kf1.unix.ar:9092 

220 OK  

 
Now, we can use this information to connect to the Kafka topic and start producing 
or consuming events. 

7.4.3. Use case 4: Subscribing to a remote flow 

In this section, we will show how a subscription can be set up. When a user 
commands the FNAA to create a new subscription to a remote Flow, the local 
FNAA server first needs to discover the remote FNAA server. Once the server is 
discovered by means of DNS resolution, the local FNAA contacts the remote 
FNAA, authenticates the user and then executes a subscription command. 
 
Thus, the initial communication between the FNUA and the FNAA, in which the 
user indicates to subscribe to a remote flow, would be as follows: 
 
ignatius ~ 1$telnet localhost 61000 

Trying 127.0.0.1... 

Connected to localhost. 

Escape character is '^]'. 

220 fnaa.unix.ar FNAA 

AUTHENTICATE PLAIN 

220 OK 

AHRlc3QAdGVzdA== 

220 Authenticated 

SUBSCRIBE time.flows.unix.ar LOCAL emiliano.ar-time.flows.unix.ar 

220 DATA 

ksdj898.time.flows.unix.ar 

220 OK 

 
Once the user is authenticated, a SUBSCRIBE command is executed. This 
command indicates first the remote flow to subscribe to. Then, it also specifies 
with LOCAL the flow where the remote events will be written. In this example, the 
remote flow to subscribe to is time.flows.unix.ar, and the local flow is 
emiliano.ar-time.flows.unix.ar. Basically, a new flow has been created, 
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emiliano.ar-time.flows.unix.ar, where all the events of flow time.flows.unix.ar will 
be written.  
 
The server answers back with a new Flow URI, in this case 
ksdj898.time.flows.unix.ar. This Flow URI indicates a copy of the original flow 
time.flows.unix.ar created for this subscription. Thus, the remote FNAA has full 
control over this subscription, being able to revoke it by simply deleting this flow 
or applying Quality of Service rules. 
 
The remote FNAA has set up a Bridge Processor to transcribe messages in topic 
time.flows.unix.ar to the new topic ksdj898.time.flows.unix.ar. Another alternative 
to a Bridge Processor would be a Distributor Processor, which could be optimized 
for a Flow with high demand. Moreover, instead of creating a single Bridge 
Processor per subscription, a Distributor Processor could be used, in order to 
have a single consumer of the source flow and write the events to several 
subscription flows. 
 
The user could use the FNUA CLI tool to execute this command in the following 
manner: 
 
Ignatius ~ 0$./fnua --config=./flow.yml subscribe time.flows.unix.ar --

nameserver 172.17.0.2 -d --agent fnaa-emiliano 

Initializing initConfig 

    Using config file: ./flow.yml 

Subscribe to flow 

Agent selected: fnaa-emiliano 

Resolving FNAA FQDN fnaa.emiliano.ar 

Starting FQDN resolution with 172.17.0.2 

Resolving SRV for fnaa.emiliano.ar. using server 172.17.0.2:53 

Executing query fnaa.emiliano.ar. IN 33 using server 172.17.0.2:53 

FNAA FQDN Resolved to fnaa.emiliano.ar. port 51000 

Resolving A for fnaa.emiliano.ar. using server 172.17.0.2:53 

Resolved A to 127.0.0.1 for fnaa.emiliano.ar. using server 172.17.0.2:53 

C: Connecting to 127.0.0.1:51000 

C: Got a response: 220 fnaa.unix.ar FNAA 

Connected to FNAA 

Authenticating with PLAIN mechanism 

C: Sending command AUTHENTICATE PLAIN 

C: Wrote (20 bytes written) 

C: Got a response: 220 OK 

C: Authentication string sent: AHRlc3QAdGVzdA== 

C: Wrote (18 bytes written) 

C: Got a response: 220 Authenticated 

Authenticated 

Executing command SUBSCRIBE time.flows.unix.ar LOCAL emiliano.ar-

time.flows.unix.ar 

C: Sending command SUBSCRIBE time.flows.unix.ar LOCAL emiliano.ar-

time.flows.unix.ar 

C: Wrote (67 bytes written) 

C: Server sent OK for command SUBSCRIBE time.flows.unix.ar LOCAL emiliano.ar-

time.flows.unix.ar 

Flow emiliano.ar-time.flows.unix.ar subscription created successfully 

Server responded: emiliano.ar-time.flows.unix.ar SUBSCRIBED TO 

ksdj898.time.flows.unix.ar 

Quitting 

C: Sending command QUIT 

C: Wrote (6 bytes written) 

Connection closed 
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This interaction of the FNUA with the FNAA of the Flow Namespace emiliano.ar 
(fnaa-emiliano) has trigger an interaction with the FNAA of unix.ar Flow 
Namespace (fnaa-unix). This means that before fnaa-emiliano was able to 
respond to the FNUA, a new connection was opened to the remote FNAA and 
the SUBSCRIBE command was executed. 
 
The log of fnaa-emiliano when the SUBCRIBE command was issued looks as 
follows: 
 
server.go:111: Handle incoming messages. 

server.go:105: Accept a connection request. 

server.go:253: User authenticated 

server.go:347: FULL COMMAND: SUBSCRIBE time.flows.unix.ar LOCAL emiliano.ar-

time.flows.unix.ar 

server.go:401: Flow is REMOTE 

client.go:280: **#Resolving SRV for time.flows.unix.ar. using server 

172.17.0.2:53 

server.go:417: FNAA FQDN Resolved to fnaa.unix.ar. port 61000 

client.go:42: C: Connecting to 127.0.0.1:61000 

client.go:69: C: Got a response: 220 fnaa.unix.ar FNAA 

server.go:435: Connected to FNAA 

server.go:436: Authenticating with PLAIN mechanism 

client.go:126: C: Sending command AUTHENTICATE PLAIN 

client.go:133: C: Wrote (20 bytes written) 

client.go:144: C: Got a response: 220 OK 

client.go:154: C: Authentication string sent: AHRlc3QAdGVzdA== 

client.go:159: C: Wrote (18 bytes written) 

client.go:170: C: Got a response: 220 Authenticated 

server.go:444: Authenticated 

client.go:82: C: Sending command SUBSCRIBE time.flows.unix.ar 

client.go:88: C: Wrote (30 bytes written) 

client.go:112: C: Server sent OK for command SUBSCRIBE time.flows.unix.ar 

server.go:456: Flow time.flows.unix.ar subscribed successfully 

server.go:457: Server responded: ksdj898.time.flows.unix.ar 

server.go:459: Quitting 

 
We can see how fnaa-emiliano had to trigger a client subroutine to contact the 
remote fnaa-unix. Once the server FQDN, IP and Port is discovered by means of 
DNS, a new connection is established and the SUBSCRIBE command is issued. 
Here we can see the log of fnaa-unix: 
 
server.go:111: Handle incoming messages. 

server.go:105: Accept a connection request. 

server.go:253: User authenticated 

server.go:139: Received command: subscribe 

server.go:348: [SUBSCRIBE time.flows.unix.ar] 

server.go:367: Creating flow endpoint time.flows.unix.ar 

server.go:368: Creating new topic ksdj898.time.flows.unix.ar in Apache Kafka 

instance kafka_local 

server.go:369: Creating Flow Processor src=time.flows.unix.ar 

dst=ksdj898.time.flows.unix.ar 

server.go:370: Adding DNS Records for ksdj898.time.flows.unix.ar 

server.go:372: Flow enabled ksdj898.time.flows.unix.ar 

server.go:139: Received command: quit 

 
Thus, we were able to set up a new subscription in fnaa-emiliano that trigger a 
background interaction with fnaa-unix. 
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7.5. Results of the PoC 

We can confirm the feasibility of the overall Event Streaming Open Network 
architecture. The test of the proposed protocol FNAP and its implementation, both 
in the FNAA and FNUA (CLI application), show that the architecture can be 
employed for the purpose of distributed subscription management among 
Network Participants. 
 
The minimum functionalities defined both for the Network Participants and the 
Users were met. Network Participants can run this type of service by means of a 
server application, the FNAA server. Also, the CLI-tool resulted in a convenient 
low-level method to interact with a FNAA server. 
 
In further implementations, the server application should be optimized as well as 
secured, for instance with a TLS handshake. Also, the CLI-tool could be 
enhanced by a web-based application with a friendly user interface. 
 
Nevertheless, the challenge for a stable implementation of both components is 
the possibility of supporting different Event Brokers and their evolution. Not only 
Apache Kafka should be supported but also the main Public Cloud providers 
events solutions, such as AWS SQS or Google Cloud Pub/Sub. Since the Event 
Brokers are continuously evolving, the implementation of the FNAA component 
should keep up both with the API and new functionalities of these vendors.  
 
Regarding the protocol design, it would be needed to enhance the serialization 
of the exchanged data. In this sense, it could be convenient to define a packet 
header for the overall interaction between the FNAA both with remote FNAA as 
well as with FNUA. 
 
Regarding the subscription use case, it would be necessary to establish a 
convenient format for the server response. Currently, the server is returning a 
key/value structure with the details of the Flow. This structure may not be the 
most adequate, since it may differ depending on the Event Broker used. 
 
Also, the security aspect needs further analysis and design since its fragility could 
lead to great economical damage for organizations. Thus, it would be 
recommended to review the different security controls needed for this solution as 
part of an Information Security Management System. 
 
Finally, the implementation should leverage the Cloud Native functionalities 
provided by the Kubernetes API. For example, the FNAA should trigger the 
deployment of Flow Processors on demand, in order to provide isolated 
computing resources for each subscription. Also, a Kubernetes resource could 
be developed to use the kubectl CLI tool for management, instead of a custom 
CLI tool. 
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9. Summary & Conclusions 
In this chapter we will provide a summary of everything that has been done in this 
work, as well as some conclusions about it. 
 
First, we described the current landscape of the Event Streaming technology, 
mentioning the main tools and actors in the market. While describing the state-
of-the-art of the technology, Apache Kafka was identified as the leading tool for 
Event Streaming. Not only Apache Kafka enables convenient functionalities for 
real-time events communications but also is currently being widely adopted for 
this purpose. 
 
Then, we identified a use case for which there is currently no adequate solution 
provided by existing tools. This use case is based on the cross-organization 
integration of real-time event streams. Nowadays, organizations intending to 
integrate these kind of data streams struggle with offline communication to 
achieve a common interface for integration. In this context, we proposed an Open 
Network for Event Streaming as a possible solution for this difficulty. 
 
For this Open Network, we have followed the main necessities from the technical 
perspective. While there already exist many components that can be leveraged, 
some components require analysis, design, and implementation. Then, we 
referred to the Commons Infrastructure literature in order to show how Event 
Streaming can be considered an Infrastructure Resource that can enable 
downstream productive activities. Finally, we established the main guidelines that 
an Open Network should follow, basing these definitions on Free, Open & Neutral 
Networks. 
 
Using the previous definitions, we have designed an architecture for the Event 
Streaming Open Network, establishing the components that the different Network 
Participants should implement in order to participate in the network. After 
providing a thorough description of all the components, we showed some use 
cases of integration among different Network Participants. 
 
Once the architecture was defined, we proposed an implementation approach 
which describes the existing components that can be leveraged as well as those 
that need to be developed from scratch. The outcome was that a server-side 
application called FNAA had to be developed. This application implements the 
protocol FNAP and can be accessed by a client application, which we named 
FNUA. 
 
Finally, we proved the feasibility of the proposed architecture by providing an 
implementation of the minimum functionalities required, in the form of a Proof of 
Concept. The results of this PoC were encouraging since it was possible to 
implement the initial functionalities for the FNAA and FNUA components. 
 
As conclusion, we can mention that there is great potential for an Open Network 
for Event Streaming among organizations. In the same way the email 
infrastructure acts as an open network for electronic communications among 
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people, this kind of network would enable developers to integrate real-time event 
streams while minimizing offline agreement of interfaces and technologies. 
 
However, there are many difficulties that could be furtherly worked on. First, a 
robust implementation for the Event Streaming Open Network main components 
must be provided, mainly for the FNAA and FNUA. In order to achieve an 
acceptable level of quality and stability, the development of a community around 
the project is needed. 
 
Secondly, we found that the proposed architecture is a convenient starting point. 
However, it can suffer modifications based on the learning process during the 
implementation. For example, while designing the architecture, we avoided the 
need of a database for the FNAA component, leveraging on the DNS 
infrastructure. While this can be sufficient for the minimum functionalities 
described, it will most probably be necessary for the FNAA to persist data in a 
database of its own. In this sense, we believe that leveraging the Kubernetes 
resources model could be a convenient alternative. 
 
Thirdly, during the PoC execution, we identified some difficulties implementing 
the security functionalities of authentication and authorization. Although we were 
able to implement an authentication mechanism, the reality indicates that 
integration with well-established protocols is needed (i.e., OAuth, GSSAPI, etc.). 
 
Finally, there is also the need to leverage on the Cloud Native architecture, 
basically Kubernetes, to provide hyper-scalability and enable Network 
Participants to agnostically choose the underlaying infrastructure. The selection 
of Golang for the PoC implementation showed to be convenient, given the vast 
number of available libraries for integration of third-party components and 
services. 
 
Notwithstanding the difficulties, we firmly believe that cross-organization real-time 
event integration can provide great benefits for society. It would enhance the 
efficiency of business processes throughout organizations. Also, it would provide 
broad visibility to the final users, enabling experimentation and entrepreneurship. 
New business models for existing productive activities could be developed, as 
well as enabling innovation, which in turn would conform the positive externalities 
of the Event Streaming Open Network. 
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Annex A – Traditional synchronous archetype 
Traditional communications among systems include a service integration layer as 
well as a database integration one. We can see in Figure 1 a traditional archetype 
for traditional software development. 
 
The System User Space in the cloud symbolizes the group of people, 
applications, devices, etc.; that make use of the System. The System exposes a 
Service Layer that permits users to access data, which can be built on network 
and presentation standards such as REST, GraphQL, gRPC, Web Sockets, etc. 
Moreover, the behavior exposed by this Service Layer is predominantly 
synchronic. 
 
The synchrony can be of two different types: (i) tight synchrony or (ii) loose 
synchrony. The first one implies one or more synchronous tasks in the service 
layer, for example operations against a RDMS (Relational Database 
Management System) such as MySQL, PostgreSQL, MongoDB, etc. The latter, 
loose synchrony refers to behavior that does not include nested synchronic 
behavior or includes asynchronous nested behavior. The main objective of 
differentiating these categories is due its convenience to illustrate the importance 
of latency in the traditional communication archetype. 
 
Nevertheless, this archetype has an Achilles Heel. While this archetype can 
effectively solve unlimited use cases it cannot solve all of them with the same 
level of efficiency. This weakness is located in the System User Space. In the last 
few years, there has been a tremendous growth in users and devices, together 
with the growth of client network applications installed on computers and mobile 
phones. The result is what literature on the subject calls “firehose of data”, 
meaning an intense and rich source of data. 
 
When an instance system of the traditional archetype is exposed to large data 
demands from the network, the weaknesses are risky as well as costly. There are 
two main threatening scenarios. First scenario in which the application cannot 
cope with the demand and collapses. In the second scenario, the system is not 
fully ready (and cannot be made fully ready in the middle term) to start receiving 
large flows of data for various reasons, for instance software development costs, 
know-how, etc. 
 
In any case, whether the application has been made ready to receive intense 
data streams or not, the system will need to be transformed to a distributed 
system. Then a large refactoring problem emerges since transforming an 
standalone system to a distributed one is not a straight-forward task.  
 
However, there is the alternative of deploying a tool that guarantees the reception 
of the data streams independently of the business reader application. These tools 
are referred to Event Streaming Platforms and basically expose both a service 
and storage layer. The ESP offers the great benefit of serving all entities (people, 
devices, apps, etc.) that need to asynchronously write event data. On the other 
side, ESPs also low-latency and high-throughput communications for the readers 
of data streams.  
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Annex B – Flow URI Resolution 
In this case, the query for PTR records would be as follows: 
 
;; QUESTION SECTION: 

;notifications.calendar.people.syndeno.com.  IN PTR 

 
The response would be in the following form: 
 
;; ANSWER SECTION: 

notifications.calendar.people.syndeno.com. 21600 IN PTR 

_flow._tcp.notifications.calendar.people.syndeno.com. 

 
Using the FQDN returned by this query, an additional query asking for SRV 
records is made: 
 
;; QUESTION SECTION: 

;_flow._tcp.notifications.calendar.people.syndeno.com.  IN SRV 

 

;; ANSWER SECTION: 

_flow._tcp.notifications.calendar.people.syndeno.com. 875 IN  SRV

 30 30 65432 fnaa.syndeno.com. 

_flow._tcp.notifications.calendar.people.syndeno.com. 875 IN TXT “tls” 

 

_queue._flow._tcp.notifications.calendar.people.syndeno.com. 875 IN 

 SRV 30 30 9092 kafka.syndeno.com. 

_queue._flow._tcp.notifications.calendar.people.syndeno.com. 875 IN TXT 

“broker-type=kafka tls” 

 

 

First, the response informs the network location of the FNAA server, in this case 
a connection should be opened to TCP port 65432 of the IP resulting of resolving 
fnaa.syndeno.com: 
 
;; QUESTION SECTION: 

;fnaa.syndeno.com.  IN A 

 

;; ANSWER SECTION: 

fnaa.syndeno.com. 21600 IN A 208.68.163.200 

 
Secondly, this response offers other relevant information, like the TCP port where 
the queue service is located (9092). It also includes a TXT Resource Record that 
establishes the protocol of the Event Queue Broker, defined in the variable 
“broker-type=kafka”.  
 
Now, using the returned FQDN for the queue, kafka.syndeno.com, the resolver 
can perform an additional query: 
 

;; QUESTION SECTION: 

;kafka.syndeno.com.  IN A 

 

;; ANSWER SECTION: 

kafka.syndeno.com. 21600 IN A 208.68.163.218 
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Annex C – Flow URI Syntax 
 
flow://flowName.flowCategory.myNameSpace.domain.tld 

 

• Flow Namespace FQDN: myNameSpace.domain.tld 

• Flow Name: flowName.flowCategory 

• Flow FQDN: flowName.flowCategory.myNameSpace.domain.tld 
 
The following are examples of this URI Syntax: 
 
flow://notifications.calendar.people.syndeno.com 

 

• Flow Namespace FQDN: people.syndeno.com 

• Flow Name: notifications.calendar 

• Flow FQDN: notifications.calendar.people.syndeno.com 
 
flow://created.invoice.finance.syndeno.com: 

• Flow Namespace FQDN: finance.syndeno.com 

• Flow Name: created.invoice 

• Flow FQDN: created.invoice.finance.syndeno.com 
 


