
RELIABLE PROCESS FOR SECURITY POLICY DEPLOYMENT

Stere Preda†, Nora Cuppens-Boulahia†, Frédéric Cuppens†, Joaquin G. Alfaro†,‡ and Laurent Toutain†

†GET/ENST Bretagne, 2 rue de la Châtaigneraie, 35512 CessonSévigné, France
{frederic.cuppens,nora.cuppens,stere.preda,laurent.toutain}@enst-bretagne.fr

‡Universitat Oberta de Catalunya, Rambla Poble Nou 156, 08018 Barcelona, Spain
joaquin.garcia-alfaro@acm.org

Keywords: Network Security; Security Devices; Security Rules; Deployment of Policies; Policy Anomalies.

Abstract: We focus in this paper on the problem of configuring and managing network security devices, such as Fire-
walls, Virtual Private Network (VPN) tunnels, and Intrusion Detection Systems (IDSs). Our proposal is the
following. First, we formally specify the security requirements of a given system by using an expressive access
control model. As a result, we obtain an abstract security policy, which is free of ambiguities, redundancies
or unnecessary details. Second, we deploy such an abstract policy through a set of automatic compilations
into the security devices of the system. This proposed deployment process not only simplifies the security
administrator’s job, but also guarantees a resulting configuration free of anomalies and/or inconsistencies.

1 INTRODUCTION

Specifying, deploying and managing access control
rules for a network architecture is one of the main
tasks of a security administrator. These rules are usu-
ally implemented by different security devices, such
as firewalls, virtual private network (VPN) tunnels
and intrusion detection systems (IDSs). The config-
uration of these devices must be compatible with an
established security policy. In order to ensure this
compatibility in the case of a simple network architec-
ture, the configuration of the security devices may be
obtained directly by translating the security require-
ments into packages of specific rules for each of these
devices. When the architecture is more complex and
involves several security devices, this procedure may
lead to anomalies in the configuration of these devices
and become an important source of errors exploited
by potential attackers.

These anomalies can be classified as follows.
Firewall anomalies, also defined in the literature as
intra- and inter-firewall anomalies [6], and that refer
to those conflicts that might exist within the local set
of rules of a given firewall (intra) or between the con-
figuration rules of different firewalls that match the
same traffic (inter); tunneling anomalies, which refer
to those conflicts that might exist when both firewalls
and VPN tunnels match the same traffic; andintrusion
detection system anomalies, which refer to those con-

flicts that might exist when both firewalls and IDSs
match the same traffic.

There actually exist several proposals that address
the problem of managing security policies free of
anomalies. In [7], for example, the authors propose
a refinement mechanism based on a high level lan-
guage and that performs an automatic firewall deploy-
ment through a refinement. However, its approach is
not fully satisfactory since it does not apply a com-
plete separation between the abstract security pol-
icy and the security device features and technology.
The authors in [12] propose a more complete pro-
posal by using theOrganization Based Access Con-
trol (OrBAC) model [1] as a high level policy lan-
guage and an ulterior set of compilations that derive
the OrBAC specifications into specific device config-
urations. Unfortunately, only firewall management is
addressed in such an approach. Other approaches,
such as [6, 13, 4], on the other hand, present audit
solutions for the analysis of more complex security
setups, where not only firewalls, but also VPN de-
vices and IDSs, are in charge of the whole network’s
security. However, the main drawback of these audit
approaches relies on their lack of knowledge about a
global security policy, which is very helpful for main-
tenance and troubleshooting tasks.

In this paper, we extend the refinement approach
presented in [12], and propose a more complete re-
finement process to derive not only firewall config-

urations, but also VPN/IPSec (Internet Security Pro-
tocol Suite) and scenario-based IDSs configurations.
We propose a 2-steps process to (1) formally spec-
ify the global set of security requirements by using
an expressive access control model based on OrBAC;
and (2) a set of ulterior compilations to automati-
cally transform such an abstract security policy into
the specific configuration of each security device de-
ployed over the system (e.g., firewalls, VPN/IPSec
tunnels and IDSs). This strategy not only simplifies
the administrator’s job, but also guarantees that the
management of policies at both high and specific level
is completely free of anomalies, i.e., ambiguities, re-
dundancies or unnecessary details.

The rest of this paper is structured as follows.
Section 2 presents some related works. Sections 3
and 4 overview our strategy and introduce the main
aspects of our expressive access control model. Sec-
tion 5 presents our deployment algorithms. Finally,
Section 6 closes the paper with some conclusions and
work in progress not covered in this paper.

2 RELATED WORK

There exist in the literature several proposals to man-
age and deploy access control policies on security de-
vices free of anomalies. We overview in this section
those works that we consider close to ours.

A first approach presented in [7] proposes a re-
finement mechanism based on a high level language
that allows administrators to perform automatic fire-
wall deployments. It uses the concept of roles to de-
fine network capabilities, and propose the use of an
inheritance mechanism through a hierarchy of enti-
ties to automatically generate permissions. However,
this approach is not fully satisfactory since it does
not apply a complete separation between the abstract
security policy and the security device features and
technology. More specifically, it does not fix clear
semantics, and its concept of role becomes ambigu-
ous. A similar refinement approach is also presented
in [15]. However, and although the authors claim that
their work is based on the RBAC model [17], it also
presents a lack of semantics — it seems that they only
keep from the RBAC model the concept of role. In-
deed, the specification of network entities, roles, and
permission assignments are not rigorous and does not
seem to fit any reality.

The authors in [2] present an intrusion detection
approach to enforce a security policy. They propose
the use of a ”neutral language” to define a global pol-
icy which is further deployed into a heterogeneous

system. As their work is focused on a Linux pro-
tection language, the rules that cannot be translated
into file access rules are to be translated into IDS or
firewall rules. However, although the distribution of
the global policy into the system is done in a manual
fashion on different hosts/nodes, there is no algorithm
explaining the choice of these hosts/nodes that opti-
mally respond to global security requirements. Al-
though some verification processes try to guarantee
anomaly-free policies, only local configurations are
considered. Some drawbacks when managing those
anomalies are moreover pointed out in [8] and no so-
lution has been yet presented. Furthermore, no IPSec
devices are taken into account.

The work presented in [12] successfully applies a
set of refinement transformation to derive from an ab-
stract security policy based on the OrBAC model [1]
into the network’s firewalls that might be enforced.
However, the network administrator has to assist the
deployment of the access control rules by indicat-
ing which firewall implements a specific rule. For
instance, concerning a given rule stating a certain
traffic is allowed (e.g., theftp service) between two
hosts, the administrator has to indicate which firewalls
should implement an accept rule to fulfill this require-
ment. We extend in this paper this later approach by
introducing new security devices (VPN/IPSec-based
tunnels and IDSs), improving some of the previous
limitations, and guaranteeing that neither VPN nor
IDS anomalies may apply over resulting setup.

Some other approaches propose to directly ana-
lyze existing configurations in order to warn and fix
inconsistencies. The work presented in [13], for ex-
ample, concerns the analysis of VPN overlapping tun-
nels in order to detecttunneling anomalies. In their
approach, if an access rule concerning a protected
traffic between two points is implemented by config-
uring more than one IPSec overlapping tunnels, the
risk is that in some network zones the IP packets cir-
culate without any protection. The authors in [13]
present a discovery process to detect such situations
and propose a high-level language to deal with VPN
policies. However, a significant aspect is ignored in
their approach: the whole security policy cannot be
seen as two independent aspects — VPN tunnels and
the firewall issues. They should not be separately
modeled. Otherwise, there is a risk of conflicts at the
end of their process. The use of a single access model,
as our approach does, solves this limitation and allows
us to deal with security aspects as a whole.

In [14], a complete taxonomy of conflicts in se-
curity policies is presented, and two main categories
are proposed: (1)intra-policy anomalies, which re-
fer to those conflicts that might exist within the local

configuration of security devices; and (2)inter-policy
anomalies, which refer to those conflicts that might
exist between the configuration rules of different se-
curity devices that match the same traffic. The authors
in [6] propose, moreover, an audit mechanism in order
to discover and warn about these anomalies. In [3, 4],
some existing limitations in [14] are pointed out, and
an alternative set of anomalies and audit algorithms to
deal with these anomalies are proposed. However, as
noted in [5], the main drawback of these solutions re-
lies on the lack of knowledge about the security policy
as a whole — from a global point of view — which
is very useful for maintenance and troubleshooting
tasks. The managing of anomalies during our refine-
ment process, not only guarantees equivalent results,
but also keeps with such a knowledge.

Support tools can also be used to assist adminis-
trators in their task of configuring security devices.
The Cisco Security Manager [9], for example, is de-
signed to support the security policy deployment on
a heterogeneous network involving a large diversity
of cisco-based devices. However, we observe the fol-
lowing problems when using such a tool. First, it does
not offer a semantic model rich enough to express a
global security policy. Although there is the possi-
bility of defining variables, and thus defining access
rules involving such variables, the administrator tasks
are not much simplified. The administrator always
needs a global view of the topology in order to cor-
rectly specify each rule to network devices; there is no
automatic discovery of security devices that optimally
implement an access rule involving an IP source and
a destination, as our approach does. Furthermore, the
lack of a real top-down approach as ours (cf. Sec-
tion 3.1) is partially replaced by other tools — e.g.,
conflict discovery tools that need the administrator’s
assistance and that unfortunately only guarantee con-
flict resolution for local configurations.

3 SECURITY POLICY
EXPRESSION

3.1 Downward Approach

Let us start by showing in Figure 1 the strategy of
our approach. The informal security requirements
specified in current language (informal layer) are first
translated into a high level language based on the
OrBAC model [1]. Although this translation to the
OrBAC-based policy expression can not be wholly
automatic, the abstract concepts in the OrBAC model
(cf. Section 3.2) facilitate this translation for an ad-

ministrator. Based upon this abstract security pol-
icy that is detached from any specific security device
technology (e.g., NetFilter [18]), we defined a set of
deployment algorithms marked in Figure 1. These
compilers are further detailed in Section 5. The first
compilation is iterated every time asub-organization
(e.g., a firewall) is revealed (in Section 3.3 we will
explain the element that determines these iterations).
The result is a package of rules written in a generic ex-
pression (multi-target) and not for a specific technol-
ogy. The second compilation takes into account the
specific technology and grammar (syntax & seman-
tics) of the security devices. For example, different
transformations have to be conceived when dealing
with NetFilter, Netasq or Cisco PIX firewalls.

Figure 1: Downward approach.

3.2 Security Policy Specification

OrBAC is the access control model we used to express
the abstract security policy [1]. This model involves
two levels of abstraction: (1) an organizational level
(”role”, ”activity”, ”view” and ”context” concepts);
and (2) a concrete level (”subject”, ”action”, ”object”)
— that are entirely compatible with our downward
approach. The OrBAC model uses first order logic
to write access control rules in the form of permis-
sions (Is permited), prohibitions (Is prohibited) and
obligations (Is Obliged). For example, a permission
is derived as follows:

∀ org,∀ s,∀ o,∀ α, ∀ r, ∀ ν, ∀ a,∀ c
permission(org, r, a,ν, c)∧
empower(org, s, r)∧ use(org, o,ν) ∧
consider(org,α, a)∧ hold(org, s, a, o, c)
→ Is permitted(s,α, o)

If the organizationorg grants roler the permis-
sion to perform activitya in view ν in contextc and
if the role r is assigned to subjects (empower), the

objecto is used inν (use) andα is considered the ac-
tion implementing activitya (consider), s is granted
permission to performα on o. Let us note that the
new concepts introduced by OrBAC are the follow-
ing: (1) Activity, regroupingactionshaving common
properties; (2)View, severalobjectshaving the same
properties on which the same rules are applied; and
(3) Context, a concept defining the circumstances in
which some security rules can be applied.

OrBAC is based on theorganizationconcept as-
signed to each network entity that deals with a part
of the security policy. If the (virtual) LAN the se-
curity policy is designed for, constitutes an organiza-
tion then a firewall, an IDS or an IPSec device be-
come sub-organizations(organization hierarchy) of
this LAN organization. Roles are assigned tosub-
jects, i.e., active entities in the network (e.g., a host, a
server, a firewall interface). A subject is assigned one
or several roles and will therefore obtain certain per-
missions. The notion ofrole facilitates the handling
of subjects and permissions. Permissions are obtained
for each of the subjects according to their role. The
activitiesare an abstraction of the network services.
For example, the action defined as ”ALLTCP” in-
cludes all tcp network services; ”WEB” refers to https
(port 443) and http (port 80).

A view regroups theobjects. As we have seen,
at the concrete level of the OrBAC model, the rules
appear asIs permitted(s,α, o) meaning that an en-
tity/subjectshas the permission to perform the action
α on the objecto. Hence, the object is either a net-
work entity (e.g., a web server) identified by its IP
address or an IP packet with a given data payload.
Thecontextallows the definition of specific security
requirements directly at the OrBAC level. Some of
the permissions occur in a ”protected” context; this
leads to the configuration of an IPSec tunnel. On the
other hand, a scenario-based IDS alert is triggered in a
”vulnerability” context associated with an attack with
a known signature; a specific IP payload may also be
specified as a part of the attack signature.

Finally, OrBAC, as also RBAC does [17], defines
role hierarchies, and also views, activities and context
hierarchies [10]. In the specialization/generalization
hierarchy, permissions and prohibitions are inherited
downward. These hierarchies facilitate the adminis-
trator’s task by attributing privileges and also simplify
the formalization of the security policy.

3.3 OrBAC Security Policy

The authors in [12] describe an XML-based OrBAC
security policy implementation. We chose to keep the
same XML environment, but we slightly modified and

proposed new XML data structures to handle the IDS
and IPSec devices. The network architecture shown
in Figure 2 will be used to explain our methodology.
It illustrates a private network (the ”Corp” network:
111.222.0.0/16) including even geographically differ-
ent sites.

Accordingly to the OrBAC model, the scheme de-
scribing the high level policy includes an organiza-
tion. It is composed of the following parts: (1) The or-
ganization’s name; (2) An element describing the or-
ganization structure; (3) A set of rules (permissions);
and, if necessary, (4) a reference to a higher level or-
ganization (organization hierarchy).

In the ”structure” element, we distinguish the enti-
ties relevant for the security policy (thesubjects) that
compose the network, therolesassigned to these enti-
ties and finally, the network services. The entities can
be ”host”, ”subnet” or ”addressinterval” types. Also,
the entities exclusion is used to simplify the structure
representation. As an example, the Internet entity is
defined as 0.0.0.0/0 excluding the corporate ”Corp”
network 111.222.0.0/16:

<entity>
<entityName>Net</entityName>
<subNet>

<addr>0.0.0.0</addr>
<mask>0</mask>

</subNet>
<exclusionEntity>

<entityName>Corp</entityName>
</exclusionEntity>

</entity>

The roles are assigned to the entities (”entity-
Name”). The specialization/generalization role hi-
erarchy is used to simplify the OrBAC rule expres-
sion. This hierarchy is indicated by an XML child
element of the ”role” element: ”seniorRole”. For
instance, the role ”RFW” or ”R VPN” is inherited
by all subjects having firewall functionalities (e.g.,
”FW Extern”, in Figure 2), respectively IPSec func-
tionalities (e.g., ”FWIntern”). In the following ex-
ample, the role ”RDNS srv” (DNS server) is as-
signed to the entity/subject ”DNSserver” that inher-
its the role of a server - ”RSrv”. Thus, an access rule
implying the role ”RSrv” will automatically be prop-
agated to DNS server and other servers:

<role>
<roleName>R DNS srv</roleName>
<seniorRole>

<roleName>R Srv</roleName>
</seniorRole>
<entityName>DNS server</entityName>

</role>

Figure 2: Topology example.

The permissions at the abstract level respect the
data structure shown in Figure 3. This XML schema
is compliant with the OrBAC specification. The role
”roleName” performs the activity ”serviceName” on
the object ”target” with the role ”target/roleName”.
The ”context” element is optional. If the security
policy does not specify any particular conditions in
which this permission is attributed to the role ”role-
Name”, the context is ”default”. Otherwise, the secu-
rity policy may announce a ”protected” context or a
”vulnerability” one. In the first case, an IPSec-based
tunnel must be created according to the ”child ele-
ments” of the ”protected” context: the type of the
encryption algorithm (e.g., AES), the entities which
have to negotiate the tunnel, a time interval during
which the IPSec tunnel is enabled, etc. The sec-
ond case will correspond to an IDS alert; a possible
(XML) attribute of the ”vulnerability” context ele-
ment may be the CVE vulnerability code if known
[16]. Moreover, a ”content” child element of the
”context” will contain a specific data pattern as part
of an attack signature.

An important element of the ”permission” is the
”securityRole”. According to the OrBAC terminol-
ogy, ”securityRole” identifies a sub organization. A
”securityRole” is also responsible for the activation
of certain contexts, thus the activation of an access
rule. It designates the role attributed to the security
device(s) which implement(s) the corresponding ac-
cess rules. For example, a rule stating that the access
from the ”Internet” to the DNS server is allowed will
be implemented by the firewall ”FWExtern”; thus,
the ”securityRole” is the role ”RFW Extern”. Fur-
thermore, a permission that bounds the role ”RIntra”
and the target ”Internet” will be duplicated on both
firewalls ”FW Intern” and ”FWExtern”. In this case,
the ”securityRole” regroups both ”RFW Intern” and
”R FW Extern”.

In the case of less complex network architectures,
the ”securityRole” is given by the network adminis-
trator. Concerning more complex architectures (and
a great number of access rules), this security role as-
signment is difficult to elaborate and can lead to er-
rors. That is why we propose some algorithms to au-
tomatically designate the right ”securityRole” under
the following two hypothesis:

(1) We consider that the formal policy at the OrBAC
level is correct1: the ”structure” (cf. Figure 3) is
well defined, without ambiguities (e.g., a firewall
is not attributed the role of a server) and the ac-
cess rules (cf. the ”permissions” in Figure 3) are
well specified (e.g., there is no OrBAC rule shad-
owed by any other). However, we admit that cer-
tain rules cannot be implemented because the ad-
equate security device (with the appropriate func-
tionalities) is missing. Our algorithms can detect
this kind of mismatch when deploying the policy.

(2) Inside the (virtual) network the security policy is
designed for, the IP packets flow according to the
shortest pathprinciple (as a routing protocol guar-
antees). The shortest path principle is used to
identify the device(s) on which a given security
rule must be deployed. However, notice that the
shortest path is not always unique. For instance,
in Figure 2, there are two possible shortest paths
from site ext to SrvBD. In this case, our algo-
rithms attempt to deploy the security rule on each
candidate shortest path.

To achieve this, the OrBAC structure shown in
Figure 3 is parsed and relevant information about the
network topology is collected. Practically we will ob-
tain a graph and theshortest pathprinciple will be
applied to it. We describe the methodology in the fol-
lowing section.

1We prove in [11] that such an assumption is feasible.

Figure 3: OrBAC organization structure.

4 MODELING THE TARGET
ARCHITECTURE

4.1 Modeling the Topology

At the OrBAC level, the security officer identifies the
relevant active entities (i.e.,subjects) and roles as-
signed to these entities with respect to the network
topology and the security requirements. A role can
be assigned to more than one entity (e.g., all firewalls
have the firewall role ”RFW”) and an entity can have
more than one role (e.g., a firewall can have IPSec
functionalities). The hierarchy of roles is defined
too (e.g., a multi-server that has the DNSserver and
Web server roles inherits inevitably the server role - a
less specialized role). An entity can be either a host,
a subnet or an address interval type.

As mentioned in Section 3.3, the entity exclusion
is used to achieve a better structuring and manage-
ment of the entities. The DMZ zone is considered to
be the 111.222.1.0/24 subnet excluding the two in-
terfaces of the adjacent firewalls ”FWExtern” and
”FW Intern” (cf. Figure 2). Multi-level exclusions
may also exist. For example, the ”CorpLessIntra”
is the ”Corporate” entity (111.222.0.0/16) which ex-
cludes the ”Siteext” entity (111.222.5.0/16) and the
”Intra” entity (111.222.2.0/24) which in turn excludes
the internal interface of the firewall ”FWIntern”.
”CorpLessIntra” defines briefly all hosts unused by
general corporate employees and managed by ”Ad-
min” zone (111.222.3.0/24 - the network administra-
tion zone).

Regarding complex network architectures, one of
the most difficult tasks for a security officer is to indi-
cate each of the security devices (i.e., ”securityRole”)
which optimally implement the access rules. In our
approach, the security officer does not need to give
such an indication because our algorithms find the
right set of ”securityRole” for each ”permission” if

”securityRole” exists. For this purpose, the OrBAC
”structure” is initially parsed and we construct a graph
where every node is azone2. In order to do so, the fol-
lowing information is automatically extracted during
the initial phase of our process:

- The functionalities of each security devices. For
example, in Figure 2, the firewall ”FWIntern” has
fw & VPN functionalities (firewall and IPSec ca-
pabilities).

- The set of neighbors of each zone (based on their
IP addresses and masks3). For example, after
parsing the ”structure” corresponding to Figure 3,
the neighbors of the zone ”FWIntern” are the ”In-
tra”, ”DMZ” and ”Admin” zones.

As a result of this first parsing phase, we obtain
the following two outputs:

(1) A list of security devices,
Ss, defined as follows: Ss =
∪ j{devicej , f unctionalitiesj , [∪n{neighborsjn}]}.

(2) A list of zones,Zones, define as follows:Zones=
∪i{zonei[neighborsik}]}, and whereneighborsik
is the neighbork zones of theith zone.

4.2 Modeling Paths

Let us consider a rule at the OrBAC level; it implies a
role (”roleName”) and an object (”target/roleName”)
that corresponds to respectively a source ”Src” and
a destination ”Dest” entities. This information is
mandatory at the OrBAC level (cf. Figure 3). As al-
ready mentioned, we developed an algorithm that out-
puts the optimal set of ”securityRole” based on the
following three assumptions:

2A zoneis either a subnet with no security device inter-
facing any other subnet or the set of interfaces of a security
device

3The establishing neighbors algorithm is based on the
longest prefix matching scheme.

- sourcezone: ∪ j{zonej}= Src∩Zones;

- dest zone: ∪i{zonei}= Dest∩Zones;

- shortest path : Zonesx Zones→ Ss, such that
shortestpath(zonej ,zonei)←∪k{devicek}.

Once identified the source and the destination
zones for an access rule, the shortest paths between a
source zone and a destination zone are computed and
the security devices on this path are revealed. Some of
these security devices will be designated as ”security-
Role”. Moreover, the security devices on the shortest
path must have the functionalities:

- if the access rule is in a ”default” context then fire-
wall functionalities are necessary;

- if the access rule is in a ”protected” context then
IPSec functionalities are required;

- if the access rule is in a ”vulnerability” context,
then IDS functionalities are required.

In a ”default” context, apermissionrule will be imple-
mented on all firewalls found on the path; aprohibi-
tion rule might simply be implemented on the security
device which is the closest to the IP flow source (our
shortestpathalgorithm was designed so as to choose
the mostup-stream— the closest to the source — or
the mostdown-stream— the closest to the destination
— security device). The fact that an access rule is ei-
ther apermissionor aprohibition filtering rule is not
relevant for our discussion. That is why for didactical
reasons, we considered onlypermissionrules in the
”default” context.

5 DEPLOYMENT ALGORITHMS

The main part of the security policy deployment is
included in the first compilation phase (cf. Figure 1)
as a set of four processes:

- The ”structureparsing” with the main results, i.e.,
the list of security devices Ss4 and Zones;

- the ”hierarchiestreatement” including the role hi-
erarchy treatment and the exclusion entities treat-
ment;

- the ”securityRole” phase including the shortest
path computation;

- ”multi-target” extracts all relevant information
about the set of access rules the ”securityRole”
must implement, in a generic format.

4We recall, from Section 4.1, that Ss is
the list of security devices, such thatSs =
∪ j{devicej , f unctionalitiesj , [∪n{neighborsjn}]}.

The compilation process is schematized in Fig-
ure 4. The input is the OrBAC security policy; the
intermediary results are represented by dotted lines.
The final compilation result is a set of files consisting
of the part of the security policy assigned to each ”se-
curityRole” (the ”multi-target” level). ”call” stands
for function callings; ”input” means that the interme-
diary results serve as input for other processes.

Figure 4: First compilation phases.

Concerning the first compilation, the main algo-
rithms are the ”SecurityRoleDiscovery”, ”exclusion
entities treatment” and ”IDS - FirewallRedundancy”.
From the ”multi-target” level, a second compilation is
applied to obtain the packages of concrete rules ac-
cording to the specific syntax of each relevant device.

5.1 TheSecurityRoleDiscovery
Algorithm

The ”securityRole discovery” takes into account,
as an input, the ”structure” (cf. Figure 3) pars-
ing results: Ss and Zones. It also uses theshort-
estpath function. Let us assume the ”permissions”
= ∪i{permissioni} at the OrBAC level:

Algorithm 1: SecurityRoleDiscovery

foreach permissionk do1

call hierarchies treatement;2

∪i{zoneSi} ← (Src ∩ Zones);3

∪j{zoneDj} ← (Dest ∩ Zones);4

foreach zoneSi do5

foreach zoneDj do6

if permissionk[context] = default then7

Ss list ← shortest path (zoneSi,zoneDj);8

if Ss list[functionalities] = fw then9

securityRole ← Ss list;10

break;11

if permissionk[context] = protected then12

Src V PN list ← find VPN components in ∪k{zoneSi[neighborsik];13

Dest V PN list ← find VPN components in ∪k{zoneDj [neighborsjk];14

if shortest path (zoneSi,zoneDj)15

passing by (Src V PN list,Dest V PN list) then16

call configure VPN IPsec tunnel;17

else18

warning (“V PN tunnel impossible”);19

break20

if permissionk[context] = vulnerability then21

call IDS-Firewall Redundancy;22

A ”permission” rule in a ”default” context is im-
plemented by all security devices with firewall func-
tionalities on the shortest path. For example, given
the topology in Figure 2, both firewalls ”FWsite Ext”
and ”FW Extern” implement an access rule stating
that ”ftp” is allowed from the ”siteext” zone to the
”DMZ” zone.

In the ”protected” context, we formulated an ex-
tension to the shortest path function -passingby():
- it identifies the security devices - neighbors of the
source and the destination zones having IPSec func-
tionalities and it is supposed to compute a path be-
tween two of them;
- if a path exists, the algorithm finds the right in-
terfaces negotiating the IPSec tunnel (longest prefix
matching scheme);
- new filtering access rules are to be implemented on
the firewalls discovered on the tunnel path (for exam-
ple, to enable the IPSec tunnel negotiation -isakmp
with the above interfaces). This way, we avoid the
conflict firewall↔ IPSec tunnel.

Given the same topology (cf. Figure 2), let us
consider an access rule stating that all TCP traffic
from the zone ”Intra” to the ”siteBD” zone must
be secured:Is permited(RIntra, ALL TCP, target-
R site BD, context-protected). With the previous al-
gorithm, the ”protected” context leads to the con-
figuration of an IPSec-based tunnel. The IPSec
tunnel will be implemented by ”FWIntern” and
”FW BD 1” security devices because: (1) a path ex-
ists from the ”Intra” zone to the ”siteBD” zone and
(2) the path crosses these two security devices with
IPSec functionalities in the immediate neighborhood
of respectively the source IP traffic zone (”Intra”) and
the destination (”siteBD”) zone. The interfaces in
charge of the IPSec tunnel negotiation (isakmp) are
the ”FW Intern” interface adjacent to the DMZ zone
and respectively the ”FWBD 1” interface adjacent to
the Internet zone. A filtering rule permitting the corre-
spondingisakmptraffic is automatically deduced and
finally implemented in all firewalls on the tunnel path
(”FW Intern”, ”FW Extern” and also ”FWBD 1”).

If the access rule is in a ”vulnerability” context,
IDS-Firewall Redundancyis called (cf. Section 5.3).
Instead of deploying an IDS rule, we chose to exploit
an eventual IDS-firewall redundancy. We do not con-
sider any IDS-IPSec tunnel interaction because IDS
generally works on an unencrypted IP traffic.

5.2 Theexclusion entities treatment
Algorithm

During the first compilation, we treat the hierar-
chies of roles and activities (network services). Con-

sequently, a permission involving the firewall role
”R FW” will engage all entities/subjects playing a
”R FW” role. These entities may contain other en-
tities which are excluded. Deploying an access rule
implying subjects/entities which exclude other enti-
ties is solved as follows:

- a permission at the OrBAC level involving entity
E1, E1 excluding E2 will be translated in a generic
rule which will include E1, E1 excluding E2;

- a permission involving E1, E1 excluding E2, E2
excluding E3 will be translated in two generic
rules: the first will involve E1, E1 excluding E2
and the second will involve E3;

- a permission involving E1, E1 excluding E2, E2
excluding E3, E3 excluding E4, will be translated
in two generic rules: the first will include E1, E1
excluding E2 and the second will include E3, E3
excluding E4;

- a permission involving E1, E1 excluding E2 and
E3, E3 excluding E4 and E5, E5 excluding E6 will
be translated in three generic rules: the first will
include E1, E1 excluding E2 and E3, the second
will include E4 and the third will include E5, E5
excluding E6.

This reasoning derives from a simple mathemati-
cal logic; for the last example, the entity E1 is defined
as follows:

E1∧ (E2∨E3)∧E4∨ (E5∧E6) =

= (E1∧E2∨E3)∨E4∨ (E5∧E6)

where ”∨” stands for the addition of a new
generic permission at the multi target level (cf. Fig-
ure 4); and ”∧” denotes an exclusion.

5.3 TheIDS-Firewall Redundancy
Algorithm

An access rule in the ”vulnerability” context is de-
ployed on a single IDS device on the shortest path
binding the source and the destination of an IP flow.
We chose the most down-stream IDS because it
is more efficient against spoofing attacks than the
most up-stream IDS. Moreover, we do not elim-
inate the IDS-firewall redundancy: IDS alert sets
off for IP packets that should have been blocked
by an up-stream firewall. We take advantage of
this redundancy in order to obtain relevant infor-
mation regarding a malfunctioning firewall. The
”IDS-Firewall Redundancy” algorithm is based on
the shortest path principle with some extensions. To
illustrate our approach, let us consider the topology
shown in Figure 2.

A rule in the ”vulnerability” context for an IP flow
with the ”Intra” source zone and the ”BD” destina-
tion zone will be implemented by IDSA. An analysis
of the firewall configurations located on theshortest
pathconnecting the ”Intra” source and the ”BD” des-
tination is launched. We choose to ”analyze” only
the firewalls located up-stream; IDSA cannot give
any information regarding its malfunctioning down-
stream firewalls.

Let us consider that the up-stream fire-
walls (”FW BD 1”, ”FW BD 2”, ”FW Extern”,
”FW Intern”) apply a defaultdeny allfiltering policy.
In this case, with our security policy deployment,
they implement only permission rules (accept or
pass). Each rule generally involves an IP source and
destination address and a network service (ports).
Let (S,D,P) be the triplet including this information.
The entire policy of a firewall (e.g., ”FWIntern”)
may be resumed as follows: (1)pass” for F = (S1
∧ D1 ∧ P1) ∨ (S2 ∧ D2 ∧ P2) ∨ ... ∨ (Sn ∧ Dn
∧ Pn), where n = the filtering rules number; (2)
”deny” for non(F); (3) F and non(F) are included in
the ”3D” space [source, destination, service] where
(source, destination) ∈ [0.0.0.0 ; 255.255.255.255]
andservice∈ [0 ; 65536].

We refer to the IDS-firewall redundancy only if
the set of parameters forming the firewall and the
IDS rules are the same; thus, the (S,D,P) triplet
is taken into account alongside the IDS ”alert”
rules and the firewall ”deny” rule. For example,
there is an IDS-firewall redundancy if an IDS alerts
for the IP packets including W = (111.222.2.0/24,
111.222.4.10, alltcp) (regardless of their payload)
and an up-stream firewall performsdeny for the
(111.222.2.32/27, 111.222.4.10, alltcp) triplet. Our
”IDS-Firewall Redundancy” algorithm finds the in-
tersection between each triplet W (corresponding to
analert) and non(Fi) for each up-stream firewallFWi .

Algorithm 2: IDS Firewall Redundancy

// Let IDSN be the most down-stream IDS of the

// sortest path(source, destination).

//

// Let FWN be the last firewall of the

// sortest path(source, destination) placed just before IDSN.

//

foreach FWi ∈ shortest path (source,destination) do1

if exists (IDSi ∈ shortest path (source,destination) then2

Wr ← W ∩ non(Fi);3

Wa ← W − Wr;4

if Wr 6= ∅ then5

alert with Wr in (IDSi) & “malfunction FWi”;6

W ← Wa;7

else if IDSi = IDSN then8

Wr ← W ∩ non(FN);9

Wa ← W − Wr;10

if Wr 6= ∅ then11

alert with Wr in (IDSN) & “malfunction FWN ”;12

alert with Wa in (IDSN);13

break;14

Since Wr = W∩ non(Fi) and Wa = W-Wr, then:

- A first IDS rule will be implemented in the imme-
diately down-streamIDSi against the firewallFWi
the previous intersection was computed for. The
IDS alert message will not only be the message
corresponding to the attack but will also include
”beware, malfunctioningFWi ”. For example, in
the case of IDSA↔”FW Intern” redundancy, in-
volving Wr = W∩ non(F), an IDS rule involving
Wr will be implemented in IDSB and thus the
”FW Intern” malfunction can be detected.

- The last IDS rule will be implemented in the most
down-stream IDS and include Wa. For the previ-
ous example, an IDS rule with Wa and the unmod-
ified message corresponding to the initial vulner-
ability will be implemented in IDSA.

5.4 Final phase

The second compilation phase (cf. Figure 1) trans-
lates the generic rules to a specific security device
technology. We deal with a library of transformations.
Each transformation is conditioned by the security de-
vice features.

The intrinsic matching rule (first-matching, or
last-matching) and the rule order are taken into ac-
count when designing a transformation for a firewall.
Let us consider that an entity excludes another en-
tity in one genericpermission; we have the choice
to design either a transformation that outputs two
rules (one of them being thenegativerule and corre-
sponding to the excluded entity) or a transformation in
which the excluded entity is actually left out (the re-
sult is a singlepass/acceptrule). In the first case, the
negative rule must be placed before (first-matching)
or after (last-matching) the positive rule.

NetFilter offers a mean to skip the rule order im-
portance. The authors in [12] use thejump andnew
chain functionalities each time exclusion entities are
involved. However, not all firewalls we dealt with had
these functionalities. The order of rules will not be
important if we succeed in writingpassrules and only
the last rule isdeny all. We designed such a trans-
formation in XSLT language for Netasq F200 IPS.
On the other hand, and in order to obtain the IPSec-
based tunnel configurations, another transformation is
required. Therefore, we conceived one for the Ne-
tasq F200 family which also includes the IPSec func-
tionalities. As scenario-based IDS, we worked with
SNORT-based IDS, for which we considered only the
alert IDS rules and a specific transformation.

5.5 Performance evaluation

The complete set of algorithms and processes
overviewed in this section have been implemented
and evaluated in a first software prototype. Let us
briefly present in this section some of the results we
obtained. The implementation has been done by us-
ing PHP, a general-purpose scripting language that is
especially suited for web services development. In
this way, the complete refinement process can be lo-
cally or remotely executed by using a HTTP server
(e.g., Apache server over UNIX or Windows setups)
and a web browser. On the other hand, the evaluation
was carried out on an Intel-Pentium M 1.4 GHz pro-
cessor with 512 MB RAM, running Ubuntu 6.0.6 with
GNU/Linux 2.6.15 (32 bits), and using Apache/2.0.55
with PHP/5.1.2 interpreter configured.

For our evaluations, we specified three different
IPv4 simulated networks. The topology for the first
network consisted of four subnetworks, one SNORT-
based IDS and two firewalls the access rules were
deployed on. The topology for the second network
included five subnetworks, one SNORT-based IDS,

 200

 250

 300

 350

 400

 450

 500

 10 20 30 40 50 60 70 80 90 100

M
em

or
y

sp
ac

e
(k

b)

Number of rules

First topology
Second topology

Third topology

(a) Memory space evaluation.

 0

 1

 2

 3

 4

 5

 6

 7

 10 20 30 40 50 60 70 80 90 100

A
ve

ra
ge

 p
ro

ce
ss

 ti
m

e
(s

ec
s)

Number of rules

First topology
Second topology

Third topology

(b) Processing time evaluation.

Figure 5: Memory and processing time evaluations.

three firewalls - two of them having IPSec capabil-
ities. The topology for the third network consisted
of six subnetworks, two SNORT-based IDS, five fire-
walls - three of them with IPSec capabilities. For each
topology we considered several security policies with
an incremental number of OrBAC rules.

During the evaluation, we measured the memory
space and the processing time needed to perform the
whole refinement process. The results of these mea-
surements are plotted in Figure 5(a) and Figure 5(b).
We can first notice in Figure 5(a) that an important
part of memory consumption is due to the structure
parsing phase (cf. Section 4.1) and then the memory
increases linearly with the OrBAC rules number. On
the other hand, we notice in Figure 5(b) that the pro-
cessing time is not due to the parsing structure phase
but to the OrBAC rules number and complexity.

However, although both memory space and pro-
cessing time results are pointing out to strong require-
ments, we consider they are reasonable since: (1) the
implementation of our approach has been done by us-
ing a high level scripting language, and we expect that
the use of a more efficient language will clearly im-
prove these results; (2) our approach relies on an off-
line process which does not affect the performance of
the security policy enforcement.

We want finally to note that the implementation of
our proposal in a software prototype demonstrates the
practicability of our work; and the obtained results
allow us to be very optimistic about its use in more
complex security policy scenarios.

6 CONCLUSIONS

The configuration of security devices is a complex
and cumbersome task. A wrong configuration of
those devices may lead to weak security polices – eas-
ily to be bypassed by unauthorized parties. In order to
help security administrators, we have presented in this
paper a refinement mechanism to properly configure
and manage the following security devices: firewalls,
VPN/IPSec-based tunnels, and scenario-based Intru-
sion Detection Systems (IDSs).

Our proposal allows the administrator to formally
specify security requirements by using an expressive
access control model based on OrBAC [1]. As a re-
sult, an abstract security policy, which is free of am-
biguities, redundancies or unnecessary details, is au-
tomatically transformed into specific security devices
configurations. This strategy not only simplifies the
security administrator’s job, but also guarantees that
the resulting configuration is free of anomalies and/or
inconsistencies. The complete set of algorithms and

processes presented in this paper have been imple-
mented in a first software prototype, and the results of
a first evaluation have been overviewed. Such imple-
mentation demonstrates the practicability of our work
and its performance results allow us to be very opti-
mistic about its use in more complex security policy
scenarios.

As work in progress, we are actually studying how
to extend our approach in the case where the security
architecture includes IPv6 devices. More specifically,
the construction of new VPN tunnels (e.g., IPv6-over-
IPv4) for IPv6 networks must be revised, and more
investigation has to be done in order to extend the
approach presented in this paper. In parallel to this
work, we are also extending our approach to make
cooperate routing and tunneling policies.

REFERENCES

[1] Abou el Kalam, A., Baida, R. E., Balbiani, P.,
Benferhat, S., Cuppens, F., Deswarte, Y., Miège,
A., Saurel, C., and Trouessin, G. Organization
Based Access Control. InIEEE 4th Intl. Work-
shop on Policies for Distributed Systems and
Networks, pp. 120–131, Lake Come, Italy, 2003.

[2] Abou el Kalam, A., Briffaut, J., Toinard, C.,
and Blanc, M. Intrusion detection and secu-
rity policy framework for distributed environ-
ments. InCollaborative Technologies and Sys-
tems, pp.100-106, Missouri, USA, 2005.

[3] Alfaro, J. G., Cuppens, F., and Cuppens-
Boulahia, N. Towards Filtering and Alerting
Rule Rewriting on Single-Component Policies.
In Intl. Conference on Computer Safety, Relia-
bility, and Security, pp. 182–194, Poland, 2006.

[4] Alfaro, J. G., Cuppens, F., and Cuppens-
Boulahia, N. Analysis of Policy Anomalies on
Distributed Network Security Setups. In11th
European Symposium On Research In Computer
Security, pp. 496–511, Germany, 2006.

[5] Alfaro, J. G., Cuppens, F., and Cuppens-
Boulahia, N. Aggregating and Deploying Net-
work Access Control Policies. In1rst Sym-
posium on Frontiers in Availability, Reliability
and Security (FARES), 2nd International Con-
ference on Availability, Reliability and Security
(ARES2007), Vienna, Austria, 2007.

[6] Al-Shaer, E. S., Hamed, H. H., and Ma-
sum, H. Conflict Classification and Analy-
sis of Distributed Firewall Policies. InIEEE
Journal on Selected Areas in Communications,
23(10):2069–2084, 2005.

[7] Bartal, Y., Mayer, A., Nissim, K., and Wool, A.
Firmato: A novel firewall management toolkit.
In IEEE Symposium on Security and Privacy,
pp. 17–31, Oakland, California, 1999.

[8] Blanc, M., Clemente, P., Courtieu, P., Franche,
S., Oudot, L., Toinard, C. and Vessiller, L. Hard-
ening large-scale networks security through a
meta-policy framework. InThird Workshop
on the Internet, Telecommunications and Signal
Processing, Adelaide, Australia, 2004.

[9] Cisco Systems, Inc. Cisco Security Manager
Product Information. [Online]. Available from:
http://cisco.com/go/csmanager

[10] Cuppens, F., Cuppens-Boulahia, N., and
Miege, A. Inheritance hierarchies in the OrBAC
Model and application in a network environ-
ment. In2nd Foundations of Computer Security
Workshop (FCS’04), Turku, Finlande, 2004.

[11] Cuppens, F., Cuppens-Boulahia, N., and Ben
Ghorbel, M. High-level conflict management
strategies in advanced access control models. In
Workshop on Information and Computer Secu-
rity (ICS 2006), Timisoara, Roumania, 2006.

[12] Cuppens, F., Cuppens-Boulahia, N., Sans, T.
and Miege, A. A formal approach to specify and
deploy a network security policy. In2nd Work-
shop on Formal Aspects in Security and Trust,
pp. 203–218, Toulouse, France, 2004.

[13] Fu, Z., Wu, S. F., Huang, H., Loh, K., Gong, F.,
Baldine, I., Xu, C. IPSec/VPN Security Policy:
Correctness, Conflict Detection and Resolution.
In Policy 2001 Workshop, pp. 39–56, 2001.

[14] Hamed, H. H. and Al-Shaer, E. S. Taxonomy of
conflicts in network security policies. InIEEE
Communications, 44(3):134-141, 2006.

[15] Hassan, A. and Hudec, L. Role Based Network
Security Model: A Forward Step towards Fire-
wall Management. InWorkshop On Security of
Information Technologies, Algiers, 2003.

[16] MITRE Corp. Common Vulnerabilities
and Exposures. [Online]. Available from:
http://cve.mitre.org/

[17] Sandhu, R., Coyne, E. J., Feinstein, H. L., and
Youman, C. E. Role-Based Access Control
Models. IEEE Computer, 29(2):38–47, 1996.

[18] Welte, H., Kadlecsik, J., Josefsson, M.,
McHardy, P., and et al. The netfilter
project: firewalling, nat and packet mangling for
linux 2.4x and 2.6.x. [Online]. Available from:
http://www.netfilter.org/

