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Abstract: Looking at current enterprise resource planning systems shows that material requirements
planning (MRP) is one of the main production planning approaches implemented there. The MRP
planning parameters lot size, safety stock, and planned lead time, have to be identified for each MRP
planned material. With increasing production system complexity, more planning parameters have to
be defined. Simulation-based optimization is known as a valuable tool for optimizing these MRP
planning parameters for the underlying production system. In this article, a fast and easy-to-apply
simheuristic was developed with the objective to minimize overall costs. The simheuristic sets
the planning parameters lot size, safety stock, and planned lead time for the simulated stochastic
production systems. The developed simheuristic applies aspects of simulation annealing (SA) for an
efficient metaheuristic-based solution parameter sampling. Additionally, an intelligent simulation
budget management (SBM) concept is introduced, which skips replications of not promising iterations.
A comprehensive simulation study for a multi-item and multi-staged production system structure
is conducted to evaluate its performance. Different simheuristic combinations and parameters are
tested, with the result that the combination of SA and SBM led to the lowest overall costs. The
contributions of this article are an easy implementable simheuristic for MRP parameter optimization
and a promising concept to intelligently manage simulation budget.

Keywords: MRP; planning parameter; optimization; simulation budget; heuristic

1. Introduction

For manufacturing companies, an enterprise resource planning system (ERP) is the
central system to plan and control production-related resources. Compared to the tech-
nological development of ERP systems, the used planning algorithms have not changed
that much during the last decade. Most commercial ERP systems still use the hierarchical
production planning approach of material requirements planning (MRP) to generate pro-
duction orders [1]. The applicability in different industries and the straightforward and
scalable logic—independent from the product complexity—fostered MRP’s importance
in industry and also science. The three planning parameters to control MRP are lot size,
planned lead time, and safety stock. Many other parameters must be set up and defined
to get a production system on which an MRP can be applied, such as a bill of material
(BOM), processing time, setup time, planning period, machine availability, and many more.
The master production schedule (MPS), which is based on the customer demands, defines
the quantities and time periods of the ordered materials and specifies the gross require-
ments for the MRP algorithm. Even though the MRP logic is not complicated, keeping
an MRP system up to date is a challenging task. Suppose raw material is available in
the ERP system, but cannot be handed to production. This type of misinformation can
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require updating the complete MRP system with re-planning, including scheduled receipts
and planned order releases [1]. However, these are not sophisticated tasks compared to
selecting optimal MRP planning parameters. To overcome a worsening service level, it is,
for example, possible to increase planned lead time with the consequence of increasing
stocking level [2]. Considering the effects of changing the value of one MRP planning
parameter is manageable, but doing this in a systematic way for lot size, planned lead time,
and safety stock need to be supported by methods from the field of production system
simulation and heuristics. Using production system simulation to evaluate the perfor-
mance of a production system relying on an MRP provides interesting insights into the
behavior of the production system performance. In particular, the systematic exploration
of suitable MRP parameter combinations will help find optimal values with respect to
given performance indicators, such as inventory and tardiness costs. Production systems
are characterized by a high uncertainty level, which is associated with their planning.
This may be due to internal factors, such as stochastic processing times, machine failures,
limited availability of resources—either workers or raw materials—etc. It can also be
due to external factors associated with customers’ demand, such as required lead times,
changes in orders requested, or cancellations [3]. Given this complexity, the planning of
the MRP parameters in a production system requires the development of methodologies
capable of dealing with systems under uncertainty. The implementation of optimization
techniques based on hybrid methods between metaheuristic and simulation techniques
has proven to be a methodology with the potential to establish the stochastic MRP pa-
rameters at near optimal levels [4]. Therefore, this paper proposes a simulation heuristic
(simheuristic) to establish the values of the MRP parameters in a multi-stage, multi-item
production system. A discrete event simulation model simulating a stochastic MRP system
is combined with a metaheuristic using a daemon-like procedural criterion and simulation
budget management (SBM). The stochastic MRP mimics a production plant exposed to
the uncertainties associated with stochastic order amounts, the customer-required lead
times, and machine setup times. Hereby, the focus of this article is to investigate how to
apply different simheuristic approaches to systematically find the best MRP parameter
settings in order to minimize overall costs. From an algorithmic perspective, the challenge
is to integrate the simheuristics into the used simulation framework. Data from the actual
iteration must be stored and provide the foundation for subsequent iterations. For SBM, it
is necessary to keep track of previous solution quality. This information is used to decide
if the remaining replications of an iteration are consumed. Production system modeling
associated challenges are the selection of appropriate starting parameters including the
ranges of the MRP parameters. The tackled problem is to identify the combination of MRP
parameters providing the lowest overall costs by applying the developed simheuristics.
Hence, the performed simulation study is used to answer the following three research
questions. To answer these questions the developed simheuristics are evaluated using an
MRP-based production system:

Q1: Does the application of an intelligent simulation budget management (SBM)
provide lower overall costs compared to a fixed number of replications?

Q2: In the context of MRP parameters setting, can the use of simulated annealing (SA)
help avoid getting trapped in a local minimum related to the overall costs?

Q3: Is the combination of SBM and SA leading to lower minimum overall costs and, if
so, what is the effect of increasing simulation budget?

The remainder of the article is structured as follows: Section 2 presents a literature
review on the use of simulation and simulation-based optimization methods to deal with
stochastic MRP systems. Section 3 introduces the simulation-based optimization heuristic
used to solve the problem. Section 4 explains the characteristics of the stochastic MRP
system used in this work to test our methodology. Section 5 describes the simulation-
optimization experiments performed. Section 6 discusses the results obtained. Finally,
Section 7 concludes on the findings of this work and discusses future lines of research.
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2. Related Work

Production systems are characterized by a high complexity given by the large number
of parameters involved in their working processes. In general, MRP systems calculate
the lot size to be produced or ordered for each component in each period based on the
items’ demand. There is a BOM in which they are organized hierarchically as components,
and it also includes the number of each part per final product [3]. This section presents a
review of some of the works carried out about the optimization of the parameters studied
in this work, which are associated with MRP. The objective is to identify the most studied
parameters, their combination, and the analysis or solution methods. Please note, that the
objective function of the optimization problem discussed in this paper includes inventory
and backorder costs. This includes service and time performance effects, i.e., low service
level leads to high backorder costs and high production lead times lead to high inventory
costs (and probably to higher backorder costs). Consequently, the objective function in this
article is in line with a lot of MRP parameter optimization problems from the presented
literature.

The MRP in a production line is modeled to simplify the system with a set of as-
sumptions. They include all those parameters that allow us to model the uncertainty
and complexity of the system itself. The optimization of these models—either with exact,
heuristic, metaheuristic, or even hybrid methods—enables us to find near-optimal and
efficient solutions for the system. Among the most studied parameters under uncertainty
in the MRP literature are the safety stock and the planned lead time [5]. The approach
employed to manage an MRP under uncertainty depends on the type of uncertainty, the
significance of its effect, and the managers’ preferences [6]. Table 1 presents some of the
optimization works on one or more of the MRP parameters studied in this paper, with
their respective solution techniques. From the literature review, it can be concluded that
this article tackles the MRP parameter optimization problem, which is already treated by
other authors.

Table 1. Related work reviewed.

Author
Approach Parameters

Method of Analysis
Lead Time Safety Stock Lot Size Demand

Whybark and Williams [7], Buzacott
and Shanthikumar [8], Enns [9] X X X Simulation

Molinder [10] X X X X Hybrid: simulated
annealing & simulation

Altendorfer [2] X X Heuristic

Altendorfer et al. [11] X X Simulation

Teo et al. [12] X X Non-linear optimization

Liberopoulos and Koukoumialos [13] X X Simulation

Altendorfer and Minner [14] X X General optimization
model

Altendorfer [15] X X X Heuristic

Barrios et al. [4] X Hybrid: heuristic &
simulation

Gansterer et al. [5] X X X Hybrid: Variable neighbor
search & simulation

Karder et al. [16] X X X Hybrid: Genetic
Algorithm & simulation

Among the related work analyzed, it is found that simulation techniques have been
widely applied in MRP models since they allow us to observe the behavior of the supply
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chain through the creation of experiments based on the model of the system under study.
At the same time, it allows us to observe the effects of changes in MRP parameters. It
offers the possibility of planning and controlling the production systems and improving
strategies at different organizational levels. Likewise, discrete-event simulation mimics
the dynamics of systems in the real world, which has made it a very popular method for
MRP modeling [17]. Whybark and Williams [7] have been among the first to propose a
framework to characterize and study the uncertainty that can affect inventory investment
and service level performance in an MRP system. They used simulation to compare two
parameters, safety stock and safety lead time. They also tested whether there is better
inventory control that meets market uncertainty. In the same direction, Buzacott and
Shanthikumar [8], Enns [9] studied the influence of safety stock size and planned lead time.
Likewise, these authors developed models that simultaneously decide on the lot size and
planned lead time in an environment with constant customer demand and stochastic lead
times [18]. Other models are developed to address the risk generated by uncertainty in
lead times and demand, while focusing on deciding which of these two parameters should
be used to make decisions [10]. The design of these simulation models to explore the effect
of demand uncertainty on the system performance also varies depending on whether we
are considering a single-stage manufacturing system [2] or a multi-item, multi-stage MRP
production system [11].

Typically, MRP simulation models are studied to know the responses (or outputs of
the system) to the initially defined parameters [19,20]. However, this technique does not
allow determining the optimal values of the parameters to achieve a given objective [21].
Parameter optimization to configure the systems and operate as efficiently as possible is
recommended [10]. In the literature, some models establish planned lead times based on
capacity requirements planning, using nonlinear optimization to find the optimal values
of the planning parameters minimizing production-related costs [12]. Other models rely
on simulation-based optimization to perform numerical explorations. The integration of
optimization methods and simulation allows us to calibrate the parameters of the stochastic
model. In this optimization process, the objective function has an associated measure of the
experimental simulation that is optimized [22]. For instance, it includes the optimization of
planned stock levels and lead time in production, as well as the optimization of inventory
systems with advanced demand information and some service level requirements [13].
There are also analytical models for the simultaneous optimization of capacity and planned
delivery time in a two-stage production system with different customer due dates [14].
Another work investigating the application of analytical methods and heuristics was
presented in [15]. The inventory and the tardiness costs were analyzed. In addition,
a heuristic-based approach to solve the associated optimization problem was used. All
three MRP parameters with the limitation of only one production stage and capacity, were
investigated.

One of the methods of simulation-based optimization is simheuristics. It is a solution
method based on algorithms combining simulation methods within a heuristic/metaheuristic
optimization framework. It allows to deal with stochastic combinatorial optimization prob-
lems [23,24]. Barrios et al. [4] demonstrated that simheuristics are a promising approach
to solve a two-stage stochastic MRP. They identified the safety stock level of each item
to minimize the total expected manufacturing cost. Their results demonstrate that the
use of simheuristics provides advantages over the use of simulation approaches alone.
Some approaches vary between them because of the proposed optimization heuristics and
metaheuristics. For example, Molinder [10] proposed to determine the safety lead time
with a hybrid approach combining simulation with optimization based on the simulated an-
nealing algorithm. Gansterer et al. [5] presented a simulation-based optimization approach
with a search procedure based on variable neighborhood search with a robust production
planning as a result. They focused on the simultaneous optimization of three parameters,
planned lead time, safety stock, and lot sizes. In addition, Karder et al. [16] optimized
the MRP parameters, applied, and compared two different versions of efficient global
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optimization of single-objective and multi-objective functions. Their results demonstrate
how both approaches are competitive with each other.

Thus, some of the works related to the optimization of the MRP system have focused
mainly on parameters such as lead time, followed by safety stock and lot size. The liter-
ature that has analyzed the three parameters has always used hybrid simulation-based
optimization approaches to analyze and solve the model. It is because increasing the
number of parameters increases the complexity. The simplest analysis methods usually
involve only one or at most two parameters. Simulation is the most widely used analysis
method, followed by hybrid simulation-based optimization methods. Moreover, the latter
is also one of the most recent solution methods in the literature. Considering the trend of
related works, this paper presents a simulation-based optimization methodology to find
the values of the studied parameters for MRP that guarantee an efficient performance of
the production system, with the optimization target of minimum overall costs.

3. Simulation Heuristic

In the context of MRP parameter setting, simheuristic algorithms [25] are a meaningful
approach to evaluate a broad range of parameter combinations with a defined objective
(e.g., minimizing overall cost). A first simple simheuristic with two extensions to minimize
overall costs was presented in [26]. However, their approach is limited in the sense that it
excludes lot sizing. Their simheuristic is significantly extended in this paper and applied
also for the lot sizing decision which has a major impact on the overall cost. In addition,
the new simheuristic algorithm is further integrated into a discrete-event simulation model,
which implements a production system relying on MRP. During a simulation experiment,
the simheuristic is applied to compute new planning parameters for each planned material.
The next simulation iteration is then performed with the changed planning parameters.
In Section 3.1, three versions of the proposed simheuristic are described. They all rely on
Algorithm 1.

3.1. Initial Simheuristic Algorithm

The initial simheuristic depicted in Algorithm 1 allows us to develop different variants,
named: static range (STR), exponential range reduction (ERR), and best solution-set base
range (BSBR). The initial simheuristic provides a description of the algorithmic flow, and
this generic structure facilitates to subsequently integrate the aforementioned variants. The
algorithm starts by selecting the best solution of all previously finished iterations. The best
solution represents the minimum overall cost of all finished iterations and provides a list
with the used mode, lower bound (LB), and upper bound (UB).

For the STR version, a triangular distribution is used to compute new values using
the LB, the UB, and the mode given by the midpoint of the range. For all three variants,
the possible values for the MRP parameters (planned lead time and safety stock) lie within
the LB and the UB. While in [26] the lot size is not included, in this paper, we consider its
parameter sampling for optimization in the same way as for the parameters planned lead
time and safety stock.

The second simheuristic version, named ERR, updates LB and UB using the best
solution. This makes it possible to reach a search space outside the original bounds. The
solution range is defined as r0 = mode − UB for both MRP parameters. The new bounds
for the MRP parameters and for each item are computed as ri = (1− α) ∗ ri−1, where, i is
the simulation iteration number and α is the range reduction level. The goal of the ERR
variant is to reduce the LB and UB when the number of iterations increase, so the possible
solution range is iteratively shrinking.

In the third version, named BSBR, the LB and the UB are computed using the minimum
and maximum of the best n solutions.
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Algorithm 1 Base Simheuristic Algorithm.

1: if Initialization then
2: α← e.g., 0.025
3: topN ← e.g., 7
4: initIterations← e.g., 50
5: initParameterRange(lb, ub, mode)
6: n← 0
7: endInitPhase← f alse
8: currentSolution← TriangularDistribution(parameterRange)
9: baseSolution← currentSolution

10: end if
11: while n ≤ maxReplications do
12: cost(currentSolution)← SimulateMRP(currentSolution)
13: if n > initIterations then
14: endInitPhase← true
15: end if
16: if cost(baseSolution) < cost(currentSolution) then
17: baseSolution← currentSolution
18: end if
19: baseSolution← GetBestSolution()
20: if simheuristic = STR ∨ endInitPhase = f alse then
21: parameterRange.mode← baseSolution
22: end if
23: if simheuristic = ERR ∧ endInitPhase = true then
24: oldRange← (parameterRange.ub− parameterRange.lb)/2
25: newRange← (1− α) ∗ oldRange
26: parameterRange.mode← baseSolution
27: parameterRange.lb← parameterRange.mode− newRange
28: parameterRange.ub← parameterRange.mode + newRange
29: end if
30: if simheuristic = BSBR ∧ endInitPhase = true then
31: bestNSolutions← GetBestNSolutions(topN)
32: parameterRange.mode← baseSolution
33: parameterRange.lb← min(bestNSolutions)
34: parameterRange.ub← max(bestNSolutions)
35: end if
36: baseSolution← TriangularDistribution(parameterRange)
37: n← n + replicationsPerIteration
38: end while

The constant α is set for the ERR range reduction and topN is required only for the BSBR
version. An initialization phase can be applied for both the ERR and BSBR versions. The
number of iterations is represented by the constant initIterations. The variable endInitPhase
is used to control the end of the initialization phase. Notice that, by design, ERR and BSBR
are extensions of STR. Therefore, STR is applied during the initIterations. Thus, for example,
50 iterations out of a maximum of 300 iterations can be used to find starting values for
range reduction and the best n solutions. A key component in the algorithmic flow is
the array parameterRange, as it represents the starting LB and UB values, as well as the
mode for each MRP parameter and planned item. In addition, this array is continuously
updated during the simulation. The final step of each iteration in each version is to pass
the adapted parameterRange to the triangular distribution. This allows us to generate new
MRP parameter values and apply them during the MRP simulation. At the beginning of
each iteration, the base solution is updated to the currentSolution in case this is the new
best-found solution. The best solution is represented by the minimum overall cost of the
previous iterations, computed using the average overall cost of the simulation runs. The
objective is to minimize overall costs. A limitation is that logistic objectives such as service
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level and lead time are not considered. Even though the overall cost criteria are common
in a lot of studies (see Section 2, e.g., [5,13,15]), this limitation implies that the effect of
the optimized planning parameters on other important key performance indicators is not
analyzed which restricts the discussion to one dimension.

The algorithm is repeated until a maximum number of runs (maxReplications) is
reached. Hence, for instance, for 100 iterations with 20 runs, the value for maxReplica-
tions is 2000. The statement SimulateMRP is then performed 20 times per iteration.

As shown in [26], even basic versions of these concepts can be useful to identify
parameter settings that minimize the overall cost. In this paper, we extend the initial
concepts to develop a holistic approach for MRP parameter optimization. Thus, the
following novel aspects have been considered in our study: (i) the MRP parameter lot size
has been added; (ii) the original heuristic has been extended into a full simheuristic; and
(iii) an intelligent simulation budget management is included. The target of the simulation
budget management is to test solution quality after each run within an iteration. In other
words, for each parameter set, the overall cost is compared to the past results, and only if
the solution is sufficiently good, further runs of the current iteration are conducted. The
target is to perform more iterations with the same overall number of runs—i.e., the same
simulation budget—by avoiding unnecessary runs.

3.2. Simulated Annealing

Escaping a local minimum and exploring a new solution range requires a concrete
strategy. A biased-randomization algorithm [27] of triangular distribution mode is de-
scribed in Algorithm 2. This algorithm applies aspects of the SA framework [28]. In
addition, the freedom aspect of a demon algorithm is used. Such a demon-based behavior
is explained in [29]. After each iteration, the costs of the base solution are compared to the
costs of the best solution. Each time the costs of the base solution are greater or equal to
the best solution, a reset counter is decreased by one. When the reset counter reaches 0,
the base solution is reset to the best solution. The reset to the best solution avoids wasting
simulation budget in a not promising solution space.

Algorithm 2 Reactive biased-randomization of triangular distribution mode.

1: if Initialization then
2: resetCounter ← initialValue e.g., 5
3: bestSolution← baseSolution
4: end if
5: δ = cost(baseSolution)− cost(currentSolution)
6: if δ > 0 then
7: credit← δ
8: baseSolution← currentSolution
9: if cost(baseSolution) < cost(bestSolution) then

10: bestSolution← baseSolution
11: end if
12: else if −δ ≤ credit then
13: baseSolution← currentSolution
14: credit← 0
15: end if
16: if cost(currentSolution) ≥ cost(bestSolution) then
17: resetCounter−−
18: end if
19: if resetCounter = 0 then
20: baseSolution← bestSolution
21: resetCounter ← initalValue
22: end if
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3.3. Simulation Budget Management (Sbm)

Limiting the simulation experiment by a maximum number of iterations and runs per
iteration increases the probability to exclude potential good solutions, as they are excluded
due to the run out of simulation iterations. Always performing a constant number of
runs per iteration will not necessarily increase the potential to find a new best solution.
Consequently, it would be more meaningful to introduce a constraint for skipping the
actual iteration and invest the remaining simulation budget to explore new solutions with
additional iterations and a changed set of parameter values. A simple simulation budget
management pseudocode, which facilitates to run the simulation experiment, is described in
Algorithm 3. This algorithm allows as many iterations as budget is available, and will stop
the last iteration when the maximum number of runs is reached. The best solution always
has the maximum number of the given replications due to the stopping criteria. The average
cost of the previous iterations (avgIterationOverallCosts) is equal to 1

n ∑n
i overallCostsi, with

n = maximum runs per iteration (maxReplicationsPerIteration). The avgIterationOverallCosts
is compared to the percentile value of all past iterations, which depends on the replication
number. The percentile value is computed using GetPercentilValue(setOfAllSolutions,β),
which requires the previous overall cost to be equal to setOfAllSolutions, and a value
reduced after each run from a UB, returning the value associated with the position in
the passed solutions. These values are represented by β and percentileStep. After each
replication, the overall cost is added to the values of the current iteration and the new
percentile value is computed. Compared to the initial Algorithm 1, we do not always
perform a fixed number of runs. The SBM stops after the simulationBudget is exhausted.

Algorithm 3 Simulation budget management.

1: if Initialization then
2: totalReplicationCount← 0
3: simulationBudget← maxIterations ∗maxReplicationsPerIteration
4: stopCurrentIteration← f alse
5: currentReplicationCount← 1
6: percentileStep← 0.0175
7: end if
8: β← 0.4
9: while currentReplicationCount ≤ maxReplicationsPerIteration ∧

10: stopCurrentIteration = f alse do
11: totalReplicationCount++
12: currentReplicationCount++
13: if avgIterationOverallCosts > GetPercentilValue(setO f AllSolutions, β) ∧

currentReplicationCount > 3 then
14: stopCurrentIteration← true
15: end if
16: β = β− percentilStep
17: end while
18: stopCurrentIteration← f alse
19: replicationsPerIteration← currentReplicationCount

4. Modeling a Stochastic Mrp-Based Production System

To model a stochastic MRP system, discrete event simulation can be used [30]. From
a technical perspective, this requires agents to simulate the customers’ orders behavior
and a simulation framework capable of reading the given experiment planning parameters
and change them after each iteration. The experiment planning parameters include start
values and boundaries for the MRP-related planning parameters of lot size, planned lead
time, and safety stock. In addition, MRP related settings, such as planning horizon and
additionally technical parameters are required for the simulation experiments, such as
the number of simulation runs and algorithm iterations [31]. Customer’s order agents
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are passed to a queue. Whenever a customer’s order cannot be completed before the
deadline, it is classified as ‘delayed’. The same logic is applied for the production orders.
The production orders are generated based on customer’s orders, which are the gross
requirements for the applied MRP run. The output of each MRP run is the production
orders, which provide the information on quantity, item, start and end date. After each
iteration the solution quality is evaluated, i.e., the average of all replications’ overall costs is
calculated, and the simheuristic is applied to set the new MRP planning parameter values
for the next iteration. The simulation results of each iteration (MRP parameters, backorder
costs, inventory costs, iteration count, replication count, . . . ) are stored after each iteration
in the linked in-memory database. These values are then available for the subsequent
iterations. The results of the current iteration including each replication are hold in the
working memory of the simulation computer, until the last replication is performed. The
results of the in-memory database are stored as database file and are the basis for the
performance analysis of the undertaken simulation study.

4.1. Stochastic Mrp Setting

Our MRP simulation model can handle stochastic demands as well as random pro-
cessing times, and provides the described standard MRP logic to treat customers’ orders.
Stochastic behavior is introduced and controlled using log-normal probability distributions
with expected values (µi) and variances (σ2

i ) for machine setup time, customer required
lead time and customer’s expected order amount. The random variables can be found in
Table 2, which also includes the respective coefficients of variation (CVi).

Table 2. Random variables with log-normal behavior.

Parameter Item µi σ2
i CVi

order amount 10 10 2 0.1414

order amount 11 15 6 0.1633

customer required lead time 10 6 9 0.5000

customer required lead time 11 6 10 0.5270

machine setup time all 12 36 0.5000

The simulated production system is illustrated in Figure 1. The role of the developed
simheuristic is to set lot size, planned lead time and safety stock parameters in order to
minimize the overall cost, which is the sum of inventory and tardiness costs. Despite being
a simple BOM that considers only three levels, the example allows to demonstrate how
simheuristics can be meaningfully integrated into an MRP system to optimize overall costs
for all three planning parameters. Two final products, products 10 and 11, at low-level-code
(LLC) 0 are produced on machine M2. The two semi-finished products, materials 20 and
21, are produced on machine M1. For one unit of final product 10, 1 semi-finished product
20 is needed. One piece of semi-finished product 21 is needed for final product 11. The raw
material 100, which is a purchased product, is needed for the semi-finished products 20
and 21. This raw material is assumed to be always available. For this simple production
system, 12 different parameters have to be optimized because during simulation for each
of the materials (10, 11, 20 and 21), all three MRP planning parameters have to be tested
for optimality. Table 3 shows the start-up values and respective ranges for optimization
parameters. Please note that the MRP planning parameter values are treated and evaluated
as integer units. This means that in the simulation results, the increase or decrease of
overall costs related to each individual MRP parameter can be tracked. Furthermore, the
interrelation between the single planning parameters is integrated in the simulation model,
e.g., both a higher planned lead time and a higher safety stock lead to higher inventory costs
and lower tardiness costs, also compare to Buzacott and Shanthikumar [8]. A decrease in
lot size, for example, leads to higher setup efforts and, therefore, also affects the production
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lead time. A higher safety stock increases inventory costs and also increases service level
which leads to lower backorder costs.

Table 3. Values of the simulation parameters employed.

Material

Parameter 10 11 20 21

FOQ: LB; UB; Mode 400; 800; 600 600; 800; 700 400; 500; 450 400; 500; 450

SS: LB; UB; Mode 1; 5; 3 1; 5; 3 1; 5; 3 1; 5; 3

PL: LB; UB; Mode 0; 4; 2 0; 4; 2 0; 4; 2 0; 4; 2

Processing time in h 0.17328 0.17328 0.17328 0.17328

Holding costs per day 1 1 0.5 0.5

Tadiness costs per day 19 19

Avg. demand per day 47 70 47 47

FOQ = Fixed Order Quantity; LB = Lower Bound; UB = Upper Bound; SS = Safety stock; PL = Planned lead time

Figure 1. A 3-level BOM applied during stochastic MRP simulation.

4.2. Mrp Procedure

During the execution of the MRP logic, the netting, lot-sizing, backward scheduling,
and BOM explosion steps are subsequently performed for the specified planning horizon.
For the netting step, the outputs are the items to produce, which are not yet organized as
production lots. For the subsequent lot sizing step, the required information is a lot sizing
policy, i.e., the fixed order quantity (FOQ) and the associated parameter value representing
the amounts for the production lot. One of the targets is to reduce setup times by selecting
efficient lot sizes. The process of machine setup plays an important role in the context of lot
sizing. The planned lead time is the required input for the step of backward scheduling.
With backward scheduling, the start date of a production order is computed. The outputs
of the last step (BOM explosion) are the required quantities for the subsequent BOM levels.
The items of BOM level 0 are processed, and followed by the process of higher BOM levels.
Notice that level 0 provides the gross requirements for subsequent levels: the required
quantities for BOM level n are passed to BOM level n + 1. Our actual research activities are
focused around MRP and it is, therefore, the selected production planning approach for
this publication. MRP is still widely applied in industry and the target of current research
activities. Therefore, this article will contribute to MRP-related research activities and
provides also input for practitioners of systematically setting MRP planning parameters
with respect to minimizing inventory and backorder costs.
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4.3. Simulation Model with Simheuristics

The proposed simheuristic versions are integrated into the simulation model of a
stochastic MRP-based production system. The computation of all three MRP parameters is
considered, and SA is used to set a new base solution. In addition, SBM can be activated
for the simulation process to consume the available simulation budget only for promising
solutions. One of the goals of the numerical experiments will be to test the performance
of the SA and SBM procedures as an extension of the STR, ERR and BSBR. A simulation
experiment starts at time 0 and lasts until tn. In a rolling-horizon manner, the customer’s
orders are updated and integrated into the MRP procedure. The planning frequency and
planning horizon must be set for MRP. The planning frequency determines how often the
MRP execution is applied, while the planning horizon determines how far in the future
the MRP planning is performed. The frequency was set to 1 day, and the horizon to
70 days. A complete MRP re-planning is possible and suitable in the developed simulation
framework. From ti until ti+70, the gross requirements are used to compute production
orders. If an initialization phase is set, the selected simheuristic version is applied after
the initialization iterations are consumed and until maxReplications is reached. For the
simulation experiment, a set of parameter values is required to provide the required
information during the initialization of the simulation experiment. As illustrated in Table 3,
the parameterization of the simheuristic versions (including LB, UB and mode for the used
triangular distribution) must be defined for all three MRP planning parameters. The used
lot sizing policy is FOQ. The rows with LB, UB and mode represent the setup values which
are passed to the simulation model at the starting time, which are therefore used in the
initialization phase. The mode is changed for all three versions, while the LB and the UB
only for ERR and BSBR.

5. Simulation Study

To evaluate the performance of the proposed approach, a computational study was
performed. During the simulation experiments, the simheuristic versions are applied to
find and update the base and best solutions and set them for the remaining iterations.
The simulation results are stored in an in-memory database, and are afterwards used to
analyze the simulation results. To reduce the variance in the simulation results, outliers
(runs with very high or very low costs of an iteration), were excluded from the average
overall cost per iteration. The simulation time was set to 1800 days and 20 replications
per iteration are applied when SBM is not activated. Different amounts of simulation
runs were evaluated to compare the performance of the different simheuristics. Based on
the existing simheuristic versions, the developed SBM and SA extensions were evaluated
during the simulation study with 100, 200 and 300 iterations, i.e., a simulationBudget of
2000, 4000 and 6000 runs. To get promising settings for the the remaining parameters,
a set of preliminary test simulations was performed. For the STR, no additional simulation
parameter is required. For the ERR, the α value for the range reduction was set to 0.0025,
thus avoiding a too quick convergence of the LB and UB. For the BSBR, the best 7 solutions
are used to compute lower and upper parameter bounds.

To illustrate the simhueristic application, one optimization run is described here in
detail. The starting values for the MRP parameters are: item 10 [FOQ 600, SS 3, PL 2], item
11 [FOQ 700, SS 3, PL 2], item 20 [FOQ 450, SS 3, PL 2] and item 21 [FOQ 450, SS 3, PL
2]. These MRP parameter values are applied for the first iteration within the optimization
run and lead to the initial overall costs. Note that all MRP parameter values generated by
the simheuristic are firstly calculated as double values and then rounded to be applicable
for the simulation model. In the presented example, the STR simheuristic is applied with
100 iterations. The MRP parameters lead to initial overall costs of 7151 CU with inventory
costs of 1697 CU and backorder costs of 5454 CU. This is also our base and best solution
used for the subsequent iteration. Applying the STR heuristic for the second iteration leads
to the following MRP parameter values: item 10 [FOQ 778, SS 4, PL 2], item 11 [FOQ 678, SS
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2, PL 3], item 20 [FOQ 452, SS 5, PL 1] and item 21 [FOQ 470, SS 3, PL 2]. These values result
in deceasing overall costs of 6343 CU (1888 CU inventory costs, 4455 CU backorder costs).

This process of finding new base and best solutions with the associated MRP param-
eter values is done until the maximum number of iterations, i.e., 100 in this example, is
reached. When SBM is applied, the number of iterations is limited by the overall number
of simulation runs. Finally, the minimum overall costs can be computed and used for
comparison with other simulation results. In this example, the minimum overall costs are
3490 (1899 CU inventory costs, 1591 CU tardiness costs) at iteration 55 with parameter
values of item 10 [FOQ 539, SS 5, PL 2], item 11 [FOQ 615, SS 5, PL 3], item 20 [FOQ 478, SS
3, PL 3], item 21 [FOQ 427, SS 4, PL 2]. Compared to the initial solution, this is a decrease of
the overall costs by 3661 CU, the inventory costs increased by 202 CU and the backorder
costs decreased by 3863 CU. Comparison of MRP parameters of the initial solution and the
best solution shows a decrease in the lot sizes, an increase in the safety stock for items 10,
11 and 21 and an increase in the planned lead time for item 11 and 20. Please note that the
safety stock parameter is passed as factor to the MRP run and multiplied by associated
stock units.

6. Results of the Simulation Study

In order to investigate the performance of the proposed simheuristic versions, a sim-
ulation study was performed. The target was to identify the impact of SBM and SA on
the minimum overall cost that can be achieved. Each simheuristic version (STR, ERR, and
BSBR) was evaluated using 100, 200 and 300 iterations, while each combination of SBM and
SA was tested. The 36 possible experiment combinations and their associated minimum
overall costs are shown in Table 4. Each result represents a unique and not completely
reproducible simulation experiment. Each experiment was performed four times to get
comparable results and to lower the impact of outliers. For example, from Table 4, the
experiment E = {STR with SBM = NO, SA = YES, Iterations= 100} was run four times to
get the value of 3159 cost units (CU). This value represents the average minimum overall
cost of this four experiments. The result of the previous experiment used the simulation
budget of 2000 runs. In detail, for 100 iterations the simulation budget is 2000 runs, for
200 iterations the budget is 4000 runs, etc. In total, 768,000 runs were performed to get the
results described below.

To analyze the effects of setting values for lot size, the STR, ERR and BSBR versions
are evaluated using a simulation experiment with 200 iteration, 20 runs and simulation
experiment run time of 1800 days. The results of the associated simulation experiments
are illustrated in Figure 2 and represent the applied basic heuristics setting from [26] with
all three MRP parameters optimized. In the scenario comparison, Table 4, the results
correspond to experiment F = {SBM = NO, SA = YES, Iterations= 100}. Notice that the
ERR line was cut to get a comparable diagram with STR and BSBR. Consequently, the
minimum overall costs are higher than 26,000 CU in the first iterations. Even though ERR
has clearly a higher minimum overall cost at the beginning of the optimization experiment,
after 200 iterations, it leads to the lowest overall costs. Looking at STR, the minimum
overall cost gradually decreases over all 200 iterations. Similarly, considering BSBR from
iteration 100 to 200, the minimum overall cost changes only slightly. These results fit
to the expected behavior of the three simheuristic versions. The STR always uses the
complete solution space between the lower and upper bounds of the MRP parameters for
the whole simulation experiment run time. In contrast, for ERR, the LB and UB are updated
and scaled down each time a new best solution was found. For BSBR, the decreasing
performance can be argued due to the fixed set of top n solutions defining LB and UB for
the MRP parameters. If the setting of the top n solutions is not changed, the same LB and
UB are used.
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Table 4. Scenario comparison using minimum overall costs per simulation experiment.

SBM NO SBM NO

Iterations Simheuristic SA NO Iterations Simheuristic SA YES

100 STR 3482 100 STR 3159

ERR 2265 ERR 2409
BSBR 3201 BSBR 3184

200 STR 3155 200 STR 3228

ERR 2173 ERR 2073
BSBR 3066 BSBR 2909

300 STR 3286 300 STR 3026

ERR 2308 ERR 2253
BSBR 3257 BSBR 2828

SBM YES SBM YES

Iterations Simheuristic SA NO Iterations Simheuristic SA YES

100 STR 3100 100 STR 3022

ERR 2125 ERR 2081
BSBR 3458 BSBR 2767

200 STR 2798 200 STR 2970

ERR 2225 ERR 2180
BSBR 3284 BSBR 2549

300 STR 2830 300 STR 2720

ERR 2118 ERR 1947
BSBR 3222 BSBR 2525

Figure 2. Minimum overall cost per simheuristic version for all MRP planning parameters.

6.1. Sbm Application

Our first research question (Q1) investigates the performance when applying SBM.
The idea of SBM is to stop an iteration if the computed average costs of the current
iteration’s run is higher than a specified threshold based in the prior available results.
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The wasting of simulation budget, represented by additional non-promising runs, should
be avoided. The leftover runs are shifted to the next iteration and, consequently, allow
more iterations per optimization experiments with different parameter settings. To answer
Q1, the results without SBM {SBM = NO and SA = NO} and applying SBM {SBM = YES
and SA = NO} in Table 4 are compared. For the STR procedure, the application of SBM
and an increasing simulation budget indicates a lowering overall cost. At 100 iterations,
the overall cost decreased from 3482 CU to 3100 CU, which is a performance increase of
10.95%. Likewise, at 200 and 300 iterations, a cost reduction of 11.31% and 13.89% can be
observed, respectively. For ERR, at 100 iterations a better performance of 6.18% is possible.
At 300 iterations, a performance increase of 8.21% (from 2173 CU down to 2118 CU) is
observed. For simheuristic BSBR, the application of SBM with SA = NO does not show a
consistent behavior, although costs for 300 iterations slightly decrease. Note that the BSBR
version is outperformed by the ERR one in all of the aforementioned scenarios. For Q1,
it can be concluded that the SBM application leads to a performance increase, when the
search space is focused on a single best solution and a constantly decreasing parameter
space leads to an additional performance increase.

6.2. Sa Application

The second research question (Q2) addresses the problem of getting stuck in a local
minimum. The application of SA should help escape a local minimum by exploring other
regions of the solution space. The pseudocode described in Algorithm 2 facilitates this
by computing the delta between current and base solution. Only when delta is positive,
a new best solution can be found. To test the performance of applying only SA, the
results without SBM and SA {SBM = NO and SA = NO} are compared to results with SA
{SBM = NO and SA = YES}, which can be found in Table 4. For the simheuristic STR with
100 iterations, an improvement of 9.26% (3482 CU vs. 3159 CU) is obtained. In addition,
with 300 iterations, an improvement of 7.90% (3286 CU vs. 3026 CU) could be obtained.
For ERR with 200 iterations, the overall cost decreases by 4.59%, while for 300 iterations, it
decreases by 2.36%. For each maximum iteration set in BSBR, the overall cost decreases
step-wise by 0.53% (3201 CU vs. 3184 CU) for 100 iterations, by 5.12% (3066 CU vs. 2909 CU)
for 200 iterations, and by a remarkable 13.17% (3257 CU vs. 2828 CU) for 300 iterations.
Hence, for Q2, the conclusion is that the application of SA leads to decreasing overall costs
with an increasing simulation budget. In addition, the combination with SBM may support
this trend. The results in Table 5 support this finding, with the lowest average of 2693 CU
for a simulation budget of 300. The columns STR, ERR and BSBR represent the average
minimum overall cost over the same simulation budget for each simheuristic, while the
last column shows the average per simulation budget.

Table 5. Average performance comparison of simulation budget.

Simulation Budget STR ERR BSBR Avg

100 3191 2220 3152 2854

200 3038 2163 2952 2717

300 2965 2156 2958 2693

6.3. Combination of Sbm and Sa

The third research question (Q3) investigates the joint application of SBM and SA
to compute the minimum overall cost. The joint application of SBM and SA led to the
lowest overall costs of all experiments, with a value of 1947 CU and a performance increase
of 15.64% for ERR (from a value of 2308 CU, without SBM and SA), as shown in Table 4.
The highest decrease of 22.47% of the overall cost (compared to the experiments without
applying SA and SBM) could be obtained with 300 iterations and BSBR (from 3257 CU down
to 2525 CU). For STR with 300 iterations, it was possible to lower the overall cost by 17.22%
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(from 3286 CU to 2720 CU). For Q3, the main conclusion is that an increasing simulation
budget, and the joint application of SBM and SA, provides an obvious performance increase
compared to the experiment where only SBM or SA is applied, and even higher if both
are excluded. In addition, the overall results show that the most competitive simheuristic
version for this application is ERR, which significantly outperforms the other versions.

6.4. Discussion of Best Simulation Result

As described in Section 5, each simheuristic starts with the same initial parameter
values. The lowest overall costs from Table 4 are 1947 CU (ERR, SBM YES, SA YES,
300 iterations) which are based on three different replications of the respective simheuristic.
This means that the values in Table 4 show the average of 3 optimization runs applying
the respective simheuristic; therefore, the discussion here is based on the lowest overall
costs reached by the best optimization run. These best overall costs are 1872 CU (inventory
1746 CU, tardiness 126 CU) with the following MRP parameters: item 10 [FOQ 477, SS 5,
PL 3], item 11 [FOQ 500, SS 5, PL 3], item 20 [FOQ 477, SS 5, PL 2] and item 21 [FOQ 55,
SS 4, PL 3]. Comparing the initial solution to the best solution shows a high decrease in
the tardiness costs. The lower tardiness costs are expressed by smaller lot sizes of the
finished goods and sub-item 21, increasing safety stock for all four items and an increasing
planned lead time with the exception of item 20. This value constellation is the best to
absorb the existing production system uncertainty and keep a high service level. The very
low lot size of 55 from the best solution is interesting, as this means more production lots
must be produced and this increases setup costs. Since all cost and MRP parameter values
of the simulation experiments are available, an interesting analysis for further research
would be on the consistency of the MRP planning parameters for a set of best results,
e.g., analyzing the 10 best iterations. This leads to additional managerial insights from a
production planning point of view. In further research studies, it would also be possible
to consider setup costs as additional optimization parameter, which can lead to other
parameter constellations.

6.5. Statistical Interpretation of Simulation Results

Figure 3 presents a set of box-plots that allow us to visualize and compare the per-
formance of each of the simheuristic versions with respect to the minimum overall cost
per iteration obtained by each one, e.g.,: STR with 2720 CU, ERR with 1947 CU and BSBR
with 2525 CU. This result allows us to reinforce different conclusions already presented.
Given the stochastic nature of the variables of the problem, there is a risk that the minimum
iteration cost will rise above the expected values when applying any of the versions, as
confirmed by the outliers observed for each of them. The results of ERR show the lowest
overall median, but with the known risk of the higher variability of the results. On the
other hand, the STR version presents a higher mean and median, but at the same time,
there is more control over the results due to the symmetry present in the distribution of
the results, and there is a lower probability of obtaining outliers compared to the others.
BSBR offers higher risk solutions with respect to outliers. However, the interquartile range
is very small, and 50% of the data is less dispersed, which represents more control over the
processes. Furthermore, comparing the results of ERR with BSBR, it could be said that the
outliers in BSBR are mild. From the point of solution quality, the higher variability of ERR
allows for identifying lower overall costs.

6.6. Implications on Practitioners and Further Research

Researching on MRP planning parameter settings affects researchers and practition-
ers. From a practical point of view, it would be interesting to implement the previously
described pseudocodes into the production planning routine of an ERP or MES (Man-
ufacturing Execution System) system, when such a system also provides a simulation
framework for the respective production system. For ERP/MES integration, a main chal-
lenge will be the application on an existing and more complex product structure with much
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more MRP planning parameters, i.e., more decision variables. This requires to upscale
the system for parameter handling and intermediate result computation. Furthermore, an
efficient MRP parameter update strategy has to be developed. Results of such an implemen-
tation with real data can provide valuable results about optimal parameter combinations
and the performance issues of the respective production system. The automatic compu-
tation of optimal MRP planning parameter based on optimized inventory and backorder
costs provides useful information of production planning related decision making. From
a scientific point of view, especially the general approach of SBM is reusable for other
simulation studies and can help consume the available simulation budget to test larger
solution spaces.

Figure 3. Comparison between the best result obtained in each simheuristic.

The presented simheuristic does not explicitly consider the interrelation between
optimized planning parameters. Ignoring the parameter dependency can have negative
effects on the optimized parameters and the final result. However, parameter interrelation
is also ignored by other heuristics, compare with [16]. Investigating MRP parameter
interrelation may provide additional insight into optimization-based production system
simulations, but is out of context of this article.

7. Conclusions and Future Work

This article provides insights into the application of simheuristics in identifying opti-
mal MRP planning parameter values for lot size, planned lead time and safety stock. The
aim is to find the minimal overall cost (inventory costs plus backorder costs) computed
during the application of the MRP planning algorithm in a simulation environment. This
article is a further development of the results based on three different simheuristic versions
to identify the minimal overall cost only for the MRP planning parameter safety stock and
planned lead time. The first extension is that optimal values for all three MRP planning
parameters are searched. A second extension is the development of a SA-based simheuristic
extension. The third extension focuses on finding optimal parameters without wasting
simulation budget for non-promising iterations. Hence, an intelligent simulation budget
management (SBM) is introduced to consume the available replications only for potential
best solutions, thus skipping solutions outside the defined percentile range. SBM was
combined with the SA extension to additionally explore new areas of the solution space
and to escape local minima. The application of the developed SBM and SA extensions,
combined with all three planning parameters, allows for a systematic identification of
optimal planning parameters with a clear optimization target. The numerical results show
that the best performing version for this application is ERR. From a production planning
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perspective, the developed simheuristic versions, specifically ERR, provides a fast and well
performing simulation-based optimization approach which is simple to apply in practical
environments. The performed simulation study shows the improvement of the existing
simheuristic versions regarding the identification of the minimal overall cost with the joint
application of SBM and SA. This finding is supported by the lowest overall cost obtained
with the highest simulation budget and the joint application of SBM and SA for all three
simheuristic versions. Limitations of this study are related to the application field and the
production system within which the simheuristics are tested, i.e., only one application field
is evaluated in this study and the respective production system is still rather simple. How-
ever, this article provides the foundation for future investigations, to systematically apply
the simheuristics concept to more complex production system structures and to other ap-
plication fields. The developed simheuristics focus on a single objective function, however,
for real production systems, it is not always possible to transform all objective dimensions
into costs. Therefore, future work could investigate how to extend the simheuristic to a
multi-objective approach. A broad sensitivity analysis to prove the promising results of
SBM is also planned in future work.
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