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Abstract

The location routing problem (LRP) integrates operational decisions on vehicle routing operations with
strategic decisions on the location of the facilities or depots from which the distribution will take place.
In other words, it combines the well-known vehicle routing problem (VRP) with the facility location problem
(FLP). Hence, the LRP is an NP-hard combinatorial optimization problem, which justifies the use of meta-
heuristic approaches whenever large-scale instances need to be solved. In this paper, we explore a realistic
version of the LRP in which facilities of different capacities are considered, i.e., the manager has to consider
not only the location but also the size of the facilities to open. In order to tackle this optimization problem,
three mixed-integer linear formulations are proposed and compared. As expected, they have been proved to
be cost- and time- inefficient. Hence, a biased-randomized iterated local search algorithm is proposed. Clas-
sical instances for the LRP with homogeneous facilities are naturally extended to test the performance of
our approach.

Keywords: location routing problem; heterogeneous facilities; biased randomization; metaheuristics

1. Introduction

The location routing problem (LRP) is a traditional strategic-tactical-operational problem that
considers a set of potential facilities and a set of customers with a known demand, whose main de-
cisions are: (i) the number and location of facilities to open, (ii) the allocation of customers to open
facilities, and (iii) the design of routes to serve customers from each facility using a fleet of vehicles.
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This means that the LRP considers jointly the facility location problem (FLP) and the vehicle rout-
ing problem (VRP). As both problems are NP-hard in nature, the LRP maintains this characteristic
(Nagy and Salhi, 2007). Hence, its inherent complexity makes necessary the use of approximate
solution approaches, such as heuristic or metaheuristic algorithms, to solve it efficiently, especially
when dealing with large-sized instances. Therefore, the research about this problem has increased
mainly during the last decade, given the recent advances in computing power.

Different versions of the LRP have been considered in the scientific literature depending on the
analyzed constraints. Among them, we can find: (i) the capacitated version in which only the vehicle
capacity is limited; and (ii) the capacitated version that establish capacity constraints for both de-
pots and vehicles. The latter variant assumes that the following parameters are known in advance:
the facility opening cost, the traveling cost between two nodes, the demand of each customer, the
capacity of each vehicle, and the capacity (size) of each open facility. Nevertheless, this latter is tra-
ditionally assumed as a fixed parameter, i.e., once a facility is open, a rigid known size is assigned.
However, some real-world problems show the relevance of considering a set of available sizes to
select those that fit better. Cases from different industries that employ either LRP or non-LRP ap-
proaches have considered this set. An example of the latter is shown by Tordecilla-Madera et al.
(2017), who address the problem of locating a set of milk refrigeration tanks for a dairy cooperative
in Colombia. Several tank sizes are found in the market, i.e., the considered problem must deter-
mine both the number and size of tanks that should be bought and their location, among other
decisions. Correia and Melo (2016) state that, in applied problems, the capacity is often acquired in
the market from a set of discrete sizes. Furthermore, economies of scale can be incurred when the
facility size is an additional variable to model. The different available sizes are usually associated
with investment activities, such as building facilities (Zhou et al., 2019), qualifying workforce (Cor-
reia and Melo, 2016), or purchasing equipment (Tordecilla-Madera et al., 2017). This means that
considering facility sizing decisions is a strategy for decreasing the invested capital, if necessary,
or even for reducing the operational costs by increasing the investment level, as we demonstrate in
this work.

Allowing facility sizing decisions is a form of soft constraint (Juan et al., 2020). The traditional
LRP considers a rigid value for the maximum capacity of a facility, however, this constraint can
be “violated” by providing multiple size alternatives and incurring an additional opening cost for
a bigger size. This approach is quite common in real-life cases. Nevertheless, our approach not
only allows bigger sizes but also smaller ones in order to diminish costs. Besides, considering sizing
decisions increases the hardness of the problem. Therefore, we propose an approach formed by a
biased-randomized version of a savings-based constructive heuristic (Grasas et al., 2017) and the it-
erated local search (ILS) metaheuristic (Lourenço et al., 2019) to solve a deterministic version of the
LRP with facility sizing decisions. Hence, the contributions of this work are fourfold: (i) to analyze
a more realistic version of the capacitated LRP in which different sizes for each depot location are
considered, (ii) to extend classical medium- and large-sized benchmark instances of the LRP in or-
der to adapt them to the variant under study, (iii) to propose a competitive metaheuristic algorithm
based on biased randomization techniques to deal with the LRP with facility sizing decisions, and
(iv) to provide a numerical analysis of the results obtained by employing alternative mixed-integer
linear programs (MIP), in terms of costs and computing times. The remainder of this paper is or-
ganized as follows: Section 2 presents a brief literature review on facility sizing decisions in both
the LRP and other logistic problems. Section 3 presents a mixed-integer programming model of the
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LRP with facility sizing decisions. Section 4 provides details on the solving approach used to deal
with the problem. Section 5 describes the procedure used to extend classical instances and presents
the results obtained when using both an exact approach and our metaheuristic approach; in ad-
dition, it includes a sensitivity analysis on the effects generated by different sizes. Section 6 draws
some conclusions and future research perspectives. Finally, the appendix analyzes alternative MIP
models for the considered problem.

2. Literature review

In general, only a handful of papers addressing the LRP includes facility sizing decisions. These
papers are summarized in Subsection 2.1, along with traditional and recent works about the LRP.
Alternatively, facility sizing decisions are usually considered by papers addressing strategic-tactical
problems in a supply chain, i.e., by papers that exclude routing. These works are outlined in Sub-
section 2.2.

2.1. The location routing problem

The general topic regarding the LRP has been broadly studied, especially in the last few decades.
Maranzana (1964) is perhaps the first author who combines location decisions with transport costs.
Multiple highly cited papers were published some years later. For instance, Jacobsen and Madsen
(1980) and Madsen (1983) assess three heuristics to solve an LRP for distributing newspapers. Perl
and Daskin (1985) present a mixed integer program to solve a warehouse LRP. The authors propose
a heuristic that decomposes the problem into three interdependent subproblems. They consider that
both depots and vehicles are capacitated. The model is applied to a real distribution system in an
area including Missouri, Oklahoma and Western Kansas. Theoretical problems are also addressed
in this period, as well as the use of exact algorithms to solve them. For instance, Laporte et al.
(1986) propose an integer linear program to solve a capacitated LRP. The capacitated part of the
problem refers only to the vehicle capacity, i.e., open depots are uncapacitated. An exact algorithm
applied after a constraint relaxation method is employed to solve the problem optimally. Laporte
et al. (1988) study a cost-constrained LRP, where the cost of each designed route cannot exceed
a known limit. Capacity-constrained and cost-constrained multi-depot VRPs are also analyzed.
Finally, Laporte et al. (1989) are perhaps the first authors addressing a stochastic LRP, in which
customers’ demands are random. A chance constraint model and a bounded penalty model are
proposed and solved optimally.

Aykin (1995) addresses a hub location routing problem where hubs can interact each other. An
integer program is formulated and an iterative heuristic is proposed to solve the problem. Tuzun
and Burke (1999) also show a mixed integer program, based on the work by Perl and Daskin (1985).
Unlike these authors, Tuzun and Burke (1999) do not consider depots capacity. Additionally, they
propose a two-phase tabu search algorithm as solution approach. Wu et al. (2002) consider a multi-
depot LRP where vehicles are heterogeneous and the fleet of each type of vehicle is limited. A
heuristic decomposition method is proposed, where the problem is divided into two subproblems.
Then, each subproblem is solved through an embedded simulated annealing algorithm. Prins et al.
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(2006) hybridize GRASP with a learning process and a path relinking to solve a capacitated LRP.
A randomized version of the Clarke and Wright savings heuristic is employed, as well as several
local search procedures. Prins et al. (2007) propose a metaheuristic that decomposes the LRP into
two phases: the first one solves the facility location problem through a Lagrangean relaxation, and
the second phase employs a granular tabu search to solve the routing part.

LRP cases for hazardous waste management are shown by Alumur and Kara (2007) and Saman-
lioglu (2013). These authors address facility sizing decisions, although this concept is employed in-
directly, i.e., they consider a set of waste treatment technologies, and each technology has a different
available capacity to be installed. For instance, Alumur and Kara (2007) propose a multi-objective
LRP. They formulate a mixed integer programming model to minimize both total costs and trans-
portation risk. A real-world problem in the Central Anatolian region of Turkey is considered and
solved using an exact algorithm. This problem has also been tackled by Samanlioglu (2013). In this
paper, three objective functions are intended to be minimized: total costs, transportation risk, and
treatment and disposal centers risk. A mixed integer programming model is formulated and solved
employing an exact algorithm. A real-world problem in the Marmara region of Turkey is consid-
ered. Yu et al. (2010) employ a simulated annealing algorithm to solve a capacitated LRP. Different
sets of benchmark instances are used to test the proposed heuristic. Sustainability and food per-
ishability are addressed by Govindan et al. (2014) in a two-echelon LRP with time windows. The
authors propose a metaheuristic that hybridizes a multi-objective particle swarm optimization with
an adapted multi-objective variable neighborhood search.

Fields such as supply chain network design (Lashine et al., 2006), horizontal cooperation
(Quintero-Araujo et al., 2019a), city logistics (Nataraj et al., 2019), and humanitarian logistics
(Ukkusuri and Yushimito, 2008) also show the application of the LRP in a deterministic con-
text. Alternatively, the LRP has also been studied considering stochastic parameters. For instance,
Quintero-Araujo et al. (2019b) propose a simheuristic algorithm to deal with demand uncertainty
for the LRP. Rabbani et al. (2019) propose also a simheuristic approach to solve an LRP in the
context of the hazardous waste management industry. Both generated waste and number of people
at risk are stochastic. Literature reviews by Nagy and Salhi (2007), and more recently by Prodhon
and Prins (2014) show the rise of the LRP. Traditional taxonomies, such as capacitated or uncapac-
itated vehicles, capacitated or uncapacitated depots, single or multiple periods, among others are
tackled by these authors. A broad taxonomy is also presented by Lopes et al. (2013). Schneider and
Drexl (2017) provide a review focused on solving approaches for the standard LRP, such as exact
methods, matheuristics or metaheuristics. Albareda-Sambola and Rodríguez-Pereira (2019) review
different mathematical formulations for the LRP, as well as heuristic algorithms and location-arc
routing problems. Non-standard LRP approaches are addressed by Drexl and Schneider (2015).
Papers regarding the use of fuzzy data, continuous locations, split deliveries, among other variants
are reviewed. Nevertheless, the explicit consideration of facility sizing decisions is not taken into
account by these reviews. To the best of our knowledge, only five papers consider it in an LRP con-
text: two works considering only deterministic parameters, and three works addressing uncertainty.
These papers are referenced below.

Hemmelmayr et al. (2017) consider a deterministic periodic LRP for collaborative recycling in
hunger relief agencies. Possible depot locations belong to the same set as the customers, i.e., some
customers are chosen to locate the depots there. A mixed-integer programming model is proposed,
which is solved through CPLEX for small instances. Then, an adaptive large neighbourhood search
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heuristic is proposed to solve small and large instances. High cost savings for the agencies are at-
tained through this approach. A variant in the problem considers that customers and depots belong
to different sets of nodes. For instance, Tunalıoğlu et al. (2016) consider a multiperiod LRP for col-
lecting olive oil mill wastewater. A mixed-integer non-linear model is proposed. Then, the problem
is solved through a metaheuristic named multiperiodic-adaptive large neighbourhood search (MP-
ALNS). A case study in Turkey is considered. A sensitivity analysis is carried out and numerical
results are showed as well as some managerial insights. Zhou et al. (2019) also consider different
sets for depots and customers. They propose a hybrid approach combining a genetic algorithm
and a simulated annealing approach to solve a bilevel multisized terminal LRP with simultane-
ous home delivery and customer’s pickup services. A real-world case in an e-commerce company
in China is considered. Parcels’ deliveries can be carried out between a distribution center (DC)
and intermediate terminals, and between the same DC and the customers. The customers have the
option of either to receive the deliveries at their homes or pick up the parcels in a terminal. Hence,
each customer’s demand is computed considering the probability of selecting each alternative. This
probability depends on the distance of the customer to its closest terminal. Once the demand has
been calculated, this parameter is considered as deterministic.

A simheuristic algorithm is proposed by Tordecilla et al. (2020) to solve an LRP with facility siz-
ing decisions. They consider all customers’ demands to be stochastic. Results are assessed in terms
of both total costs and reliability. Alternatively, Tordecilla et al. (2021) propose a fuzzy simheuris-
tic to solve the same problem, considering a more general case in which the demand of a subset
of customers is stochastic, while the demand of the complementary subset is modeled in a fuzzy
fashion. Particular cases in which all customers’ demands are deterministic, stochastic or fuzzy are
also analyzed. Both aforementioned papers employ medium-sized benchmark instances (up to 40
customers and 5 alternative depots) to test their approach. Both consider a function cost composed
of deterministic and failure costs. In turn, the deterministic part comprises opening and routing
costs. In contrast to these works, we address a deterministic LRP and test our approach employing
a larger set of benchmark instances with up to 200 customers and 10 alternative depots. In addi-
tion, the previous works in the literature only consider one fixed variability range between available
sizes. Instead, we perform a sensitivity analysis where this range is also modified. Hence, a deeper
analysis regarding the assigned sizes is carried out. Finally, in addition to the heuristic solution ap-
proach, the problem is modeled using three different mathematical programming approaches. Their
performance, in terms of computational time and solution quality, shows to be superior to the one
associated with other solving methods.

2.2. Facility sizing decisions in strategic-tactical problems

Papers considering only strategic or strategic-tactical decisions are more likely to include facility
sizing decisions. These papers exclude routing and address problems such as the FLP or the supply
chain network design (SCND). For instance, an early work in the FLP field is authored by Shul-
man (1991). He presents a multi-period problem that consists in determining the number and size
of facilities to place in each available location, i.e., several facilities can be placed in the same site.
The author proposes a MILP formulation and a Lagrangian relaxation to solve it. More recently,
Correia and Melo (2016) address a multi-period FLP where some customers allow delayed deliv-
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eries. The authors highlight that the inclusion of facility sizing decisions increases the search space
and that this topic is not frequently addressed in the literature. Besides, closing facilities is allowed
depending on demands and costs trends. Two MILP models are proposed and linear relaxations are
provided to solve the models. A similar problem and solving method are addressed by Correia and
Melo (2017). However, these authors tackle facility sizing decisions by considering modular capac-
ities, i.e., single-capacity modules are available, and sizing decisions consist in selecting the optimal
number of modules for each location site. Alternatively, Sauvey et al. (2020) propose several con-
structive and improvement heuristic algorithms to solve efficiently this problem. Finally, Wu et al.
(2006) address a single-period FLP that considers a general setup cost, i.e., the total location cost
is formed by both a fixed term depending on the site and a variable term depending on the facility
size. Two MILP models are proposed and solved through a Lagrangian heuristic algorithm.

In the SCND field, Badri et al. (2013) propose a MILP model for designing a four-echelon sup-
ply chain network. Multiple periods and commodities are considered. Periods are classified into
two sets for making strategic and tactical decisions, respectively. An initial capacity is available if
a facility is decided to be open. Then, a set of options can be used to expand the initial capacity.
Authors develop a heuristic based on a Lagrangian relaxation method to solve the model. Bashiri
et al. (2012) address a similar problem, which is solved exactly through the CPLEX solver. Cortin-
hal et al. (2015) do not only address the design but also the re-design of a supply chain network,
driven by changes in business and market conditions. Location decisions in the former case include
the number, size and location of new facilities, whereas in the latter case closing existing facili-
ties is also allowed. Multiple periods, products and transportation modes are considered. A MILP
formulation is proposed to model this problem. Finally, Le et al. (2019) focus in the location of
external intermediate warehouses in an SCND context. Multiple periods, products and transporta-
tion modes are also considered. Closing actions are not allowed, i.e., once a warehouse is chosen,
it remains open until the end of the planning horizon, either with the same size or bigger.

3. Problem formulation

The capacitated location-routing problem (LRP) consists in opening one or more depots and de-
signing for each open depot a number of routes whose total customer demand does not exceed
the depot capacity. Each route must start and finish at the same depot. The total number of vehi-
cles used (or routes performed) is a decision variable. The set of routes must serve all customers
and minimize a total cost comprising the fixed and variable costs of open depots, the fixed costs
of the used vehicles and the costs of the routes (transportation). Figure 1 depicts an example of a
complete LRP solution where circles represent the customers, triangles symbolize the open depots,
squares represent the non-open depots, and arrows symbolize the designed routes. For each open
depot a set of routes starting and finishing at the corresponding depot location is designed to serve
all customers demands.

Formally speaking, the LRP can be defined on a complete, weighted, and undirected graph
G(V, A,C), in which V is the set of nodes (comprising the subset J of potential depot locations
and subset I of customers), A is the set of arcs, and C is the cost matrix of traversing each arc.
A set of unlimited homogeneous vehicles with capacity constraints (K) is available to perform the
routes. Moreover, it is assumed that all vehicles are shared by all depots (i.e., no depot has a specific
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Fig. 1. Graphical representation of a CLRP solution.

fleet) and each arc a ∈ A satisfies the triangle inequality. Customer demands are deterministic and
known in advance. Each customer must be serviced from the depot to which it has been allocated
by a single vehicle. The version studied in this paper considers that the capacity of each depot is
not known in advance, instead it is a decision to be made. Hence, a discrete set L of available sizes
is known, from which the best alternative for each depot is selected. The following constraints must
be satisfied: (a) the total demand of customers assigned to one depot must not exceed its capacity,
(b) each route begins and ends at the same depot, (c) each vehicle performs at most one trip, (d)
each customer is served by one single vehicle (split deliveries are not allowed), and (e) the total de-
mand of customers visited by one vehicle fits its capacity. The location routing problem with facility
sizing decisions can be formulated as a mathematical programming model, whose sets, parameters,
and variables are shown in Table 1.

Minimize
∑

j∈J

∑

l∈L

( f j + o jl )y jl +
∑

a∈A

∑

k∈K

cawak +
∑

a∈δ+(J )

∑

k∈K

vwak (1)

s.t.
∑

k∈K

∑

a∈δ−(i)

wak = 1, ∀i ∈ I (2)

∑

i∈I

∑

a∈δ−(i)

diwak ≤ q, ∀k ∈ K (3)

∑

a∈δ+(n)

wak =
∑

a∈δ−(n)

wak, ∀k ∈ K, ∀n ∈ V (4)

∑

a∈δ+(J )

wak ≤ 1, ∀k ∈ K (5)

uik + dh ≤ uhk + M(1 − wak), ∀a ∈ δ+(i ∈ I ) ∩ δ−(h ∈ I ), ∀k ∈ K (6)
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Table 1
Sets, parameters, and variables of a 3-index model for the LRP with facility sizing decisions

Sets
V = Set of nodes
K = Set of vehicles
L = Set of available sizes
I = Set of customers, I ⊂ V
J = Set of depots, J ⊂ V
A = Set of arcs, A = V × V = {(m, n) : m ∈ V, n ∈ V ∧ m 	= n}
δ+(S) = Set of arcs leaving S, S ⊂ V , δ+(S) ⊂ A
δ−(S) = Set of arcs entering S, S ⊂ V , δ−(S) ⊂ A

Parameters
s jl = Available size of type l ∈ L for the depot j ∈ J
di = Demand of customer i ∈ I
f j = Fixed opening cost of depot j ∈ J
ojl = Variable opening cost of depot j ∈ J with size of type l ∈ L
ca = Cost of traversing arc a ∈ A
v = Fixed cost for using a vehicle
q = Capacity of each vehicle
M = A very large number when compared to the magnitude of the rest of the parameters

Variables
yjl = Binary variable equal to 1 if depot j ∈ J is open with size of type l ∈ L, 0 otherwise
xi j = Binary variable equal to 1 if customer i ∈ I is assigned to depot j ∈ J, 0 otherwise
wak = Binary variable equal to 1 if arc a ∈ A is used in the route performed by vehicle k ∈ K, 0 otherwise
uik = Accumulated deliveries by vehicle k ∈ K until customer i ∈ I

∑

a∈δ+( j)

wak +
∑

a∈δ−(i)

wak ≤ 1 + xi j, ∀i ∈ I, ∀ j ∈ J, ∀k ∈ K (7)

∑

j∈J

xi j = 1, ∀i ∈ I (8)

∑

i∈I

dixi j ≤
∑

l∈L

s jl y jl , ∀ j ∈ J (9)

∑

l∈L

y jl ≤ 1, ∀ j ∈ J (10)

∀ y jl , xi j, wak ∈ {0, 1} (11)

∀ uik ≥ 0 (12)

The objective function (1) minimizes the total costs. These are comprised by the opening cost—
the distance-based cost and the cost of the usage of vehicles. The constraints of the model are
explained next. Constraints (2) guarantee that each customer is served by a single route. Constraints
(3) are associated to vehicle capacity. Constraints (4) and (5) guarantee the continuity of each route
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and the return of a route to the depot from which it has started. Constraints (6) are devoted to
eliminate sub-tours. Constraints (7) guarantee that a customer is only assigned to a depot if there
are routes serving that depot. Constraints (8) guarantee that a customer is assigned to only one
depot. Constraints (9) ensure that the total demand of the customers allocated to a single depot
does not exceed its assigned size. Constraints (10) guarantee that a single size is assigned to an
open depot. Constraints (11) and (12) define the values of decision variables. This is the model
employed to obtain our first set of results shown in Section 5.1. Nevertheless, different models can
be formulated to represent our addressed problem. The appendix shows two additional models,
which are compared with the aforementioned one.

4. Solving approach

The problem described in Section 3 is NP-hard, since it contains as special cases the capacitated
vehicle routing problem or CVRP (single-depot case), the multi-depot VRP (case without location
decisions), and the facility location problem, all of them known to be computationally hard. Hence,
the LRP solution space is even much larger than the one of each individual problem, which makes
prohibitive the use of exact methods to solve medium- and large-scale instances. Therefore, a meta-
heuristic approach is proposed. The implemented method is based on the work by Quintero-Araujo
et al. (2017), who solve the LRP using a biased-randomized iterated local search (BR-ILS) meta-
heuristic. As discussed in Gruler et al. (2017) and Gonzalez-Martin et al. (2018), these frameworks
are efficient, relatively easy-to-implement, do not contain a large number of parameters (therefore
avoiding time-consuming setting processes), and offer an excellent trade-off between simplicity and
performance. Thus, they have also been successfully employed in solving other combinatorial op-
timization problems (Ferrer et al., 2016; Guimarans et al., 2018; Muñoz-Villamizar et al., 2019;
Londoño et al., 2020). The work by Quintero-Araujo et al. (2017) has a fixed input parameter for
the depots size, which is the traditional approach for the LRP. Our approach extends this previ-
ous work considering that this parameter is not fixed, i.e., several known sizes are provided and
our approach selects those that minimize the total routing and opening costs. Figure 2 depicts the
flowchart of our approach, which is composed of two phases. The Phase 1 (blue) selects quickly
some top complete solutions and the Phase 2 (pink) intensifies the search starting from these solu-
tions as a base.

Firstly, the Phase 1 calculates a minimum (lb) and a maximum quantity (ub) of required depots,
by dividing the total demand by the maximum and the minimum available size, respectively. This
estimation conforms a set of necessary depots. Then, for each number of depots in this set (b ∈
{lb, lb + 1, . . . , ub − 1, ub}), the algorithm selects randomly which depots must be open. Later, the
algorithm chooses randomly and feasibly the size to assign to each open depot (sl ), considering
only the available discrete sizes. Since this is a random procedure, a known number of iterations
is carried out. Hence, each iteration generates an MDVRP instance to be solved, after the depots
number, location and size have been selected. Two main decisions must be made in this problem: (i)
how to allocate customers to open depots, and (ii) how to design the routes to serve all customers.
The allocation problem is solved through a biased-randomized savings heuristic, where the greedy
behavior of the heuristic is relaxed (Dominguez et al., 2016). Biased-randomized techniques induce
a non-uniform random behavior by using skewed probability distributions. Through this process,
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Fig. 2. Our biased-randomized metaheuristic.

a deterministic heuristic is transformed into a randomized algorithm whilst preserving the logic
behind the original greedy heuristic. The geometric or the triangular probability distributions are
useful to guarantee this behaviour. In our algorithm we use the geometric probability distribution,
which has only one parameter (β), such that 0 < β < 1. This parameter controls the relative level of
greediness present in the randomized behavior of our algorithm, and consequently, introduces the
biased randomization process. Notice that biased randomization prevents the same solution from
being obtained at every iteration. At the same time, using this biased-randomized procedure ensures
that the perturbed solution is not far from the original solution. The savings for the allocation
process are calculated following these steps:

1. Calculate the cost (Euclidean distance) ci j between each customer i ∈ I and each depot j ∈ J.
2. Find the cost (distance) c∗

i j between i ∈ I and j∗ ∈ J, where j∗ is the depot alternative to j closer
to i.
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3. Calculate hi j , the marginal savings of allocating the customer i ∈ I to the depot j ∈ J, instead of
the best alternative j∗ ∈ J: hi j = c∗

i j − ci j .

This procedure generates a list of customers and savings for each depot. Positive savings mean
that the customer i is closer to the depot j than to any other depot. Hence, if a depot j has several
customers with positive savings, the customer with the highest savings is a priority for that depot,
given their relative proximity. Then, the list of customers of each depot is sorted in descending or-
der according to the savings. Later, each depot j is selected iteratively to perform a single customer
allocation per iteration. Our algorithm selects the next depot according to a purely random policy,
as long as its remaining capacity meets the demand of the next customer to allocate. Once the depot
j is selected, the customer i is chosen from its savings list. This selection is performed randomly, ac-
cording to a biased probability distribution, i.e., the first customer in the savings list has the highest
probability to be selected, the second element has the second highest probability, and so on. The un-
derlying idea is to preserve the savings criterion as a good heuristic to intensify the search process,
and at the same time to provide diversification by enabling the selection of other alternatives.

This procedure generates m submaps, where each submap is formed by one depot and a subset
of customers, i.e., m independent capacitated vehicle routing problem (CVRP) instances must be
solved. Then, the final decision to obtain a complete LRP solution consists in designing the delivery
routes to serve all customers. Several routes can be designed for each submap, depending on the
vehicle capacity. We use a biased-randomized version of a savings-based heuristic. The procedure
is similar to that used for the allocation decisions. In this case, a savings value is calculated for
each edge in the submap, forming a list that is sorted in descending order. Then, each route is
iteratively constructed by selecting an element of the list. This selection is carried out randomly
by using a biased probability distribution, in the same fashion that in the allocation procedure.
Then, a local search procedure is applied to each complete solution. Four local search operators are
implemented: (i) a customer swap inter-route operator, where two customers of different routes and
allocated to the same depot are swapped; (ii) an inter-depot node exchange, where two customers
allocated to different depots are swapped, (iii) a two-opt inter-route operator, where two chains
of customers are interchanged between different depots; and (iv) a cross-exchange operator, where
three non-consecutive customers from different depots are exchanged. Also, a hash table is used
to evaluate each new found CVRP solution. Finally, the Phase 1 is embedded into a multi-start
approach (Martí, 2003), which means that it is repeated until the stopping condition is met, saving
in memory the top solutions, i.e., those with the minimum cost.

The top solutions are the inputs of the Phase 2. This phase employs the BR-ILS metaheuristic
to search for better solutions by performing successive construction and reconstruction processes.
Each of the top solutions starts as a base solution whose allocation map is perturbed, i.e., the open
depots and their assigned sizes are not modified further. The perturbation procedure consists in
selecting a set of customers and trying to reallocate them to another depot, as long as its capacity
is not violated. Then, the new allocation map contains a set of m CVRPs to solve through a more
intensive biased-randomized savings. As well as in Phase 1, each new solution is both enhanced
through the four local search operators and evaluated through a hash table. Whenever a new
solution improves the best solution in terms of cost, the latter is updated. Nevertheless, if the
best solution is not improved, the new solution is assessed through a Demon-like (Talbi, 2009)
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acceptance criterion to escape from local optima. Finally, our approach returns the best solution
after the stopping condition for the Phase 2 is met.

5. Computational results and discussion

Both new and benchmark LRP instances have been used to test our approach. Ten small-scale
instances were created: half has 8 customers and 2 alternative depots and the other half has 10
customers and 3 alternative depots. These instances were solved through an exact method using
the MIP model described in Section 3. It yields optimal results useful to compare our algorithm’s
performance. However, benchmark instances cannot be run efficiently using this model due to their
larger size. Three well-known sets of benchmark instances were considered: Akca’s (Akca et al.,
2009), Barreto’s (Barreto et al., 2007) and Prodhon’s (Belenguer et al., 2011). Each benchmark
instance was slightly modified by introducing five known available sizes for facilities, hence, our
algorithm selects a size for each open depot. All experiments were run in a PC with an Intel Core
i7 processor and 16 GB RAM, and using Windows 10 as operating system.

5.1. Solving newly created small-sized instances

LRP benchmark instances are usually medium- and large-scale and they are not useful to test
our MIP model. Therefore, we created 10 small-scale instances. Most parameters (Table 1) were
generated randomly and others were assigned deliberately:

• I = {1, 2, 3, . . . , 8} and J = {1, 2} for 5 instances.
• I = {1, 2, 3, . . . , 10} and J = {1, 2, 3} for 5 instances.
• L = {1, 2, 3, 4, 5}.
• di ∼ U (50, 150), ∀i ∈ I .
• f j ∼ U (30, 40), ∀ j ∈ J.
• v ∼ U (20, 30).
• ca is established as the Euclidean distance between nodes whose coordinates are cxh ∼ U (0, 200)

and cyh ∼ U (0, 200); ∀h ∈ I ∪ J.
• q ∼ U (0.5

∑
i di, 0.7

∑
i di).

• s jl ∈ {500, 750, 1000, 1250, 1500} ∀ j ∈ J. Given the importance of facility sizing in our work,
these alternatives were fixed. These values also avoid infeasibilities regarding di.

• o jl = s jl

2s j3
·
∑

j f j

|J| , ∀ j ∈ J, ∀l ∈ L. This definition keeps o jl in the same order than f j and pro-

portional to s jl .
• M = 999999. This number is large enough when compared to the magnitude of the rest of the

parameters.

Generated instances were solved through both CPLEX and our approach. Given the random
nature of our algorithm, 10 random seeds and the following parameters were used to test it:
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Table 2
Results comparison between the exact algorithm and our approach

Exact algorithm Our approach

Instance
Total
demand

Optimal
cost

CPU
time (s)

Best
found

CPU
time (s) Gap

Quantity of
used vehicles

Quantity of
open depots

Selected
sizes

tor08x2a 767 751.23 0.88 751.23 1.25 0.0% 2 2 {500, 500}
tor08x2b 913 747.05 1.54 747.05 0.86 0.0% 3 2 {500, 1000}
tor08x2c 703 664.56 13.67 664.56 1.08 0.0% 2 2 {500, 500}
tor08x2d 764 606.30 2.96 606.30 0.12 0.0% 2 1 {1000}
tor08x2e 853 815.57 3.70 815.57 0.84 0.0% 2 2 {500, 500}

tor10x3a 1185 878.93 83.60 878.93 1.81 0.0% 2 1 {1250}
tor10x3b 1063 652.50 188.16 652.50 2.72 0.0% 2 2 {500, 750}
tor10x3c 1007 948.99 1028.08 948.99 1.88 0.0% 2 1 {1250}
tor10x3d 976 742.36 19.70 742.36 1.26 0.0% 2 2 {500, 750}
tor10x3e 1125 788.30 31.25 788.30 1.91 0.0% 2 1 {1250}
Average 137.35 1.37 0.0%

• Iterations for MDVRP instances generation = 5000.
• Iterations for map perturbations = 350.
• Iterations for biased-randomized savings heuristic = 150.
• Iterations for splitting = 150.
• Geometric distribution parameter for biased allocation map in splitting process (β1) = 0.05 ≤

β1 ≤ 0.80.
• Geometric distribution parameter for biased-randomized savings heuristic (β2) = 0.07 ≤ β2 ≤

0.23.

As is shown in Table 2, our approach reaches the optimal solution for all the tested instances,
i.e., the gap between both algorithms is 0.0%. Regarding the computational time, our approach
outperforms the exact algorithm for 9 out of 10 instances. Moreover, on average, our approach
invests about 99% less computational time to reach the optimal solution, which shows its efficiency.

Results regarding location-routing characteristics show the flexibility provided by our approach.
For both 8- and 10-customer instances the algorithm opens 1 or 2 depots, depending on what is
less costly. For example, one single depot of size 1000 is open in the instance tor08x2d, instead of
2 depots of size 500 as is happening in tor08x2a, tor08x2c and tor08x2e. The total size of both
cases is the same, but cost parameters, and customers and potential depots locations determine
the quantity of depots to open. For instance, in the case of Fig. 3b, potential depots and most
customers are close to each other. Optimal cost is obtained when the depot 2 (D2) is not used, and
the depot 1 (D1) is open with a size of 1000 units. Using both depots would increase the opening
costs and routing costs savings would be low. In all figures below, a black triangle represents an
open depot, and a gray square represents a non-open depot.

An opposite case is showed in Fig. 3a. Potential depots are far from each other and clusters of
customers can be identified easily. Both depots are open with a size of 500 each. The additional
cost incurred in opening a second depot is made up for routing costs savings. That is, if only one
depot were open in this instance, at least one route would be very long. Results displayed in Table 3
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Fig. 3. Optimal location-routing for instances tor08x2a (a) and tor08x2d (b).

Table 3
Comparison between opening either 1 or 2 depots

Instance

Output tor08x2a tor08x2b tor08x2c tor08x2d tor08x2e

Optimal case Quantity of open depots 2 2 2 1 2
Selected sizes {500, 500} {500, 1000} {500, 500} {1000} {500, 500}
Opening cost 91.25 104.50 81.25 56.75 78.75
Routing cost 613.98 579.55 541.31 491.55 688.82
Vehicle cost 46.00 63.00 42.00 58.00 48.00
Total cost 751.23 747.05 664.56 606.30 815.57

Modified case Quantity of open depots 1 1 1 2 1
Selected sizes {1000} {1000} {750} {500, 500} {1000}
Opening cost 56.25 58.00 45.19 93.75 47.75
Difference −38.4% −44.5% −44.4% 65.2% −39.4%
Routing cost 757.80 740.18 608.38 432.69 807.69
Difference 23.4% 27.7% 12.4% −12.0% 17.3%
Vehicle cost 46.00 42.00 42.00 87.00 48.00
Difference 0.0% −33.3% 0.0% 50.0% 0.0%
Total cost 860.05 840.18 695.57 613.44 903.44
Difference 14.5% 12.5% 4.7% 1.2% 10.8%

support this idea. This table shows a comparison between the optimal case and a slightly modified
case in which the model is forced to open a different number of depots, e.g., if two depots are used
to obtain the optimal cost, the modified case shows the situation in which only one depot is open.
Instances that reduce the quantity of open depots show higher total cost increases, given that: (i)
routing costs always grow in this situation, and (ii) routing costs are always much greater than open-
ing and vehicle costs. The highest total cost difference between modified and optimal case is 14.5%
for the instance tor08x2a. Table 3 also shows these differences for each cost component. For both
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Fig. 4. Optimal location-routing for the instance tor08x2b.

tor08x2a and tor08x2e instances, selected sizes of 500 and 500 are replaced by an equivalent size
of 1000. However, the selected size is 750 for the instance tor08x2c in the modified case. Obviously,
a 750-size depot is enough to meet a demand of 703, but the use of two depots of size 500 each
yields cost savings by generating shorter routes. All these considerations show the flexibility of our
approach. For example, consider a traditional LRP with fixed sizes of 1000. Costs would be always
higher for the instance tor08x2c, regardless of the number of open depots.

A particular case is identified for the instance tor08x2b. Figure 4 shows the optimal location-
routing plan. Total served demand is: blue route = 189, orange route = 644, and red route = 80.
That is, D1 meets a total demand of 833, and D2, a total demand of 80. Minimal available depot
sizes that satisfy feasibly such demands are 1000 and 500, respectively. Therefore, the total demand
is 913 and the total capacity is 1500, which exceeds demand in about 65%. That is, one single
depot of size 1000, two depots of size 500, or even two depots of sizes 500 and 750 each would
be theoretically enough, although routing costs would increase. For instance, the modified case in
Table 3 shows that routing costs are 27.7% higher when one single 1000-size depot is open. If the
instance tor08x2b were a real-world case, a decision-maker may formulate the question if opening
D2 is worth, since its used capacity is only 16% and D1 can meet the whole demand. In terms of
total costs, it is really worth since the modified case in Table 3 shows a total cost that is 12.5%
higher. Opening and vehicle costs decrease but routing costs increase. Besides, when mid- and long-
term planning is considered, demand can change over time and D2 may become necessary. A final
test with the MIP model was done. It shows that parameters f j and o jl must be at least 3.1 times
the original values to open only one depot in the optimal case. That is, f j and o jl must be at least
3.1 times higher to consider that opening a second depot is not worth.

5.2. Solving medium- and large-sized benchmark instances

Known LRP benchmark instances have been used to test our approach. Nevertheless, traditional
algorithms using them assume that the depot size is fixed, i.e., algorithms choose if a depot is open
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or not, and if it is, only one alternative size is available to assign. This increases costs and decreases
flexibility in decision making, as we will demonstrate below. Since benchmark instances have a
single value for the size per potential depot, they were slightly modified to introduce new alternative
sizes. 5 alternatives were considered: the original size parameter in the instance, 2 sizes smaller than
the original, and 2 sizes greater than the original. If s j is the original size for each potential depot,
each available size is given by the elements in the set: s jl ∈ {(1 − 2r)s j, (1 − r)s j, s j, (1 + r)s j, (1 +
2r)s j}, where r is the variability range between available sizes, and 0.0 < r < 0.5. For these initial
experiments, r = 0.25. Other values of r are considered in Section 5.3.

The variable Opening cost (o jl ) is another non-considered parameter in benchmark instances. We
calculate this parameter according to Equation (13). This equation keeps o jl in the same order than
f j and allows to assign negative variable opening costs for sizes smaller than the original, positive
costs for sizes greater than the original, and zero variable cost for the original size. The goal of
this definition is to compare properly our results with those obtained when using the traditional
benchmark instances in previous LRP papers. Finally, the number of iterations and geometric dis-
tribution’s parameters are the same as those in Section 5.1:

o jl = s jl − s j

2s j
·
∑

j f j

|J| , ∀ j ∈ J, ∀l ∈ L (13)

Our approach results were compared with those obtained by Quintero-Araujo et al. (2019a) in
the so-called Fully cooperative scenario (a traditional LRP). This paper was chosen since it does
not show only a total cost per instance but also details about cost components. Table 4 shows this
comparison for Akca’s and Barreto’s instances, and Table 5 shows it for Prodhon’s instances. A
total of 59 instances were tested. In terms of Total costs, our results always outperform Quintero-
Araujo’s, except for the Barreto’s instance Gas-32x5b, in which we attain a slight positive gap of
0.09%. The rest of the instances shows a negative gap, i.e., we obtain smaller costs by allowing the
selection of size for each facility. The last two columns of Tables 4 and 5 show that our results also
outperform the best-known solution (BKS) for most original instances. Small positive gaps were
obtained for only 6 out of 59 instances. Hence, for Barreto’s and Prodhon’s instances the average
gap between our results and Quintero-Araujo’s are −4.32% and −7.54%, respectively, which are
greater than our average gap in regard to the BKS (−3.90% and −7.12%, respectively). The average
gap is the same for Akca’s instances (−3.12%).

Cost components are also shown, namely: Opening, Routing and Vehicle costs. However, since the
input parameter v is not equal to zero only in Prodhon’s instances, the Vehicle cost is not included
in Table 4. Our approach decreases the Opening cost on 44 out of 59 instances, which is a direct
consequence of offering several alternative sizes. For example, the BKS for the Akca’s instance
Cr30x5b-2 opens two depots of size 1000. Our approach finds that opening one depot of size 750
and one depot of size 1000 is enough, generating savings of 6.25% in the opening cost. In fact, more
than half of the instances attains opening cost savings of at least 18%, with a maximum of 46.38%
on the Prodhon’s instance Coord20-5-1b.

This instance is very useful to illustrate what is happening. The total demand is 308 in this case,
and the only available size is originally 300. Therefore, the traditional LRP needs to open at least 2
depots to meet such demand, with a total size of 600. Our flexible approach only requires to open a
single bigger depot. Since differences between available sizes are 25% (r = 0.25) for the experiments
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Fig. 5. Best found solution by the non-flexible LRP (a) and our approach (b) for the Akca’s instance Cr30x5a-1.

in this section, the chosen size by our approach is 375, which is the minimum available size to meet
a demand of 308. Notice in Table 5 that our approach increases the routing cost in 14.95% for this
instance, although the total cost remains lower than Quintero-Araujo’s in 10.50%. The explanation
is the same as in Section 5.1: if one depot is open instead of two, more and longer routes must be
designed, increasing routing costs and generating savings in opening costs. These savings are greater
than the increase in routing costs.

Total costs decrease is not only a consequence of the reduction in opening costs. 4 out of 59
instances show an increase in these costs because of selecting bigger facilities, which results in a drop
in routing costs. Moreover, 8 instances show 0.00% in opening costs savings but still routing costs
decrease. The Akca’s instance Cr30x5a-1 is an example of this situation. The total demand to meet
is 1662. The original non-flexible best solution is 819.51 (Opening cost = 200.00 and Routing cost =
619.51), by opening 2 depots with a size of 1000 each. Designed routes are shown in Fig. 5a. Our
approach attains the same opening cost by opening the same depots than the original LRP but
assigning them sizes of 500 and 1500 for D4 and D2, respectively. Given our formula for costs
calculation in Equation (13), a total size of 1000 + 1000 costs the same as a total size of 500 + 1500,
but conditions may be different in real-world problems, depending on the cost structure of each
company or supply chain. Regardless of this situation, assigning different depot sizes leads to design
better routes, as can be seen in Fig. 5b. Our routing cost is 575.14, since the depot D2 has now more
capacity to serve some customers that are closer to it than to the depot D4. This shows the flexibility
and cost-efficiency of our approach.

Prodhon’s instances consider also a vehicle cost. Such consideration leads to reduce total costs
not only by decreasing opening costs or traveled distance, but also by reducing the number of routes.
8 out of 30 instances show this performance, which is a direct consequence of the flexibility in fa-
cility sizing. For example, our approach creates one route less than Quintero-Araujo et al. (2019a)
for the instance Coord100-5-1b. Our algorithm opens 2 depots with capacities of 770 and 875, re-
spectively, whereas the non-flexible approach opens 3 depots with capacities of 700, 770, and 770,
respectively. As our open facilities are bigger, only 2 depots are necessary and, therefore, the algo-
rithm finds more flexibility to distribute the customers differently by using less vehicles. Obviously,
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Fig. 6. Variation in total costs in relation to r.

this is also subject to the capacity of vehicles. The non-flexible approach yields an average vehicle
utilization of 87.9%, which means a margin for improvement. The bigger facilities in our approach
leads to a reorganization of the routes and an average vehicle utilization of 95.9%.

5.3. Sensitivity analysis regarding available sizes

So far, the variability range between available sizes remained fixed in 25%, i.e., r = 0.25. This sec-
tion’s objective is to analyze the effect that other values of r have in the obtained results. Hence,
7 values of r are considered, namely: r ∈ {0.00, 0.01, 0.05, 0.10, 0.15, 0.20, 0.25}. The case in which
r = 0.00 corresponds to the non-flexible case shown by Quintero-Araujo et al. (2019a). A total of
20 Akca’s, Barreto’s and Prodhon’s instances were selected to carry out our experiments. These in-
stances show different number of customers and depots from each other. Regardless of the instance,
the highest total cost is always obtained when r = 0.00. In average, the total costs show a decreas-
ing trend when increasing r, as Fig. 6 displays. As costs in all instances have very different scales,
they were normalized to create this chart. These results indicate that providing sizes with broader
variability has a positive impact in total costs, i.e., the greater the differences among input sizes, the
smaller the average costs. Fig. 6 demonstrates the advantages of considering our flexible approach,
since even a range as small as 1% in available sizes is enough to yield cost savings.

It is important to highlight that this is an average performance, which means that most instances
show a total cost decrease when increasing r. However, some individual instances do not perform
in this way. Whenever considering r > 0, three types of results are identified: (i) 12 instances show
a steady decrease in total cost; (ii) 7 instances show a fluctuating performance; and (iii) 1 instance’s
total cost increases steadily with r. Fig. 7 shows an example of each case. The chart (a) represents
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Fig. 7. Variation of the total cost with r for instances Das-150x10 (a), Gas-21x5 (b), and Coord20-5-2b (c).

the general trend in which providing sizes with a broader variability yields smaller total costs, the
chart (b) shows a performance with no clear trend, and the chart (c) shows the only instance with
an opposite performance. The relation between the total demand and available sizes is the cause
of such behavior. For example, the total demand in the instance Coord20-5-2b is 302. The available
original size is 300, i.e., at least 2 depots are necessary to meet the demand when r = 0. However,
if a size 1% bigger is available, only one depot is enough. In this case, providing still bigger sizes is
redundant and, therefore, opening costs increase with r. The underlying idea is that the algorithm
searches for a total capacity as close as possible to the total demand in order to minimize the total
cost. Nevertheless, such as real-world cases show, s jl is not usually a continuous parameter. Hence,
our metaheuristic tries to find the less-costly combination of available sizes so that total demand is
met. Most times, providing sizes with a bigger range helps to attain this objective, but sometimes,
they cannot be combined so that the total capacity is closer to the total demand. This also explains
the fluctuating performance of the instance Gas-21x5, as observed in Fig. 7b.
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6. Conclusions

Despite its importance in modern applications (e.g., last-mile delivery logistics, e-commerce, or 5G
telecommunication networks), the location routing problem (LRP) with facility sizing decisions has
been scarcely studied in the literature. As the original LRP, the heterogeneous version is also NP-
hard, which justifies the use of metaheuristics when solving large-sized instances. Our work proposes
a biased-randomized iterated local search (BR-ILS) metaheuristic. After running a series of tests,
the associated results show the great advantages of considering facility sizing decisions instead of
having a fixed value as traditional approaches do. Noticeable cost savings are obtained with our
approach due to: (i) the possibility of designing customized facilities that adjust to the current
and forecasted demand in each region; and (ii) reallocating customers and redesigning routes by
locating either larger- or smaller-size facilities. Both alternatives have been proved to decrease total
costs, which are formed by opening costs (investment capital), and operational costs (routing and
vehicle costs). The former alternative allows to save routing costs, although the opening cost can
grow. The latter alternative may increase routing costs, but the initial investment is lower.

Regardless of the size of the instance, our approach has been proved to yield very competitive re-
sults in terms of total costs. Small-, medium-, and large-sized instances have been used in our exper-
iments. Initially, three mixed-integer linear programming (MIP) models are proposed and tested by
solving optimally a few newly created small-sized instances, as well as benchmark instances whose
number of nodes is smaller than 30. The same instances were solved using our BR-ILS metaheuris-
tic. Then, this approach is employed to solve both medium- and large-sized benchmark instances.
They were slightly modified to consider facility sizing decisions, by providing both a set of alter-
native sizes and a variable cost according to each size. The experiments’ results show not only that
cost savings are attained after considering flexibility in facility sizes, but also that our metaheuris-
tic is both time- and cost-efficient. Additionally, all proposed MIP models have been proved to be
quite inefficient when compared with our metaheuristic approach. Finally, a sensitivity analysis is
carried out, in which we study the effect of different sets of sizes in the cost. Average results show
that those sets with a bigger range of difference between sizes yield smaller total costs. Neverthe-
less, a few instances do not follow this trend, which indicates that total costs in an LRP with facility
sizing decisions depend on the relation between demand and available sizes for each instance or
real-world case.

Future work in this field may include: (i) random variations affecting sizing decisions, i.e., the
consideration of demand stochasticity from the phase in which facilities are designed; and (ii) a
robustness and resilience analysis, given that smaller facilities are designed. This may affect the
system flexibility if serious disruption events affect the supply chain. Finally, the effect of a non-
linear cost variation as a function of the facility size can also be studied, since each real-world
supply chain faces different market conditions.
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Appendix A: Alternative MIP models for the LRP with facility sizing decisions

Section 3 shows a model that yields optimal solutions relatively quickly for our small newly-created
instances. Nevertheless, alternative formulations can be made for our addressed problem. This ap-
pendix shows a comparison between three MIP models. The first model is the one shown in Sec-
tion 3 (called the 3-index model henceforth). The second model is a modification of the first one, in
which available sizes are not considered as an independent set (2-index model). Instead, we consider
multiple copies of each facility, and each copy has a different capacity. Finally, the third model is
an adaptation of a set-partitioning model (Baldacci et al., 2011), where a set of alternative sizes
is included (SP model). Tables A1 and A2 show the sets, parameters, and variables of the 2-index
model and the SP model, respectively. The 3-index and 2-index models are very similar, however,
the 2-index model (Equations (A1)–(A4)) requires a set of dummy depots. For example, if an in-
stance has 3 potential depot locations and there are 5 alternative sizes for each open depot, the set
J has 15 dummy depots:

Minimize
∑

j∈J

( f j + o j )y j +
∑

a∈A

∑

k∈K

cawak +
∑

a∈δ+(J )

∑

k∈K

vwak (A1)
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Table A1
Sets, parameters, and variables of a 2-index model for the LRP with facility sizing decisions

Sets
V = Set of nodes
K = Set of vehicles
I = Set of customers, I ⊂ V
J = Set of dummy depots, J ⊂ V
P = Set of potential depot locations, P ⊂ V
Jp = Set of dummy depots in each location p ∈ P, Jp ⊂ J
A = Set of arcs, A = V × V = {(m, n) : m ∈ V, n ∈ V ∧ m 	= n}
δ+(S) = Set of arcs leaving S, S ⊂ V , δ+(S) ⊂ A
δ−(S) = Set of arcs entering S, S ⊂ V , δ−(S) ⊂ A

Parameters
s j = Available size of depot j ∈ J
di = Demand of customer i ∈ I
f j = Fixed opening cost of depot j ∈ J
oj = Variable opening cost of depot j ∈ J
ca = Cost of traversing arc a ∈ A
v = Fixed cost for using a vehicle
q = Capacity of each vehicle
M = A very large number when compared to the magnitude of the rest of the parameters

Variables
yj = Binary variable equal to 1 if depot j ∈ J is open, 0 otherwise
xi j = Binary variable equal to 1 if customer i ∈ I is assigned to depot j ∈ J, 0 otherwise
wak = Binary variable equal to 1 if arc a ∈ A is used in the route performed by vehicle k ∈ K, 0 otherwise
uik = Accumulated deliveries by vehicle k ∈ K until customer i ∈ I

Table A2
Sets, parameters, and variables of a set-partitioning model for the LRP with facility sizing decisions

Sets
V = Set of nodes
R = Set of feasible routes
L = Set of available sizes
I = Set of customers, I ⊂ V
J = Set of depots, J ⊂ V
Rj = Set of feasible routes passing through the depot j ∈ J, Rj ⊂ R
Ri j = Set of feasible routes of depot j ∈ J passing through the customer i ∈ I , Ri j ⊂ R

Parameters
s jl = Available size of type l ∈ L for the depot j ∈ J
dr = Demand of route r ∈ R
f j = Fixed opening cost of depot j ∈ J
ojl = Variable opening cost of depot j ∈ J with size of type l ∈ L
cr j = Cost of route r ∈ Rj of depot j ∈ J
v = Fixed cost for using a vehicle

Variables
yjl = Binary variable equal to 1 if depot j ∈ J is open with size of type l ∈ L, 0 otherwise
xr j = Binary variable equal to 1 if route r ∈ R of depot j ∈ J is included in the solution, 0 otherwise
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s.t.

Constraints (2)−(8)
∑

i∈I

dixi j ≤ s jy j, ∀ j ∈ J (A2)

∑

j∈Jp

y j ≤ 1, ∀p ∈ P (A3)

∀ y j, xi j, wak ∈ {0, 1} (A4)

The objective function (A1) minimizes the total cost, formed by the depot fixed and variable
opening costs, the routing costs, and the vehicles fixed costs. Constraints (A2) guarantee that the
total demand of the customers assigned to an open depot does not exceed its capacity. Constraints
(A3) ensure that at most one depot is open in each location. Finally, Constraints (A4) indicate the
variables that are binary.

The SP model (Equations (A5)–(A9)) requires as an input a set of all feasible routes in the prob-
lem, i.e., these routes must be constructed before each instance is run in the optimization software.
Additionally, each route has both a cost (or distance) and a demand, formed by the addition of all
customers’ demands in that route. These routes must be feasible, i.e., the vehicle capacity is used to
construct them. After this procedure finishes, the vehicle capacity is not used further:

Minimize
∑

j∈J

∑

l∈L

(
f j + o jl

)
y jl +

∑

j∈J

∑

r∈Rj

(
cr j + v

)
xr j (A5)

s.t.
∑

j∈J

∑

r∈Ri j

xr j = 1, ∀i ∈ I (A6)

∑

r∈Rj

drxr j ≤
∑

l∈L

s jl y jl , ∀ j ∈ J (A7)

∑

l∈L

y jl ≤ 1, ∀ j ∈ J (A8)

∀ y jl , xr j ∈ {0, 1} (A9)

The objective function (A5) minimizes the total cost, formed by the depot fixed and variable
opening costs, the distance-based costs of the routes, and the vehicles fixed costs. Constraints (A6)
guarantee that each customer is served by only one route. Constraints (A7) ensure that the total
demand of the routes assigned to each open depot does not exceed its assigned capacity. Constraints
(A8) guarantee that at most one depot is open in each potential location. Finally, Constraints (A9)
indicate that all variables are binary. All experiments in this appendix were run in a PC with an
Intel Core i7 processor with 16 GB RAM, and using Windows 10 as operating system.
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Table A3
Comparison of our MIP models using newly created instances

Instance
Optimal
solution

Single
equations

Single
variables

Discrete
variables IGT (s) MGT (s) ST (s)

Total time
(s)

3-index model
tor08x2a 751.23 273 315 290 - 0.20 0.68 0.88
tor08x2b 747.05 273 315 290 - 0.13 1.41 1.54
tor08x2c 664.56 273 315 290 - 0.15 13.52 13.67
tor08x2d 606.30 273 315 290 - 0.12 2.84 2.96
tor08x2e 815.57 273 315 290 - 0.12 3.58 3.70
tor10x3a 878.93 432 526 495 - 0.15 83.45 83.60
tor10x3b 652.50 432 526 495 - 0.14 188.02 188.16
tor10x3c 948.99 432 526 495 - 0.18 1027.90 1028.08
tor10x3d 742.36 432 526 495 - 0.16 19.54 19.70
tor10x3e 788.30 432 526 495 - 0.14 31.11 31.25
Average 353 421 393 - 0.15 137.21 137.35

2-index model
tor08x2a 751.23 497 763 738 - 0.13 4.51 4.64
tor08x2b 747.05 497 763 738 - 0.16 21.05 21.21
tor08x2c 664.56 497 763 738 - 0.14 43.73 43.87
tor08x2d 606.30 497 763 738 - 0.14 21.90 22.04
tor08x2e 815.57 497 763 738 - 0.15 11.42 11.57
tor10x3a 878.93 840 1366 1335 - 0.14 373.01 373.15
tor10x3b 652.50 840 1366 1335 - 0.17 2663.10 2663.27
tor10x3c 948.99 840 1366 1335 - 0.18 4246.76 4246.94
tor10x3d 742.36 840 1366 1335 - 0.17 75.89 76.06
tor10x3e 788.30 840 1366 1335 - 0.17 355.92 356.09
Average 669 1065 1037 - 0.15 781.73 781.88

SP model
tor08x2a 751.23 13 2939 2938 0.11 0.22 0.13 0.46
tor08x2b 747.05 13 26097 26096 0.66 1.97 0.12 2.75
tor08x2c 664.56 13 5171 5170 0.16 0.23 0.09 0.48
tor08x2d 606.30 13 2219 2218 0.12 0.15 0.07 0.34
tor08x2e 815.57 13 4259 4258 0.16 0.24 0.09 0.49
tor10x3a 878.93 17 265843 265842 16.65 218.28 0.83 235.76
tor10x3b 652.50 17 441673 441672 26.80 790.59 1.35 818.74
tor10x3c 948.99 17 86941 86940 3.39 18.73 0.29 22.41
tor10x3d 742.36 17 152089 152088 4.91 45.37 0.48 50.76
tor10x3e 788.30 17 134626 134625 4.48 38.46 0.42 43.36
Average 15 112186 112185 5.74 111.42 0.39 117.56

Table A3 displays the obtained results for our newly-created instances introduced in Section 5.1.
Regardless of the MIP model, the optimal solution has always been found. Nevertheless, both the
total necessary time to find these solutions and the number of single variables and equations are
noticeably different for the three models. The 2-index model shows a higher number of variables and
equations than the 3-index model. Despite the 2-index has one index less than the 3-index model, in
the former the number of elements of the set J is multiplied by 5, which affects the size of the entire
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model. Additionally, the SP model shows both a significantly smaller number of variables and a
greater number of equations than the other two models. The total time is formed by 3 terms:

1. Instance generation time (IGT): it is the time required to generate a file readable by the optimiza-
tion software (e.g., GAMS). Since the SP model requires a list of all feasible routes (sets R, Rj
and Ri j) as an input, as well as the parameters dr and cr j , the number of single input parameters
can be really large. Hence, an application in Python was programmed to generate this instance
file. Conversely, the 3-index and 2-index models do not require an automatic instance generation
procedure, since the number of single input parameters is significantly smaller than the inputs
for the SP model.

2. Model generation time (MGT): it is the time employed by GAMS to read and check the syntax
of the input code, as well as the time spent to generate the model before it can be solved.

3. Solving time (ST): it is the time employed by GAMS to find the optimal solution after the model
has been generated.

The 2-index model’s average total time is about 6 times longer than the 3-index model’s time,
which shows how inefficient the 2-index model is. Additionally, the SP model’s average total time is
slightly smaller than the 3-index model’s, despite the addition of the IGT. Given the large size of the
input file for the SP model, the average MGT is significantly greater than the average ST. Contrarily,
the average MGT is significantly smaller than the average ST for the 3-index and 2-index models.
That is, the latter models are really easy to read and hard to solve, and the SP model shows an
opposite performance.

Table A4 displays our obtained results for 9 small benchmark instances. Concretely, we use the
Barreto’s and Prodhon’s instances whose number of customers is smaller than 30. The second col-
umn in these tables shows the Best found solution (BFS). An asterisk indicates that the BFS is the
optimal solution. Since instances have been modified to include the alternative sizes, there is no
reference in the literature where the optimal solution is provided. Hence, the 3-index and 2-index
models found efficiently the optimal solution for the instance Perl-12x2, and the SP model found
it for the instances Coord20-5-1 and Coord20-5-2. The rest of the BFSs are obtained employing
our metaheuristic approach (Tables 4 and 5). The solving time limit was set on 10,000 seconds.
Three new indicators are added to Table A4: (i) the MIP solution, which is the best integer solu-
tion found by CPLEX when reaching the time limit, (ii) the optimality gap tolerance obtained by
CPLEX when reaching the time limit, and (iii) the gap between the MIP solution and the BFS. The
smaller these gaps, the better the results. Hence, the average gaps show again a higher efficiency of
the 3-index model.

Table A5 shows the results obtained by the SP model for the same benchmark instances of Ta-
ble A4. In this case, the problem size increases dramatically. In order to illustrate this statement,
an upper bound (UB) for the number of feasible set partitions of customers – i.e., depots are not
included, is calculated as follows:

1. Sort the customers’ demands in ascending order.
2. Determine the maximum number of customers (N) that can be served in a single route. To attain

this, add iteratively the demands of the first h elements until the vehicle capacity is reached, such
that

∑N
h=1 dh ≤ q and

∑N+1
h=1 dh > q.
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Table A4
Comparison of the 3-index and 2-index models using small benchmark instances

Instance BFS
Single
equations

Single
variables

Discrete
variables

MIP
solution

CPLEX
gap BFS gap

MGT
(s) ST (s)

Total time
(s)

3-index model
Perl-12x2 203.98* 545 611 574 203.98 0.00% 0.00% 0.17 21.81 21.98
Coord20-5-1 51165.49* 2586 3126 3025 58661.08 43.48% 14.65% 0.33 10000.00 10000.33
Coord20-5-2 43426.36* 2586 3126 3025 45322.41 32.25% 4.37% 0.32 10000.00 10000.32
Coord20-5-1b 34998.10 1572 1926 1865 34499.32 23.58% −1.43% 0.31 10000.00 10000.31
Coord20-5-2b 33403.25 1572 1926 1865 33912.96 20.39% 1.53% 0.34 10000.00 10000.34
Gaskell-21x5 418.65 2265 2735 2650 458.26 24.35% 9.46% 0.39 10000.00 10000.39
Gaskell-22x5 578.86 1858 2248 2181 580.45 4.98% 0.27% 0.58 10000.00 10000.58
Min-27x5 2960.02 3549 4157 4048 3475.48 37.59% 17.41% 0.43 10000.00 10000.43
Gaskell-29x5 493.35 4041 4695 4578 501.83 26.88% 1.72% 0.35 10000.00 10000.35
Average 18627.52 2286 2728 2646 19735.09 23.72% 5.33% 0.36

2-index model
Perl-12x2 203.98* 865 1283 1246 203.98 0.00% 0.00% 0.15 38.69 38.84
Coord20-5-1 51165.49* 4706 7526 7425 65550.80 50.27% 28.12% 0.36 10000.00 10000.36
Coord20-5-2 43426.36* 4706 7526 7425 53105.74 42.08% 22.29% 0.44 10000.00 10000.44
Coord20-5-1b 34998.10 2852 4726 4665 37535.61 31.52% 7.25% 0.40 10000.00 10000.40
Coord20-5-2b 33403.25 2852 4726 4665 33789.50 20.68% 1.16% 0.50 10000.00 10000.50
Gaskell-21x5 418.65 4045 6515 6430 483.71 29.15% 15.54% 0.37 10000.00 10000.37
Gaskell-22x5 578.86 3258 5328 5261 593.65 11.58% 2.56% 0.36 10000.00 10000.36
Min-27x5 2960.02 5809 9017 8908 4185.74 49.40% 41.41% 0.41 10000.00 10000.41
Gaskell-29x5 493.35 6461 9915 9798 804.77 55.48% 63.12% 0.67 10000.00 10000.67
Average 18627.52 3950 6285 6203 21805.94 32.24% 20.16% 0.41

Table A5
Results of the SP model using small benchmark instances

Instance
Optimal
solution

UB Number of
feasible set
partitions

Single
equations

Single
variables

Discrete
variables IGT (s) MGT (s) ST (s)

Total time
(s)

Perl-12x2 203.98 2.38 ×106 17 4757295 4757294 4219.16 168769.50 19.19 173007.86
Coord20-5-1 51165.49 9.92 ×105 31 495551 495550 31.67 816.26 11.55 859.48
Coord20-5-2 43426.36 9.92 ×105 31 779411 779410 44.70 1867.81 5.25 1917.76
Coord20-5-1b – 3.72 ×1012

Coord20-5-2b – 3.72 ×1012

Gaskell-21x5 – 6.98 ×1011 Out of memory to generate the instance file
Gaskell-22x5 – 1.23 ×1020

Min-27x5 – 4.44 ×1015

Gaskell-29x5 – 1.00 ×1027

Average 1.11 ×1026 26 2010752 2010751 1431.84 57151.19 12.00 58595.03

3. Calculate the number p of h-permutations of |I |, where |I | is the instance’s total number of
customers, according to Equation (A10). Notice that this expression still does not include the
set partitions with one single customer.
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p =
N∑

h=2

P(|I |, h) (A10)

4. Calculate UB according to Equation (A11). Two terms are included: firstly, the set partitions
with one single customer, and secondly, the division of p by 2, which is useful to decrease UB.
Since all arcs in the network are assumed to be symmetric, a route traversed in one direction
has the same distance-based cost and demand than the same route traversed in the opposite
direction:

U B = |I | + p
2

(A11)

Calculated UBs show the reason why a computer with the aforementioned characteristics is not
even able to generate the instance file. For example, the IGT for the instance Perl-12x2 is greater
than one hour, with a UB equal to 2.38 x 106. In turn, the instance Gaskell-21x5 has a UB about
300,000 times greater than the Perl-12x2’s, which shows the large size of that instance, as well as the
size of the rest of instances whose optimal solution is not known. The MGT in Table A5 also shows
how large the instance files are. For instance, GAMS took more than 46 hours only to generate the
Perl-12x2 model. Conversely, solving times are quite short in comparison.

Multiple conclusions can be drawn from the study shown in this appendix. Firstly, the 3-index
model shows a better performance than the 2-index model under all considered indicators. Sec-
ondly, when considering our newly-created small instances, the SP model is 14% more time-efficient
than the 3-index model in finding the optimal solution. However, the SP model efficiency is lost
when increasing slightly the instance size, given the sharp rise in the size of the feasible routes set.
Finally, after a solving time of 10,000 seconds, the 3-index model did not reach the best found solu-
tion for most benchmark instances. Our metaheuristic approach obtained these BFSs in less than
15 seconds (Tables 4 and 5), which shows its high time- and cost-efficiency.

© 2022 The Authors.
International Transactions in Operational Research published by John Wiley & Sons Ltd on behalf of International Federation

of Operational Research Societies


