
Software and Systems Modeling
https://doi.org/10.1007/s10270-021-00945-3

REGULAR PAPER

Model-driven development of asynchronous message-driven
architectures with AsyncAPI

Abel Gómez1 ·Markel Iglesias-Urkia2 · Lorea Belategi2 · Xabier Mendialdua2 · Jordi Cabot3

Received: 30 October 2020 / Revised: 15 October 2021 / Accepted: 20 October 2021
© The Author(s) 2021

Abstract
In the Internet-of-Things (IoT) vision, everydayobjects evolve into cyber-physical systems.Themassive use anddeployment of
these systems has given place to the Industry 4.0 or Industrial IoT (IIoT). Due to its scalability requirements, IIoT architectures
are typically distributed and asynchronous. In this scenario, one of the most widely used paradigms is publish/subscribe,
where messages are sent and received based on a set of categories or topics. However, these architectures face interoperability
challenges. Consistency in message categories and structure is the key to avoid potential losses of information. Ensuring this
consistency requires complex data processing logic both on the publisher and the subscriber sides. In this paper, we present
our proposal relying on AsyncAPI to automate the design and implementation of these asynchronous architectures using
model-driven techniques for the generation of (part of) message-driven infrastructures. Our proposal offers two different
ways of designing the architectures: either graphically, by modeling and annotating the messages that are sent among the
different IoT devices, or textually, by implementing an editor compliant with the AsyncAPI specification. We have evaluated
our proposal by conducting a set of experiments with 25 subjects with different expertise and background. The experiments
show that one-third of the subjects were able to design and implement a working architecture in less than an hour without
previous knowledge of our proposal, and an additional one-third estimated that they would only need less than two hours in
total.

Keywords Publish/subscribe ·Cyber-physical systems (CPS) ·Message-driven architectures ·Asynchronous communication ·
AsyncAPI · Industrial Internet of Things (IIoT)

Communicated by Federico Ciccozzi, Nicolas Ferry, Arnor Solberg,
and Manuel Wimmer.

B Abel Gómez
agomezlla@uoc.edu

Markel Iglesias-Urkia
miglesias@ikerlan.es

Lorea Belategi
lbelategi@ikerlan.es

Xabier Mendialdua
xmendialdua@ikerlan.es

Jordi Cabot
jordi.cabot@icrea.cat

1 Internet Interdisciplinary Institute (IN3), Universitat Oberta
de Catalunya (UOC), Barcelona, Spain

2 Ikerlan Technology Research Centre, Basque Research and
Technology Alliance (BRTA), Arrasate-Mondragón, Spain

3 ICREA – Internet Interdisciplinary Institute (IN3), Universitat
Oberta de Catalunya (UOC), Barcelona, Spain

1 Introduction

The emergence of the Internet of Things (IoT) [18] has dra-
matically changed how physical objects are conceived in our
society and industry. In the new era of the IoT, every object
becomes a complex cyber-physical system (CPS) [27], where
both the physical characteristics and the software that man-
ages them are highly intertwined. Nowadays, many everyday
objects are in fact CPSs, which increasingly use sensors and
interfaces (APIs) to interact and exchange datawith the cloud
[45].

The ideas behind the IoT have been especially embraced
by industry in the Industrial IoT (IIoT) or Industry 4.0 [28]. It
is in this Industry 4.0 scenariowhereCPSs become especially
relevant, mainly in control and monitoring tasks [31].

IIoT has largely contributed to the growing interest
in message-driven architectures [33], best used for asyn-
chronous communication. Indeed, in order to achieve higher
degrees of scalability, CPSs are typically deployed on

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00945-3&domain=pdf
http://orcid.org/0000-0003-1344-8472

A. Gómez et al.

message-driven asynchronous architectures that improve the
overall behavior and reliability of systems. One of the most
popular paradigms today is publish/subscribe [1]—followed
by, for example, the Message Queuing Telemetry Trans-
port (MQTT) protocol—where messages that are sent to
and from a CPS are not directed to a certain recipient,
but are proactively published and consumed by the agents
involved according to certain criteria or categories. How-
ever, although these distributed architectures are especially
scalable and tolerant to changes, they are not problem-free:
since communication is done between equals, there must be
an agreement between all parties on what are the expected
message categories, as well as on their internal format and
structure.

This is a key challenge we face at Ikerlan. As a technology
center, Ikerlan currently coordinates different projects devel-
oping solutions to monitor, control and supervise systems
of remote IoT devices in manufacturing plants, consumer
goods, warehouses or smart buildings. Such solutions must
support environments where a large number of devices send
and consume data (e.g., sensor information, batch processed
data, etc.). Following the current trend, the solutions devel-
oped are based on message-driven architectures following
the publish/subscribe paradigm.

Based on our experience in working on a large number
of IoT projects of different sizes and domains, we pro-
pose a model-driven solution to design and develop these
architectures efficiently. Our proposal relies on the Asyn-
cAPI Specification [5] to formalize and (semi)automate the
design and implementation of these architectures. Previ-
ously [21], we presented both AsyncAPI-based concrete and
abstract syntaxes and code generation templates to gener-
ate a Java-based internal DSL to support message-driven
architectures. In this paper, we generalize and extend our
proposal, and we provide further details. A key extension
not presented before is the graphical concrete syntax based
on data models together with a set of model transformation
to kick start the modeling and development of message-
driven architectures. The transformations also guarantee the
interoperability between the different syntaxes to ensure that
developers can, for instance, start with the graphical one
and then refine the result with the textual representation.
These extensions have been implemented and integrated in
our toolkit.

Furthermore, this paper completes our previous work
by reporting on the evaluation of our toolkit. The evalua-
tion we present here has been carried out with a group of
25 subjects—both end-users and developers—with different
levels of knowledge in the required concepts. Specifically,
we asked them to implement a small example architecture
of an automated warehouse. The goal of this evaluation
was to answer the following research questions: (i)how
do users think our toolkit helps them in the definition

and development of an asynchronous message-driven archi-
tectures? (ii)is previous knowledge required to use our
toolkit? (iii)which are the weaknesses and strengths of our
toolkit? and, (iv)does the graphical syntax provide real ben-
efits?

To answer these questions, the experiment was conducted
in two phases: first, we evaluated the usefulness of the initial
tool and got the feedback of the participants using a ques-
tionnaire, and second, after evaluating the initial results, we
selected the 11 subjects with previous knowledge on model-
ing and asked them to use the graphical syntax to implement
the same exercise to evaluate the extensions done. The com-
plete prototype is available as an open-source toolkit freely
available online1.

The rest of this paper is structured as follows: Section 2
motivates this work by introducing a small use case that
will be used as a running example throughout the rest of
the paper, while Sect. 3 presents AsyncAPI, which serves
as the background for this work. Section 4 presents our
proposed workflow for designing and developing message-
driven architectures as well as the overall picture of our
proposed tool, and Sect. 5 presents in detail our tool, describ-
ing all the main artifacts and components involved. Section 6
presents how we validated our proposal, first discussing on
our initial experiences and internal evaluation and second
by presenting our experiments with external subjects. Sec-
tion 7 presents the related work. We finish the paper with
Sect. 8, where we present our conclusions and summarize
our roadmap.

2 Motivation

Monitoring and control needs, as well as security and relia-
bility requirements, make possible—and even desirable—to
reuse a generic reference architecture in IIoT environments.
Architectures in these environments are typically message-
based, thus allowing a low coupling among the elements in
the architecture. One common message-based paradigm is
publish/subscribe, wheremessages are not directly sent to the
recipients who will consume them, but are published under
a certain category called topic. Only the devices subscribed
to a certain topic will receive the messages published under
it.

A common use case of these message-based architectures
is IoT devices publishing monitoring and status data. Such
data, whose volume can be very high, may be consumed by
a cloud application that filters and processes it. On the other
hand, control messages may be sent to reconfigure the IoT
devices through a Frontend when needed. The central ele-
ment of this architecture would be the message broker: the

1 https://hdl.handle.net/20.500.12004/1/A/ASYNCAPI/001.

123

https://hdl.handle.net/20.500.12004/1/A/ASYNCAPI/001

Model-driven development of asynchronous message-driven...

Fig. 1 Example of a message-based architecture in IoT

element in charge of managing publications, subscriptions,
and the flow of messages between the elements of the net-
work.

Example In order to illustrate the kind of architectures
explained above, we will use a simplified use case of an
automated warehouse from an industrial partner as shown
in Fig. 1. The message broker is shown in the center of the
figure, and as aforementioned, it is in charge of managing
the different publications and subscriptions. The warehouse
has different paths, each one containing a varying num-
ber of conveyor belts, as depicted on the right-hand side
of the figure. IoTBoxes are IoT devices which are dis-
tributed throughout the factory and are capable ofmonitoring
and controlling different paths. In the example, IoTBox 1
controls and monitors Path A (and thus belts A1 and A2),
while IoTBox 2 controls and monitors Path B (and as a
consequence, belt B1). The IoTBoxes periodically collect
data from the belts in the path – e.g., speed values. This
datum is sent to be further processed in the cloud. To do
this, IoTBox 1 publishes its monitoring information in topic
iotbox/box1/monitor, while IoTBox 2 does the same
on topic iotbox/box2/monitor. To receive the mon-
itoring data, the cloud is subscribed to topic iotbox/+/
monitor—the + symbol acts as a wildcard—and as a
consequence, the cloud receives the monitoring data of
both IoTBoxes under topics iotbox/box1/monitor
and iotbox/box2/monitor.

IoTBoxesmay also receive configuration commands—for
example, to change themonitoring frequency. These configu-
ration commands can be issued remotely via the frontend. For
example, the frontend may publish the desired monitoring
frequency for Path A—which is controlled by IoTBox 1—
by publishing a message with the correct format under topic
iotbox/box1/config. Since IoTBox 1 is subscribed to
this topic, it will receive the configuration command and will
reconfigure itself as requested. The same applies to IoTBox 2
andPathB, but under topiciotbox/box2/config in this
case.

As it can be guessed by examining the example above,
one of the major challenges that these architectures pose is
consistency [22]: the format of the messages exchanged and
the topics under which they are published and subscribed

Listing 1 Example message as to be published under
iotbox/box1/monitor

1 {
2 "id":"Path_A",
3 "belts": [
4 {
5 "id": "Belt_A1",
6 "ts": "2020 -09 -09 T05 :44:54.482Z",
7 "speed": 10
8 },{
9 "id": "Belt_A2",

10 "ts": "2020 -09 -09 T05 :44:54.599Z",
11 "speed": 15
12 }
13]
14 }

must be kept consistent throughout the life cycle of the sys-
tem. Failure to comply with this could result in a system
malfunction: if any of the agents introduces (even mini-
mal) changes in the definition of communications, and these
changes are not propagated to all the agents involved, inter-
operability problems will inevitably occur. Communication
can cease to be effective for two reasons: (i) because there
is a divergence in the topics under which messages are
published, thus resulting in agents not receiving messages
they are interested in; or (ii) because there is a divergence
in the format of the messages of a certain topic, and there-
fore, these cannot be understood by the subscribers receiving
them.

Example Listing 1 shows awell-formedmessage as it is pub-
lished by IoTBox 1 under topiciotbox/box1/monitor.
The message contains a JSON object with two fields: id and
belts. id identifies the path, and belts is an array of
objects, each one containing three fields: a belt id, the times-
tamp (ts) when the speed was observed on the belt, and the
speed of the belt in m/s. An example of divergence in the
topics is the casewhen the cloud subscribes to thewrong topic
by mistake (e.g., to iotbox/box1/monitoring instead
of iotbox/box1/monitor). In such a case, themonitor-
ing data of IoTBox 1 will not be delivered to the cloud ever.
An example of divergence in the format can happen if the
developers coding the cloud application do not pay attention
to the message format. For example, if the speed is treated
as a float, precision errors may occur or even the parsing may
fail; or if the timestamp is treated as a long with the epoch
time (instead of as a formatted string) even a runtime error
may happen.

3 AsyncAPI: Towards a standard language
for describingmessage-based
architectures

Aforementioned consistency issues are not unique tomessage-
based architectures where communication occurs asyn-

123

A. Gómez et al.

chronously. In fact, other architectures alsomanifest them, as
it is the case of resource-oriented architectures where com-
munication occurs synchronously. However, in these cases,
the industry has already proposed standardized solutions to
support the development of such architectures. An example
isOpenAPI and its complete ecosystem. TheOpenAPI Spec-
ification [41] is a description format for APIs based on the
REST [19] paradigm that allows, amongother things, to spec-
ify the operations offered by theAPI, the type and parameters
of each operation, the authentication methods, etc.

For message-based architectures, and taking inspiration
from OpenAPI, the AsyncAPI Specification [5] proposal
has recently emerged as a promising alternative. AsyncAPI
descriptions are expected to be both human and machine
readable. To achieve this goal, files defining amessage-driven
API are represented as JSON objects and conform to the
JSON standards2. Such files allow describing, among other
things, the message brokers of an architecture, the topics
of interest, or the different formats of the messages associ-
ated with each of the topics. Next, we introduce the most
preeminent concepts—JSON objects in the AsyncAPI Spec-
ification—of the AsyncAPI proposal for future reference3:

The AsyncAPI object is the root document object of an
API definition. It combines resource listing and API dec-
laration together into one document. Its main fields are:
asyncapi, to specify the AsyncAPI Specification version
being used; info, an Info object; servers, a Servers object;
channels, a Channels object; and components, a Compo-
nents object.

The Info object provides the API metadata, such as its
title, version, description, termsOfService, contact, and
license.

The Servers object is a map of Server objects.
A Server object typically represents a message broker
(or a similar computer program). This object is used to
capture details such as URLs, protocols and security con-
figuration of such brokers. Variable substitution is also
supported. The object contains, among other fields, a url
to the target host, its protocol (e.g., http, mqtt, stomp,
kafka, etc.), the protocolVersion, a description, or a map
of variables.

The Channels object is a map holding relative path
names and individual Channel Item objects. Channel
path names are relative to servers. Channels are also
known as topics, routing keys, event types or paths

2 YAML, being a superset of JSON, can be used as well to represent
an AsyncAPI Specification file too.
3 An interested reader may find Fig. 4 useful, where we propose ameta-
model for the AsyncAPI Specification based on the concepts presented
here.

depending on the protocol or technology used.
A Channel Item object describes the operations avail-
able on a single channel (i.e., topic). Typical fields
are: description, to describe the channel; subscribe, an
Operation object; publish, an Operation object too; or
parameters, amapof the parameters included in the chan-
nel name.

An Operation object describes a publish or a subscribe
operation. This provides a place to document how and
whymessages are sent and received.Most commonfields
are: operationId, a unique string used to identify the oper-
ation; summary, a short summary of what the operation
is about; description, a verbose explanation of the oper-
ation; and message, aMessage object with the definition
of the message that will be published or received on this
channel.

AMessage object describes a message received on a given
channel and operation. For a message, the following
fields can be specified among other: name, a machine-
friendly name for the message; title, a human-friendly
title for the message; summary; description; or payload,
which can be of any type but defaults to Schema object.

A Schema object allows the definition of input and output
data types. These types can be objects, but also primitives
and arrays. This object is a superset of the JSON Schema
Specification Draft 74. Typical fields of an Schema object
are: title; type (any of boolean, integer, number, string,
object, array or null); enum, to limit possible values
from a list of literals; properties, to specify the fields
of objects; maxItems and minItems, to specify the cardi-
nality of arrays; or items, to specify the schema of the
array elements.

A Reference object is a simple object which allows refer-
encing other components in the specification, internally
and externally. It only contains the $ref field, which is a
URI.

The Components object holds a set of reusable objects for
different aspects of the AsyncAPI definition. Elements
defined within the Components object can be referenced
by using aReference object. Reusable objects aremapped
by name in their corresponding field. Some exam-
ples are: schemas, for Schema definitions; messages,
for Message definitions; parameters, for Parameters; or
operationTraits and messageTraits, which are traits that
can be applied to operations and messages, respectively,
and are defined similarly to Operations and Messages.

4 https://json-schema.org/specification-links.html#draft-7

123

https://json-schema.org/specification-links.html#draft-7

Model-driven development of asynchronous message-driven...

Example Listing 2 shows, in a simplified way, how part of
our running example is specified using AsyncAPI. To keep

the example manageable, we have specified only the mon-
itoring part (thus excluding the configuration topics—e.g.,
iotbox/box1/config—and associated messages). As
it can be seen, in line 2, we specify that the definition
adheres to the AsyncAPI Specification version 2.0.0, while
in lines 3–6, we specify the information of our API. As lines
7–12 specify, our infrastructure has a single server, called
production –whose host name isexample.com—with
an MQTT broker listening on port 1883. The rest of the
AsyncAPI object specifies the topics exposed by our API,
and the format of the messages that can be interchanged.
This is done via the channels property (lines 13–34),
which in turn, references some reusable artifacts that have
been defined within the components property (lines 35–
79). Line 14 specifies the name of the only channel—i.e.,
topic—of our infrastructure: iotbox/{id}/monitor.
As it canbeguessed,iotbox/{id}/monitor is a param-
eterized name, in which the {id} substring is substituted by
the actual IoTBox name when publishing a message (thus
publishing either under the iotbox/box1/monitor or
iotbox/box2/monitor topics). Lines 16-19 specify the
actual information of the parameter: in line 16, we spec-
ify its name; in line 17, we provide a description; and in
line 18, we specify its type. The publish and subscribe
operations are specified in lines 21–26 and 27–32, respec-
tively. As both operations publish and receive the same kind
of messages, they reference the reusable definition named
statusMessage, which is defined in the messages
property of the components object (lines 36–43). The pay-
load of a statusMessage is a pathInfo object. The
schema of pathInfo objects is specified in lines 45–60.
A pathInfo is a JSON object with two properties: id, a
string value; and belts, an array of beltInfo objects.
As specified in lines 61–77, a beltInfo is an object with
three properties: an id; a timestamp (whose name is ts);
and a numeric value with the speed of the belt. As it can
be observed, the example message shown in Sect. 2—i.e.,
Listing 1—contains a pathInfo object conforming to the
specification in lines 45–77.

As it can be observed in the example, the AsyncAPI Spec-
ification allows defining all the relevant information needed
to design and execute a message-driven API. However, as
of writing this manuscript, AsyncAPI is only an emerging
proposal and its ecosystem is still flourishing. Some docu-
mentation and code generators exist—with differentmaturity
levels5—but still no integrated development workflow to
design and implementmessage-driven architectures has been
proposed since transitions between different development
tasks must be manually done.

5 See https://shapeup.asyncapi.io to follow the development progress
of the different tools under the umbrella of the AsyncAPI Initiative.

123

https://shapeup.asyncapi.io

A. Gómez et al.

Fig. 2 Generic model-driven process where AsyncAPI serves as the
single source of truth

4 Model-driven development of
asynchronousmessage-driven
architectures

One of the major flaws of message-driven architectures, as
Sect. 2 illustrates, is how easily the knowledge about the
infrastructure dilutes among all the elements involved in it.
As a consequence, it is very easy to introduce divergences
on how messages are sent and consumed by the different
actors involved. This major flaw can, however, be solved if
we use models as the single source of truth used throughout
the design, development and execution of the infrastructure.

As we have seen in Sect. 3, despite its current limitations,
AsyncAPI provides the grounds to design a complete con-
ceptual framework. But, in order to make an effective use
of AsyncAPI, a proper process and infrastructure support-
ing not only the design, but also the whole life cycle of a
message-driven architecture, is still needed; models are the
perfect asset to overcome these current limitations. Based
on our experience, using model-driven techniques allow us
(i) to keep our approach modular and extensible, alleviating
a possible vendor lock-in; (ii) to integrate other IoT stan-
dards, different programming languages and frameworks,
or future projects with not yet known requirements at Iker-
lan; and (iii) to boost our productivity by taking advantage
of the plethora of model-driven technologies and solutions
available in the market—metamodeling frameworks, code
generation engines, model transformation engines, etc.

Figure 2 shows what a typical model-driven workflow—
with the main involved artifacts represented as a paper
sheet—looks like. On the one hand, artifacts depicted with a
solid line represent manually created artifacts, while artifacts
depicted with dashed lines are automatically generated using
different transformations. On the other hand, artifacts at the
M1 layer (the model layer) are defined—or automatically
created—each time a new development process is enacted,
while artifacts at the M2 layer (the metamodel layer) are
defined only once during the development of the toolkit itself.

The figure represents that, based on the AsyncAPI Specifica-
tion, a corresponding AsyncAPI metamodel can be created
for its abstract syntax. Using the concepts of this abstract
syntax, a model-to-text (M2T) transformation generating
executable code can be defined—AsyncAPI to code. Thus,
by executing this M2T transformation, a library managing
all basic functionality of a message-driven infrastructure—
that will be shared by all the elements participating in it—can
be generated from an AsyncAPI model. This library can be
implemented in such away that it exposes an internal domain
specific language (DSL) that can be used by the client code6

to perform tasks such as message creation, message parsing
and processing, publications, subscriptions, etc.

4.1 The AsyncAPI Toolkit: Implementing amodel-
based development workflow from the
beginning

While this generic workflow provides the grounds for a min-
imal working solution, it is impractical since it does not
consider the concrete syntax forAsyncAPI definitions (which
are JSON-based according to the specification) and assumes
designers would take care of manually creating the Asyn-
cAPI models from the JSON-based descriptions.

Instead, Fig. 3 shows how we envision a completely
practical solution for an improved workflow, extending the
previous building blocks and covering all the way from
the concrete syntax to the code generation phase. We have
implemented this workflow as an open-source solution called
AsyncAPI Toolkit also following model-driven development
principles: instead of manually developing an AsyncAPI
metamodel, we have taken advantage of the Xtext framework
[53] to provide both a concrete and an abstract syntax for
AsyncAPI.

Thus, based on the AsyncAPI Specification introduced in
Sect. 3, we have developed an AsyncAPI JSON grammar
in Xtext—see Sect. 5.1—that validates message-driven API
definitions conforming to the AsyncAPI Specification. Like-
wise, from this grammar, Xtext automatically generates the
corresponding AsyncAPI metamodel and all the tooling—
editor with content assist, parser, etc.—to easily create and
transform AsyncAPI JSON definitions into AsyncAPI mod-
els conforming to the AsyncAPI metamodel—see Sect. 5.2.
Given the availability of both a metamodel for AsyncAPI
and the specification of an API as a conformant model, the
workflow can continue as explained above, i.e., by execut-
ing a M2T transformation that generates an internal DSL.

6 We understand as client code the actual applications making use of
the messages sent and received, and whose logic cannot be captured
in the AsyncAPI definition. An example of client code would be the
application running in the cloud, which is in charge of processing the
monitoring data sent by the IoTBoxes.

123

Model-driven development of asynchronous message-driven...

Fig. 3 Actual model-driven development process implemented by
AsyncAPI Toolkit with its main involved artifacts

At this moment, the AsyncAPI Toolkit supports the Java lan-
guage and generates a library that assists developers in the
creation, publication and reception of well-formed messages
by providing a fluent API—see Sect. 5.5—as proposed by
[20].

4.2 Bootstrapping amessage-driven architecture
from datamodels

It is noteworthy that, since these architectures are message-
based, data modeling plays a crucial role. For this reason,
we have completed the above workflow with an alterna-
tive (graphical) concrete syntax focused on the modeling
of the messages to be exchanged. Thus, instead of using
JSON Schema, messages can be directly specified using
Ecore models which conform to the Ecore metamodel pro-
vided by the Eclipse Modeling Framework (EMF) [51].
Such Ecore models can be further annotated to capture extra
information—channels, servers, etc.— that may be needed
to specify a fully working AsyncAPI definition (see Sect. 5.3
for an example). Nevertheless, it must be pointed out that
JSON Schema is more expressive than plain Ecore—e.g.,
think about the anyOf, oneOf, allOf or not keywords, to
name a few—and the same applies to the annotationswe have
made available in Ecore, which have been limited to the bare
minimum. In these cases, data modeling is conceived as a
means to bootstrap anAsyncAPI JSONdefinition that can
be later manually refined thus reducing the initial develop-

ment time7. Besides its limitations, obtaining a JSON-based
representation of an Ecore model poses several advantages:
(i) allows developers and architects to create a workingAsyn-
cAPI definition without requiring deep knowledge of the
specification while (ii) keeps the modeling environment sim-
ple and manageable; and (iii) allows staying compliant with
the AsyncAPI Specification for those unfamiliar with model-
ing (iv) also enabling experienced developers and architects
to refine and complete details of the architecture that cannot
be captured using Ecore in an easy way8.

In order to integrate data models in the proposed develop-
ment workflow, we have defined both the Ecore to AsyncAPI
model-to-model (M2M) and the AsyncAPI to JSON M2T
transformations shown in Fig. 3: the former transforms an
annotated datamodel to its equivalentAsyncAPImodel,while
the latter serializes back the abstract definition of the Asyn-
cAPI model to its JSON-based representation. Once we have
both anAsyncAPImodel and its JSON-based representation,
the workflow can proceed as explained in Sect. 4.1.

Example An architect willing to use AsyncAPI as the sin-
gle source of truth in our warehouse use case would proceed
as follows. The architect would create a data model of the
messages exchanged among all the devices in the message-
driven architecture. After adding the desired annotations for
the servers, channels, and messages, an equivalent AsyncAPI
model—which is automatically transformed to the corre-
sponding AsyncAPI JSON definition—is generated9. If we
consider only the monitoring part of our use case, in practice,
this definition is exactly the one we show in Listing 2 since
our proposal fully complies with theAsyncAPI Specification.
While the user is editing, our AsyncAPI Toolkit creates the
corresponding AsyncAPI model and executes the AsyncAPI
to codeM2T transformation generating the internal DSL on-

7 We use the term bootstrapping because we transform a less expres-
sive definition—an annotated Ecore data model—to a more expressive
definition—the AsyncAPI JSON definition—which will act as the new
starting point of the development process. In this sense, and for the sake
of simplicity, once anAsyncAPI JSON definition has been created, mod-
ifications on it cannot be ported back to an Ecore data model because
of its different levels of expressiveness.
8 Alternatively, data modeling in the AsyncAPI Toolkit could be
achieved by providing a UML profile to annotate UML class diagrams.
While this possibility has not been yet discarded and can be considered
complementary, for the current purposes plain annotations have been
considered enough.
9 Of course, the architect can start the development process by directly
creating the AsyncAPI JSON definition, but as aforementioned, starting
from data models allows bootstrapping the development process with
less effort as we justify in Sect. 6.3.3.

123

A. Gómez et al.

the-fly. The generated DSL—which is an executable library
exposing a fluent API in Java—can be directly distributed
in source code form or as packaged binaries to the devel-
opers of the different components of the architecture (e.g.,
the IoTBoxes, the cloud, or the frontend). Thus, a developer
wanting to publish a message or consuming a message does
not need to care about other elements in the architecture or
external documentation: all he or she has to do is to import the
libraries of the DSL. The DSL will provide all the function-
ality needed to connect to a specific broker, create a specific
message in the right format, and publish it, or vice versa:
connect to the specified broker, subscribe to a specific topic,
and receive the messages in the right and native format of the
platform being used.

5 The AsyncAPI Toolkit under themicroscope

We have implemented the AsyncAPI Toolkit workflow as an
open-source solution,10 and as highlithed above, we have
followed model-driven development principles to create it.
Instead ofmanually developing a set of editors supporting the
textual AsyncAPI JSON Grammar or the AsyncAPI meta-
model, we have chosen Xtext to provide both a concrete
and an abstract syntax for AsyncAPI. Furthermore, we take
advantage of all the EMF ecosystem to develop the rest of
the toolkit. This is the case for our proposal for message
modeling—which uses existing Ecore editors—and all the
M2M and M2T transformations shown in Fig. 3, namely
Ecore to AsyncAPI, AsyncAPI to JSON and AsyncAPI to
code.

Next, we describe in detail how our AsyncAPI Toolkit
has been built11 and how architects and developers can take
advantage of it.

We will start by explaining both the AsyncAPI JSON
grammar in Xtext and the automatically generatedAsyncAPI
metamodel, since these are central assets of our proposal.
Next, we will explain how to bootstrap an AsyncAPI JSON
definition from an Ecore-based data model. And we will end
the Section by explaining how the fluent API providing the
internal DSL is generated and used.

10 https://hdl.handle.net/20.500.12004/1/A/ASYNCAPI/001.
11 Only short illustrative excerpts of the different elements of theAsync-
API Toolkit will be shown for brevity purposes. For a full reference,
please check our repository.

5.1 A JSON-based concrete syntax for AsyncAPI

The main manual step that Xtext requires to provide a con-
crete syntax for a textual language is the development of an
Xtext grammar. Listing 3 shows an excerpt of the grammar12

we have defined to support the definition of AsyncAPIs in
JSON following the concrete syntax proposed in [5].

In short, we have defined an Xtext rule for each one of the
concepts defined in Schema section of the aforementioned
document. Listing 3 shows—in a simplified way—the rules
to define in JSON an AsyncAPI specification version 2, with
its Info, a set of Servers,Channels, and theComponents Sec-
tion. Taking as an example the AsyncAPI rule (line 1), in
line 2 we specify that the application of the rule will pro-
duce an AsyncAPI object when parsing an input text, while
lines 3 and 12 specify that a AsyncAPI is a textual element
enclosed between the characters { and }. The parentheses in
lines 4 and 11 denote an unordered group, i.e., the patterns
between them, which are separated by an & symbol, may
match only once and in any possible order. Line 5, for exam-
ple, specifies that the version of an AsyncAPI is a sequence
of characters starting with the "asyncapi" keyword, fol-
lowed by a : symbol and followed by a text matching the
VersionInfo rule (which in turn, is an enumerated, specify-
ing that only version "2.0.0" is supported). The value of
the parsed version number will be stored in an attribute of
the AsyncAPI object named version of type VersionNum-
ber. It is necessary to clarify some details of the grammar:
first, in order to get advantage of the features provided by
the Xtext unordered groups, we have defined the commas
between groups as optional (’,’? expression near the end
of each group), and second,we have relaxed the requirements
of some elements marking them as optional (? symbol at the
end of each group) tominimize the number of errors reported
while parsing the input files for not overwhelming the users of
the tool13. These optionalities can be, however, later enforced
programmatically so that the tool only accepts valid JSON
instances.

12 See https://www.eclipse.org/Xtext/documentation/301_grammar
language.html for a full reference of Xtext grammars.
13 Since Xtext performs a live validation of the document being edited,
it is necessary to allow inconsistent intermediate states of the underlying
model while creating it: if hard requirements are set at the metamodel
level, most of the errors reported will refer to parts of the document not
added yet, rather than to real errors of the already written parts.

123

https://hdl.handle.net/20.500.12004/1/A/ASYNCAPI/001
https://www.eclipse.org/Xtext/documentation/301_grammarlanguage.html
https://www.eclipse.org/Xtext/documentation/301_grammarlanguage.html

Model-driven development of asynchronous message-driven...

Example As it can be seen, the AsyncAPI definition included
in Listing 2 can be parsed by applying the rules of the gram-
mar showed in Listing 3: the curly brace in line 1 of Listing 2
matches the curly brace in line 3 of Listing 3; the tokens in
line 2 of Listing 2 ("asyncapi": "2.0.0") match the
tokens specified in line 5 of Listing 3; etc.

5.2 An abstract syntax for AsyncAPI

Based on the grammar above, Xtext is able to generate an
equivalent EMF-basedmetamodel. Figure 4 shows theEcore
metamodel generated as a result of the AsyncAPI JSON
grammar. As aforementioned, instances conforming to this
metamodel are automatically created out of textual descrip-
tions thanks to the tooling generated by Xtext. As it can be
observed, it basically contains a class for each one of the rules
defined in the Xtext grammar, and each one of the classes
contains the attributes specified in its corresponding rule. For
example, among other elements, Fig. 4 shows the AsyncAPI
and Server classes which correspond to the rules included
in Listing 3, as well as the enumerations for VersionInfo and
Protocol. The existence of this automatically generatedmeta-
model enables the use of any other EMF-based tool, such as
model transformation engines.

It is noteworthy to mention that we have been extremely
careful when defining the AsyncAPI JSON grammar so that
the generated EMF-based metamodel closely represents the
domain—i.e., the AsyncAPI Specification—and not only its
textual representation. Thus, this metamodel is not only an
utility artifact that enables us to parse AsyncAPI JSON
specifications, but it is a meaningful metamodel close to
the concepts of the AsyncAPI Specification: as it can be
seen, there is a direct match between it and the main con-
cepts explained in Sect. 3, and as a consequence, we will not
describe in detail the concepts shown in the figure to avoid
being redundant.

Example The result of parsing the AsyncAPI definition in
Listing 2 is partly shown in Fig. 5. As it can be seen,
the automatically generated model contains a single root
AsyncAPI object, containing Info, Server,Channel andCom-
ponent objects. The properties of the production Server
are shown in the Properties tab. As the AsyncAPI defini-
tion in Listing 2 specifies, the name of the Channel object
is iotbox/{id}/monitor, and it contains the oper-
ations publishStatus and subscribeStatus, and
the Parameter id. The Components object contains the
Schemas pathInfo and beltInfo, and the Message
statusMessage.

5.3 An Ecore-based concrete syntax for data
modeling to bootstrap amessage-driven
architecture

As it can be seen in Listing 2, the specification of the
messages format is the longest and most verbose part of a
message-driven architecture definition, even for the simplest
use case. This is even more evident in real-world scenarios,
where we can find tens or hundreds of different messages
in the same architecture. For this reason, we propose to
allow bootstrapping an AsyncAPI-based development pro-
cess bymodeling the different messages that may be sent and
received. Since Ecore is the core (meta)modeling language
provided by EMF —also having a stable and adequate tool
support—we have decided to adopt it as the most convenient
way to provide data modeling capabilities in our AsyncAPI
Toolkit. In short, Ecore can be considered as an implementa-
tion of the Essential MOF (EMOF) Model proposed by the
OMG [40].

Figure 6 shows an excerpt of the Ecore (meta)modeling
language14. In the figure, classes with a gray background are
abstract, while classes with a lighter yellow background are
concrete. As it can be seen, Ecore is a constrained subset of
the UML2 [38] class models—as EMOF also is.

14 Since the AsyncAPI Toolkit focuses on data modeling, Fig. 6 only
focuses on structural modeling primitives. Other primitives—such as
EOperations—have been omitted for brevity purposes.

123

A. Gómez et al.

Fig. 4 AsyncAPI metamodel

Fig. 5 AsyncAPI definition of the factory use case represented as an
instance of the AsyncAPI metamodel

In short15, an Ecore model is composed of EModelEle-
ments, which can be either elements with a name (ENam-
edElements) or annotations (EAnnotations). Among the

15 For an extensive explanation of Ecore, see [49].

ENamedElements we find: EPackages, EClassifiers, EType-
dElements and EEnumLiterals. EPackages are used to group
EClassifiers. EClassifiers, which can be either EClasses and
EDataTypes, are used to represent and classify domain enti-
ties. ETypedElements—and EStructuralFeatures—are used
to represent properties of domain entitites via EAttributes,
or relationships among domain entities via EReferences.
Regarding EAnnotations, any EModelElement can have any
number of them. EAnnotations are identified by its source
attribute and contain a set of details in the form of a key-value
map. InEcore, EAnnotations have been used since the begin-
ning as the standard way to customize automated processes
which take as an input a model16. Thus, in AsyncAPI Tool-
kit we have adopted this same approach to complement data
models with additional information that will allow obtaining
a fully working AsyncAPI definition.

Table 1 shows the annotations currently supported by
the AsyncAPI Toolkit. Information about Servers is directly
added to the EPackage containing the data model. There
can be as many Server annotations as servers are in the
architecture. For each server, we can specify its name, its
url—including the listening port—and the supported proto-
col. Details about Channels,Messages, and Schemas can be
all added in the corresponding EClass. This is because: (i)

16 For example, EAnnotations are used to include model constraints
that can be checked at runtime. EAnnotations are also used to tweak the
behaviour of the standard code generation templates.

123

Model-driven development of asynchronous message-driven...

Fig. 6 Subset of the Ecore metamodel

Table 1 ecore annotations

ECore element EAnnotation sourcea description keys

Epackage Server list of servers name: server name

url: server url, including port

protocol: Asyncapi supported protocol

Eclass Channel the eclass represents the pay-
load of a given channel

name: channel name

description: channel description

publish: publish operationid

subscribe: subscribe operationid

parameters: comma-separated list of parameters used in the channel
name, if any

Eclass Message the eclass represents the pay-
load of a given message

name: message name

Eclass Schema the eclass represents a pay-
load

name: schema name

title: friendly name of the schema

EStructuralfeature Schema the estructuralfeature is a
property part of a payload

title: friendly name for the property

a to avoid redundancies, we have omitted the common part of the eannotation source—an identifier in the form of a uri, which in this case is http://
io.github.abelgomez/asyncapi/eannotations/—for all elements in the table (e.g., server should be read as http://io.github.abelgomez/asyncapi/
eannotations/server)

EClasses represent domain entities, which in our case are
Messages and their corresponding payload (i.e., Schema),
and (ii) a single Channel refers to a single Message—for
both its publish and subscribe operations—and a singleMes-
sage refers to a single Schema.

As a consequence, all this information can be added in
the EClass itself. For a Channel, we can specify its name, a
description, the publish and subscribe operationIds, and the
parameters, if any; for a Message, we can specify its name;
and for a Schema we can specify its name and its title. It is

noteworthy to mention that most of these annotations are not
strictly required17. This may happen for two reasons:

(i) because a default value can be directly derived from
the plain Ecore model; or (ii) because the property we are
specifying is optional in the AsyncAPI Specification.

The former is what happens when an EClass is annotated
as a Channel, and no Message nor Schema annotations are

17 See our online documentation for details about optional and required
annotations.

123

http://io.github.abelgomez/asyncapi/eannotations/
http://io.github.abelgomez/asyncapi/eannotations/
http://io.github.abelgomez/asyncapi/eannotations/server
http://io.github.abelgomez/asyncapi/eannotations/server

A. Gómez et al.

Fig. 7 Ecore representation of the IoTBox example

added: in that case,Message and Schema names are derived
from the EClass name). An example of the latter case is the
SchemaEAnnotationwhen applied to anEStructuralFeature:
title is optional in the AsyncAPI Specification and thus is not
required.

Example Figure 7 shows what the messages of our running
example look like whenmodeled using Ecore. The left-hand
side of the figure shows how the data model is represented
in a graphical way, while the right-hand side of the figure
shows the same model represented in a tree viewer with the
correspondingEAnnotations. As it can be seen,we have a sin-
gle EPackage called IoTBox which contains two EClasses:
PathInfo and BeltInfo. PathInfo has an id EAt-
tribute and contains a set of BeltInfos via the belts
EReference. A BeltInfo has three EAttributes: id, ts,
and speed. This data model perfectly matches the JSON
Schema expressed in lines 45–77 of Listing 2.

In the right-hand side of the figure, we have included
the Servers information directly in the IoTBox EPack-
age. SincestatusMessages are published and subscribed
under topic—i.e., Channel – iotbox/{id}/monitor,
and pathInfo is the Schema of statusMessage, we
have added the corresponding Channel and Message EAn-
notations to the PathInfo EClass. Since the name of
the PathInfo EClass matches18 the pathInfo Schema
name, there is no need to add the Schema EAnnotation.
Finally, the Schema annotation in the ts property of
BeltInfo indicates that we want to refer to this property
as timestamp rather than ts.

18 Letter case conventions differ between Ecore EClasses—where
names must start by an uppercase letter—and JSON Schemas—where
names usually start by a lowercase letter. As a consequence, the name
PathInfo in Ecore is considered equivalent to pathInfo in JSON.

123

Model-driven development of asynchronous message-driven...

5.4 From an annotated datamodel to an AsyncAPI
definition

Once an annotated data model has been created, it can be
automatically transformed to a valid AsyncAPI definition. As
depicted in Fig. 3, this transformation is done in two steps:
first, the Ecore to AsyncAPI M2M transformation converts
the annotated model into an AsyncAPI model, and second,
the AsyncAPI to JSON M2T transformation serializes the
AsyncAPI model into a JSON document.

To implement both transformations, we have used Xtend
[52]. Xtend is a flexible and expressive dialect of Java, which
compiles into readable Java compatible source code.Xtend is
the language which provides code generation support to the
Xtext framework, and as a consequence, transformations in
this language can be very easily integrated in our AsyncAPI
Toolkit.

Listing 4 shows an small excerpt of theEcore to AsyncAPI
M2M transformation. Lines 4–18 show the rule to create an
AsyncAPI object from an EPackage object. Specifically, in
line 5 we specify that we will return a new AsyncAPI object
created by calling the factory method createAsyncAPI.
Then, we make use of the with operator (=>) to initialize
this new object by executing the code between square brack-
ets. Code between square brackets is a lambda expression
that is executed over the left-hand-side argument of the with
operator returning it. Thus, version, info, servers,
channels and components are not local variables, but
properties of the new AsyncAPI object. This pattern to cre-
ate and initialize objects is repeated throughout the whole
transformation for its simplicity, readability and conciseness
(e.g., see lines 7–10, 13–16 and 30–34). Line 6 shows a
simple initialization of the AsyncAPI version property from
a static value (VersionNumber is an enumeration, and
_200 a literal); lines 7–10 and 13–16 show the initializa-
tion of properties with nested objects (an Info object and
a Components object, respectively); line 8 shows the ini-
tialization of a property from a primitive value extracted
from the source Ecore model; and lines 11, 12, 14 and 15
show the initialization of properties by delegating the cre-
ation of the target object to other transformation rules. In
this case, two important features of Xtend are exploited:
extension methods and infix operators and operator over-
loading. Extension methods allow adding new methods to
existing types without modifying them: when invoking a
method that can receive arguments, instead of passing the
first argument inside the parentheses of the method invoca-
tion, the method can be called with the first argument as its
receiver. Infix operators together with operator overloading
allowXtend to express theadd operation in a collection as+=.
Considering these two features, we can see that servers
+= ePackage.allServers is indeed equivalent to
servers.addAll(allServers(ePackage)).

Method allServers applies the servers method to
theEPackage passed as an argument and all its nestedEPack-
ages. The former calculation is done in line 22, while the
latter is done in line 23 (the .map[...] function allows
applying the operation passed as argument to all the elements
of a given collection). Then, an immutable list is created with
the result of both transformations via the #[...] opera-
tor, and this list is finally returned after being flattened (lines
21–24).

Finally, the serversmethod (lines 27–36) creates a list
of Servers from a givenEPackage. To do it, first we extract all
EAnnotations in theEPackagewhose source isServer, and
afterwards, for each one of these EAnnotations, we create a
new Server from its details19.

The rest of the model is created by executing the trans-
formation rules in lines 12, 14 and 15—which, in turn, call
other transformation rules.

Once an AsyncAPI model has been obtained, serializing it
to its JSON-based representation is straightforward. In order
to define the AsyncAPI to JSON M2T trasnformation, we
have used Xtend again, but now taking advantage of its tem-
plate expressions. Templates are surrounded by triple single
quotes (’’’) and allow for readable string concatenation. A
template expression can span multiple lines, and expressions
can be nested using guillemets—i.e., «expression».

19 We must assign the details property of the EAnnotation to a local
variable (i.e., val details = details in line 29) because the
details property is not available in the scope of lines 31–33 (which is
Server, and not EAnnotation).

123

A. Gómez et al.

Listing 5 shows the transformation rules that serialize
the AsyncAPI (lines 1–18), Info (lines 20–25) and Server
(lines 27–32) objects. In this case, notice that we also make
use of extension methods to improve the readability of the
transformation. As aforementioned, text enclosed between
three single quotes—with the exception of the bits enclosed
between guillemets «...»—is copied as is in the final
textual file. Text between guillemets is evaluated, and its
toString() representation is automatically inserted at the
expression position. It is noteworthy that templates allow
conditions as shown in lines 6–10 and 11–15. In those cases,
the text enclosed between the IF and ENDIF markers will
only be serialized if the condition is met.

Example By applying the Ecore to AsyncAPI M2M transfor-
mation, we are able to transform the data model depicted in
Fig. 7 into the AsyncAPI model depicted in Fig. 5. As it can
be seen, the rules shown in Listing 4would allow to create the
AsyncAPI, Info and Server objects shown at the upper part of
Fig. 5 out of the EPackage declaration in Fig. 7. Afterward,
after applying the AsyncAPI to JSON M2T transformation,
the AsyncAPI model in Fig. 5 can be serialized as it is shown
in Listing 2. For example, the transformation rules shown
in Listing 5 are the ones that generate lines 1–12 and 80 of
Listing 2: lines 3 and 17 in Listing 5 produce lines 1 and 80
in Listing 2; line 4 in Listing 5 produces line 2 in Listing 2;
lines 5 and 20–25 in Listing 5 produce lines 3–6 in Listing 2;
and lines 7–9 in Listing 5 produce lines 7–12 in Listing 2.

5.5 An internal Java DSL for effective
message-driven communication

The last step of our proposed workflow is the generation of a
library implementing an internal DSL,which can be used and
shared among all the elements in the infrastructure, and that
will ensure that all participants know the same topics and are
able to create and consume messages conforming the same
schemas and formats. Currently, our AsyncAPI Toolkit only
supports the generation of Java code, but other languages
and technologies can be easily plugged in by providing the
proper code generation templates.

The M2T transformation applies the following rules:

A Server is chosen as the default Server of the architecture.
Channels are transformed to packages whose name corre-
sponds to the Channel—or topic—name. Hierarchies of
topics—i.e., using slashes (/)—are respected.

Operations inChannels are transformed to classes inside the
packages of their corresponding Channels. Classes for
channel Operations, among other things, provide static
operations for publishing and subscribing in their respec-
tive topics using the default Server. If Channel permits

the use of Parameters, a nested class is generated to man-
age the parameter substitution and recovery.

Messages do not generate a Java artifact: since there is a
direct correspondence between Messages and Schemas
(via the payload association), information about Mes-
sages is integrated within the corresponding Schema
when needed.

The Components object is transformed to a components
package.

Schemas are transformed to immutable classes: they are
cloneable and serializable (via Gson20), have getters but
no setters, and have a private constructor. Instances are
created via a dedicated nested builder class.
Schema classes can be generated directly in the com-
ponents package if they are reusable, or nested. For
example, an Operation can have nested declarations for
its correspondingMessage and Schema. In that case, the
Schema class is declared as a nested class within the
Operation class.

Listing 6 shows a very small excerpt of the code generation
template. Specifically, it shows the template method gener-
ating the builder in charge of creating instances of a Schema
class (which, when serialized, will be the payloads of the
messages sent and received). As shown in line 1, this method
receives as an input the Schema instance as declared in Fig. 4,
and the Schema class name21. As it can be seen in line 3,
the template generates a class, whose name is the one of the

20 https://github.com/google/gson.
21 This is because JSONSchemas donot have a name, as a consequence,
the class name has to be calculated from other elements, such as the
map containing it, theMessage for which it is a payload, theOperation
sending or receiving it, or any other element of the architecture.

123

https://github.com/google/gson

Model-driven development of asynchronous message-driven...

Schema class plus the suffix Builder. The builder contains
a private instance of the Schema class (line 5), which will be
the one being modified and returned to the client code once
the build process finishes. The builder class contains a static
factory method (newBuilder(), lines 7–9), and a builder
method (build(), lines 15–21) that finishes the build phase
and returns a immutable copy of the instance of the Schema
class. As it can be seen in lines 10–13, the template gener-
ates an initializer method for each one of the properties of
the schema. These are the methods that the client code must
call between the factory method and the build method: since
the builder class is nested within the Schema class, and the
Schema class does not have setter, these initializer methods
will be the only ones allowed to initialize and modify the
instances of the Schema class. After that, they will remain
immutable.

Example Listing 7 shows what the generated code for the
builder class looks like for the pathInfo Schema. As
explained in Sect. 3 and Listing 2, a pathInfo is an
object with two properties: id, a string; and belts, an
array of beltInfo objects. Thus, from the pathInfo
Schema a PathInfo class is generated (not shown) with
a PathInfoBuilder nested class. It can be seen that
the generated code contains the private instance of the
PathInfo (line 3), the factory method (lines 5–7), the
builder method (lines 19–25), and two initializer methods.
The first initializer method (lines 9–12) is in charge of set-
ting the id of the PathInfo, which is a Java String. Since
id is single-valued, the initializer method is prefixed with
the word with. The second initializer method (lines 14–17)
is in charge of initializing the list of BeltInfo objects.
Since belts is many-valued, the initializer method is pre-
fixed with the words addTo.

As it can be seen, the library provides specific artifacts for
themost important concepts of theAsyncAPI definition:oper-
ations on each channel—topic—are unequivocally grouped
in their specific packages; payloads of messages can only be
created by using specific builders; andmessages can only be
sent and received using dedicatedmethods of specific classes.

Forcing developers to use builder classes and getters of the
generated Schema classes—among other things—guarantees
that the structure and the type of the messages are preserved
and shared among all the elements of the architecture. The
same applies, for example, with respect to the classes for
publishing and subscribing since the relationship between
Channels, Operations, Messages and Schemas is explicitly
encoded in the internal DSL: static typing in Java ensures
that developers do not mix incompatible types, or publish
(or receive) messages in the wrong topics22.

Example Listings 8 and 9 show two examples of client
code using the internal DSL in Java generated for our
example AsyncAPI definition (Listing 2), and more specif-
ically, Listing 8 shows the code needed to create and
publish the example message shown in Listing 1. As it
can be seen in the imports (lines 5–6), there exists a
iotbox._id_.monitor package (generated from the
iotbox/{id}/monitor Channel), with a Monitor-
Publish class (generated from the monitorPublish
operation). Since the iotbox/{id}/monitor Channel
has an id parameter, also a PublishStatusMessage
Params is created in order to perform the substitution and
recovery of parameter values. It can also be seen that reusable
Schemas (pathInfo and beltInfo) have produced the
corresponding classes in the schemas package (see lines
8–9).

Thus, in order to create the message, developers only need
to use the provided classes. For example, to create an instance
of PathInfo, a newPathInfoBuilder can be obtained
by invoking PathInfo.newBuilder() (line 13), and
then, it can be initialized by using the provided fluent inter-
face [20] (e.g., methods withId and addToBelts). If
any of the methods needs another object as an argument—
such as for addToBelts—it can be created by using the
corresponding builder as shown in lines 15–21. When a
friendly name is available for a given property—for exam-
ple, because a title was specified—the method provided by
the fluent interface will use it instead of the actual Schema
property name. Lines 18 and 25 are an example of this: times-
tamps are a property called ts, but the provided method is
withTimestamp rather than withTs, thus making the
code more understandable. Once all the properties have been

22 In any case, these checks can be proactively done in the generated
code following a fail fast approach in the case these features are not
natively provided by the language of the generated code (e.g., dynami-
cally typed languages).

123

A. Gómez et al.

set, the build() method is invoked. It is noteworthy to
mention that validation logic—such as checking of required
properties—could also be added in the build() method
following a fail fast approach.

Finally, once the payload of the message and the param-
eters have been created—parameters are created using
a similar fluent interface as shown in lines 30–31—the
publish operation can be invoked (see line 37). The
publish method of the MonitorPublish class only
accepts instances of PathInfo as the first argument and
instances of PublishStatusMessageParams as the
second argument. The publish operation will be in charge of
doing the parameter substitution, and publishing the payload
passed as an argument in the iotbox/box1/monitor
topic. This will ensure that both the payload and the topic
names will be syntactically correct and will match.

Listing 9 shows how an example application—such as
one running in the cloud—will subscribe to the iot-
box/+/monitor topic and will receive messages sent
to it. As it can be seen, it only needs to invoke the
SubscribeStatusMessage.subscribemethodpass-
ing a callback function (expressed as a lambda expression
in lines 8–27): the callback function will receive the value
of the parameters in the params argument—which is
of type SubscribeStatusMessageParams—and the
message payload in the message argument—which is of
type PathInfo. From this point on, client code can make
use of the getters provided by the generated code to retrieve
all the information from them. As it can be seen, the example
code only prints all the received information by the standard
output.

6 AsyncAPI Toolkit Evaluation

The aim of this section is to evaluate the AsyncAPI Toolkit.
As we discuss in Sect. 7, there are no other tools focusing on
the modeling of AsyncAPI definitions based on data models
that allow generating fully functional executable code out-of-
the-box. Thus, we focus on evaluating the perceived usability
and usefulness of our tool, and its strengths and weaknesses,
based on short interviews with developers using AsyncAPI
Toolkit in internal projects andwith the results of an empirical
experiment involving additional participants.

More specifically, the evaluation of the tool focuses on
answering the following research questions:

RQ1 Which are the perceived benefits of using Async-
API Toolkit to define and develop an asynchronous
message-driven architecture?

RQ2 Is it possible to use AsyncAPI Toolkit without previous
knowledge of the tool? Howmuch time is necessary to
be autonomous and to obtain significant results, i.e., a
running asynchronous architecture?

RQ3 Which are the weaknesses and strengths of AsyncAPI
Toolkit?

123

Model-driven development of asynchronous message-driven...

RQ4 Does using a graphical syntax for defining the Asyn-
cAPI definition provide any benefits?

In order to answer these questions, we have conducted two
different evaluations of AsyncAPI Toolkit. On the one hand,
we have used AsyncAPI Toolkit internally in a number of
projects and, as a result, a first set of conclusions and lessons
learned have been drawn, as explained in Sect. 6.2, answer-
ing RQ1. On the other hand, an empirical external validation
has also been carried out once the internal developers consid-
ered AsyncAPI Toolkit was mature enough. The aim of this
external validation was twofold: first, quantifying the per-
ceived benefits of using AsyncAPI Toolkit when developing
a message-driven architecture, specially regarding learning
and development time taking into account the previous expe-
rience of the subjects building similar projects by hand, and
thus answering RQ2; and second, gathering feedback and
educated opinions in order to answer RQ3 and RQ4. Details
of this empirical evaluation are described in Sect. 6.3.

6.1 Threats to Validity

Before describing the evaluation, we first discuss the main
threats to validity that can affect the result of the validations
presented next. In this regard, the construct validity, internal
validity, and external validitymust be taken into account [56].

Regarding the construct validity, as described in the
introduction, the aim of the AsyncAPI Toolkit is to help with
the development of IoT projects. Therefore, to be able to
evaluate the usability of the toolkit the main questions to be
answered are related to the ease of use for developers of such
projects. The four RQs are focused on evaluating exactly
that, and in the following subsections the questions in the
questionnaire are linked to the different RQs.

To be able to avoid bias in the internal validity, theweight
of the evaluation is on the external validation. This is why
although we developed a first internal validation focusing on
our own experience using the AsyncAPI Toolkit in internal
projects, an external validation was also done with people
with different profiles and no previous involvement in the
development of the toolkit.

The cornerstone of the performed evaluation is gather-
ing relevant information from the subjects that conducted
the experiment for external validity. The information was
related to weaknesses and strengths, users impressions about
usability and the perceived usefulness of the presented
toolkit in order to answer the previously mentioned research
questions. The external evaluation was mainly focused on
interviews and questionnaires, as it allowed to collect rele-
vant data from the subjects. As subjects are the basis of the
evaluation, they also become the main threat.

Our threats are mainly associated with the participants,
the number of subjects—which could have been increased

to increase the soundness of the results—and the scales used
for the measurements. In the First Phase, the subjects of our
experiment could have a different previous knowledge before
participating in the experiment.We tried to alleviate this issue
in two ways: (i)we explicitly asked for this information in
the survey to consider this variable in our experiments—
although the claimed level of expertise is anyway subjective
since each participant’s scale may be different—and (ii) we
tried to cover a diverse set of profiles in the selection by
choosing engineers, developers, staff in training, researchers,
etc., to gather different points of view.

On the other hand, sincemodeling tools used in the Second
Phasewere not developed as part of this experiment, we tried
to focus the experiment on the contribution of the AsyncAPI
Toolkit by selecting those subjects with previous expertise in
MDD. As aforementioned, our idea is to avoid a bias toward
theAsyncAPI Toolkit functionality caused by existingmodel-
ing tools, since non-expert usersmay be unable to distinguish
preexisting tools from the AsyncAPI Toolkit itself.

Related to the scalability of the exercise to real-world
problems, even though the example being developed in the
evaluation phase was limited by the timing, it represented
complex communication data that can be found in real world
and that can be easily adapted to real scenarios.

6.2 Internal Validation

AsyncAPI Toolkit has been developed in the context of the
MegaM@Rt223 project and it has already been applied to
some of its use cases. It has also been tested in some internal
projects at Ikerlan and it is being used for the development
of a use case in the COMP4DRONES project24. This section
aims to answer RQ1 (perceived benefits of the AsyncAPI
Toolkit) and discusses some of the reflections and benefits
observed during the development of these projects.
Lower development and deployment time.

Adopting the AsyncAPI Toolkit in a project significantly
decreases the time to develop anddeploy the software system.
On the one hand, reusing the generic metamodel simplifies
the definition of the schemas of the project and, with the
automated code generation, there is no need to implement
the boilerplate code in the client side, reducing manual time-
consuming tasks. In fact, our observations show that the time
to develop the infrastructure code has been reduced to nearly
one-third of the initial time. Obviously, there is an initial
cost in developing the AsyncAPI Toolkit itself, training the
people in using it, and adapting the continuous integration
infrastructure so that all components share the same version
of the library implementing the internal DSL. But this cost

23 https://megamart2-ecsel.eu/.
24 https://www.comp4drones.eu/.

123

https://megamart2-ecsel.eu/
https://www.comp4drones.eu/

A. Gómez et al.

is quickly compensated when using it over several projects,
as it happens with any new MDE infrastructure [14].
Increased code quality.

In addition to lowering the development time, the gener-
ated code is better structured and allows to reuse common
code blocks, which increases the overall code quality. The
reused parts are already tested; hence, the verification pro-
cess of the system is simpler. Moreover, the generated code
is also easier to maintain, as bugs or improvements in com-
mon parts need to be addressed only once. This leads to a
reduction on engineering and maintenance costs.

In this sense, it has been detected that using the AsyncAPI
Toolkit in different projects, the time to detect bugs has been
decreased as more bugs are detected in the initial stages of
the implementation and execution of the developed systems.
DSL benefits for Industry 4.0.

Another upside is that, as diverse existing application
domains share similarities—especially regarding communi-
cation requirements—the same solution can be applicable to
all of them. In this context, we canmore easily port our Asyn-
cAPI-based solutions to a variety of related domains. This is
especially interesting in the context of software product lines
(SPLs).
Easy documentation.

AsyncAPI includes a tool to automatically generate doc-
umentation out of an API. Although it is not integral part of
our toolkit, it can be directly used side by side the AsyncAPI
Toolkit since we stick to the AsyncAPI Specification. Thus,
from a model or definition created by the AsyncAPI Tool-
kit, the AsyncAPI tool is able to generate the corresponding
documentation in HTML, Markdown or React.

At Ikerlan, this feature has been regarded as an important
aspect in the decision to move forward with the adoption of
AsyncAPI Toolkit. This documentation capability, together
with the use of AsyncAPI as single source of truth, enables
all project participants (stakeholders, designers, architects,
etc.) to share a common definition of the API, favoring inter-
operability and reducing the number of errors in the software
development life cycle.
Requirements definition, validation and maintainability.

Being amessage-driven architecture, capturing the require-
ments can be directly done with the AsyncAPI definition.
Therefore, there is no need to maintain a separate text doc-
ument that needs to be interpreted by developers, as the
requirements are specified in the AsyncAPI definition itself.

This has been another key reason to select AsyncAPI for
ongoing and future projects at Ikerlan. Combined with the
previous point, we see AsyncAPI Toolkit as a toolkit able to
support most phases of the development cycle, from require-
ments to code-generation to—in the future—testing.

6.3 External Validation

The following paragraphs will describe the process we have
followed to conduct the external validation, describing in
detail: (i) the experiment carried out; (ii) the set of samples;
(iii) the threats; and (iv) the results or conclusions gathered
from it.

6.3.1 Experimental design

The evaluation of the AsyncAPI Toolkit was carried out in
two phases.

First Phase—For the first phase, 25 subjects were invited
to implement with AsyncAPI Toolkit a small example of an
industrial system that communicates asynchronously. The
example used is the exact same one presented in Sect. 2: an
automated warehouse with paths, belts and speed measure-
ments, where monitoring data and configuration messages
can be sent and received. To solve the exercise, the par-
ticipants had to specify the complete architecture and the
format of the messages in JSON, using the AsyncAPI Toolkit
and following the AsyncAPI specification. After specifying
the architecture, they had to implement two simple applica-
tions using the automatically generated classes based on the
DSL—i.e., fluent API: one for publishing new messages and
other for consuming messages. The participants were given
a one-hour deadline to develop this exercise, knowing that
the set time was tight. After trying to implement the exam-
ple application, the subjects answered a questionnaire about
their knowledge of the field, previous background, and their
impressions on the use of the AsyncAPI Toolkit to solve the
exercise. The goal of this first phase was to answer RQ2 and
RQ3.

The questionnaire consisted on a set of questions listed in
Table 2 that evaluate the performance and usability of Async-
API Toolkit. The questions aimed to assess the following
aspects: (i) rate the previous knowledge; (ii) score the ease
of use of the tool; (iii) evaluate the ease of installation; and
(iv) measure development time. Questions #1 to #8 mostly
aimedat answeringRQ2.Questions #9 to#16mostly aimedat
rating the level of satisfaction with the different components
and features of the tool, also including someopenquestions to
gather additional suggestions or comments, and allowing us
to dig deeper into the possible improvements thus answering
RQ3.

Second Phase—After the first phase, results were ana-
lyzed and a second phase of the experiment was conducted
based on them. This second phase consisted on evaluating the
data modeling extensions of the AsyncAPI Toolkit—which
are described in Sects. 4.2 and explained in detail in Sects. 5.3
and 5.4—with the goal of answering RQ4. Not all subjects
participated in this second phase of the experiment: since
modeling tools used in the Second Phase are part of the

123

Model-driven development of asynchronous message-driven...

Table 2 Phase 1 questionnaire

Question # Question Possible answers

1 What is your previous knowledge on: –

a) Java 1 to 5

b) Asynchronous communication 1 to 5

c) MQTT 1 to 5

d) Eclipse 1 to 5

e) AsyncAPI 1 to 5

f) MDD (metamodels, models, ...) 1 to 5

2 How difficult has been to carry out the assigned task? 1 to 5

3 How much time did you spend installing the AsyncAPI Toolkit? Number of minutes

4 How much time did you spend learning or acquiring the main concepts (knowledge of the subject)? Open answer

5 Did you finish the exercise? Yes / No

6 How much time did you spend implementing the example? (in case you finished) Number of minutes

7 What did you manage to finish? (in case you didn’t finish) –

a) Implement config payload Yes / No

b) Implement two config messages (publish and subscribe) Yes / No

c) Implement monitor payload Yes / No

d) Implement the two monitor messages (publish and subscribe) Yes / No

e) Implement one of the applications (publish or subscribe) Yes / No

f) Implement both applications (publish and subscribe) Yes / No

8 How much time do you estimate you would require to finish the whole application? (in case you didn’t
finish)

Number of hours

9 What do you think about the tool? 1 to 5

10 How intuitive and easy to learn would you say the tool is? 1 to 5

11 Do you think the workflow of the tool is the correct one? Open answer

12 Would you add any feature to the tool? Open answer

13 Please rate your level of satisfaction with the following aspects of The AsyncAPI Toolkit? –

a) Ease of installation 1 to 5

b) Overall reliability 1 to 5

c) Overall performance 1 to 5

d) Completeness and organization of documentation 1 to 5

e) Clarity of documentation 1 to 5

f) Ease of updating the application 1 to 5

14 Considering your complete experience with the software, how likely would you be to recommend its use
to a friend or colleague?

1 to 5

15 Do you think using the tool reduces development and deployment time? How? Open answer

16 Please add any additional comments/suggestions if you wish Open answer

Eclipse environment and were not developed as part of this
experiment, we focused on the contribution of the AsyncAPI
Toolkit by selecting those subjects with previous knowledge
in MDD—these were 11 subjects, almost half of the ini-
tial ones. We did this selection to avoid a bias toward the
AsyncAPI Toolkit functionality caused by existing modeling
tools. The exercise consisted in obtaining the AsyncAPI def-
inition for the automated warehouse architecture by creating
an annotated model of the messages of the system. For this,
the subjects used Eclipse and the editor of their choice to

create and annotate an Ecore model, generating the corre-
sponding AsyncAPI definition with the AsyncAPI Toolkit.

Since the set of subjects was smaller and easier to manage
than in the first phase, short interviews with the subjects were
carried out during this phase. In order to guide these inter-
views, a list of predefined questionswas specified. Interviews
gave us the opportunity to better focus the questions and
gather more valuable feedback. The questions guiding these
interviews aimed at answering RQ4 are listed in Table 3. The
answers given by the subjects were analyzed one by one, and
grouping the same main ideas afterwards. Different details

123

A. Gómez et al.

Table 3 Phase 2 interview question guide

Question # Interview Questions

1 What do you think about this feature [the graphical syntax] of the AsyncAPI Toolkit?

2 If you compare phase 1 way of implementing the AsyncAPI specification and this one, what advantages and disadvantages
do you find?

3 Do you think that using this feature to define the system facilitates the understanding of the whole system? Or on the contrary,
do you think the way used in the first phase is easier and more understandable?

4 Do you think that this feature adds value to the tool? How?

5 Do you miss something to be included in the tool?

6 How would you rate this feature? And the whole tool?

that could suggest improvements or concerns were also con-
sidered for future work.

6.3.2 Sample

Participants were selected from the personnel—engineers,
developers, staff in training—of Ikerlan and Universitat
Oberta de Catalunya who responded positively to a per-
sonal invitation. In any case, no subject was directly or
indirectly involved in the development of theAsyncAPI Tool-
kit or this proposal. The sample consisted of 25 subjects
with very diverse knowledge in fields and tools like Java,
asynchronous communications, MQTT, Eclipse, AsyncAPI
or model-driven development (MDD). As listed in Table 2,
their expertise level was captured in the questionnaire. A 1 to
5 rating scale was used to quantify their knowledge, where 1
means no knowledge and 5 means being an expert.

The chart in Fig. 8 depicts the participants’ knowledge on
the mentioned fields. As shown in the chart, subjects came
from different backgrounds. Very few people had previous
knowledge of the AsyncAPI specification, while for the rest
of the fields, the previous knowledge was more evenly dis-
tributed.

6.3.3 Results

This section summarizes the results of the data collected with
the questionnaire in the first phase and the guided interviews
of the second phase.

First Phase—After analyzing the data, our experiment
shows that the 36% of the subjects were able to complete
the experiment by implementing the full use case, and for
the remaining 64%, another 36% estimated that would
require only one additional hour. These time estimations
are based on the subjects perceptions but also on real data.
The exercise was divided in six small sections with similar
difficulty and required development time. The 36% that esti-
mated one additional hour to finish the exercise, did complete
at least 3 sections, and more than half of them, completed 4
or 5 sections (as they stated in question number 7). The 20%

Fig. 8 Previous knowledge of the participants

of the subjects estimated between 2 and 4 hours while only
the 8% thought would require more than 4 hours to complete
the whole exercise. This reveals that only the 28.0% of the
subjects estimated they would require more than 2 hours
to finish the experiment. Taking into account the complex-
ity of the exercise, as described above, we believe this is a
very good result.

Looking at these percentages in detail, the data did not
reveal a direct or close relationship between the subject’s pre-
vious knowledge in a specific field and the time to complete
the full use case. Subfigures in Fig. 9 present this data, where
it can beobserved that there is not a direct correlation between
knowledge on the different specific topicswith the time to fin-
ish, but more generally experienced participants were more
successful. This is the case for Java (Fig. 9a), Asynchronous
Communication (Fig. 9b), MQTT (Fig. 9c), Eclipse (Fig. 9d)
and AsyncAPI (Fig. 9e). However, we detected an exception
with the subjects that had previous knowledge in MDE, as
they were more comfortable, and their first example imple-
mentation was more successful than people with little or no
knowledge. Figure 9f confirms this trend. Those with little
or no knowledge of MDE required more time to develop the
use case (or estimated so), while those with more expertise
finished or were close to finish in the fixed time.

What our experiment also confirms—thus answering RQ2
(previous knowledge and learning time)—is that the learn-
ing curve is smooth: as Fig. 11 shows, the training to learn
the AsyncAPI Toolkit basics is not specially long or hard.

123

Model-driven development of asynchronous message-driven...

(a) (b) (c)

(d) (e) (f)

Fig. 9 Time to finish the exercise shows no direct correlation with previous knowledge on a Java, b asynchronous communication, c MQTT, d
Eclipse, e AsyncAPI, and f MDD

Fig. 10 Qualitative results

The chart depicted in the figure shows the time spent by
the participants to read and get the basic knowledge about
the AsyncAPI specification and AsyncAPI Toolkit to be able
to start with the exercise. In average, the subjects only
required ≈28 minutes to get familiar with the specifi-
cation and the tool to be ready to start with the proposed
exercise.

Figure 10 shows other evaluated facets related to Async-
API Toolkit, as clarity of the documentation and the overall
reliability among others. Those facets were rated in a
1 to 5 scale—from unsatisfactory to very satisfactory—
respectively. The obtained results are very positive.

Most of the subjects found the tool fairly intuitive (as we
have just seen, the time to get familiar with the tool is quite

small). The documentation completeness and organization,
alongwith its clarity, have been positively rated. The subjects
were also asked about the ease of installing and updating the
application, with overall positive responses, standing out the
easiness of installation.

Regarding the overall reliability and performance, few
participants rated the AsyncAPI Toolkit low. Only around
4% of the participants found that it needs to improve its reli-
ability and performance. Additionally, they were also asked
about the development workflow around the tool. Almost all
of them (92%) answered that the workflow of the Async-
API Toolkit is the correct one, with the missing 8% equally
divided between negative and “don’t know” answers, 4%
each.

In general, we observed thatAsyncAPI Toolkit was highly
rated on a global scoring and that most participants
would recommend using it for implementing solutions
that leverage asynchronous communications.

The open questions allowed us to answer RQ3 (weak-
nesses and strengths of the toolkit), and dig deeper in the
overall perception of the AsyncAPI Toolkit and helped us
to find aspects for improvement. In this regard, one of such
questions was whether the subjects think the tool reduces
the development and deployment time and how. The sub-
jects unanimously answered that AsyncAPI Toolkit helps
reducing development and deployment time. Also, given

123

A. Gómez et al.

Fig. 11 Time spent learning the AsyncAPI basics

the overlapping between RQ1 (perceived benefits) and RQ3
(weaknesses and strengths), these open questions allowed
us to confirm the results of the internal validation with the
answers given by the external subjects. The following points
were highlighted in the answers25:

– Automatic code generation makes faster and less error
prone thedevelopment processwhile saving time.“Every-
thing concentrates in a single file and once it is filled and
validated, the code is automatically generated”.

– Model-based development simplifies the definition of
complex tasks reducing time. “Not implementing the
classes [of the DSL] saves time”.

– Focus on design. Users can focus on designing the
system and its API. “Developers waste less time on con-
figuring and managing the API workflow, and they focus
on designing the API”.

– Abstraction. Users do not need to have big knowledge
of the communication protocol, they only need to focus
on defining the message content. “The user only needs
to define the content of the messages to be transmitted
since the tool abstracts the user from knowing the details
of the communication protocol”.

– Modifications. The tool facilitates modifications by the
use of a single source of truth, as the classes are gener-
ated automatically, and only the AsyncAPI specification
and themain application need to be changed. “Automatic
code generation reduces development time and using
models facilitates modification reducing time too”.

– Reuse.What is generated canbe reused in the application.
The API definition can be easily reused and modified in
similar projects too. “You can reuse the generated API
directly in your application”.

Another open question was what features would the par-
ticipants add to AsyncAPI Toolkit. The responses included

25 Quoted phrases have been directly extracted from subjects’ declara-
tions.

pointers to possible improvements, e.g., adding a way to edit
the model graphically or using a tree view, improving the
AsyncAPI textual editor itself, improving error detection and
providing feedback while editing, and adding support for
more programming languages. Some of these points are fur-
ther expanded in Sect. 8.

Second Phase—This section discusses our findings from
the interviews carried out after the second exercise, where we
asked the subjects to solve the proposed exercise by using an
annotated Ecore data model, and answers RQ4 (benefits of
the graphical syntax).

All subjects agreed that using a graphical editor to
bootstrap a working specification was a more visual and
helpful way to develop the AsyncAPI definition. However,
some subjects highlighted that this way of modeling, i.e.,
using Ecore annotations, could appeal more to people with
metamodeling experience.

One of the participants pointed that the learning curve was
lower using the graphical editor and the specification could
be defined quicker in addition to the benefit of using the same
environment that they already use in other modeling tasks.

Themodel-driven approach provided by the tool was rated
as useful and practical. Some subjects noted that the tool inte-
grated seamlessly in Eclipse and that it helped any modeler
to create AsyncAPI definitions and the corresponding scaf-
folding easily.

The participants mentioned several advantages related to
the graphical editor. They are summarized in the following
points:

– Less error prone. The graphical view helps avoiding syn-
tax and typing errors.

– Higher abstraction. Users have a higher abstraction
model that may facilitate understanding and implement-
ing complex systems.

– Better user experience. Themajority agreed in that it was
a better user experience. However, one participant with
lesser modeling expertise preferred the textual editor.

123

Model-driven development of asynchronous message-driven...

Meanwhile, the disadvantages found by those participants
were:

– Burdensomeeditingprocedure. “Point-and-click” repet-
itive procedure when modeling and editing the AsyncAPI
specification may become cumbersome.

– Requires knowledge of metamodel annotations. While
for people with expertise on metamodeling the feature
was an advantage, participants without knowledge of
metamodel annotations did not find it so easy.

Overall, when subjects were asked about comparing
both ways of specifying the system, they all unani-
mously agreed that using a graphical editor to create an
annotated data model made it easier to understand the
problem domain at a glance. However, since the AsyncAPI
specific information is embedded as annotations in themodel,
the user has to make an additional effort to understand how
to map such information into the model elements. Also, it is
not always clear how these annotations impact in the gener-
ated code, and this feature may require more knowledge and
control on the modeled system.

As additional comments, the participants missed a kind
of guided editor that facilitates the specification. For exam-
ple, each time a channel is defined by the user, associated
messages and schemas are automatically created even if no
annotations for them are defined, and this is not obvious
at first sight. Few participants brought up that documenta-
tion should be extended with other examples to facilitate
the acquisition of knowledge. And a participant also pointed
out the possibility to define an Unified Modeling Language
(UML) profile for AsyncAPI metadata rather than annota-
tions. This would ease the annotation phase using predefined
stereotypes.

Regardless of this, everybody agreed the graphical editor
clearly added value to the tool. As a participant noted, “it is
easier and faster to model using the tool than starting from
scratch”.

7 RelatedWork

In this section, we compare our proposal with other works
around API specifications, IIoT languages and code gen-
erators, and model-based approaches both for data and
communication.

As we will see, most of previous work that target model-
ing data and communication aspects focus on synchronous
architectures. The support for message-driven ones, like the
one we propose, is much more limited.

Wefirst start by covering coremodeling proposals for IIoT
(Sect. 7.1). Then,wemove toworks focusing onmodel-based
IIoT proposals relying on synchronous communication—

mostly REST-based ones—in Sect. 7.2. Finally, model-based
IIoT proposals on top of asynchronous architectures are cov-
ered in Sect. 7.3.

7.1 Domain-Specific Languages for IIoT

As we propose, MDE has already been used to accelerate the
development process of industrial systems in the Industry
4.0 context. Among other works, the benefits of MDE for
IIoT have been previously analyzed by Capilla et al. [8] and
Young et al. [57], including some guidelines when modeling
such systems to maximize their effectiveness [12].

Several works have explored the use of MDE in IoT at
a global level. This is the case of Ciccozzi and Spalazzese
[10], where the authors present the MDE4IoT framework
supporting the modelling and self-adaptation of Emergent
Configurations of connected systems. Clark and Barn [11]
is a UML extension to define components that could be
used in both service-oriented and event-driven architec-
tures. AutoIoT [36] provides a generic metamodel and tool
that designers can use to model their IoT scenarios either
graphically (Web GUI) or textually (manually writing a
JSON file). Models created with AutoIoT could then be
the input of a model-to-text transformation to generate dif-
ferent implementations of the IoT application. ThingML
[34] combines well-proven software-modeling constructs
aligned with UML (statecharts and components) and an
imperative platform-independent action language to spec-
ify IoT applications. Due to its popularity, other languages
include a transformation to ThingML [46]. However, mod-
eling of communication in ThingML is rather minimal.
Similarly, Artikov et al. [4] defend the need to combine
several modeling languages, each targeting a specific IoT
concern, for a more consistent overall definition of the IoT
system.

Indeed, these frameworks can be regarded as comple-
mentary to our own as they are more targeted to describing
and implementing the IoT components themselves while we
focus on describing the communication and interoperability
among them. Next subsections cover proposals comprising
as well the communication aspects, grouping them based on
whether they mainly assume a synchronous or asynchronous
communication.

7.2 Model-based approaches for synchronous
communications

Several DSLs to model specific parts of IoT synchronous
communication systems have been explored. One of such
approaches is the onepresentedbySneps-Sneppe andNamiot
[48], where the authors present an extension of Java Server
Pages to generate a web-based DSL to use in IoT appli-
cations. The proposed DSL enables IoT communications

123

A. Gómez et al.

between the devices that support the process and the sensors.
Negash et al. [35] also propose a DSL that is specifically
designed for IoT, namely DoS-IL. However, they go fur-
ther and also created an interpreter for the DOM, allowing
the browser to be manipulated through scripts that interact
with the DOM. CREST, presented by Klikovits et al. [29],
is another DSL that aims to model CPSs of small scale that
has synchronous evolution and reactive behavior. Riedel et
al. [44] present a tool that generates C, C# and Java code
relying on SOAP Web Services (WS-SOAP) as the com-
munication protocol. They propose the use of the Essential
Meta-Object Facility (EMOF) [40] for data metamodels and
EMF to generate the messages between IoT subsystems.
Another approach is TRILATERAL [22,25], a tool that uses
MDEwith IoT communication protocols to generate artifacts
for industrial CPSs. This tool allows using a visual editor to
input a model based on the IEC 61850 standard for elec-
trical substations and the tool automatically generates the
C++ code that enables the devices to communicate, so far,
using HTTP-REST, CoAP, or WS-SOAP (all of them syn-
chronous).

A more recent initiative is the Web of Things (WoT)
[55], which focuses on facilitating the interoperability among
devices thanks to a shared definition of a commondatamodel.
A couple of modeling proposals around WoT are Delicato et
al. [13] and Iglesias-Urkia et al. [23,24]. While WoT could
support some level of asynchronous communication around
its event concept, itmainly targets synchronous architectures.

Being RESTful architectures the most significant exam-
ple of synchronous architectures, several approaches are
implemented following this architectural style. For instance,
Thramboulidis andChristoulakis [54] integrateCPSs and IoT
with a framework named UML4IoT that allows automating
the process of generating CPSs. To do that, the CPSs are
modeled using SysML and implemented using an object-
orientedAPI that is later transformed to aRESTfulAPI, using
LWM2M for the communication. Ivanchikj and Pautasso
[26] present RESTalk, a DSL for modeling and visualiz-
ing RESTful conversations, i.e., a model of all possible
sequences of HTTP message exchanges between client and
servers.As before,RESTalk is based on themodel of theOpe-
nAPI Specification and provides a visual and textual DSL.

OpenAPI (formerly Swagger) [47] is a predominant effort
to allow describing RESTful APIs [50]. The OpenAPI ini-
tiative offers several tools to assist developers—e.g., editors,
document generators, code generators, etc.—proposed either
by the consortium itself or by a growing ecosystem of third-
party providers—e.g., APIs.guru [3]. We also start to see
model-based tools forOpenAPI [16,17]. There are also some
works that aim to inferAPI definitions from examples of calls
or data points [7,15] and may offer an intermediate model to
be annotated before the generation of the (OpenAPI) API
description file.

OPC-UA [32] is a SOA-based popular alternative to
RESTful architectures in the industrial automation domain.
A core element in any OPC-UA definition is the information
model aimed at representing the static and dynamic behav-
ior of manufacturing systems. Several approaches, mostly
based on UML extensions, have been proposed to facilitate
the specification of such information models [30,42,43].

Many aspects of all these proposals have inspired key ele-
ments of the asynchronous approaches described next. The
best example is AsyncAPI itself, which is heavily inspired
byOpenAPI. However, due to the fundamental differences in
the communication paradigm, previous approaches and tools
cannot be directly reused in an AsyncAPI context as they are
missing many of the key constructs to describe AsyncAPI—
or more generally, asynchronous—definitions like channel,
subscription, server or message.

7.3 Model-based approaches for message-driven
architectures

BeyondAsyncAPI, asynchronous communication can also be
definedwithDataDistributionService (DDS) [37],which is a
data-centric publish/subscribe (DCPS) model for distributed
application communication. While both DDS and AsyncAPI
provide a specific language for data definition—the so-called
Interface Definition Language (IDL) [39] in the case of the
former, and JSON Schema in the case of the latter—they dif-
fer in different aspects: (i) DDS is oriented to the data itself
and not the messages [2]; (ii) DDS is technology agnostic,
and as a consequence, does not consider architectural ele-
ments such as the different protocols, servers and listening
ports—to name a few—involved; and (iii) DDS has a more
mature ecosystem.

However, althoughDDS is technology agnostic, its imple-
mentations are more niche-focused26: most of the solutions
focus on supporting C and C++ and support to other lan-
guages are provided via bridges to execute native code in
compiled libraries. For instance, OpenDDS27 is an imple-
mentation of the DDS protocol that allows to define a data
model with an IDL, and the code generator creates the data
structure and a wrapper to access it. It creates C++ code
that can be accessed using the Java Native Interface (JNI).
Another commercial tool is IBM’sRhapsody28,which allows
to create DDS services in C++ or Ada. The final available
tool worth mentioning is RTI Code Generator29, which is a

26 https://www.dds-foundation.org/dds-resources/.
27 https://opendds.org/.
28 https://www.ibm.com/docs/en/rhapsody/8.2?topic=tutorials-
create-data-distribution-service-real-time-systems-application.
29 https://community.rti.com/static/documentation/connext-
dds/5.2.3/doc/manuals/connext_dds/code_generator/
RTI_CodeGenerator_UsersManual.pdf

123

https://www.dds-foundation.org/dds-resources/
https://opendds.org/
https://www.ibm.com/docs/en/rhapsody/8.2?topic=tutorials-create-data-distribution-service-real-time-systems-application
https://www.ibm.com/docs/en/rhapsody/8.2?topic=tutorials-create-data-distribution-service-real-time-systems-application
https://community.rti.com/static/documentation/connext-dds/5.2.3/doc/manuals/connext_dds/code_generator/RTI_CodeGenerator_UsersManual.pdf
https://community.rti.com/static/documentation/connext-dds/5.2.3/doc/manuals/connext_dds/code_generator/RTI_CodeGenerator_UsersManual.pdf
https://community.rti.com/static/documentation/connext-dds/5.2.3/doc/manuals/connext_dds/code_generator/RTI_CodeGenerator_UsersManual.pdf

Model-driven development of asynchronous message-driven...

command line tool that uses an IDL or XML file as input and
generates the code (Ada, C, C++, CLI, C# or Java) for the
data structure, and both publisher and subscriber examples.
However, the main downsides of environments supporting
DDS is that they are less integrated, with a lower level of
abstraction, and no support for internal DSLs—as AsyncAPI
Toolkit proposes with its fluent API— is provided.

CyprIoT [6] includes modeling constructs to describe
the communication channels and hierarchy of topics and
subtopics but does not address the structure of the internals
of the exchanged messages.

Finally, and specifically focusing on AsyncAPI, while the
ecosystem of tools around it keeps growing at a fast pace30,
most of the tools still lack of some key features or are hard
to integrate with external tools. For example, the Java Asyn-
cAPI project31 provides an implementation of the AsyncAPI
specification in Java, similarly to what our AsyncAPI meta-
model allows—Ecoremetamodels are projected to Java code
inEMF.However, although the JavaAsyncAPI project allows
dealing with AsyncAPI definitions in Java, it does not pro-
vide any code generation capabilities as theAsyncAPI Toolkit
does.

Regarding code generation, the AsyncAPI Initiative now
provides a generic template-based generator32 which can be
used to generate code in any language. As of writing this
manuscript, only the following languages are officially sup-
ported by the AsyncAPI generator: HTML and Markdown
for documentation; and Node.js, Java (relying on Spring),
Python, and TypeScript NATS for executable code. In all
cases, only a subset of the protocols considered by Asyn-
cAPI are supported (although MQTT is generally—but not
always—supported), and in some cases, some optional prop-
erties of the AsyncAPI Specification are marked as required
for the code generators to work33 thus breaking the com-
pliance with the specification. In concrete the case of the
Java code generator, the main difference with the Async-
API Toolkit is the lack of an internal DSL which helps
developers to easily discover the data schema of the mes-
sages interchanged. Also, some importante features, such as
parameters in topic names or server variables, are lacking
or not fully supported. Finally, as opposed to our AsyncAPI
Toolkit, which is implemented in Java for convenience pur-
poses, the AsyncAPI generator is implemented in Node.js,
which makes difficult to integrate it in a Java-based IDE.
This is of special importance when the IDE also provides
a plethora of MDE tools—as it is the case of Eclipse and
EMF, which have become a de facto standard in the model-

30 https://www.asyncapi.com/docs/community/tooling.
31 https://github.com/Pakisan/java-asyncapi.
32 https://github.com/asyncapi/generator.
33 E.g.., the operationId property must be always set to use the
Node.js generators

Fig. 12 Percentage of people finishing in 1h, 2h, 4h or more

ing community—which could help to build more complete
and mature model-based tools around AsyncAPI. Thus, ours
is the only approach targeting themodeling ofAsyncAPI def-
initions providing an internal DSL in the form of a fluent API
based on data models, and providing an IDE to develop the
AsyncAPI definitions with full code generation capabilities
in a single solution.

8 Conclusions and further work

This article presents AsyncAPI Toolkit, a toolkit that allows
specifying message-driven APIs using the AsyncAPI speci-
fication also providing automatic code generation. AsyncAPI
Toolkit decreases the development time of architectures with
asynchronous communication.

As described in the previous section, the investment in
time to learn the basics of AsyncAPI and the AsyncAPI Tool-
kit is not too much. Even though few of the participants had
previous knowledge of AsyncAPI, with a mean learning time
of≈28minutes, 72% of the participants finished the exercise
within the given hour or estimate that they would need less
than a total of two hours to finish it as it is shown in Fig. 12.
And the 36% of the participants were able to finish it within
the fixed hour with only that mean learning time spent for
initial knowledge acquisition.

Investing a bit more time in learning the basics of Asyn-
cAPI should lead to better results in fewer time and effort.
But for those developers who do not know the AsyncAPI
specification in depth and do not have the need to deepen
on it, the AsyncAPI Toolkit has proven to be a tool able to
rapidly provide an interface to their systems.

Not only developers can get benefit from the AsyncAPI
Toolkit, but also modelers can. The extensions discussed in

123

https://www.asyncapi.com/docs/community/tooling
https://github.com/Pakisan/java-asyncapi
https://github.com/asyncapi/generator

A. Gómez et al.

Sects. 4.2, 5.3 and 5.4 are addressed to these users, who may
expect this kind of functionality in any model-driven solu-
tion as they are used to it. In fact, after the first phase of
the evaluation, most of the participants familiar with MDD
requested or asked about a higher-level graphical editor. As
a consequence, the AsyncAPI Toolkit allows starting a new
API definition in two different ways: either creating a data
model using an Ecore editor which generates an initial Asyn-
cAPI definition, or directly creating the AsyncAPI definition
textually.

Considering all participants suggestions and our own
experience, these are the main lines of future work in our
roadmap:

1. Automatic test suite generation: Having a new test gen-
eration functionality will facilitate the validation of the
communication system’s robustness. The goal would be
to automatically generate different types of communica-
tion messages (both valid and invalid ones) considering
the usual vulnerabilities that make not to comply the sin-
gle source of truth. Thismechanismwill help to anticipate
to possible problems and assure that the system will not
be down due to those common issues.

2. Cover other languages besides Java: This has been
highly requested. Our next milestone will include addi-
tional code generation templates to be able to automat-
ically generate code according to the project’s develop-
ment language target: Python, C, C++, etc.

3. User experience improvement: Better error detection
and identification during the specification editing, quick
fix features to correct them, enhance AsyncAPI specifi-
cation file editing with a tree view editor and include the
requested editor assistant or wizards for the development
of the model will all be part of our planned improvements
in this line of work. Although they do not represent a new
functionality for the AsyncAPI Toolkit, it makes a differ-
ence in user satisfaction and we think it will also improve
the development time as nowadays error detection and
fixing are not so intuitive for the user.

Finally, we will also evaluate AsyncAPI Toolkit further in
to different aspects. On the one hand, we plan to perform
additional empirical validations that help us better under-
stand the specific trade-offs of introducing our model-driven
AsyncAPI infrastructure in new industrial projects, when we
get a larger dataset for this analysis and explore the option
to employ our toolkit in reverse engineering scenarios, e.g.,
to generate visualizations of existing AsyncAPI specifica-
tions with our graphical syntax. On the other hand, we also
plan to compare AsyncAPI Toolkit against other tools that
undoubtedly will be developed based on AsyncAPI, follow-
ing a systematic review approach such as the one described
in [9].

Acknowledgements This project has received funding from the Elec-
tronic Component Systems for European Leadership Joint Under-
taking under grant agreement N◦ 737494, this Joint Undertaking
receives support from the European Union’s Horizon 2020 research
and innovation program and from Sweden, France, Spain, Italy, Fin-
land & Czech Republic; from the European commission under the
COMP4DRONES project under grant agreement N◦ 826610 with sup-
port from the ECSEL-JU 2018 program with national financing from
France, Spain, Italy, Netherlands, Austria, Czech, Belgium and Latvia;
and from the Spanish government under project Open Data for All
(RETOS TIN2016-75944-R). We also want to acknowledge all partic-
ipants for their collaboration in the experiment.

Funding Open Access funding provided thanks to the CRUE-CSIC
agreement with Springer Nature.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

1. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M.,
Ayyash, M.: Internet of things: a survey on enabling technologies,
protocols, and applications. IEEE Commun. Surv. Tutor. 17(4),
2347–2376 (2015)

2. Alaerjan, A., Kim, D.K., Ming, H., Malik, K.: (2018) Using DDS
based on unified data model to improve interoperability of smart
grids. In: 2018 6th IEEE International Conference on Smart Energy
Grid Engineering, SEGE 2018, pp 110–114, https://doi.org/10.
1109/SEGE.2018.8499513

3. APIs.guru API tooling for better developer experience. last
accessed September (2020)https://apis.guru/ (2020)

4. Artikov, M., Meier, J., Winter, A. :Towards integrated iot-
languages. In: 2019 International Conference on Information
Science and Communications Technologies (ICISCT), pp 1–5,
(2019) https://doi.org/10.1109/ICISCT47635.2019.9011964

5. AsyncAPI Initiative AsyncAPI specification 2.0.0. url: https://
www.asyncapi.com/docs/specifications/2.0.0/, last accessed May
2021 (2020)

6. Berrouyne, I., Adda, M., Mottu, J., Royer, J., Tisi, M.: Cypriot:
framework for modelling and controlling network-based iot appli-
cations. In: Hung C, Papadopoulos GA (eds) Proceedings of the
34th ACM/SIGAPP Symposium on Applied Computing, SAC
2019, Limassol, Cyprus, April 8-12, 2019, ACM, pp 832–841,
(2019)https://doi.org/10.1145/3297280.3297362

7. Cánovas-Izquierdo, J.L., Cabot, J.: Jsondiscoverer: visualizing the
schema lurking behind JSON documents. Knowl. Based Syst. 103,
52–55 (2016). https://doi.org/10.1016/j.knosys.2016.03.020

8. Capilla, R., Bosch, J., Trinidad, P., Ruiz-Cortés, A., Hinchey, M.:
An overview of dynamic software product line architectures and
techniques: observations from research and industry. J. Syst. Softw.
91, 3–23 (2014)

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1109/SEGE.2018.8499513
https://doi.org/10.1109/SEGE.2018.8499513
https://apis.guru/
https://doi.org/10.1109/ICISCT47635.2019.9011964
https://www.asyncapi.com/docs/specifications/2.0.0/
https://www.asyncapi.com/docs/specifications/2.0.0/
https://doi.org/10.1145/3297280.3297362
https://doi.org/10.1016/j.knosys.2016.03.020

Model-driven development of asynchronous message-driven...

9. Challenger, M., Kardas, G., Tekinerdogan, B.: A systematic
approach to evaluating domain-specific modeling language envi-
ronments for multi-agent systems. Softw. Qual. J. 24(3), 755–795
(2016). https://doi.org/10.1007/s11219-015-9291-5

10. Ciccozzi, F., Spalazzese, R.: MDE4IoT: Supporting the internet of
things with model-driven engineering. In: Badica, C., El Fallah,
Seghrouchni A., Beynier, A., Camacho, D., Herpson, C., Hindriks,
K., Novais, P. (eds.) Intelligent Distributed Computing X, pp. 67–
76. Springer International Publishing, Cham (2017)

11. Clark, T., Barn, B.S.: A common basis for modelling service-
oriented and event-driven architecture. In: Proceedings of the 5th
India Software Engineering Conference, Association for Comput-
ing Machinery, New York, NY, USA, ISEC ’12, p 23–32, (2012)
https://doi.org/10.1145/2134254.2134258

12. Das, T.K., Dingel, J.: Model development guidelines for UML-RT:
conventions, patterns and antipatterns. Softw. Syst. Model. 17(3),
717–752 (2018). https://doi.org/10.1007/s10270-016-0549-6

13. Delicato, F.C., Pires, P.F., Batista, T.: Middleware Solutions for the
Internet of Things. Springer Publishing Company Incorporated,
London (2013)

14. Díaz, O., Villoria, F.M.: Generating blogs out of product cata-
logues: An MDE approach. J. Syst. Softw. 83(10), 1970–1982
(2010). https://doi.org/10.1016/j.jss.2010.05.075

15. Ed-Douibi, H., Cánovas-Izquierdo, J.L., Cabot, J.: Example-driven
web API specification discovery. In: Modelling Foundations and
Applications–13th European Conference, ECMFA@STAF 2017,
Marburg, Germany, July 19-20, 2017, Proceedings, pp 267–284,
(2017)https://doi.org/10.1007/978-3-319-61482-3_16

16. Ed-Douibi, ,H., Cánovas-Izquierdo, J.L., Cabot, J.: Openapitouml:
A tool to generate UML models from openapi definitions. In:
Proceedings of Web Engineering–18th International Conference,
ICWE 2018, Cáceres, Spain, June 5-8, 2018, pp 487–491, (2018).
https://doi.org/10.1007/978-3-319-91662-0_41

17. Ed-Douibi, H., Izquierdo, J.L.C., Cabot, J.: Automatic genera-
tion of test cases for REST apis: A specification-based approach.
In: 22nd IEEE International Enterprise Distributed Object Com-
puting Conference, EDOC 2018, Stockholm, Sweden, October
16-19, 2018, pp 181–190,(2018) https://doi.org/10.1109/EDOC.
2018.00031

18. Evans, D.: The internet of things: How the next evolution of the
internet is changing everything. CISCOwhite paper 1(2011), 1–11
(2011)

19. Fielding, R.T.: REST: architectural styles and the design of
network-based software architectures. Doctoral dissertation, Uni-
versity of California, Irvine (2000)

20. Fowler, M.: Domain Specific Languages, 1st edn. Addison-Wesley
Professional, Boston (2010)

21. Gómez, A., Iglesias-Urkia, M., Urbieta, A., Cabot, J.: A model-
based approach for developing event-driven architectures with
asyncapi. In: Proceedings of the 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages and Sys-
tems, Association for ComputingMachinery, NewYork, NY,USA,
MODELS ’20, pp. 121–131, https://doi.org/10.1145/3365438.
3410948 (2020)

22. Iglesias, A., Iglesias-Urkia, M., López-Davalillo, B., Charra-
mendieta, S., Urbieta, A.: Trilateral: Software product line based
multidomain iot artifact generation for industrial cps. In: Pro-
ceedings of the 7th International Conference on Model-Driven
Engineering and Software Development - Volume 1: MODEL-
SWARD, INSTICC, SciTePress, pp 64–73, https://doi.org/10.
5220/0007343500640073 (2019)

23. Iglesias-Urkia, M., Gómez, A., Casado-Mansilla, D., Urbieta,
A.: Enabling easy web of things compatible device generation
using a model-driven engineering approach. In: ACM Interna-
tional Conference Proceeding Series, (2019). https://doi.org/10.
1145/3365871.3365898

24. Iglesias-Urkia, M., Gómez, A., Casado-Mansilla, D., Urbieta,
A.: Automatic generation of web of things servients using thing
descriptions. Pers. Ubiquit. Comput. (2020). https://doi.org/10.
1007/s00779-020-01413-3

25. Iglesias-Urkia,M., Iglesias, A., López-Davalillo, B., Charramendi-
eta, S., Casado-Mansilla, D., Sagardui, G., Urbieta, A.: Trilateral:
A model-based approach for industrial cps–monitoring and con-
trol. In: Hammoudi, S., Pires, L.F., Selić, B. (eds.) Model-Driven
Engineering and Software Development, pp. 376–398. Springer
International Publishing, Cham (2020)

26. Ivanchikj, A., Pautasso, C.: Modeling microservice conversations
with restalk. In: Bucchiarone A, Dragoni N, Dustdar S, Lago P,
Mazzara M, Rivera V, Sadovykh A (eds) Microservices: Science
andEngineering, Springer International Publishing,Cham, pp129–
146, (2020). https://doi.org/10.1007/978-3-030-31646-4_6

27. Jazdi, N.: Cyber physical systems in the context of industry 4.0. In:
2014 IEEE International Conference on Automation, Quality and
Testing, Robotics, pp 1–4, (2014). https://doi.org/10.1109/AQTR.
2014.6857843

28. Kagermann, H., Helbig, J., Hellinger, A., Wahlster, W.: Recom-
mendations for implementing the strategic initiative INDUSTRIE
4.0: Securing the future of German manufacturing industry; final
report of the Industrie 4.0WorkingGroup. Forschungsunion (2013)

29. Klikovits, S., Linard, A., Buchs, D.: Crest - a dsl for reactive cyber-
physical systems. In:KhendekF,GotzheinR (eds) SystemAnalysis
and Modeling. Languages, Methods, and Tools for Systems Engi-
neering, Springer International Publishing, Cham, pp 29–45 (2018)

30. Lee, B., Kim, D.K., Yang, H., Oh, S.: Model transformation
between OPC UA and UML. Comput. Stand. Interface. 50, 236–
250 (2017). https://doi.org/10.1016/j.csi.2016.09.004

31. Leitão, P., Colombo, A.W., Karnouskos, S.: Industrial automation
based on cyber-physical systems technologies: Prototype imple-
mentations and challenges. Comput. Ind. 81, 11–25 (2016)

32. Leitner, S.H., Mahnke, W.: Opc ua-service-oriented architecture
for industrial applications. ABB Corpor. Res. Center 48, 61–66
(2006)

33. Michelson,B.M.: Event-driven architecture overview. Patricia Sey-
bold Group 2(12), 10–1571 (2006)

34. Morin, B., Harrand, N., Fleurey, F.: Model-based software engi-
neering to tame the iot jungle. IEEE Softw. 34(1), 30–36 (2017).
https://doi.org/10.1109/MS.2017.11

35. Negash, B., Westerlund, T., Rahmani, A.M., Liljeberg, P., Ten-
hunen, H.: Dos-il: A domain specific internet of things language for
resource constrained devices. In: ProcediaComputer Science, Else-
vier B.V., vol 109, pp. 416–423, (2017). https://doi.org/10.1016/j.
procs.2017.05.411

36. Nepomuceno, T., Carneiro, T., Maia, P.H., Adnan, M., Nepo-
muceno, T., Martin, A.: (2020) Autoiot: A framework based on
user-driven mde for generating iot applications. In: Proceedings of
the 35th Annual ACM Symposium on Applied Computing, ACM,
SAC ’20, p 719–728, 10.1145/3341105.3373873

37. OMG (2015) Data Distribution Service (DDS), Ver. 1.4. https://
www.omg.org/spec/DDS/1.4/

38. OMG (2017) OMG Unified Modeling Language (OMG UML),
Ver. 2.5.1. https://www.omg.org/spec/UML/2.5.1/

39. OMG (2018) InterfaceDefinitionLanguage (IDL),Ver. 4.2. https://
www.omg.org/spec/IDL/4.2/

40. OMG (2019) Meta Object Facility (MOF), Ver. 2.5.1. http://www.
omg.org/spec/MOF/2.5.1/

41. OpenAPI Initiative (2020) OpenAPI Specification. url: https://
github.com/OAI/OpenAPI-Specification, last accessed May 2021

42. Pauker, F., Frühwirth, T., Kittl, B., Kastner, W.: A Systematic
Approach to OPC UA Information Model Design. Procedia CIRP
57, 321–326 (2016). https://doi.org/10.1016/j.procir.2016.11.056,
factories of the Future in the digital environment - Proceedings of
the 49th CIRP Conference on Manufacturing Systems

123

https://doi.org/10.1007/s11219-015-9291-5
https://doi.org/10.1145/2134254.2134258
https://doi.org/10.1007/s10270-016-0549-6
https://doi.org/10.1016/j.jss.2010.05.075
https://doi.org/10.1007/978-3-319-61482-3_16
https://doi.org/10.1007/978-3-319-91662-0_41
https://doi.org/10.1109/EDOC.2018.00031
https://doi.org/10.1109/EDOC.2018.00031
https://doi.org/10.1145/3365438.3410948
https://doi.org/10.1145/3365438.3410948
https://doi.org/10.5220/0007343500640073
https://doi.org/10.5220/0007343500640073
https://doi.org/10.1145/3365871.3365898
https://doi.org/10.1145/3365871.3365898
https://doi.org/10.1007/s00779-020-01413-3
https://doi.org/10.1007/s00779-020-01413-3
https://doi.org/10.1007/978-3-030-31646-4_6
https://doi.org/10.1109/AQTR.2014.6857843
https://doi.org/10.1109/AQTR.2014.6857843
https://doi.org/10.1016/j.csi.2016.09.004
https://doi.org/10.1109/MS.2017.11
https://doi.org/10.1016/j.procs.2017.05.411
https://doi.org/10.1016/j.procs.2017.05.411
https://www.omg.org/spec/DDS/1.4/
https://www.omg.org/spec/DDS/1.4/
https://www.omg.org/spec/UML/2.5.1/
https://www.omg.org/spec/IDL/4.2/
https://www.omg.org/spec/IDL/4.2/
http://www.omg.org/spec/MOF/2.5.1/
http://www.omg.org/spec/MOF/2.5.1/
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification
https://doi.org/10.1016/j.procir.2016.11.056

A. Gómez et al.

43. Pauker, F., Wolny, S., Fallah, S.M.,Wimmer, M.: UML2OPC-UA -
TransformingUMLClass Diagrams to OPCUA InformationMod-
els. Procedia CIRP 67, 128–133 (2018). https://doi.org/10.1016/j.
procir.2017.12.188, 11th CIRP Conference on Intelligent Compu-
tation in Manufacturing Engineering, 19-21 July 2017, Gulf of
Naples, Italy

44. Riedel, T., Fantana, N., Genaid, A., Yordanov,D., Schmidtke, H.R.,
Beigl, M.: Using web service gateways and code generation for
sustainable iot system development. In: 2010 Internet of Things
(IOT), Tokyo, Japan, pp 1–8, 10.1109/IOT.2010.5678449 (2010)

45. Schwab K (2017) The Fourth Industrial Revolution. Crown Pub-
lishing Group

46. Sharaf, M., Abusair, M., Eleiwi, R., Shana’a, Y., Saleh, I., Muccini,
H.:Modeling and code generation framework for iot. In: i Casas PF,
Sancho M, Sherratt E (eds) System Analysis and Modeling. Lan-
guages, Methods, and Tools for Industry 4.0 - 11th International
Conference, SAM 2019, Munich, Germany, September 16-17,
2019, Proceedings, Springer, Lecture Notes in Computer Science,
vol 11753, pp 99–115, https://doi.org/10.1007/978-3-030-30690-
8_6 (2019)

47. SmartBear Software (2020) What Is OpenAPI? https://swagger.io/
docs/specification/about/

48. Sneps-Sneppe,M., Namiot, D.:Onweb-based domain-specific lan-
guage for internet of things. In: International Congress on Ultra
Modern Telecommunications and Control Systems and Work-
shops, IEEE Computer Society, vol 2016-January, pp 287–292,
https://doi.org/10.1109/ICUMT.2015.7382444 (2016)

49. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF:
Eclipse Modeling Framework 2.0, 2nd edn. Addison-Wesley Pro-
fessional, isbn: 0321331885 (2009)

50. Tashtoush, Y., AlRashdan, M.N., Salameh, O., Alsmirat, M.:
Swagger-based jquery ajax validation. In: 2019 IEEE 9th
Annual Computing and Communication Workshop and Confer-
ence (CCWC), pp 0069–0072, https://doi.org/10.1109/CCWC.
2019.8666542 (2019)

51. The Eclipse Foundation (2020) Eclipse Modeling Project -
Eclipse Modeling Framework - Home. http://www.eclipse.org/
emf/, Accessed May 2021

52. The Eclipse Foundation (2020) Xtend - Modernized Java. http://
www.eclipse.org/xtend/. Accessed May 2021

53. The Eclipse Foundation (2020) Xtext - Language Engineering
Made Easy! http://www.eclipse.org/Xtext/. Accessed May 2021

54. Thramboulidis, K., Christoulakis, F.: UML4IoT - A UML-based
approach to exploit IoT in cyber-physical manufacturing sys-
tems. Comput. Ind. 82, 259–272 (2016). https://doi.org/10.1016/j.
compind.2016.05.010

55. W3C (2019) Web of Things at W3C. https://www.w3.org/WoT/
56. Wright, H.K., Kim, M., Perry, D.E.: Validity concerns in software

engineering research. In: Proceedings of the FSE/SDP Workshop
on Future of Software EngineeringResearch,Association for Com-
puting Machinery, New York, FoSER ’10, p 411–414, (2010).
https://doi.org/10.1145/1882362.1882446

57. Young, B., Cheatwood, J., Peterson, T., Flores, R., Clements, P.C.:
Product line engineering meets model based engineering in the
defense and automotive industries. In: Proceedings of the 21st Inter-
national Systems and Software Product Line Conference, SPLC
2017, Volume A, pp 175–179 (2017)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Abel Gómez is a senior researcher
of the Internet Interdisciplinary
Institute, a research center of the
Universitat Oberta de Catalunya,
Spain. Previously, he has hold dif-
ferent positions at the Universi-
dad de Zaragoza, the École des
Mines de Nantes & Inria, and the
Universitat Politécnica de Valèn-
cia; being this latter institution
where he obtained his PhD degree
in Computer Science. His research
interests fall in the broad field
of Model-Driven Engineering
(MDE), and his research lines have

evolved in two complementary directions: on the one hand, the devel-
opment of core technologies to support MDE activities; and on the
other hand, the application of MDE techniques to solve Software
Engineering problems. More information is available at https://abel.
gomez.llana.me.

Markel Iglesias-Urkia is a resear-
cher at Ikerlan on the IoT and
Digital Platforms team since 2019,
after completing his PhD on Engi-
neering for the Information Soci-
ety and Sustainable Development
from the University of Deusto in
the same team. Previously, he
received his BSc on Computer
Systems Engineering, BSc Com-
puter Science & Engineering and
MSc on Embedded System Engi-
neering from the University of
the Basque Country. His research
interests include Internet of Things

(IoT), CoAP, lightweight protocols, Edge Computing among others.
He is author or co-author of several peer-reviewed scientific publica-
tions in the field of the Internet of Things and Software Engineering.

Lorea Belategi joined IKERLAN
as a researcher in Dependable
Software Team. After completing
her PhD at Mondragon Unibertsi-
tatea, she worked in diverse sec-
tors (petrochemical, energy, health,
etc.). After several years she
became responsible for software
quality at Kiro Grifols where she
coordinated and carried out the
tasks of verification and validation
of medical devices software to be
certified according to FDA (Food
and Drug Administration). Later,
she moved back to research, at

IKERLAN. Her research interests include software V&V, Edge Com-
puting, Model-Driven Engineering (MDE), embedded systems. She is
author or co-author of several peer-reviewed scientific publications in
the field of model based software V&V.

123

https://doi.org/10.1016/j.procir.2017.12.188
https://doi.org/10.1016/j.procir.2017.12.188
https://doi.org/10.1007/978-3-030-30690-8_6
https://doi.org/10.1007/978-3-030-30690-8_6
https://swagger.io/docs/specification/about/
https://swagger.io/docs/specification/about/
https://doi.org/10.1109/ICUMT.2015.7382444
https://doi.org/10.1109/CCWC.2019.8666542
https://doi.org/10.1109/CCWC.2019.8666542
http://www.eclipse.org/emf/
http://www.eclipse.org/emf/
http://www.eclipse.org/xtend/
http://www.eclipse.org/xtend/
http://www.eclipse.org/Xtext/
https://doi.org/10.1016/j.compind.2016.05.010
https://doi.org/10.1016/j.compind.2016.05.010
https://www.w3.org/WoT/
https://doi.org/10.1145/1882362.1882446
https://abel.gomez.llana.me
https://abel.gomez.llana.me

Model-driven development of asynchronous message-driven...

Xabier Mendialdua is a researcher
of the Dependable Software Team
at Ikerlan S. Coop. Since 1994
he has been involved in multi-
ple projects in several domains
as automated warehouse manage-
ment systems, monitoring systems,
wind power and railway. His main
activity is focused in the design
and development of dependable
software for embedded control sys-
tems and his research activities
have been involved on applying
model-driven and product-line
approaches for the engineering of

control systems.

Jordi Cabot received the B.Sc. and
Ph.D. degrees in computer sci-
ence from the Technical Univer-
sity of Catalonia. He was a Leader
of an INRIA and LINA Research
Group at École des Mines de
Nantes, France, a Post-Doctoral
Fellow with the University of
Toronto, a Senior Lecturer with
the Open University of Catalonia,
and a Visiting Scholar with the
Politecnico di Milano. He is cur-
rently an ICREA Research Pro-
fessor at Internet Interdisciplinary
Institute. His research interests

include software and systems modeling, formal verification and the
role AI can play in software development (and vice versa). He has
published over 150 peer-reviewed conference and journal papers on
these topics. Apart from his scientific publications, he writes and blogs
about all these topics in several sites. He is a member of the IEEE and
the ACM.

123

	Model-driven development of asynchronous message-driven architectures with AsyncAPI
	Abstract
	1 Introduction
	2 Motivation
	3 AsyncAPI: Towards a standard language for describing message-based architectures
	4 Model-driven development of asynchronous message-driven architectures
	4.1 The AsyncAPI Toolkit: Implementing a model-based development workflow from the beginning
	4.2 Bootstrapping a message-driven architecture from data models

	5 Lg
	5.1 A JSON-based concrete syntax for AsyncAPI
	5.2 An abstract syntax for AsyncAPI
	5.3 An Ecore-based concrete syntax for data modeling to bootstrap a message-driven architecture
	5.4 From an annotated data model to an AsyncAPI definition
	5.5 An internal Java DSL for effective message-driven communication

	6 AsyncAPI Toolkit Evaluation
	6.1 Threats to Validity
	6.2 Internal Validation
	6.3 External Validation
	6.3.1 Experimental design
	6.3.2 Sample
	6.3.3 Results

	7 Related Work
	7.1 Domain-Specific Languages for IIoT
	7.2 Model-based approaches for synchronous communications
	7.3 Model-based approaches for message-driven architectures

	8 Conclusions and further work
	Acknowledgements
	References

