
NeuroImage: Clinical 33 (2022) 102904

Available online 2 December 2021
2213-1582/© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Spatial patterns of brain lesions assessed through covariance estimations of 
lesional voxels in multiple Sclerosis: The SPACE-MS technique 

Carmen Tur a,b,*, Francesco Grussu a,c, Floriana De Angelis a, Ferran Prados a,d,e, Baris Kanber d, 
Alberto Calvi a, Arman Eshaghi a,c, Thalis Charalambous a, Rosa Cortese a, Declan T. Chard a,f, 
Jeremy Chataway a,f, Alan J. Thompson a,f, Olga Ciccarelli a,f, Claudia A.M. Gandini Wheeler- 
Kingshott a,g,h 

a NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University 
College London, UK 
b MS Centre of Catalonia (Cemcat), Vall d’Hebron Institute of Research, Vall d’Hebron Barcelona Hospital Campus, Spain 
c Radiomics Group, Vall d’Hebron Institute of Oncology, Vall d’Hebron Barcelona Hospital Campus, Barcelona, Spain 
d Centre for Medical Image Computing, Medical Physics and Biomedical Engineering Department, University College London, UK 
e e-Health Center, Universitat Oberta de Catalunya, Spain 
f National Institute for Health Research University College London Hospitals Biomedical Research Centre, UK 
g Department of Brain and Behavioural Sciences, University of Pavia, Italy 
h Brain Connectivity Centre, IRCCS Mondino Foundation, Pavia, Italy   

A R T I C L E  I N F O   

Keywords: 
Multiple sclerosis 
Lesion spatial distribution 
Magnetic resonance imaging 
Anisotropy 
Caudality 
SPACE-MS 

A B S T R A C T   

Predicting disability in progressive multiple sclerosis (MS) is extremely challenging. Although there is some 
evidence that the spatial distribution of white matter (WM) lesions may play a role in disability accumulation, 
the lack of well-established quantitative metrics that characterise these aspects of MS pathology makes it difficult 
to assess their relevance for clinical progression. This study introduces a novel approach, called SPACE-MS, to 
quantitatively characterise spatial distributional features of brain MS lesions, so that these can be assessed as 
predictors of disability accumulation. In SPACE-MS, the covariance matrix of the spatial positions of each pa-
tient’s lesional voxels is computed and its eigenvalues extracted. These are combined to derive rotationally- 
invariant metrics known to be common and robust descriptors of ellipsoid shape such as anisotropy, planarity 
and sphericity. Additionally, SPACE-MS metrics include a neuraxis caudality index, which we defined for the 
whole-brain lesion mask as well as for the most caudal brain lesion. These indicate how distant from the sup-
plementary motor cortex (along the neuraxis) the whole-brain mask or the most caudal brain lesions are. 

We applied SPACE-MS to data from 515 patients involved in three studies: the MS-SMART (NCT01910259) 
and MS-STAT1 (NCT00647348) secondary progressive MS trials, and an observational study of primary and 
secondary progressive MS. Patients were assessed on motor and cognitive disability scales and underwent 
structural brain MRI (1.5/3.0 T), at baseline and after 2 years. The MRI protocol included 3DT1-weighted 
(1x1x1mm3) and 2DT2-weighted (1x1x3mm3) anatomical imaging. WM lesions were semiautomatically 
segmented on the T2-weighted scans, deriving whole-brain lesion masks. After co-registering the masks to the T1 
images, SPACE-MS metrics were calculated and analysed through a series of multiple linear regression models, 
which were built to assess the ability of spatial distributional metrics to explain concurrent and future disability 
after adjusting for confounders. 

Patients whose WM lesions laid more caudally along the neuraxis or were more isotropically distributed in the 
brain (i.e. with whole-brain lesion masks displaying a high sphericity index) at baseline had greater motor and/ 
or cognitive disability at baseline and over time, independently of brain lesion load and atrophy measures. In 
conclusion, here we introduced the SPACE-MS approach, which we showed is able to capture clinically relevant 
spatial distributional features of MS lesions independently of the sheer amount of lesions and brain tissue loss. 
Location of lesions in lower parts of the brain, where neurite density is particularly high, such as in the cere-
bellum and brainstem, and greater spatial spreading of lesions (i.e. more isotropic whole-brain lesion masks), 
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possibly reflecting a higher number of WM tracts involved, are associated with clinical deterioration in pro-
gressive MS. The usefulness of the SPACE-MS approach, here demonstrated in MS, may be explored in other 
conditions also characterised by the presence of brain WM lesions.   

1. Introduction 

In most neurological conditions characterised by the presence of 
white matter (WM) lesions in the central nervous system (CNS), such as 
multiple sclerosis (MS), CNS vasculitis, or small vessel disease (SVD), the 
extent of such lesions is strongly associated with the severity of the 
disease (Cannerfelt et al., 2018; Pantoni, 2010; Thompson et al., 2018; 
Tintore et al., 2015). However, in the clinic, they are assessed qualita-
tively, or at most, semi-quantitatively, limiting the assessment to a 
categorisation of the lesion number, e.g. low, medium and high lesion 
load (Tintore et al., 2015). Research studies have proposed metrics like 
lesion counts or volume, although their correlation with clinical out-
comes is weaker than desired (Fisniku et al., 2008). This happens 
because, at least partly, they do not account for other, potentially crucial 
aspects of lesions such as their spatial location or the degree of tissue 
destruction caused by them (Grussu et al., 2017; Naismith et al., 2010; 
Absinta et al., 2019). Recently, the biological underpinning of lesions 
through quantitative MRI has started to be assessed (Absinta et al., 
2019). However, a formal, quantitative characterisation of the spatial 
distribution of brain WM lesions has never been carried out, hampering 
the assessment of its relevance for clinical progression in neurological 
conditions. Inspired by geostatistics, here we propose a method devel-
oped to assess the spatial distribution of WM brain lesions and apply it to 
MS. 

Our method, called SPACE-MS, is based on the estimation of the 
spatial variability (or spread) of lesional voxels in the brain. Information 
on the spatial variability is obtained from the covariance matrix con-
structed from the spatial position of lesional voxels along the x, y and z 
axis. Since such a covariance matrix is a rank-2 tensor, we used common 
descriptors of tensor shape, such as anisotropy, planarity and sphericity 
indices (Ennis and Kindlmann, 2006; Prados et al., 2010), based on the 
eigenvalues of the covariance matrix, to describe how brain lesional 
voxels, and therefore, lesions, spread. 

The rationale behind the use of a tensor to characterise the spatial 
distribution of brain lesions stems from the elegance and robustness of 
the framework. The method has strong clinical appeal, as it relies on 
routine anatomical imaging that is performed for lesion assessment in 
virtually all radiology departments in the world. Here we demonstrate it 
in MS, but it could be used in any brain condition known to cause focal 
lesions in neural tissue. 

MS is an inflammatory-demyelinating condition of the central ner-
vous system that usually affects young adults and evolves over decades 
(Thompson et al., 2018). Its effects are difficult to predict in individuals, 
with some people accruing little disability and, at the other end of the 
scale, some having their life shortened by MS. WM brain lesion load, 
determined using magnetic resonance imaging (MRI), is currently one of 
the main predictors of future disability (Fisniku et al., 2008). However, 
whole-brain WM lesion loads explain a minority of disability accrual in 
MS, i.e. <50% in the best case scenario (Fisniku et al., 2008), and there 
are several potentially significant reasons for this. Ultimately it is neu-
rodegeneration that is thought to explain the majority of irreversible 
disability in MS (Eshaghi et al., 2018), and while WM lesions can look 
very similar on conventional MRI scans, we know that histopathologi-
cally they are diverse, with some showing substantially more axonal 
damage than others, and some exhibiting ongoing inflammatory activity 
years after they first formed (Filippi et al., 2013; He et al., 2009; Eden 
et al., 2019; Dekker et al., 2020; Frischer et al., 2015). We also know that 
many WM lesions are clinically silent, and that the location of a lesion 
determines the likelihood that it will be clinically declared or clinically 
relevant (Eden et al., 2019). For instance, it is known that the presence 

of infratentorial (Tintore et al., 2010; Chung et al., 2020) or spinal cord 
lesions (Chung et al., 2020; Brownlee et al., 2019) increases the risk of 
disease progression after a first demyelinating attack (clinically isolated 
syndrome) or in established MS (Eden et al., 2019; Kerbrat et al., 2020). 
Brain connectivity research also points at a crucial role of the spatial 
distribution of brain lesions in the development of disability in MS, since 
the damage in specific WM fibre tracts may lead to a reduction in the 
efficiency of the brain network, independently of the lesion load 
(Charalambous et al., 2019). Along these lines, recent studies have also 
suggested that the spatial distribution of lesions may lead to specific 
patterns of disconnection between grey matter (GM) areas (Kanber et al., 
2019) which can be particularly harmful. 

In this work, we hypothesise that a greater spreading of lesions, and a 
more isotropic pattern of such spreading entail a worse prognosis, 
probably because they reflect a greater dissemination of the underlying 
demyelinating changes that occur in MS. Thus, our main aim was to 
assess whether covariance-based spatial distributional features of le-
sions were able to explain concurrent and future disability in progressive 
MS, and if they could do so independently of more common and widely 
accepted predictors, such as WM lesion load or brain atrophy measures 
(as markers of global neurodegeneration, and the main MRI outcome 
measures used in early phase progressive MS trials). Additionally, given 
that infratentorial and spinal cord lesions are known to carry a worse 
prognosis (Tintore et al., 2010; Chung et al., 2020; Brownlee et al., 
2019), we assessed the impact of the location of the whole-brain lesion 
mask and of the most caudal lesion along the neural axis (or neuraxis) on 
the accumulation of disability. 

2. Materials and methods 

2.1. Theory: SPACE-MS metrics 

Let us indicate with C = cov(r) = E
[
rrT] the covariance matrix of the 

3D positions r of lesional voxels within a binary mask (either whole- 
brain mask or an individual lesion). 

Let us also indicate with u1 ≥ u2 ≥ u3 ≥ 0 the three eigenvalues of C, 
after performing a principal component analysis. 

SPACE-MS metrics are rotationally-invariant indices derived by 
combining the eigenvalues of C, which aim to capture the spatial vari-
ation of the lesional voxel positions. Moreover, in SPACE-MS the dis-
tribution of the damage along the neuraxis is also evaluated, since this is 
thought to be clinically relevant (Kerbrat et al., 2020). To this end, 
SPACE-MS relies on the coordinates of the centre of mass (CoM), i.e. the 
point representing the centre (mean position) of any 3D object, of the 1) 
(whole-brain) lesion mask; 2) lowermost brain lesion; 3) unified sup-
plementary motor areas (SMAs), i.e. right and left considered as one; and 
4) brainstem (Fig. 1 and Fig. 2). 

3. Computation of SPACE-MS metrics 

1) Position along the neuraxis: 
This is evaluated through the Neuraxis Caudality Index (NCI), a 

novel metric which, to the best of our knowledge, is described here for 
the first time. This is the normalised distance between the CoM of both 
SMAs and the projection of the lesion mask CoM onto the neuraxis. In 
SPACE-MS, the neuraxis is defined as the line joining the CoM of both 
SMAs and the CoM of the brainstem (Fig. 1). The normalisation of this 
distance was performed through dividing it by the distance between the 
CoM of both SMAs and the CoM of the brainstem, to avoid the potential 
confounding effect of head size: 
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NCI =
(rmask − rSMA)

T(rBS − rSMA)

‖rBS − rSMA‖
2 , (1) 

In (1), rmask = E[r] is the CoM of the mask, rSMA is the CoM of the 
supplementary motor area, and rBS is the CoM of the brainstem. The 
transposition operator ∙T enables computation of the dot product. NCI 
describes the normalised (by head size) distance between rmask measured 
from rSMA along the spatial direction n =

(rBS − rSMA)
‖rBS − rSMA‖

identifying the neu-
raxis. NCI = 0 implies that the projection of rmask onto n is exactly at the 
level of the CoM of the supplementary motor area, while NCI = 1 implies 
that the projection of rmask onto n is exactly at the level of the CoM of the 
brainstem. In theory, NCI could range in [-∞; +∞], although in practice 
it is expected to range approximately between 0 and 1.5, given the 
anatomical constraints. Thus, higher values of NCI indicate a higher 
distance of the whole-brain lesion mask from the SMA (Fig. 2). 

NCI can be calculated for the entire brain lesion mask, or for a spe-
cific lesion. Given the known clinical relevance of having a very caudal 
lesion in the brain, namely in the brainstem or the cerebellum, inde-
pendently of where the rest of the lesions lie (Tintore et al., 2010; Chung 
et al., 2020), in this work we also explore the utility of NCI of the 
lowermost brain lesion. We called this distance maximum lesion NCI. 

2) Total amount of spatial variability: 
This is measured by the Mean Covariance Index (MCI), which is 

computed as the mean of the three eigenvalues of the covariance matrix, 
u1, u2 and u3: 

MCI =
u1 + u2 + u3

3
, (2) 

In (2), MCI ranges in [0; +∞], with increasing MCI implying higher 
spatial variability. The theoretical framework of this metric is not new, 
and has been applied before to diffusion-weighted imaging data (Ennis 
and Kindlmann, 2006). However, its use to characterise (whole-brain) 
lesion masks is completely new. 

3) number of spatial dimensions across which spatial variability 
spreads: 

For this purpose, we use well-known descriptors of ellipsoid shape, 

which we called CAI, CPI and CSI, and which are explained below (Ennis 
and Kindlmann, 2006; Prados et al., 2010). Yet its use for the charac-
terisation of whole-brain lesion masks is new. 

a) One dimension: this is evaluated through the Covariance Anisot-
ropy Index (CAI), a scalar value between 0 and 1 describing how 
anisotropic the lesion mask is, conceptually affine to well-known 
diffusion tensor MRI fractional anisotropy (Basser et al., 1994). Values 
close to 1 indicate that there is a dominant direction across which the 
lesional voxels spread (i.e. lesional voxels spread across a prolate 
ellipsoid) (Fig. 2). 

CAI =
̅̅̅
3

√

̅̅̅
2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(u1 − u)2 + (u2 − u)2 + (u3 − u)2

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
u2

1 + u2
2 + u2

3

√ , (3)  

In (3), u =
(u1+u2+u3)

3 . CAI ranges in [0; 1], with increasing CAI implying 
higher anisotropy. 

b) Two dimensions: this is evaluated through the Covariance Planarity 
Index (CPI), a scalar value between 0 and 1 describing how similar to a 
plane the ellipsoid defined by the limits of the lesion mask is. Values 
close to 1 indicate that the lesion mask is mainly distributed on a plane, 
with the variability spreading across two main spatial dimensions (i.e. 
lesional voxels spread across an oblate ellipsoid) (Fig. 2). 

CPI =
2(u2 − u3)

(u1 + u2 + u3)
, (4) 

In (4), CPI ranges in [0;1], with increasing CPI implying higher 
planarity. 

c) Three dimensions: this is evaluated through the Covariance Sphe-
ricity Index (CSI), a scalar value between 0 and 1 describing to what 
extent the lesional voxels of the lesion mask spread across all three 
spatial dimensions or not. CSI values close to 1 indicate that the lesional 
voxels distribute across the three spatial directions very similarly (i.e. 
lesional voxels spread across a spherical ellipsoid) (Fig. 2). 

CSI =
3u3

(u1 + u2 + u3)
, (5) 

Fig. 1. Analysis pipeline A. Once all the 
individual lesions were defined, the 3D po-
sitions of all lesional voxels within the 
whole-brain mask were extracted. These 3D 
positions were used to evaluate their spatial 
covariance matrix, from which the eigen-
values were computed after performing a 
principal component analysis. The eigen-
values were then used to obtain some of the 
spatial distribution metrics (see Methods 
section). B. This figure shows the definition 
of neuraxis and of neuraxis caudality index 
(NCI) for a given lesion (lesion NCI). The 
whole-brain NCI was computed in the same 
way, substituting the CoM of each individual 
lesion for the CoM of the whole-brain lesion 
mask. The maximum lesion NCI was 
computed calculating the CoM of the lower-
most brain lesion. Abbreviations (in alphabet-
ical order): CAI: Covariance Anisotropy 
Index; CoM: centre of mass; CPI: Covariance 
Planarity Index; CSI: Covariance Sphericity 
Index; MCI: Mean Covariance Index; NCI: 
neuraxis caudality index; SMA: supplemen-
tary motor area.   
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In (5), CSI ranges in [0; 1], with increasing CSI implying higher 
spherical shape/distribution of the lesional voxels (i.e. higher likelihood 
of all 3 spatial directions being involved in lesion spreading). 

3.1. Subjects 

We included patients with progressive MS from three independent 
longitudinal cohorts: the MS-SMART (NCT01910259) (N = 356) 
(Chataway et al., 2020) and the MS-STAT (NCT00647348) (N = 126) 
(Chataway et al., 2014) trial cohorts, and an observational cohort (N =
33) (Charalambous et al., 2019). Before starting any of these studies, 
patients gave written consent for their data to be used in subsequent 
studies, which were approved by the local Ethics Committee. 

The MS-SMART trial was a multicentre, multiarm, randomised, 
double-blind, placebo-controlled, parallel-group phase IIb trial, where 
445 patients with secondary progressive MS from 13 UK clinical 
neuroscience centres were randomised to receive amiloride, fluoxetine, 
riluzole or placebo as putative neuroprotective drugs. (Chataway et al., 
2020) No differences were observed between treatment arms in the 
primary endpoint (whole-brain volume change), as has been published 
elsewhere (Chataway et al., 2020; De Angelis et al., 2020). The partic-
ipants included in this trial underwent 1.5/3T MRI scans at baseline and 
at 24-week and 96-week follow-up. They were also assessed clinically at 
baseline and yearly thereafter on the Expanded Disability Status Scale 
(EDSS) (Kurtzke, 1983), the Timed 25-foot Walk Test (TWT) (Cutter, 
1999), the Nine Hole Peg Test (9HPT) (Cutter, 1999), the Paced Audi-
tory Serial Addition Test (PASAT) (Cutter, 1999) and the Symbol Digit 
Modalities Test (SDMT) (Smith, 2007). For this study, out of the initial 
445 participants, we included those 356 who had attended MRI sessions 
and clinical assessments at all time points. For the statistical analyses 
described below, the clinical variables (and their units) used were: EDSS 
score (EDSS score points), inverse of the TWT, i.e. reciprocal of the mean 
of the two attempts (1/s), the inverse of the 9HPT, i.e. average of the 
reciprocal value of the mean time of the two right-hand attempts and the 
reciprocal value of the mean time of the two left-hand attempts (1/s), 

the PASAT score (number of correct answers) and the SDMT score 
(number of correct answers). 

The MS-STAT trial was a multicentre, randomised, double-blind, 
placebo-controlled, parallel-group phase II trial, where 140 patients 
with secondary progressive MS from three neuroscience centres (but 
only two scanning centres) were randomised to receive simvastatin or 
placebo (Chataway et al., 2014). Patients underwent clinical and MRI 
assessments at baseline and at years 1 and 2. Out of the initial 140 
participants, we included those 126 who attended baseline and 2-year 
MRI sessions and clinical assessments. Clinical outcomes included: 
EDSS, TWT, 9HPT and PASAT scores, which were treated as described 
for the MS-SMART cohort. 

The observational cohort consisted of 33 patients with progressive 
MS (14 primary progressive MS and 19 secondary progressive MS) 
(Charalambous et al., 2019; Sethi et al., 2016). This is a progressive MS 
sub-cohort of a larger cohort, whose details have been presented in the 
past (Charalambous et al., 2019; Sethi et al., 2016). Patients underwent 
clinical and MRI assessments at baseline and after 20 months (standard 
deviation: 5.8) of follow-up (Sethi et al., 2016). Clinical variables 
included the EDSS and SDMT scores at baseline (N = 33). At follow-up, 
all patients were scored on the EDSS, but only 15 patients were scored on 
the SDMT. 

3.2. MRI acquisition 

MRI acquisition protocols of the MS-SMART trial included: i) 3D T1- 
weighted images (voxel resolution: 1 × 1 × 1 mm3), ii) axial dual echo 
fast/turbo spin echo proton density (PD)/T2-weighted from foramen 
magnum to vertex (1 × 1 × 3 mm3), as well as other sequences, not used 
in this study (Connick et al., 2018). MRI scanners included Philips 1.5 T/ 
3T, Siemens 1.5 T/3T and GE 1.5 T/3T. The full MRI protocol of the MS- 
SMART trial has been published elsewhere (Connick et al., 2018). 

MRI acquisition protocols of the MS-STAT trial have been reported 
elsewhere (Chataway et al., 2014). Two scanners (General Electric (GE) 
3 Tesla and Siemens 1.5 Tesla) were used in the study, but each patient 

Fig. 2. Examples of spatial distribution metrics. This figure shows the significance of our spatial distribution metrics. In A, there is an example of a lesion mask 
with low NCI (whose CoM lies very close to the SMA) and another example of a lesion mask with very high NCI (whose CoM lies very close to the brainstem). In B, 
there are schematic descriptions of different types of lesion masks, with some real examples: on the left, a whole-brain lesion mask with a very high CAI, where 
lesions would spread anisotropically, mainly across one spatial direction; in the middle, a lesion mask with a very high CPI, where lesions would spread mainly across 
two directions; on the right, a lesion mask with a very high CSI, where lesions would spread isotropically, i.e. across all three spatial directions almost equally. 
Abbreviations: CAI: covariance anisotropy index; CPI: covariance planarity index; CSI: covariance sphericity index; NCI: neuraxis caudality index. 
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was scanned consistently with the same machine throughout the trial. 
The protocol included 3D (volumetric) T1-weighted images (GE scan-
ner: 0.976 × 0.976 × 1.1 mm3; Siemens scanner: 1.25 × 1.25 × 1.2 
mm3), and dual-echo fast/turbo spin echo T2-weighted images (1 × 1 ×
3 mm3). 

The MRI protocol for the observational cohort included 3D T1- 
weighted images with a fast-field echo scan (1 × 1 × 1 mm3) and 
dual-echo proton density/T2-weighted axial oblique images (1 × 1 × 3 
mm3), in a 3 T Philips Achieva MR scanner. 

3.3. MRI pre-processing 

All the data underwent the same pre-processing pipeline. Pre- 
processing steps included: (1) semi-automated segmentation of WM le-
sions in T2-weighted images: T2 hyperintense lesions were identified 
manually but using a semi-automated edge finding tool (JIM v7.0, 
Xinapse Systems, Aldwincle, UK); (2) rigid co-registration of T2- 
weighted follow-up scans to T2-weighted scan at baseline in order to 
propagate the lesions to the follow-up scans; (3) resampling of lesion 
mask images to isotropic 3D T1 space; (4) lesion filling of 3D T1- 
weighted image, (Prados et al., 2016) and (5) subsequent Geodesic In-
formation Flows (GIF) brain region segmentation; (Cardoso et al., 2015) 
(6) computation, for each subject and time point, of whole-brain lesion 
load. Additionally, normal-appearing (i.e. lesion-free) WM and GM 
volumes, including deep and cortical GM volumes, were also obtained, 

through GIF segmentation; (Cardoso et al., 2015) (7) extraction of 
bilateral (merged) SMA and brainstem masks, needed to compute NCI 
and maximum lesion NCI metrics: based on GIF brain parcellations, both 
SMAs were identified and a unified mask containing only this tissue, 
bilaterally, was created; the brainstem was also identified on the GIF 
parcellation, and a mask containing this tissue was also created. These 
two masks were used to estimate the neuraxis (as explained above). 

3.4. Quantitative characterisation of spatial distribution of MS lesions 

Individual lesions were defined by labelling independent connected 
components on the whole-brain lesion mask in an all-time-points merged 
image (Fig. 3). This all-time-points merged image was generated in view of 
possible longitudinal analyses, since it allowed us to assign a consistent 
identifier to lesions from subsequent timepoints. Connected components 
were defined based on 3-connectivity, so that the maximum number of 
orthogonal hops required to consider a pixel/voxel as a neighbour in 3D 
space was equal to 3. Whenever during the follow-up two (or more) 
lesions merged into a larger one, we considered the original individual 
lesions as if they were only one, at all the time points. Then, at each time 
point, we extracted the 3D positions r = [ x y z ]T of all lesional voxels 
within the whole-brain lesion mask. Afterwards we used these 3D posi-
tions to evaluate their spatial covariance matrix, and calculate SPACE- 
MS metrics as described in the previous section. These metrics were 
computed on native (3DT1) space in order to avoid any non-linear 
registration of the images that could alter the spatial distribution of le-
sions. However, in a subset of patients, i.e., all patients from the 
‘Observational cohort’ (N = 32), we also computed them on a common, 
unbiased space, the Montreal Institute of Neurology (MNI) space. For 
that, we first obtained the lesion-filled T1 scans, which were co- 

registered to the MNI brain. We then applied the transformation ma-
trix to the lesion masks, from which we obtained the SPACE-MS metrics. 
This was done as a sensitivity analysis which aimed at exploring the 
robustness of these metrics. 

Of note, SPACE-MS metrics may also be computed on individual 
lesions. Although this was not the main focus of this paper, we also 
computed lesion-wise SPACE-MS metrics, in addition to whole-brain 
ones, as an exploratory analysis (see Supplementary Fig. 1). 

3.5. Statistical analyses 

3.5.1. Descriptive statistics and preliminary analyses 
For all SPACE-MS metrics, common descriptors of variable distri-

butions were obtained. Pearson’s (or Spearman’s, when appropriate) 
correlation coefficients were computed to assess associations between 
SPACE-MS metrics and demographic, clinical and conventional MRI 
variables at baseline, adjusting for scanning centre. 

3.5.2. SPACE-MS metrics to explain disability measures at baseline 
To understand the added value of spatial distribution metrics to 

conventional predictors of disability, we built a series of multiple linear 
regression models with baseline disability metrics at baseline as the 
dependent variable (one at a time), as follows: 

1) ‘Best a priori model’ of concurrent disability (with available data), 
including confounders but not including SPACE-MS metrics:   

yi = clinical variable at baseline for subjecti, i.e. either EDSS, inverse 
of TWT, inverse of NHPT, PASAT raw score, or SDMT raw score for that 
subjecti; BL = baseline; β0 = intercept; 

∑22
l=1βl = regression coefficients 

of the model (6 + 16 = 22). For ‘study centre’, 16 different dummy 
variables were created, one for each study centre whose data have been 
analysed; thus, the model produced 16 centre-specific regression co-
efficients (not reported); εi = random error (or true residual) for the ith 

observation, which represents the difference between the observed 
value and its predicted value according to the model; true residuals (εi) 
are assumed to be normally and independently distributed. All this ap-
plies to all models below. 

These models were built based on previous publications showing the 
importance of high brain WM lesion loads, and low GM and WM brain 
volumes for disability accrual in MS (Fisniku et al., 2008; Eshaghi et al., 
2018; Brownlee et al., 2019; Haider et al., 2021; Tur et al., 2011; Conti 
et al., 2021). Additionally, these models took into account (older) age, 
(male) sex, and (longer) disease duration, which have been associated 
with (greater) risk of disability accrual (Tintore et al., 2015). 

Therefore, we built five models, one for each clinical variable. For 
each of these, the R2 of the model, which indicates the percentage of the 
variability of the dependent variable that is explained by the model, was 
recorded. 

2) ‘SPACE-MS models’ of concurrent disability (with available data), 
adding one SPACE-MS metric at a time: 

yi = β0 + β1[lesionvolumeatBL]i + β2[GMvolumeatBL]i + β3[WMvolumeatBL]i + β4[ageatBL]i + β5[malesex]i + β6[diseasedurationatBL]i +
∑16

k=1
β7.k[centrek]i

+ εi,whereεi ∼ NID(0, σ2)

(6)   
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yi = β0 + β1[lesionvolumeatBL]i + β2[GMvolumeatBL]i + β3[WMvolumeatBL]i
+ β4[ageatBL]i + β5[malesex]i + β6[diseasedurationatBL]i

+
∑16

k=1
β7.k[centrek]i + β8[SPACEMSmetricatBL]i + εi,whereεi ∼ NID(0, σ2)

(8) 

Notation: please see explanations below equation (6). Since there are 
6 SPACE-MS metrics, we built 5× 6models, i.e. one for each clinical 
variable and for each SPACE-MS metric. For each of these models, the R2 

of the model was also recorded. 
Afterwards, the % increase in model performance (% improvement 

[%I]) was computed as: 

%I =
(R2ofmodelwithSPACEMS − R2ofmodelwithoutSPACEMS)

R2ofmodelwithoutSPACEMS
× 100 (7) 

As a second step, a sensitivity analysis was run by building such ‘Best 
a priori models’ through a more classical backward elimination strategy, 
where all potential predictors (except the SPACE-MS metric) were 
initially introduced together in the model. These were subsequently 
eliminated, one by one, based on their p-value, so that variables with 
non-significant p-values were eliminated first, until only significant (p 
< 0.05) were included as predictors. Afterwards, the SPACE-MS metrics 
(one at a time) were introduced in the model and the %I was computed 
as explained in equation (7). 

3) ‘Best SPACE-MS model’ of concurrent disability (with available 
data), selecting the best set of SPACE-MS metrics: 

yi = β0 + β1[lesionvolumeatBL]i + β2[GMvolumeatBL]i + β3[WMvolumeatBL]i
+ β4[ageatBL]i + β5[malesex]i + β6[diseasedurationatBL]i

+
∑16

k=1
β7.k[centrek]i +

∑6

m=1
β8.m[SPACEMSmetricatBL]i + εi,whereεi

∼ NID(0, σ2)

(9) 

Notation: please see explanations below equation (6). For each 
dependent variable, we built a model similar to that described in 
equation (8), but including all SPACE-MS metrics at once. Then, step-
wise backward selection of the SPACE-MS metrics was done, eliminating 
first those with highest p-values, and retaining in the model only those 
SPACE-MS metrics with p-values ≤ 0.05. After this step, one ‘final best 
SPACE-MS model’ for each clinical variable was obtained. Whenever the 
R2 of the model increased after the inclusion of the (best set of) SPACE- 
MS metrics, we considered that there was a model improvement. 

3.5.3. SPACE-MS metrics to predict future disability 
Similar models as above were built, but including the clinical mea-

sure at the last time point as the dependent variable (one at a time). 
These models also included the clinical variable at baseline (BL) as a 
predictor. Thus, the models were: 

1) ‘Best a priori model’ of future disability, not including SPACE-MS 
metrics: 

yi = β0 + β1[lesionvolumeatBL]i + β2[GMvolumeatBL]i + β3[WMvolumeatBL]i
+ β4[ageatBL]i + β5[malesex]i + β6[diseasedurationatBL]i

+
∑16

k=1
β7.k[centrek]i + β8[clinicalvariableatBL]i + εi,whereεi ∼ NID(0, σ2)

(10) 

yi = clinical variable at follow-up for subjecti, i.e. either EDSS, in-
verse of TWT, inverse of NHPT, PASAT raw score, or SDMT raw score for 
that subjecti; BL = baseline; for the rest of the notation, please see ex-
planations below equation (6). As above, we built 5 models, one for each 
clinical variable. 

2) ‘SPACE-MS models’ of future disability, adding one SPACE-MS 
metric at a time: 

yi = β0 +β1[lesionvolumeatBL]i+β2[GMvolumeatBL]i+β3[WMvolumeatBL]i

+β4[ageatBL]i+β5[malesex]i+β6[diseasedurationatBL]i+
∑16

k=1
β7.k[centrek]i

+β8[SPACEMSmetricatBL]i+β9[clinicalvariableatBL]i+εi,whereεi
∼NID

(
0,σ2)

(11) 

yi = clinical variable at follow-up for subjecti, i.e. either EDSS, inverse 
of TWT, inverse of NHPT, PASAT raw score, or SDMT raw score for that 
subjecti; BL = baseline; for the rest of the notation, please see explana-
tions below equation (6). Here we built 5× 6models, as above, one for 
each clinical variable and for each SPACE-MS metric. 

Here, we also computed %I as shown in equation (7). Additionally, 
we built similar models but using a backward elimination strategy as 
described above. 

3) ‘Best SPACE-MS model’ of future disability (with available data), 
selecting the best set of SPACE-MS metrics: 

Fig. 3. Lesion detection across time points. This figure shows how individual lesions were defined on the whole-brain lesion mask. Independent connected 
components were detected in a lesion mask obtained by merging the lesions masks corresponding from different time points (referred to as all-time-points 
merged image). 
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yi = β0+β1[lesionvolumeatBL]i+β2[GMvolumeatBL]i+β3[WMvolumeatBL]i

+β4[ageatBL]i+β5[malesex]i+β6[diseasedurationatBL]i+
∑16

k=1
β7.k[centrek]i

+
∑6

m=1
β8.m[SPACEMSmetricatBL]i+β9[clinicalvariableatBL]i

+εi,whereεi ∼NID(0,σ2)

(12) 

yi = clinical variable at follow-up for subjecti, i.e. either EDSS, inverse 
of TWT, inverse of NHPT, PASAT raw score, or SDMT raw score for that 
subjecti; BL = baseline; for the rest of the notation, please see explana-
tions below equation (6). To find the ‘best SPACE-MS model’ of future 
disability, we followed the same steps as those explained below equation 
(9) (stepwise backward selection of the SPACE-MS metrics). 

3.5.4. Dynamic changes in spatial distribution metrics 
Patients belonging to the two trial cohorts had three MRI evaluations 

over time: at baseline, 6 months, and 2 years of follow-up (for the ‘MS- 
SMART’ cohort); and at baseline, 1 year and 2 years (for the ‘MS-STAT’ 
cohort). Instead, patients from the observational cohort only had two 
assessments, at baseline and after 20 months. For this, mixed-effects 
(longitudinal) models accounting for repeated measures, with random 
intercept and random slope for time (in years) were built. In these 

models, the spatial distribution metric computed at each time point was 
considered as the dependent variable (one at a time), and ‘time’ in years 
was the main explanatory variable. Additionally, these models included, 
as covariates, changes in lesion load between baseline and follow-up, 
lesion load and GM and WM volumes at baseline, age, sex, and disease 
duration at baseline. 

yij = (β0 + u0j) + (β1 + u1j)[timeinyears]ij
+ β2[changesinlesionvolumebetweenBLandFU]j + β3[lesionvolumeatBL]j
+ β4[GMvolumeatBL]j + β5[WMvolumeatBL]j + β6[ageatBL]j + β7[malesex]j

+ β8[diseasedurationatBL]j +
∑16

k=1
β9.k[centrek]j + εij,where

(
u0j, u1j

)

∼ N(0,
∑

u
), andεij ∼ NID(0, σ2)

13) 

yij = SPACE-MS variable at timei for subjectj (please note that six 
longitudinal models were built, one for each SPACE-MS metric); BL =
baseline; FU = follow-up; (β0 + u0j) = mean (across subjects) intercept 
(β0) plus subject-specific random component of the intercept (u0j); that 
is, this model estimates one intercept for each subject; (β1 + u1j) = mean 
(across subjects) regression coefficient for time (β1) plus subject-specific 
random component of the slope for time (u1j); that is, this model 

Table 1 
Clinical, demographical and MRI characteristics at baseline.   

All patient 
Mean (SD)* 

MS-SMART 
trial cohort 
Mean (SD)* 

MS-STAT trial 
cohort 
Mean (SD)* 

Observational 
cohort 
Mean (SD)* 

p-value, MS- 
SMART vs MS- 
STAT# 

p-value, MS-SMART vs 
observational cohort# 

p-value, MS-STAT vs 
observational cohort# 

Clinical and demographical variables 
Number of 

patients 
515 356 126 33  –  –  – 

Age in years 53.83 (7.25) 54.94 (6.90) 51.22 (7.03) 51.79 (8.78)  <0.001  0.0149  0.6935 
Sex, N males (%) 172 (33.4%) 118 (33.2%) 41 (32.5%) 13 (39.4%)  0.901&  0.468&  0.459& 

Disease duration 
in years 

21.765 
(9.677) 

22.20 (9.85) 20.99 (8.74) 20.00 (11.12)  0.2247  0.2311  0.5873 

EDSS score, 
median (range) 

6.0 (3.0 to 
8.5) 

6.0 (4.0 to 6.5) 6.0 (4.0 to 
7.0) 

6.0 (3.0 to 8.5)  0.5948£  0.8918£  0.7609£ 

Inverse of TWT in 
1/s 

0.085 (0.045) 0.092 (0.047) 0.065 (0.034) –  <0.001  –  – 

Inverse of 9HPT 
in 1/s 

0.034 (0.010) 0.034 (0.010) 0.034 (0.009) –  0.8673  –  – 

PASAT raw score 37.672 
(14.973) 

38.478 
(15.058) 

35.283 
(14.518) 

–  0.0432  –  – 

SDMT raw score 44.008 
(12.368) 

44.218 
(12.532) 

– 41.53 (10.08)  –  0.2542  –  

Volumetric brain MRI variables (in mL) 
T2 lesion load 16.060 

(13.954) 
13.087 
(12.379) 

23.874 
(14.567) 

18.291 (15.959)  0.003  0.770  0.041 

NAWM volume 546.303 
(75.573) 

586.309 
(44.737) 

466.703 
(42.841) 

418.659 
(52.993)  

<0.001  <0.001  <0.001 

CGM volume 728.529 
(104.401) 

790.007 
(43.824) 

594.371 
(59.668) 

577.555 
(58.635)  

<0.001  <0.001  0.174 

DGM volume 40.973 
(6.764) 

44.591 (4.094) 32.703 
(3.998) 

33.519 (3.783)  <0.001  <0.001  0.076  

SPACE-MS metrics (dimensionless units unless otherwise specified) 
NCI 0.481 (0.073) 0.480 (0.079) 0.491 (0.054) 0.454 (0.066)  0.153  0.715  <0.001 
Maximum lesion 

NCI 
1.140 (0.145) 1.120 (0.137) 1.223 (0.124) 1.047 (0.166)  <0.001  0.111  <0.001 

MCI, in mm2 599.867 
(107.241) 

613.666 
(108.274) 

567.673 
(94.529) 

573.932 
(113.476)  

0.448  0.639  0.787 

CAI 0.582 (0.107) 0.593 (0.113) 0.554 (0.082) 0.570 (0.117)  0.043  0.877  0.241 
CPI 0.384 (0.134) 0.385 (0.133) 0.375 (0.133) 0.408 (0.143)  0.657  0.614  0.071 
CSI 0.368 (0.121) 0.356 (0.124) 0.403 (0.100) 0.364 (0.130)  0.013  0.945  0.013 

*unless otherwise specified; #: unadjusted comparisons, through independent samples t-test, unless otherwise specified; &: chi-square test; £: Mann-Whitney U test. 
Abbreviations (in alphabetical order): 9HPT: nine-hole peg test; CAI: covariance anisotropy index; CI: Confidence Interval; CPI: covariance planarity index; CSI: 
covariance sphericity index; EDSS: expanded disability status scale; GM: grey matter; Max: maximum; MCI: mean covariance index; NAWM: normal-appearing white 
matter; NCI: neuraxis caudality index; PASAT: paced auditory serial addition test (measured in number of correct answers); RC: regression coefficient; SD: standard 
deviation; SDMT: symbol digit modalities test (measured in number of correct answers); SPACE-MS: spatial patterns (of MS lesions) assessed through covariance 
estimations of lesional voxels; TWT: 25-foot timed walk test. 
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estimates one regression coefficient (or slope) for time for each subject; 
from β2 to β9 = regression coefficients for the rest of variables, which do 
not change over time and which do not have any subject-specific random 
component (i.e. these are fixed effects). This model assumes that the two 
random components (u0j,u1j), given the covariates, follow a multivariate 

normal distribution, where 
∑

u is a 2 × 2 matrix: 

(
σ2

u00 σu10

σu01 σ2
u11

)

which 

represents the covariance structure of the model (we allowed this to be 
unstructured); σ2

u00 = between-subject variance of (the dependent vari-
able) at the intercept (i.e. at time = 0); σ2

u11 = between-subject variance 
of the slopes for time; σu01 = σu10 = covariance between slope and 
intercept (we allowed this to take any number). This model also assumed 
that (so-called level-1) residuals εij were normally and identically 
distributed, with mean = 0 and variance = σ2 . 

As an exploratory analysis, other longitudinal models were also built 
where the variable ‘time’ was reparameterised as: 1) ‘disease duration’, 
given that disease duration also increases with increasing study follow- 

up, and considering that not all patients had the same disease duration at 
study onset (this model was adjusted for age); and as 2) ‘age’, given that 
age increases with increasing study follow-up, and not all patients had 
the same age at study baseline (this model was built with and without 
adjusting for disease duration). These two models gave us the possibility 
of covering a much wider range of the progression period than when we 
modelled the evolution of MRI parameters over the relatively short 
study follow-up period. The potential non-linear behaviour of SPACE- 
MS metrics over time was also explored, through the addition of 
quadratic terms for the time variable, in all longitudinal models. 

Model assumptions were checked for all models. Statistical signifi-
cance was set at 0.05. All the statistical analyses were carried out in 
Stata/SE 14.2. 

4. Results 

SPACE-MS was successfully implemented and applied to a cohort of 
515 patients with progressive MS. The introduction of SPACE-MS 

Table 2 
Associations of SPACE-MS metrics with demographic, clinical and MRI variables#   

SPACE-MS§

NCI Maximum lesion NCI MCI CAI CPI CSI 

Demographic variables 
Age in years − 0.0909 

p ¼ 0.0339 
− 0.0414 
p = 0.3351 

0.0931 
p ¼ 0.0299 

0.1778 
p < 0.0001 

0.1938 
p < 0.0001 

− 0.2476 
p < 0.0001 

Sex (male)* 0.0485 
p = 0.2575 

− 0.0033 
p = 0.9378 

0.2268 
p < 0.0001 

− 0.0394 
p = 0.3577 

0.0090 
p = 0.8343 

0.0473 
p = 0.2702  

Clinical variables 
Disease duration in years − 0.1086 

p = 0.4129 
− 0.0539 
p = 0.6854 

− 0.0092 
p = 0.9448 

0.0140 
p = 0.9165 

0.2489 
p = 0.0574 

− 0.1265 
p = 0.3399 

EDSS score* − 0.0266 
p = 0.5372 

0.1215 
p ¼ 0.0046 

0.0729 
p = 0.0902 

− 0.0690 
p = 0.1088 

− 0.0058 
p = 0.8921 

0.0719 
p = 0.0947 

Inverse of TWT in 1/s 0.1002 
p ¼ 0.0294 

− 0.1559 
p ¼ 0.0007 

0.0643 
p = 0.1634 

0.1365 
p ¼ 0.0030 

− 0.0170 
p = 0.7128 

− 0.1161 
p ¼ 0.0116 

Inverse of 9HPT in 1/s − 0.0048 
0.9165 

− 0.1721 
p ¼ 0.0002 

− 0.1323 
p ¼ 0.0037 

0.2330 
p < 0.0001 

− 0.0137 
p = 0.7645 

− 0.1922 
p < 0.0001 

PASAT raw score 0.1860 
p < 0.0001 

− 0.0766 
0.0949 

0.0566 
p = 0.2180 

0.1724 
p ¼ 0.0002 

− 0.1151 
p ¼ 0.0119 

− 0.0886 
0.0534 

SDMT raw score 0.1167 
p ¼ 0.0180 

− 0.2399 
p < 0.0001 

− 0.0013 
p = 0.9786 

0.2626 
p < 0.0001 

− 0.0841 
p = 0.0890 

− 0.1951 
p ¼ 0.0001  

MRI variablesþ

T2 lesion load − 0.2685 
p < 0.0001 

0.1846 
p < 0.0001 

0.0824 
p = 0.0657 

− 0.2831 
p < 0.0001 

0.3141 
p < 0.0001 

0.0782 
p = 0.0806 

NAWM volume 0.1401 
p ¼ 0.0017 

− 0.1034 
p = 0.0207 

0.2047 
p < 0.0001 

0.1636 
p ¼ 0.0002 

− 0.1683 
p ¼ 0.0002 

− 0.0519 
p = 0.2470 

GM volume 0.1164 
p ¼ 0.0092 

− 0.0401 
p = 0.3714 

0.1423 
p ¼ 0.0014 

0.0996 
p = 0.0259 

− 0.2499 
p < 0.0001 

0.0514 
p = 0.2509 

CGM volume 0.1156 
p ¼ 0.0097 

− 0.0306  
= 0.4951 

0.1408 
p ¼ 0.0016 

0.0906 
p = 0.0429 

− 0.2437 
p < 0.0001 

0.0561 
p = 0.2106 

DGM volume 0.0937 
p = 0.0363 

− 0.1426 
p ¼ 0.0014 

0.1205 
p ¼ 0.0070 

0.1796 
p < 0.0001 

− 0.2541 
p < 0.0001 

− 0.0187 
p = 0.6774  

SPACE-MS metricsþ

NCI 1 – – – – – 
Maximum lesion NCI 0.1772 

p ¼ 0.0001 
1 – – – – 

MCI 0.1648 
p ¼ 0.0002 

0.1169 
p ¼ 0.0089 

1 – – – 

CAI 0.0641 
p = 0.1526 

− 0.3348 
p < 0.0001 

0.1411 
p ¼ 0.0016 

1 – – 

CPI − 0.2007 
p < 0.0001 

− 0.1162 
p ¼ 0.0093 

− 0.2270 
p < 0.0001 

− 0.1416 
p ¼ 0.0015 

1 – 

CSI 0.0634 
p = 0.1571 

0.3933 
p < 0.0001 

0.0025 
p = 0.9563 

− 0.8186 
p < 0.0001 

− 0.4368 
p < 0.0001 

1 

#: Pearson’s correlation coefficient, unless otherwise specified; *: Spearman’s correlation coefficient; + for the correlations between SPACE-MS and other MRI 
variables, partial correlation coefficients adjusting for scanning centre are presented (instead of unadjusted Pearson’s correlation coefficients); §: only the strongest 
associations (p < 0.01) are highlighted. Abbreviations (in alphabetical order): 9HPT: nine-hole peg test; CAI: covariance anisotropy index; CI: Confidence Interval; CPI: 
covariance planarity index; CSI: covariance sphericity index; EDSS: expanded disability status scale; GM: grey matter; Max: maximum; MCI: mean covariance index; 
NAWM: normal-appearing white matter; NCI: neuraxis caudality index; PASAT: paced auditory serial addition test (measured in number of correct answers); RC: 
regression coefficient; SD: standard deviation; SDMT: symbol digit modalities test (measured in number of correct answers); SPACE-MS: spatial patterns (of MS lesions) 
assessed through covariance estimations of lesional voxels; TWT: 25-foot timed walk test. 
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metrics revealed characteristics of lesion distribution and location that 
are important for explaining concurrent disability and predict future 
disability accrual, beyond traditional metrics of lesion load and GM and 
WM volumes. Detailed results are reported here below. 

4.1. Descriptive statistics and preliminary analyses 

Clinical, demographic and MRI variables at baseline are shown in 
Table 1. Unadjusted baseline associations between SPACE-MS metrics 
and demographic, clinical, and MRI variables are shown in Table 2. This 
table also shows the correlations between the different SPACE-MS 
metrics. When age-, sex- and disease-duration-adjusted values of 
SPACE-MS metrics were compared across all 16 study centres, very 
similar values were observed (Fig. 4). Clinical measures at baseline and 
follow-up were highly correlated, as expected, given the relatively short 
follow-up of our cohort (Supplementary Table 1). 

4.2. Explanation of disability measures at baseline 

The best a priori models showed expected results, being a higher 
lesion volume at baseline the best overall predictor of worse disability, 
for all clinical outcomes (Table 3). Larger WM and GM volumes were 
associated with better clinical scores. Older age at study baseline was 
associated with better clinical scores and male sex had a less clear effect: 
it was significantly associated with better EDSS (p = 0.003), TWT (p =
0.004) and PASAT (p = 0.004) outcomes, whereas it was associated with 
worse NHPT performance (p < 0.001). Longer disease duration was 
associated with worse clinical outcomes (Table 3). 

When SPACE-MS metrics were added individually to the five best a 
priori models, several improvements in model performance were 
observed: higher caudality of the whole-brain lesion mask and/or higher 
caudality of the most caudal brain lesion were associated with worse 
motor disability as measured by the EDSS (maximum lesion NCI, p =
0.034) or NHPT (NCI, p = 0.010; maximum lesion NCI, p = 0.011). 
Higher caudality of the whole-brain lesion mask was also associated 
with better PASAT scores (p = 0.029). Instead, patients whose most 

caudal lesion was more caudal performed worse on the SDMT (p =
0.009). Patients whose whole-brain lesion masks showed greater 
spreading (i.e. higher MCI) or this spreading was more isotropic (i.e. 
higher CSI and/or smaller CAI) showed significantly greater disability 
levels for all clinical measures except for PASAT. Fig. 5 shows the sig-
nificant (adjusted) associations of CSI and NCI with clinical variables. 

When all SPACE-MS metrics were included together in the model as 
predictors (together with the predictors of the best a priori models), 
(higher) CSI appeared as the best overall predictor of (worse) perfor-
mance on the EDSS (p = 0.002), TWT (p = 0.002), and SDMT (p =
0.001). For the NHPT, both higher CSI (p = 0.001) and higher NCI (p =
0.019) independently predicted worse performance. Finally, (higher) 
NCI appeared as the best predictor of (better) PASAT performance (p =
0.029). 

Similar predictions were observed when the ‘best a priori models’ 
were built following a backward elimination strategy (Supplementary 
Table 2). 

4.3. Prediction of future disability 

The best a priori models showed that the clinical score at baseline 
was the strongest predictor of future disability for all clinical scores. 
Larger T2 lesion volumes were also predictive of worse outcome. The 
role of the rest of the a priori predictors was much less clear (Table 4). 

When SPACE-MS metrics were added individually to these five best a 
priori models, modest but significant improvements in model perfor-
mance were observed for prediction of EDSS, NHPT and SDMT at follow- 
up. No significant improvements were observed for TWT or PASAT. In 
general, having a more caudal whole-brain lesion mask or lowermost 
brain lesion implied worse disability scores at follow-up as measured by 
the EDSS (p = 0.015) or the SDMT (p = 0.002), respectively. Addi-
tionally, having a more isotropic distribution of the lesions in the brain 
at baseline (i.e. higher CSI and/or lower CAI) also implied worse 
disability at follow-up, as measured by the NHPT (CAI, p = 0.018; CSI: p 
= 0.002) and the SDMT (CAI: p = 0.020; CSI: p = 0.007). 

When all SPACE-MS metrics were added together to the best a priori 

Fig. 4. Adjusted values of SPACE-MS metrics for all study centres. This figure shows the age-, sex-, disease-duration-, and lesion-load-adjusted values of SPACE- 
MS metrics for all 16 study centres. Overall, such adjusted values of SPACE-MS metrics were very similar across centres. Importantly, though, the values shown in this 
figure have not been adjusted for disability measures, so the variability across centres due to differences in disability scores between centres has not been removed. 
Abbreviations: CAI: covariance anisotropy index; CPI: covariance planarity index; CSI: covariance sphericity index; NCI: neuraxis caudality index. 
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model for each clinical outcome, the best SPACE-MS predictors were 
NCI (for EDSS, p = 0.015), CSI (for NHPT, p = 0.002), and maximum 
lesion NCI (for SDMT, p = 0.002) (Table 4). 

Similar predictions were observed when the ‘best a priori models’ 
were built following a backward elimination strategy (Supplementary 
Table 3). 

4.4. Dynamic changes in spatial distribution metrics 

Over time, there was a significant decrease in NCI of − 0.0007 units/ 
year (95% Confidence Interval [95%CI]) − 0.0013 to − 0.0002), p =
0.012, indicating that the whole-brain masks became more cranial as 
time went on. Instead, maximum lesion NCI significantly increased 
during the follow-up by 0.0011 units/year (95%CI 0.0002 to 0.0021), p 

= 0.017, indicating that the most caudal brain lesion tended to be more 
caudal as time went on. Additionally, the isotropy of the whole-brain 
lesion mask tended to increase as time went on, as reflected by a sig-
nificant decrease in CAI by − 0.0008 units/year − 0.0014 to − 0.0001), p 
= 0.018. No significant changes over time were observed in MCI 
(Regression Coefficient [RC] = 0.2854 mm2/year [95%CI: − 0.5238 to 
1.0945], p = 0.489), CPI (RC = 0.0007 units/year [− 0.0005 to 0.0018], 
p = 0.256) or CSI (RC = 0.0005 [− 0.0004 to 0.0013], p = 0.269). 

Alternative models to quantify changes in SPACE-MS metrics with 
time-derived variables different from ‘(within-study) follow-up time’ 
did not materially provide different results. However, these models 
revealed a non-linear behaviour of the dynamic changes for NCI and 
CAI, which could not be captured with the original longitudinal models 
built, and which suggested a trend to plateau as age or disease duration 

Table 3 
Explanation of concurrent disability using SPACE-MS metrics.   

Clinical variable at baseline# (dependent variable) 

EDSS score Inverse of TWT Inverse of 9HPT PASAT score SDMT score 

Best a priori models 
Model R2 0.1156 0.2071 0.2193 0.2102 0.3414 
Main predictors (below) 
Lesion load at baseline in 

mLRC (95%CI), p-value 
0.009 (0.003 to 
0.014), p ¼ 0.002 

− 0.0004 (− 0.0007 to 
− 0.0001), p ¼ 0.009 

− 0.0002 (− 0.0003 to 
− 0.00015), p < 0.001 

− 0.371 (-0.471 to 
− 0.271), p < 0.001 

− 0.405 (-0.492 to 
− 0.317), p < 0.001 

WM volume at baseline in 
mLRC (95%CI), p-value 

− 0.001 (− 0.004 to 
0.002), p = 0.439 

0.0001 (− 0.00001 to 
0.0003), p = 0.077 

0.00004 (0.00001 to 
0.00007), p ¼ 0.006 

0.003 (− 0.041 to 
0.048), p = 0.885 

0.087 (0.049 to 0.125), p 
< 0.001 

GM volume at baseline in 
mLRC (95%CI), p-value 

− 0.0004 (− 0.003 to 
0.002), p = 0.752 

− 0.00003 (− 0.0001 to 
0.0001), p = 0.670 

6.41•10-06 (− 0.00002 to 
0.00003), p = 0.635 

0.041 (0.001 to 0.081), 
p ¼ 0.042 

− 0.008 (− 0.045 to 
0.030), p = 0.683 

Age at baseline in yearsRC 
(95%CI), p-value 

0.006 (− 0.005 to 
0.017), p = 0.261 

− 0.0004 (− 0.001 to 
0.0002), p = 0.178 

0.0002 (0.0001 to 0.0003), 
p ¼ 0.004 

0.272 (0.074 to 0.469), 
p ¼ 0.007 

0.048 (-0.123 to 0.219), p 
= 0.581 

Male sexRC (95%CI), p-value − 0.222 (-0.370 to 
− 0.073), p ¼ 0.003 

0.012 (0.004 to 0.021), p 
¼ 0.004 

− 0.003 (− 0.005 to 
− 0.001), p < 0.001 

3.974 (1.292 to 6.655), 
p ¼ 0.004 

− 0.938 (-3.275 to 1.399), 
p = 0.430 

Disease duration at baseline in 
yearsRC (95%CI), p-value 

0.009 (0.001 to 
0.017), p ¼ 0.028 

− 0.0006 (− 0.0011 to 
− 0.0002), p ¼ 0.007 

− 0.0001 (− 0.00020 to 
− 8.33•10-06), p ¼ 0.033 

− 0.011 (-0.156 to 
0.134), p = 0.879 

− 0.040 (-0.160 to 0.081), 
p = 0.514  

SPACE-MS models of concurrent disability& 

Baseline SPACE-MS metrics (below)$ 

NCIRC (95%CI), p-value 
Model R2 (%I) 

− 0.135 (− 1.151 to 
0.880), p = 0.793 
0.1158 (0.2%) 

0.031 (− 0.025 to 0.086), p 
= 0.276 
0.2092 (1.0%) 

− 0.016 (− 0.028 to 
− 0.004), p = 0.010 
0.2308 (5.2%) 

20.106 (2.061 to 
38.152), p = 0.029 
0.2185 (3.9%) 

− 7.103 (-21.637 to 
7.430), p = 0.337 
0.3431 (0.5%) 

Maximum lesion NCIRC (95% 
CI), p-value 
Model R2 (%I) 

0.593 (0.046 to 
1.140), p = 0.034 
0.1238 (7.1%) 

− 0.030 (− 0.061 to 0.001), 
p = 0.058 
0.2135 (3.1%) 

− 0.009 (− 0.015 to 
− 0.002), p = 0.011 
0.2305 (5.1%) 

− 0.423 (− 10.478 to 
9.632), p = 0.934 
0.2102 (0%) 

− 10.978 (− 19.161 to 
− 2.796), p = 0.009 
0.3540 (3.7%) 

MCIRC (95%CI), p-value 
Model R2 (%I) 

0.0004 (− 0.0003 to 
0.001), p = 0.245 
0.1181 (2.2%) 

− 7.16•10-06(− 0.00005 to 
0.00003), p = 0.712 
0.2073 (0.1%) 

− 0.00001(− 0.00002 
to− 3.95•10-06), p = 0.004 
0.2336 (6.5%) 

− 0.001 (− 0.014 to 
0.011), p = 0.857 
0.2102 (0%) 

0.0003 (− 0.010 to 0.011), 
p = 0.949 
0.3414 (0%) 

CAIRC (95%CI), p-value 
Model R2 (%I) 

− 0.780 (− 1.484 to 
− 0.076), p = 0.030 
0.1242 (7.4%) 

0.049 (0.011 to 0.088), p =
0.013 
0.2181 (5.3%) 

0.012 (0.003 to 0.020), p =
0.006 
0.2323 (5.9%) 

10.248 (− 2.599 to 
23.095), p = 0.118 
0.2145 (2.0%) 

14.667 (4.500 to 24.834), 
p = 0.005 
0.3559 (4.2%) 

CPIRC (95%CI), p-value 
Model R2 (%I) 

− 0.519 (− 1.088 to 
0.049), p = 0.073 
0.1215 (5.1%) 

0.024 (− 0.007 to 0.055), p 
= 0.131 
0.2111 (1.9%) 

0.008 (0.001 to 0.015), p =
0.023 
0.2281 (4.0%) 

1.196 (− 9.090 to 
11.483), p = 0.819 
0.2103 (0.1%) 

6.921 (− 1.65248 
15.49546), p = 0.113 
0.3460 (1.3%) 

CSIRC (95%CI), p-value 
Model R2 (%I) 

0.960 (0.343 to 
1.578), p = 0.002 
0.1323 (14.4%) 

− 0.053 (− 0.087 to 
− 0.019), p = 0.002 
0.2237 (8.0%) 

− 0.013 (− 0.021 to 
− 0.006), p < 0.001 
0.2408 (9.8%) 

− 8.953 (− 20.189 to 
2.283), p = 0.118 
0.2145 (2.0%) 

− 15.562 (− 24.667 to 
− 6.458), p = 0.001 
0.3616 (5.9%)  

Best SPACE-MS model of concurrent disability 
Best SPACE-MS metric(s) at 

baselineRC (95%CI), p-value 
Model R2 (%I) 

CSI: 0.960(0.343 to 
1.578), p ¼ 0.002 
0.1323 (14.4%) 

CSI: − 0.053(− 0.087 to 
− 0.019), p ¼ 0.002 
0.2237 (8.0%) 

CSI: − 0.013(− 0.020 to 
− 0.005), p ¼ 0.001 
NCI: − 0.014(− 0.026 to 
− 0.002), p ¼ 0.019 
0.2500 (14.0%) 

NCI: 20.106 (2.061 to 
38.152), p ¼ 0.029 
0.2185 (3.9%) 

CSI: − 15.562(− 24.667 to 
− 6.458), p ¼ 0.001 
0.3616 (5.9%) 

The ‘best a priori model’ included, as covariates, baseline lesion volume, baseline WM volume, baseline GM volume, age in years at baseline, male sex, disease duration 
at baseline, and study centre. Of note, the regression coefficients for ‘study centre’ are not shown (for simplicity). The ‘SPACE-MS models’ included all the variables of 
the ‘best a priori model’ plus one SPACE-MS metric at a time. See methods for full details. #: the EDSS score is measured in EDSS score units; the inverse of TWT and the 
inverse of 9HPT, in 1/s; and the PASAT and SDMT scores, in number of correct answers; &: all ‘SPACE-MS models’ included, as covariates, the variables included in the 
‘best a priori models’. However, for simplicity, only the RC (95%CI) of the SPACE-MS metric is shown; $: all SPACE-MS metrics are measured in dimensionless units 
except for MCI, which is measured in mm2. Significant results are highlighted. Abbreviations (in alphabetical order): %I: percentage of model improvement based on R2; 
9HPT: nine-hole peg test; CAI: covariance anisotropy index; CI: Confidence Interval; CPI: covariance planarity index; CSI: covariance sphericity index; EDSS: expanded 
disability status scale; GM: grey matter; Max: maximum; MCI: mean covariance index; NAWM: normal-appearing white matter; NCI: neuraxis caudality index; PASAT: 
paced auditory serial addition test (measured in number of correct answers); RC: regression coefficient; SD: standard deviation; SDMT: symbol digit modalities test 
(measured in number of correct answers); SPACE-MS: spatial patterns (of MS lesions) assessed through covariance estimations of lesional voxels; TWT: 25-foot timed 
walk test. 
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increased. These models are shown in detail in Supplementary Table 4. 
As expected, total lesion load significantly increased over time by 

117.845 µL/year (95%CI: 84.517 to 151.173), p < 0.001. 

4.5. Sensitivity and further exploratory analyses 

As an exploratory analysis, individual-lesion (lesion-wise) metrics 
were computed and the variation of lesion shapes across the brain was 
visually assessed. Whereas lesion-wise NCI increased as the individual 
lesions became more caudal, as expected, there was not a clear pattern in 
the distribution of lesion shapes across the brain (Supplementary 
Fig. 1). When we assessed the relationship between lesion-wise and 
whole-brain SPACE-MS metrics, no strong correlations were observed, 
except for a moderate-strong correlation between whole-brain NCI and 
mean lesion-wise NCI (Supplementary Table 5). 

Regarding the models built with the MNI-space SPACE-MS metrics as 
part of a sensitivity analysis, very similar results to those obtained with 
native-space (3DT1) metrics were obtained (Supplementary Tables 6 
and 7). 

5. Discussion 

5.1. Summary and key findings 

Here we presented SPACE-MS, a novel methodological approach to 
quantitatively assess aspects of WM lesion spatial distribution. Practi-
cally, such features can automatically be extracted from conventional 
structural MRI through our approach and could therefore be readily 
applied in clinical studies and trials. In our study in progressive MS, we 
found that spatial distributional features of brain lesions, when added to 
conventional predictive models of disability, significantly improved 
clinical outcome prediction. In particular, the presence of lesions in 
lower parts of the brain, and a more isotropic disposition of lesions 
emerged as particularly harmful features. 

5.2. Caudality of lesions 

At baseline, the location of lesions in lower parts of the brain, either 
referring to the whole-brain lesion mask or the lowermost brain lesion, 
was associated with greater motor disability, at baseline and over time, 

Fig. 5. Baseline associations between spatial distribution metrics and clinical variables. This figure shows the main associations between spatial distribution 
metrics and clinical variables at baseline, after adjusting for all relevant confounders. For graphical purposes only, the y-axis in this figure indicates the values of the 
clinical variable at baseline (dependent variable) after having been adjusted for all the covariates in the corresponding ‘best a priori model’ (as indicated in the 
methods and Table 3). Abbreviations in alphabetical order: CSI: covariance sphericity index; EDSS: expanded disability status scale; NCI: neuraxis caudality index; 
NHPT: nine-hole peg test; PASAT: paced auditory serial addition test; SDMT: symbol digit modalities test; TWT: 25-foot timed walk test. 
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independently of lesion load and WM and GM volumes. The models 
based on conventional predictors of motor disability (e.g. EDSS) 
significantly improved after adding information on the caudality of le-
sions. This is the first time that a continuous metric enabling the 
quantitative assessment of lesion caudality is proposed. Interestingly, 
since the advent of the MRI to diagnose and monitor MS (Paty et al., 
1988), numerous authors have shown that lesions affecting the infra-
tentorial brain (Tintore et al., 2010; Chung et al., 2020; Kerbrat et al., 
2020) or the spinal cord (Eden et al., 2019; Brownlee et al., 2019; 
Kerbrat et al., 2020) entail a particularly bad prognosis. However, this 

conventional information on lesion location is qualitative and requires 
visual inspection of the images. Thus, a major strength of our study is 
that the metrics we use to describe lesion caudality are fully automatic 
and objective, without requiring any expert neuro-radiological input. 

A possible explanation for the strong association between higher NCI 
and greater motor disability could be that the impact of lesions is higher 
as the axonal density of the lesional tissue increases, as happens in more 
caudal parts of the WM tracts (Groeschel et al., 2016) and the cere-
bellum (Mitchell et al., 2019). This would be in line with a higher 
damaging effect of spinal cord lesions than that of infratentorial ones 

Table 4 
Prediction of future disability using SPACE-MS metrics.   

Clinical variable at follow-up# (dependent variable) 

EDSS score Inverse of TWT Inverse of 9HPT PASAT score SDMT score 

Best a priori models 
Model R2 0.6205 0.5607 0.7528 0.6522 0.8063 
Main predictors (below) 
Lesion load at baseline in 

mLRC (95%CI), p-value 
3.22•10-06(-1.91•10-06 to 
8.35•10-06), p = 0.219 

− 3.66•10-07(-6.50•10-07 

to− 8.20•10-08), p ¼
0.012 

− 3.56•10-08(-8.31•10-08 to 
1.18•10-08), p = 0.140 

− 0.00025(− 0.00033 
to− 0.00017), p < 0.001 

− 0.00019(− 0.00026 
to− 0.00013), p < 0.001 

WM volume at baseline in 
mLRC (95%CI), p-value 

2.65•10-08(-2.21•10-06 to 
2.27•10-06), p = 0.981 

− 4.83•10-08(-1.70•10-07 

to 7.37•10-08), p = 0.437 
− 3.96•10-09(-2.44•10-08 to 
1.64•10-08), p = 0.703 

0.00004(2.28•10-06 to 
0.00007), p ¼ 0.036 

5.14•10-06(− 0.00002 to 
0.00003), p = 0.686 

GM volume at baseline in 
mL 
RC (95%CI), p-value 

− 4.49•10-07(− 2.42•10- 

06 to 1.52•10-06), p =
0.654 

5.07•10-08(− 5.87•10-08 

to 1.60•10-07), p = 0.363 
1.28•10-08(− 5.13•10-09 to 
3.07•10-08), p = 0.161 

4.95•10-06(− 0.00002 to 
0.00003), p = 0.743 

9.73•10-06(− 0.00002 to 
0.00003), p = 0.445 

Age at baseline in years 
RC (95%CI), p-value 

− 0.008(− 0.017 to 
0.002), p = 0.116 

0.0004(− 0.0001 to 
0.001), p = 0.144 

0.00006(− 0.00003 to 
0.00015), p = 0.177 

0.168 (0.022 to 0.314), 
p ¼ 0.024 

0.090 (− 0.022 to 0.202), p =
0.113 

Male sex 
RC (95%CI), p-value 

0.014 (− 0.119 to 0.146), 
p = 0.840 

0.001 (− 0.007 to 0.008), 
p = 0.883 

− 0.0002 (− 0.001 to 0.001), 
p = 0.734 

2.177 (0.179 to 4.175), 
p ¼ 0.033 

− 0.541 (-2.096 to 1.013), p 
= 0.494 

Disease duration at 
baseline in years 
RC (95%CI), p-value 

− 0.007 (− 0.015 to 
− 0.0003), p ¼ 0.042 

0.00049 (0.00009 to 
0.00089), p ¼ 0.017 

0.00003(− 0.00004 to 
0.00009), p = 0.403 

− 0.039 (− 0.145 to 
0.068), p = 0.474 

− 0.042 (− 0.120 to 0.036), p 
= 0.287 

Clinical variable at 
baseline 
RC (95%CI), p-value 

1.027 (0.950 to 1.105), p 
< 0.001 

0.860 (0.777 to 0.943), p 
< 0.001 

0.961 (0.899 to 1.023), p < 
0.001 

0.720 (0.651 to 0.789), 
p < 0.001 

0.843 (0.776 to 0.911), p < 
0.000  

SPACE-MS models of future disability& 

Baseline SPACE-MS metrics (below)$ 

NCIRC (95%CI), p-value 
Model R2 (%I) 

1.114 (0.217 to 2.012), p 
¼ 0.015 
0.6253 (0.8%) 

− 0.044 (− 0.094 to 
0.005), p = 0.079 
0.5641 (0.6%) 

0.001 (− 0.008 to 0.009), p 
= 0.902 
0.7528 (0%) 

4.084 (-9.477 to 
17.644), p = 0.554 
0.6525 (0.1%) 

− 5.118 (-14.567 to 4.331), p 
= 0.287 
0.8070 (0.1%) 

Maximum lesion NCIRC 
(95%CI), p-value 
Model R2 (%I) 

0.453 (− 0.033 to 0.939), 
p = 0.068 
0.6232 (0.4%) 

− 0.023 (− 0.051 to 
0.005), p = 0.109 
0.5635 (0.5%) 

− 0.004 (− 0.008 to 0.001), 
p = 0.118 
0.7542 (0.2%) 

1.659 (-5.825 to 9.143), 
p = 0.6603 
0.6523 (0.02%) 

− 8.669 (-14.040 to − 3.299), 
p ¼ 0.002 
0.8122 (0.7%) 

MCIRC (95%CI), p-value 
Model R2 (%I) 

− 0.0002(− 0.0008 to 
0.0004), p = 0.503 
0.6209 (0.1%) 

0.00001(− 0.00002 to 
0.00004), p = 0.523 
0.5611 (0.1%) 

− 5.39•10− 07(-6.19•10− 06 

to 5.11•10− 06), p = 0.851 
0.7528 (0%) 

0.004 (− 0.006 to 
0.013), p = 0.439 
0.6527 (0.1%) 

− 0.001 (− 0.008 to 0.005), p 
= 0.664 
0.8064 (0.01%) 

CAIRC (95%CI), p-value 
Model R2 (%I) 

− 0.523 (-1.149 to 0.103), 
p = 0.101 
0.6227 (0.4%) 

0.017 (− 0.019 to 0.052), 
p = 0.352 
0.5616 (0.2%) 

0.007 (0.001 to 0.013), p ¼
0.018 
0.7560 (0.4%) 

− 0.188 (-9.802 to 
9.427), p = 0.969 
0.6522 (0%) 

7.970 (1.237 to 14.703), p ¼
0.020 
0.8095 (0.4%) 

CPIRC (95%CI), p-value 
Model R2 (%I) 

− 0.172 (− 0.686 to 
0.343), p = 0.513 
0.6208 (0.1%) 

0.023 (− 0.006 to 0.052), 
p = 0.125 
0.5633 (0.5%) 

0.004 (− 0.001 to 0.008), p 
= 0.123 
0.7542 (0.2%) 

− 4.428 (-12.093 to 
3.237), p = 0.257 
0.6532 (0.2%) 

3.198 (-2.489 to 8.885), p =
0.269 
0.8071 (0.1%) 

CSIRC (95%CI), p-value 
Model R2 (%I) 

0.498 (− 0.057 to 1.054), 
p = 0.079 
0.6230 (0.4%) 

− 0.028 (− 0.060 to 
0.004), p = 0.082 
0.5640 (0.6%) 

− 0.008 (− 0.013 to 
− 0.003), p ¼ 0.002 
0.7585 (0.8%) 

3.640 (-4.759 to 
12.039), p = 0.395 
0.6528 (0.1%) 

− 8.317 (-14.378 to − 2.257), 
p ¼ 0.007 
0.8106 (0.5%)  

Best SPACE-MS model of future disability 
Best SPACE-MS metric(s) 

at baselineRC (95%CI), 
p-value 
Model R2 (%I) 

NCI: 1.114 (0.217 to 
2.012), p ¼ 0.015 
0.6253 (0.8%) 

NCI: − 0.044(− 0.094 to 
0.005), p = 0.079 
0.5641 (0.6%) 

CSI: − 0.008(− 0.013 
to− 0.003), p ¼ 0.002 
0.7585 (0.8%) 

CPI: − 4.428(-12.093 to 
3.237), p = 0.257 
0.6532 (0.2%) 

Maximum lesion NCI: − 8.669 
(-14.040 to − 3.299), p ¼
0.002 
0.8122 (0.7%) 

The ‘best a priori model’ included, as covariates, baseline lesion volume, baseline WM volume, baseline GM volume, age in years at baseline, male sex, disease duration 
at baseline, centre, and clinical variable at baseline. Of note, the regression coefficients for ‘study centre’ are not shown (for simplicity). The ‘SPACE-MS models’ 
included all the variables of the ‘best a priori model’ plus one SPACE-MS metric at baseline at a time. See methods for full details. #: the EDSS score is measured in EDSS 
score units; the inverse of TWT and the inverse of 9HPT, in 1/s; and the PASAT and SDMT scores, in number of correct answers; &: all ‘SPACE-MS models’ included, as 
covariates, the variables included in the ‘best a priori models’. However, for simplicity, the RC (95% CI) of all these extra variables are not shown; $: all spatial 
distribution metrics are measured in dimensionless units except for MCI, which is measured in mm2. Significant results are highlighted. Abbreviations (in alphabetical 
order): %I: percentage of model improvement based on R2; 9HPT: nine-hole peg test; CAI: covariance anisotropy index; CI: Confidence Interval; CPI: covariance 
planarity index; CSI: covariance sphericity index; EDSS: expanded disability status scale; GM: grey matter; Max: maximum; MCI: mean covariance index; NAWM: 
normal-appearing white matter; NCI: neuraxis caudality index; PASAT: paced auditory serial addition test (measured in number of correct answers); RC: regression 
coefficient; SD: standard deviation; SDMT: symbol digit modalities test (measured in number of correct answers); SPACE-MS: spatial patterns (of MS lesions) assessed 
through covariance estimations of lesional voxels; TWT: 25-foot timed walk test. 
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(Eden et al., 2019; Kerbrat et al., 2020), although this has not been 
studied and deserves future investigations. The association between 
lesion caudality and cognitive function, though, is not that clear: 
whereas a higher caudality of the whole-brain lesion mask implied a 
better cognitive function as measured by the PASAT, having a lowermost 
brain lesion more caudal was associated with worse cognitive function 
as measured by the SDMT. It is possible that patients with more caudal 
whole-brain lesion masks have fewer cortical/juxtacortical lesions, 
which have been associated with worse cognition (Cocozza et al., 2020), 
and this may have been the main determinant of PASAT performance. 
Instead, for the SDMT, other factors may have been involved. For 
instance, SDMT is known to be affected by visual impairment, and 
brainstem lesions can contribute to this (Smith, 2007). Another factor 
could be the presence of retrograde trans-synaptic degeneration (Haider 
et al., 2016) in the context of damage of long-range connections (Gio-
vannoni et al., 2017), relevant for cognitive function in MS (Meijer et al., 
2020). This would be in line with the observed progressive brain cortical 
atrophy following spinal cord injury (Ziegler et al., 2018). 

A final note on lesion caudality is that, as time went on, there was a 
significant decrease in NCI together with a significant increase in 
maximum lesion NCI. This indicates that, in progressive MS, there is a 
cranial shift of the CoM of the whole-brain mask, in line with previous 
studies showing that in progressive MS, new lesions mainly tend to 
appear in the supratentorial brain (Gaetano et al., 2020). 

Yet, our results also indicate that patients may tend to have their 
lowermost brain lesion more caudal as time goes by. Of note, these re-
sults were obtained after adjusting for baseline lesion load and changes 
in lesion load between baseline and follow-up, indicating a certain de-
gree of independence between changes in lesion spatial distribution and 
crude changes in the amount or volume of lesions. 

5.3. Spatial variability of lesional voxels 

This is the first time that greater spatial variability of lesions is 
presented as a potential poor prognostic factor in MS. A greater amount 
of spatial variability of lesional voxels and, more importantly, a more 
isotropic distribution of such lesional voxels in the brain were associated 
with worse concurrent and future motor and cognitive disability. 
Interestingly, among all spatial distributional metrics, CSI appeared as 
the best predictor of concurrent disability for most clinical domains 
(together with NCI, for the NHPT), and the best predictor of future motor 
disability as measured by the NHPT. We speculate that more widespread 
distributions of lesions may reflect greater dissemination of demyelin-
ating changes in the brain tissue. Also, greater dispersion might imply a 
greater number of WM tracts affected, therefore having detrimental 
consequences for the efficiency of the whole-brain network, which has 
been associated with worse disability outcomes on a number of occa-
sions (Charalambous et al., 2019; Solana et al., 2018; Tur et al., 2020). 
Of note, the presence of juxtacortical/cortical lesions may also 
contribute to a higher dispersion of brain lesions. Thus, the consistent 
and strong association between higher CSI (or lower CAI) and worse 
disability might also be at least partly explained by the presence of a 
higher number of juxtacortical/cortical lesions among those patients 
with a greater dispersion of lesions. In this study we did not perform a 
formal analysis of cortical lesions. Nonetheless, when we adjusted our 
models for cortical GM volume (data not shown), whose decrease has 
been associated with the presence of juxtacortical/cortical lesions 
(Magliozzi et al., 2018), our results did not change. Future research 
combining the assessment of lesion spatial distribution, diffusion-based 
connectivity, cortical lesion detection, and quantitative MRI character-
ising those tissue microstructural changes that occur in MS, will provide 
further insights into the mechanisms linking more widespread lesion 
distributions and higher disability. 

Remarkably, as time went by, lesional voxels tended to distribute 
more isotropically in the brain, as reflected by a significant decrease in 
CAI, after adjusting for covariates. This is the first time that this is 

reported in a quantitative way and may reflect the expansion of the 
demyelinating changes occurring in progressive MS. Importantly, 
SPACE-MS metrics may be explored as potential surrogate markers of 
disease progression for their use in clinical trials or help us understand 
the pathogenic mechanisms underpinning irreversible accumulation of 
disability. Future studies assessing longitudinal changes in lesion spatial 
distribution features and quantitative MRI metrics are warranted. 

5.4. Methodological considerations 

Some potential methodological considerations follow. First, in this 
study we defined the neuroaxis as the line from the primary motor cortex 
to the brainstem as a mean to calculate distribution of lesions through 
the brain. This was chosen because of the known motor impairment in 
MS and also because of existing studies reporting that infratentorial le-
sions seem to have a greater weight on disability (Tintore et al., 2010; 
Chung et al., 2020; Brownlee et al., 2019; Kerbrat et al., 2020). This is a 
choice, though, and future studies could choose a different definition of 
the neuroaxis or to study a different system. 

Another aspect of our study is that we applied the SPACE-MS tech-
nique to MS data using a relatively homogeneous cohort, with high- 
quality clinical and MRI data, which might not be representative of 
routine practice. Nonetheless, we included participants from three 
different cohorts belonging to different centres, and therefore scanned 
on different scanners with different magnetic field strengths and imag-
ing protocols. This offered a realistic portrait of real-world variability in 
terms of MRI hardware, software and protocols that could be encoun-
tered in hospital settings. Additionally, age-, sex-, disease-duration-, and 
lesion-load-adjusted mean values of SPACE-MS metrics were very 
similar across study centres, suggesting that these metrics are robust to 
variations in MRI acquisition protocols (Fig. 4). 

In our study, lesions were segmented on T2-weighted images with 
anisotropic voxels (1 × 1 × 3 mm3). As 3D FLAIR is becoming more 
commonly acquired, in addition to conventional T2-weighed clinical 
scans, for MS lesion detection, with isotropic 1 mm3 resolution, it will be 
interesting to assess whether whole-brain and individual lesion metrics 
are affected by the anisotropic resolution of such T2-weighed scans. Of 
note, our study used semi-automated lesion segmentation, which may 
not be feasible in clinical practice. However, there are now fully auto-
mated lesion segmentation methods that can generate lesion masks that 
could be processed using this spatial distribution pipeline (Valverde 
et al., 2017). 

Importantly, in our study we decided to compute the SPACE-MS 
metrics on native (3DT1) space instead of a common, unbiased space 
such as the MNI space. We made this decision to avoid the application of 
any non-linear co-registrations of our images which could alter the 
spatial distribution of lesions, which was the focus of our study. How-
ever, in a subset of patients, we also applied the SPACE-MS method to 
whole-brain lesion masks co-registered to the MNI brain. The overall 
results did not materially change, supporting the robustness of these 
metrics. Yet future studies exploring the convenience of using a common 
space (rather than a native one) for these types of analyses are needed. 

In our study, given the relatively short follow-up of our patients and 
the absence of other, non-MRI metrics that could dynamically change 
over time, we did not build comprehensive disease progression models 
aimed at capturing an accurate picture of the temporal evolution of this 
condition (Jedynak et al., 2012; Donohue et al., 2014). Additionally, our 
application study focused on secondary progressive MS subjects, but also 
included a small cohort of primary progressive MS, given the increasing 
evidence that primary and secondary progressive MS share a number of 
pathogenetic features (Correale et al., 2016). For this analysis, therefore, 
a more traditional statistical approach provided the right tool for 
assessing the potential of SPACE-MS. Future studies are needed to 
investigate the role of spatial distributional metrics in a more hetero-
geneous group of subjects including other MS phenotypes, such as 
relapsing-remitting MS, and over longer periods of time. Another 
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potential limitation of our data may be that, mainly due to the relatively 
short follow-up period of time between study baseline and the last time 
point, baseline clinical metrics were highly correlated with follow-up 
ones (see Supplementary Table 1), which decreased the ability of 
SPACE-MS metrics at baseline to predict clinical outcome at follow-up. 

An additional note on our SPACE-MS metrics is that, when we added 
all SPACE-MS metrics at once in the predictive models of concurrent and 
future disability, we could see that there was frequently only one sur-
viving predictor for a given clinical variable, suggesting a high level of 
collinearity. However, the ‘surviving’ predictor was not always the 
same, indicating that these metrics provided somehow complementary 
information. Furthermore, for the prediction of concurrent 9HPT score, 
both the CSI and the NCI appeared as independent predictors. These 
considerations support that both aspects of the distribution of lesions, i. 
e. their global spreading in the brain, measured through CSI, and their 
caudality, measured through NCI and maximum lesion NCI, play com-
plementary roles when explaining or predicting disability. 

Given the exploratory nature of this research, and considering the 
likely interdependencies between SPACE-MS metrics, no adjustment for 
multiple comparisons was performed. 

In terms of future development of SPACE-MS, we believe that it will 
be important to include spinal cord lesions. We understand that spinal 
cord pathology is crucial to the development of disability progression 
and that having this type of data would have made our predictive models 
much more robust. Nonetheless, our aim, rather than building a very 
accurate predictive model of disability, was to understand whether in-
formation on the spatial distribution of lesions could add relevant in-
formation to those statistical models based on conventional metrics of 
lesion load and atrophy. Future studies accounting for spinal cord data 
are therefore warranted. Future developments of SPACE-MS also include 
its application to other neurological conditions characterised by WM 
lesions, such as primary or secondary CNS vasculitis, or SVD, where 
greater lesion volumes usually correlate with worse clinical outcome 
(Cannerfelt et al., 2018; Pantoni, 2010). In this context, the study of 
individual-lesion shapes, expanding the exploratory analyses performed 
here (Supplementary Fig. 1 and Supplementary Table 5) may provide 
very insightful information on the mechanisms of lesion formation in 
these conditions. More broadly, the potential of SPACE-MS can also be 
explored in other, non-neurological conditions characterised by visible 
lesions in any given organ outside the brain. For instance, in cancer 
research, the spatial characterisation of tumoral lesions has also started 
to emerge as a promising tool, in the context of radiomics, to predict 
clinical outcome (Limkin et al., 2019; van Griethuysen et al., 2017; 
Ligero et al., 2021). 

6. Conclusions 

With this study we introduced novel fully-automated metrics char-
acterising clinically-relevant aspects of the spatial distribution of brain 
lesions. The metrics have been demonstrated and tested in a large lon-
gitudinal progressive MS cohort. We showed that location of lesions in 
lower parts of the brain, where neurite density is particularly high, and a 
greater spatial spreading of lesions, possibly reflecting a higher number 
of WM tracts involved, are relevant features for clinical deterioration in 
progressive MS, independent of brain lesion volume and atrophy. We 
therefore believe that their characterisation, which can be done using 
routinely acquired anatomical scans, may help achieve accurate pre-
dictions in the clinic, essential to the design of individualised thera-
peutic approaches. Of note, the usefulness of the SPACE-MS approach 
may be explored in other conditions, such as CNS vasculitis or SVD, also 
characterised by the presence of brain WM lesions and where greater 
lesion volumes have been associated with worse clinical outcomes, as 
happens in MS. (Cannerfelt et al., 2018; Pantoni, 2010) 

7. Data and code availability statement 

The code to run SPACE-MS is made freely available online (perma-
nent link: https://github.com/carmentur/SPACE-MS). Researchers 
interested in accessing the data of this study can contact Prof Claudia 
Gandini Wheeler-Kingshott (c.wheeler-kingshott@ucl.ac.uk). A data 
sharing agreement enabling non-commercial research use will be stip-
ulated. The scripts written to process the MRI scans and perform sta-
tistical analysis will be shared upon request (contact: Carmen Tur, c. 
tur@ucl.ac.uk, ctur@cem-cat.org). 
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