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Sergi Baena i Miret

Resum
En moltes ocasions la informació que es pot recollir no està completa, ja que per a
algunes observacions no totes les fonts de dades estan disponibles (el que es coneix
com a dades faltants per blocs) per la qual cosa la pregunta que sorgeix és com es
podria implementar un procés d’integració amb dades que contenen blocs faltants
basat en una aproximació de tipus Lasso, que després es podria aplicar a dades
òmiques reals. De fet, en aquesta tesi resoldrem un problema d’optimització de
regressió consistent en un model d’aprenentatge de caracteŕıstiques unificades per a
blocs heterogenis faltants de dades (o fins i tot completes) que realitzin anàlisis tant
a nivell de caracteŕıstiques com de fonts simultàniament.

La novetat d’aquesta tesi es basa en que encara que es pot trobar la formulació i
l’optimització teòrica del problema, no hem pogut trobar la seva implementació de
codi enlloc, per la qual cosa ens ha estat impossible (fins que no hem aconseguit
implementar-lo) donar una valoració raonable del model. De fet, per a l’avaluació
del model (l’estudi de la seva efectivitat i rendiment) hem utilitzat dades simulades
generades per un model de regressió lineal i dades reals extretes d’un nou projecte
de recerca col·laboratiu anomenat Human Early-Life Exposome (HELIX).

Tot plegat, en aquest manuscrit hem estudiat un model d’aprenentatge binivell de
caracteŕıstiques motivat per les dades de l’exposome i hem implementat un codi
que tant serveix per a dades completes com amb blocs faltants. Concretament,
hem introdüıt un model d’aprenentatge de caracteŕıstiques unificades per a dades
completes, que conté diversos models convexos clàssics que s’han estès fàcilment per
gestionar el cas més dif́ıcil: el de les dades faltants per blocs. Al final hem aconseguit
presentar un model d’optimització de regressió que donades les dades completes o
faltants per blocs, podem obtenir-ne informació per tal de fer prediccions per a dades
que tinguin una estructura similar. En particular, hem observat resultats excel·lents
per a les dades simulades i resultats força bons per a les dades d’exposome.
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Sergi Baena i Miret

Abstract
On many occasions the information that one can gather is not complete, since for
some observations not all data sources are available (what is known as block-wise
missing data) so the question that arises is how we could implement an integra-
tive process with block-wise missing data based on a Lasso’s type approximation
that then could be applied to real omics data. Indeed, in this thesis we will solve
an optimization regression problem consisting on a unified feature learning model
for heterogeneous block-wise missing (or even complete) data that performs both
feature-level and source-level analysis simultaneously.

The novelty on this thesis relies on that although one can find the formulation and
the theoretical optimization of the problem, we have not been able to find its code
implementation anywhere, so it has been impossible for us (until we have succeed
implementing them) to give a reasonable evaluation of the model. Indeed, for the
evaluation of the model (the study of its effectiveness and performance) we will use
synthetic data generated by a linear regression model and real data drawn from a
new collaborative research project called the Human Early-Life Exposome (HELIX).

All in all, in this manuscript we have studied a bi-level feature learning model mo-
tivated by the exposome data and we have implemented a code that approaches
for both complete and block-wise missing data. Specifically, we have introduced a
unified feature learning model for complete data, which contains several classical
convex models that has been easily extended to handling the more challenging case:
the block-wise missing data. At the end we have succeed in presenting an opti-
mization regression model that given complete or block-wise missing data, we can
obtain information from it in order to make predictions for similar structured data.
In particular, we have observed great results for the simulated data and quite good
results for this exposome data.
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Integrative learning for heterogeneous block-wise missing omics data

Chapter 1

Introduction

This short chapter is intended to be a brief description of our project.

1.1 Context and justification of the thesis

The Omics technologies are high-throughput biochemical assays that, in a comprehensive and
simultaneous way, measure molecules of the same type from a biological sample. For exam-
ple, transcriptomics measure transcripts; metabolomics quantify metabolites while proteomics
quantify proteins; genomics profile DNA... Then, omics data are those consisting on all the
data generated by Omics technologies applied to a set of samples.

Indeed, the “omics” notion refers to the fact that all (or nearly all) instances of the target
molecular space are measured in the assay. Initially, omics experiments tended to concentrate
on one type of assay (i.e., transcriptomics) so that provide single omics data. However, it is
believed that a joint learning of multiple data sources (in that case, from multiple different
omics) is beneficial as different data sources may contain complementary information, which
should be properly integrated and leveraged. In fact, machine learning algorithms have being
increasingly used to analyze multi-source data [5, 20, 26, 28] which has gained great attention
in biomedical research (see, for instance, [9]). So now, researchers are combining multiple
assays (e.g., genome, transcriptome, proteome, epigenome, metabolome...) from the same set
of samples in order to create what is known as multi-omics data sets.

Nevertheless, on many occasions the information that one can collect is not complete, since
for some assays not all data can be gathered (for some observations some data is not available,
that is, there is some information missing from some sources). This is what is known as
block-wise missing data. Indeed, there has been a growing interest in both data mining and
machine learning community, not only for omics data but for general data, to fill the gaps
of the missing blocks or, at least, to extract as much as possible the necessary information
from the unknown data (see [24, 25, 28]). Now, for the former (filling gaps with imputed
information) there exist some well-known missing value estimation techniques like Expectation-
Maximization (EM) [6], iterative singular value decomposition (SVD) and matrix completion
[12], which perform imputation on the missing part of the data. However, those approaches fail
to capture the patterns of the missing data and have to estimate a significant amount of missing
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values with high-dimensional data, which can lead to unstable performance [28]. Otherwise,
one could also apply existing feature learning approaches directly, as discarding all samples
that have missing entries, but this can lead to an important lost of information.

This thesis is focused on the challenge about how to effectively integrate information from
multiple heterogeneous sources in the presence of block-wise missing data, which is going to be
restricted to an optimization problem (see [24, 25]). Then, the main problem that is addressed
on this thesis is to implement an integrative process with block-wise missing data based on a
Lasso’s type approximation [18], which will be applied to either simulated data and real data,
so that both will be used for the model evaluation.

1.2 Overview

The main aim of this thesis has been to understand the algorithms proposed on [24] and
[25] respectively, which define an integrative process with block-wise missing data based on
a Lasso’s type approximation that result on some regression models, and to generate a code
that implement them so that we can computationally evaluate both its performance and its
effectiveness by using simulated data or high-dimensional omics data.

Indeed, a unified bi-level learning model has been proposed, which consists on a “bi-level
analysis” (which performs simultaneously feature-level and source-level analysis) for multi-
source incomplete data, a method that avoids direct imputation of the missing elements. The
term bi-level analysis was first coined in [4] and, although it has recently drawn increasing
attention (see, for instance, [23]) how to extend existing techniques to deal with block-wise
missing data remains largely unexplored. Indeed, bi-level learning models provide better per-
formances than usual imputations methods, since the former try to extract complementary
information from the data.

This thesis has been developed almost entirely through the use of the R programming
language and both R Markdown reports and LaTeX typesetting system. The R language and
its development framework has been used to generate the scripts that fulfill the functions of:
data download, data simulation, study and treatment of data, training and testing of the bi-
level learning model, and generation of packages with functions that works with block-wise
missing data.

1.3 State-of-the-art

The novelty on this thesis relies on that although one can find the formulation and the the-
oretical optimization of the problem, we have not been able to find its code implementation
anywhere, so it has been impossible for us (until we have succeed implementing them) to give
a reasonable evaluation of the proposed algorithms. Indeed, a model that contemplates either
complete or block-wise missing data is still new with no so much references of it (if one does
not take into account techniques such as the imputation where part of the information on the
data is lost).
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1.4 Objectives

In this section we present the general objectives of this thesis, which we have broken down into
other more concrete:

(i) Development of a code that implements integrative learning for heterogeneous block-wise
missing data:

a) Read and understand the algorithms proposed on [24] and [25], respectively.

b) Generate a code that implements an optimization algorithm that models an integrative
learning model on block-wise missing (or even complete) data.

(ii) Evaluation of the performance and the effectiveness of the previous code with high-
dimensional data, either simulated and real data:

a) Treat the data that will be used for the evaluation of the code. That is (if necessary)
to do data quality control by seeing how the data is distributed using graphs and also
to do data normalization.

b) Generate random and simulated block-wise missing data.

c) Evaluate the model performance and effectiveness. To do so, it will be made use of eval-
uation measures such as R square/adjusted R square, mean square error(MSE)/root
mean square error(RMSE) or even mean absolute error(MAE)/root mean absolute
error(RMAE).

(iii) Improvement of the previous code or finding some variants of it:

a) Try to improve the performance and effectiveness of the model by changing the pa-
rameters used on it or modifying conveniently the data used for it.

b) Investigate possible variants of the model either by using different models or different
approaches (recall that the main code will result on a regression model).

1.5 Approach and method

The approach and methodology to be followed will be of a scientific type, since we are in front
of a computational optimization (mathematical) regression problem that will be tackled from
a high-dimensional data analysis point of view.

Hence, an approach to the problem to be investigated and how to approach it will be made.
Furthermore, theoretical support will be sought through the search for related and interesting
studies (references), data will be experimented with in order to find significant results for the
study and finally some conclusions will be obtained and provided due to the evaluation of the
experiment.
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Within this type of methodology, in this thesis a quantitative type will be proposed, where
the data used will be subjected to a rigorous analysis (using numerical methods) and its results
are going to be analyzed with statistical techniques. In this way, the results obtained with this
type of methodology will be objective.

1.6 Planning

In this section we have broken down the tasks that are carried out during this thesis in order
to achieve the objectives set and we have proposed a time plan by means of a Gantt chart and
by marking milestones.

The main tasks basically correspond to the objectives indicated in Section 1.4. However,
within those tasks it is necessary to include others dedicated to the search for references and
information, together with the installation and learning of the operation of programming li-
braries. In addition, the drafting of the PACs (plural of the Catalan acronym for continuous
assessment test) that make up this thesis must also be taking into account. Both in the tasks
related to the objectives and those related to the PACs, an estimation time for their duration
has been established.

Therefore, the tasks corresponding to the objectives are defined in this way:

• Development of a code that implements integrative learning for heterogeneous block-wise
missing data. (126h)

T.1 Read and understand the algorithms proposed on [24] and [25], respectively. (36h)

T.2 Generate a code that implements an optimization algorithm that models an integra-
tive learning model on block-wise missing (or even complete) data. (90h)

• Evaluation of the performance and the effectiveness of the previous code with high-
dimensional data, either simulated and real data. (72h)

T.3 Treat the data that will be used for the evaluation of the code. That is (if necessary)
to do data quality control by seeing how the data is distributed using graphs and
also to do data normalization. (18h)

T.4 Generate random and simulated block-wise missing data. (18h)

T.5 Evaluate the model performance and effectiveness. To do so, it will be made
use of evaluation measures such as R square/adjusted R square, mean square er-
ror(MSE)/root mean square error(RMSE) or even mean absolute error(MAE). (36h)

• Improving of the previous code or finding some variants of it. (63h)

T.6 Try to improve the performance and effectiveness of the model by changing the
parameters used on it or modifying conveniently the data used for it. (31.5h)

17



Sergi Baena i Miret 1.6 Planning

T.7 Investigate possible variants of the model either by using different models or different
approaches (recall that the main code will result on a regression model). (31.5h)

Further, the tasks related to carrying out the PACs are defined as follows:

PAC0 TFM proposal. (4.5h)

PAC1 Work’s plan. (9h)

PAC2 Work development - phase 1. (13.5h)

PAC3 Work development - phase 2. (13.5h)

PAC4 Thesis’ memory writing. (45h)

PAC5a Preparation of the presentation. (18h)

PAC5b Public thesis defense. (13.5h)

To ease the schedule of the tasks corresponding to the objectives and the PACs, in this
section it is showed a calendar (Gantt chart) that follows the notation used above.

The planning shown before has been carried out according to an estimate of the time re-
quired. Further, the milestones are set in four date ranges that mark the end of the development
of the key objectives set.

• February 16 - April 12: Study and development of the main code of this thesis together
with the realization of PACs 0, 1 and almost all 2.

• April 13 - May 9: Evaluation of the performance and the effectiveness of the code
together with the realization of the last of PAC2 and almost all PAC3.

• May 10 - June 2: Improving of the previous code or finding some variants of it together
with the last of PAC3 and the finalization of the memory’s thesis writing (PAC4).

• June 3 - June 6: Elaboration of the virtual presentation (PAC5a).
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1.7 Brief summary of contributions

The official documents for the UOC consisting on PACs are the following:

• TFM proposal (PAC0), work’s plan (PAC1), work development - phase 1 (PAC2), work
development - phase 2 (PAC3), thesis’ memory writing (PAC4) and TFM presentation
(PAC5).

The results from the study are:

• An algorithm that deal with block-wise missing data in order to generate a regression
model.

• R scripts (which can be found in the file algorithm tfm.Rmd) containing all the code of
the algorithm together with the simulation of the synthetic data, the reading of the real
data and the treatment and summary of both simulated and real data.

1.8 Brief description of each chapter

The manuscript is organized as follows:
In the first chapter we introduce the thesis: in particular, we contextualize and justify the

topic to study, we show its importance and what it contributes with the state-of-the-art, the
main set objectives, the approach and the method followed to obtain the results, the planning
that was scheduled before starting with it and a brief summary of the contributions got from
it.

In the second chapter, the methodology and materials used are detailed: we highlight the
software needed for the correct development of this thesis, we explain the main algorithm
which motivates this thesis and consists on a regression model on block-wise missing (or even
complete) data, and we summarize the synthetic and the real (exposome) data to be applied
to our main algorithm along with the treatment and study of that data.

In the third chapter, the code for the main algorithm can be found. Indeed, there we
explain all the mathematics behind the algorithm together its optimization and how to make
predictions from the implemented model. For the sake of convenience and clarity of the thesis,
throughout this chapter we will combine the mathematical notations and explanations together
with its code in R.

In the fourth chapter, we expose the discussion of this thesis together with the applications
of the model applied to both simulated and real data. Indeed, we will compare the different
scenarios where we will have both complete and block-wise missing data cases by showing all
the results obtained from them.

Finally, in the fifth chapter, the conclusions are detailed, along with the future research
lines and the schedule tracking.

19



Integrative learning for heterogeneous block-wise missing omics data

Chapter 2

Methodology and materials

We devote this chapter to describe the methodology and the materials used along this thesis.
In particular, we will talk about the software employed here and we will introduce the model to
be studied together with the data (either simulated or real) applied for its proper evaluation.

2.1 Software for the project development

This section explains and justifies the software used on this thesis. Indeed, we will talk about
the R and RStudio software (see Section 2.1.1) and the online LaTeX editor called Overleaf
(see Section 2.1.2).

2.1.1 R and RStudio

Aimed for the analysis of the data, the development of all the code and for its corresponding
evaluation on the data, the free software R [16] was used through the RStudio interface [17].
The reason why this software has been chosen is because of the wide variety of statistical
models and graphical techniques that they provide. R is an integrated set of software facilities
for data manipulation, computation, and graphical display. In addition, it allows users to
create extension packages by creating new very useful tools for data analysis. On the other
side, the RStudio interface is an integrated development environment for R, which facilitates
the use and understanding of the code, in addition to that ease the writing of both the code and
its mathematical formulas. Indeed, RStudio presents different areas within the work window
where it can be seen data tables, user-defined variables, command console, graph display, and
the help tool that prints the manual of the functions integrated in R and in the loaded extension
packages.

Within all the extension packages offered by R, we highlight the “glmnet” package [8], which
has been used to generate some initial models called β0 (see Section 3.2.2). Indeed, “glmnet”
contains the function cv.glmnet, which does k-fold cross-validation to produce a Lasso regression
model by setting the parameter alpha to 1. All in all, in Appendix A.1.1 can be seen all the
packages used for the code of this manuscript.
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2.1.2 Overleaf and LaTeX

Overleaf [15] is an open-source online real-time collaborative cloud-based LaTeX editor, while
LaTeX [10] is a high-quality typesetting system aimed for the communication and publication of
scientific documents. Indeed, Overleaf takes advantage of LaTeX with a multi-panel interface,
so that in its left the document can be seen formatted using LaTeX commands (the enriched
version) just as it is seen in any domestic text editor and, to its right, it is shown how we will
see the document once compiled.

For the writing of this thesis it has been used Overleaf since it makes the whole process
of writing, editing and publishing scientific documents, in an structured way, much quicker
and easier due to its great variety of packages and environments. Indeed, it allows to write
R code together with any kind of mathematical formulas, allowing to obtain a self-contained
manuscript. Further, since it integrates LaTeX typesetting, which is in continuous development,
it has lots of new functionalities each year and many online resources that can be consulted
easily. Besides, LaTeX uses BibTeX as a bibliographic tool to help to organize the user’s
references and to create a bibliography and, nowadays, almost any book or article citation can
be found in that format.

2.2 A unified feature learning model for complete and

block-wise missing multi-source data

Given a collection X of n samples from S data sources ; that is,

X = [X1, . . . , XS] ∈ Rn×p, y ∈ Rn,

where Xi ∈ Rn×pi is the data matrix of the i-th source (which may or not contain missing data)
with pi ≥ 2 variables (so that p = p1 + · · · + pS) and y is the corresponding outcome for each
sample. We consider the following linear regression model :

y =
S∑

i=1

Xiβi + ε = Xβ + ε, (2.1)

where ε represents the noise term and β is the underlying true model which is usually unknown
in real-world applications. Based on (X, y), we want to use an statistical method called super-
vised learning to learn an estimator of β, denoted as β̂, whose non-zero elements correspond
to the relevant features (in other words, features that correspond to the zero elements of β̂ are
discarded). To do so, in essence, we will consider both the regularization framework

min
β∈Rp

L(β) + λΩ(β), for some λ > 0, (2.2)

and its constrained form

min
β∈Rp

L(β) such that Ω(β) ≤ λ, for some λ > 0, (2.3)
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where L : Rp → R is a convex differentiable function with Lipschitz-continuous gradient1 called
data-fitting term and Ω : Rp → R is a sparsity-inducing2 (typically non-differentiable) norm
called the regularization term, which encodes our prior knowledge about β. The choice of Ω
would enable us to perform a bi-level analysis ; that is, performing simultaneously both feature-
level and source-level analysis. Towards this end, a natural approach is a two-stage model:
first we learn different models for each data source and then we combine these learned models
properly, where the regularization/constrain should be imposed independently on each stage to
assure the bi-level analysis.

2.2.1 Missing blocks and profiles

In most of the cases, the data to be modeled is not complete for every data source but lack one or
more data blocks. To apply existing feature learning approaches directly, we can either discard
all samples that have missing entries or estimate the missing values based on the observed
entries. However, the former approach may significantly reduce the size of the data set while
the latter approach heavily relies on our prior knowledge about the missing values. Moreover,
both approaches neglect the block-wise missing patterns in the data and therefore could lead to
sub-optimal performances. When willing to use the maximum information of the known data,
one way is to partition the whole data set into multiple groups according to the availability of
data sources.

Given S data sources and assuming that each participant has at least one data source
available, then there are 2S − 1 possible missing patterns, since(

S

1

)
+

(
S

2

)
+ · · ·+

(
S

S − 1

)
+

(
S

S

)
= (1 + 1)S −

(
S

0

)
= 2S − 1.

Now, for each participant, based on whether a certain data source is present, we can obtain
a binary indicator vector that will simplify the analysis and which is defined as

I[1, . . . , S] = [I(1), . . . , I(S)] where I(i) =

{
1, i-th data source is available,
0, otherwise.

Moreover, it is not needed to store the complete vector for each participant but just to record
a single decimal integer (if it is converted this binary vector to a binary number) i.e., the
information in the indicator vector can be completely described by a decimal integer, which is
called profile. All these profiles will be stored in a vector pf of dimension n, where n is the
number of samples (see Appendix A.2.1).

Once the availability of data sources is known (due to the profile vector) we can break down
the whole data on complete data blocks so that we can extract the maximum information of

1That is, there exists a constant KL such that

∥∇L(β1)−∇L(β2)∥2 ≤ KL∥β1 − β2∥2, ∀β1, β2 ∈ Rp,

with ∥·∥2 being the euclidean norm, i.e., ∥x∥2 =
(
x2
1 + · · ·+ x2

p

) 1
2 for every x = (x1, . . . , xp) ∈ Rp.

2That is, inducing β to have only a small number of coefficients that are non-zero.
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Figure 2.1: Illustration of sparse features [25]. The white blocks represent zero elements, while
the non-zero values are represented by different colors.

the known data as highlighted in red boxes on Figure 3.1. To do so, for a given profile m, we
will group all the samples which have m as a profile together with those that have complete
data in all the sources that are contained in the profile m, i.e., in all the profiles that contains
also m as a profile (see Appendix A.2.1).

2.3 Data

This section explains the data used on the study, the variables in which the information of
interest is contained and its origin. The data will be used to evaluate the model on Chapter 3
and it will consist on simulated and real data respectively. Indeed, for each data set we will
have either complete and block-wise missing data so that we will be able to compare both cases.

2.3.1 Simulated data

The synthetic data that will be used on the analysis is generated by the linear regression model
(2.1) and its code can be found in Appendix A.3.1. The parameter setting will follow the similar
strategy described in [25]. In particular, it is chosen n = 1500 samples and S = 20 sources in
total, and the underlying true model is

β =
[
βT
1 , . . . , β

T
S

]T
= (β1,1, . . . , β1,p1 , . . . , βS,1, . . . , βS,pS)

being some of them sparse and with only taking non-zero values in the first six sources (that
is, βi = 0 for i ≥ 6) whose values are ±10,±8,±6,±4,±2 and ±1 respectively, where the sign
of each of its coordinates is chosen randomly (see Figure 2.1).

Further, ε ∼ N(0, 0.5) (that is, it follows the multivariate Gaussian distribution with zero
mean and standard deviation of σ = 0.5). And the same holds for the data matrix X =
[X1, . . . , XS], where we have simulated three different data matrices according on how correlated
the variables are (non-correlated, low-correlated and high-correlated) between them. Besides,
we also have imposed missing blocks for those simulated data. We should emphasize here that
this distinction on the correlation is aimed to quantify the disagreement of the model (2.1) once
we impose each data matrix to have some missing data, i.e., how much affect the quantity of
missing blocks as a function of how correlated the data is.
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Finally, the outcome y can be computed from (2.1) for each matrix data X by combining
the previous parameters in a suitable way.

2.3.2 Exposome data

The real data that will be used on the analysis are drawn from a new collaborative research
project called the Human Early-Life Exposome (HELIX). In fact, HELIX aims to characterize
early-life exposure to multiple environmental factors (early-life exposome) and associate these
with omics biomarkers and child health outcomes (see [11, 22] for more information about this
topic). The project HELIX used a multilevel study design where the entire study population
sums up to 31,472 pairs of mothers and childs, that were recruited during the pregnancy period,
distributed in six different cohorts (BiB, MoBa, KANC, EDEN, INMA and RHEA). Further,
a subcohort of 1301 pairs of mothers and childs where biomarkers, and child health outcomes
were measured at ages ranging between 6 and 11 years.

In that project, there are two available main data sets of exposome data (which measures all
the exposures of some individuals in a lifetime and how those exposures are related to health)
whose variables, to facilitate the analysis, were transformed to approach a normal distribution.
One of the data sets is a complete case data (distributed on exposome and covariates data sets)
and the other includes missing data (distributed on exposomeNA and covariatesNA data sets),
both with n = 1301 samples. Further, together with both data sets there is an object called
codebook with all their more important information. Indeed, we see there that, in particular,
those data sets have 235 different variables in total from 19 sources (or families) classified in
five domains, namely Indoor air, Outdoor exposures, Covariates, Exposure to chemicals and
Lifestyles.

Indoor air (BTEX, NO2, PM) Exposure to chemicals (biomarkers)
• Indoor air with 5 variables. • Metals with 20 variables.

• Organochlorines with 18 variables.
Outdoor exposures (GIS) • Organophosphate pesticides with 9 variables.
• Air pollution with 16 variables. • PFAS with 10 variables.
• Built environment with 24 variables. • Phenols with 14 variables.
• Meteorological with 12 variables. • Phthalates with 22 variables.
• Natural Spaces with 9 variables. • PBDE with 4 variables.
• Noise with 3 variables. • Tobacco smoke with 5 variables.
• Traffic with 5 variables.
• Water DBPs with 3 variables. Lifestyles (questionnaire)

• Lifestyle (Allergens, Diet, Physical activity,
Covariates (potential confounders) Prenatal alcohol, Sleep) with 39 variables.
• Child covariates with 7 variables. • Social and economic capital with 4 variables.
• Maternal covariates with 6 variables.

Those variables are available at two time points (pregnancy and childhood) except from the
covariates, which are available at a single time point (either pregnancy or childhood).
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Finally, on both data sets there are variables inside the family phenotype, which consists on
the health outcome data:

Phenotype (Outcomes)
• Asthma (ever) at childhood, 6-11 years (categorical variable).
• Birth weight (kg) at birth time (numeric variable).
• Body mass index (categories) at childhood, 6-11 years (categorical variable).
• Body mass index (z-score) at childhood, 6-11 years (numeric variable).
• Intelligence quotient - Total correct answers (RAVEN test) at childhood, 6-11 years
(numeric variable).
• Neuro behaviour - Internalizing and externalizing problems (CBCL scale) at childhood,
6-11 years (numeric variable).

Now, both data sets (ordered by each source) together with the outcome variables can be
declared in R as we did in Appendix A.3.2. There, we observe that all the missing values
of the exposomeNA data set can be found on the Covariates variables, which means that the
only missing block that the samples could have correspond to the source Covariates. The
distribution of the missing values is shown in Figure A.1.

Further, in Appendix A.3.2 it is also made a first brief description of the exposome variables
consisting on the smallest data value, the first quantile, the median, the third quantile, and the
largest data value of each variable respectively, and we observe that not all variables ranges
between the same values, so that it could be a good idea to normalize them. However, since we
are in front of a regression problem, and we are aimed to get some predictions, we will let the
normalization step as part of the regression algorithm (see Section 3.2.3) so we can keep the
values used for such normalization (scaling and translation) for future values oblivious to the
current data. Further, we also see that there are both numeric and categorical variables and,
indeed, using the object codebook (from the exposome data) we are able to see that around the
25.11% are categorical and 74.89% are numeric.

Nevertheless, when dealing with regression problems is advised to work only with numeric
variables. That’s why we will consider two cases for the previous exposome data sets: one
without factors (just numeric variables) and another with the factor variables imposed to be
binary and then converted to dummy variables.

• Exposome data without factor variables (numeric variables)

In this case, we remove from the data (both complete and with missing blocks) the
variables that are factors. However, since we need each source having more than two
variables, and due to the factor variable removal we obtain sources with just one variable,
we add this “only variables” to its more near sources in the sense of those that have
closer attributes (see Appendix A.3.2). Indeed, those sources that result to have just one
variable are Noise, Social and economic capital and Tobacco Smoke, which are added to
the sources Traffic (for the former) and Lifestyle (for the others).

At this point, before going into details of the “dummy variables” case, taking into account
that the cornerstone of the regression problem of Chapter 3 for missing block data consists on
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getting information for the missing data from the known data, it is important to study how
correlated are the numeric variables between them.

First, recall that all the missing values on the exposomeNA data set are concentrated on the
Covariates source; in particular, in Figure A.1 we observe which variables have missing values
and with which proportion. However, at the end a sample with some missing value in some
variable will mean a sample with missing values in the whole source where this variable belong
so the Covariates source will be considered as a missing block for all the samples with missing
values.

Now, in Figures A.2, A.3, A.4 and A.5, we see the four sources that are more correlated with
the Covariates source (which are Air Pollution, Metals, Organochlorines and PFAS ). Besides,
we observe that there are some variables that could be able to compensate the missing values
of the following Covariates variables: hs mbmi None, hs child age None, hs c height None and
hs c weight None, and may be also for h age None, but it could be more difficult for the variables
hs wgtgain None and e3 gac None.

On the other side, when we study the correlation between the Covariates, we obtain that
there are highly correlated variables between them (see Figure A.6). In particular, the variable
hs child age None (child age at postnatal examination in years) is correlated with the variables
h mbmi None (maternal pre-pregnancy body mass index in kg/m2), hs c height None (height
of the child at 6-11 years old in meters) and hs c weight None (weight of the child at 6-11 years
old in kg).

Besides, in Figures A.7, A.8, A.9, A.10, A.11 and A.12 we study how correlated are the four
sources Air Pollution, Metals, Organochlorines and PFAS between them, observing that there
exists some correlation, being the Air Pollution source the most correlated with the others
(than the others between them).

Therefore, in view of the previous results and with the aim of losing the less information
possible between variables, it could be interesting on breaking down the source Covariates
in subsources strategically. This subdivision will be applied to both only numeric exposome
data and the original exposome data set, where from the latter we will take benefit of it
when we create the exposome data set with dummy binary variables (see below). Indeed,
we will split the source Covariates on the sources Covariates.Age, Covariates.Body.Measures,
Covariates.Parents.Info and Covariates.Childs.Info (see Appendix A.3.2).

Now, to continue with this study of the numeric variables, let us do a brief study of the
Covariates variables. For instance, in Figure A.13 it is shown the boxplot of all the variables
in order to see how they are distributed and for the search of outliers. There, we observe that
the variables are quite centered but with different scales, and also that there is a great presence
of outliers (with a total of 142 outliers). For instance, it could be also interesting to study
the boxplot of each variable separately according to the binary categorical outcome variable
Asthma in order to see if there exist differences between each class. Indeed, we observe that the
majority of the outliers are concentrated on the samples with no asthma and that the variables
with more differences between classes are h age None, hs child age None, h mbmi None and
hs c height None (see Figures A.14, A.15, A.16, A.17, A.18, A.19 and A.20).

Moreover, we observe that when doing a principal component analysis we need at least five
dimensions in order to have a number of principal components that explain more than the
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80% of the total variation of the Covariates variables, and the biplot of the two first principal
components show that, as expected, we can not say a lot about the two classes from them.
Besides, from the biplot we also see that the variables hs c weight None, hs c height None
and hs child age None are much closer between them than the others, and the same happens
between e3 gac None and hs wgtgain None (see Figure A.21).

• Exposome data with factor variables converted to dummy binary variables

In this case, we will first impose all factor variables to be binary and then we will convert
them to dummy variables using the original exposome data once the source subdivision
has been applied. In fact, for any non-binary factor, if there exists a “ruling” class in the
sense that there is one class with much more samples than the others, we will classify that
variable between being inside this class and not being inside it; while if all the classes are
equitable, we will break it exactly on its half (see Appendix A.3.2).
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Integrative learning for heterogeneous block-wise missing omics data

Chapter 3

An incomplete source feature selection
(iSFS) model

Based on [24, 25], this chapter is aimed to present the main ingredients needed to solve an
optimization algorithm consisting on a unified feature learning model for heterogeneous block-
wise missing (or even complete) data that performs both feature-level and source-level analysis
simultaneously. Indeed, the model to be solved is the following:

min
α,β

1

|pf |
∑
m∈pf

1

nm

φ

(
S∑

i=1

αi
mX

i
mβ

i, ym

)
+λΩ2(β) subject to Ω1(αm) ≤ 1 ∀m ∈ pf, (3.1)

where the subscript m denotes the matrix (or vector) restricted to the samples that contain
m in their profiles and nm is the number of rows of Xm, while the superscript i represents the
data matrix (or vector) of the i-th source. For instance, here φ can be any convex loss function
such as the least squares loss function or the logistic loss function.

To solve (3.1) we will first initialize β by learning an individual model on each data source
and compute the optimal α via solving a constrained Lasso problem (see Section 3.2.1). Then
β will be updated based on the computed α and next we will compute a new α based on the
updated β via solving a regularized Lasso problem (see Section 3.2.2) and we will keep this
iterative procedure until convergence of the objective function in (3.1).

At the end, in essence, we will have to deal with the regularization framework on (2.2) and
its constrained form (2.3), which can be solved via gradient iteration methods.

3.1 Gradient iteration methods

On this section we present two gradient iteration methods that are aimed to solve the regu-
larization framework (2.2) (see Section 3.1.1) and its constrained form (2.3) (see Section 3.1.2)
respectively.
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3.1.1 Proximal gradient iteration method

A proximal gradient iteration method is a forward-backward splitting method specifically tai-
lored to optimize an objective of the form (2.2) and can be described as follows [3, 14]: at
each iteration t = 1, 2, 3, . . . the function L is linearized around the current point βt (using its
Taylor expansion) and a problem of the form

min
β∈Rp

L(βt) +∇L(βt)T (β − βt) +
L

2
∥β − βt∥22 + λΩ(β) (3.2)

is solved. In (3.2), the quadratic term (i.e. the error term) called proximal term, keeps the
update in a neighborhood of the current iterate βt where L is close to its linear approximation,
and L > 0 is a parameter which should essentially be an upper bound on the Lipschitz constant
of ∇L. Besides, by means of the inner product induced by the norm ∥·∥2, (3.2) can be rewritten
as

min
β∈Rp

1

2

∥∥∥∥β −
(
βt − 1

L
∇L(βt)

)∥∥∥∥2
2

+
λ

L
Ω(β). (3.3)

Then, a basic proximal gradient iteration method uses the solution of problem (3.3) as the
next update βt+1; however, in order to find such a solution is important to compute previously
a suitable value for L. Often, an upper bound on the Lipschitz constant of ∇L is not known,
and even if it is, it is often better to obtain a local estimate. For instance, a suitable value for
L can be obtained by iteratively increasing L by a constant factor until the condition

L(β∗
L) ≤ L(βt) +∇L(βt)T (β∗

L − βt) +
L

2
∥β∗

L − βt∥22 (3.4)

is met (see [1]) where β∗
L denotes the solution of (3.3).

3.1.1.1 Proximal operator

The proximal operator, which is denoted by ProxµΩ, was defined in [13] as the function that
maps a vector u ∈ Rp to the unique solution (since 1

2
∥·∥ is strongly convex) of

min
β∈Rp

1

2
∥u− β∥22 + µΩ(β).

This operator is clearly central to proximal gradient iteration methods due to their main step
consists on computing

βt+1 := ProxµΩ(u) = Prox λ
L
Ω

(
βt − 1

L
∇L(βt)

)
, (3.5)

since (3.5) results on being the solution of (3.3). We will dedicate the following to compute the
proximal operator for several function norms Ω that induce sparse solutions (see, for instance,
[1, Ch. 3.3]):

• ℓ1-norm regularization (Lasso Regression [19])
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Let

Ω(β) = ∥β∥1 :=
p∑

j=1

|βj|, for β = (β1, . . . , βp) ∈ Rp.

Then, its proximal operator Proxµ∥·∥1 can be computed, separately in each component, as(
Proxµ∥·∥1(u)

)
j
= sign(uj) (|uj| − µ)+ = sign(uj)max (|uj| − µ, 0) , ∀j = 1, . . . , p,

where

sign(x) =


x

|x|
, x ̸= 0,

0, x = 0.

# Proximal operator of l1 norm

prox.operator.l1 <- function(u, mu){

len_u <- length(u)

# Optimal solution beta

beta <- numeric(length = len_u)

# Since the problem is separable , we compute

# the optimal solution for each component

for(j in 1:len_u)

beta[j] <- sign(u[j])* max(abs(u[j]) - mu , 0)

return(beta)

}

• ℓ22-norm regularization (Ridge Regression)

Let

Ω(β) =
1

2
∥β∥22 :=

1

2

p∑
j=1

|βj|2, for β = (β1, . . . , βp) ∈ Rp.

Although this regularization function does not induce sparsity, it is nonetheless widely used
and it is worth mentioning its proximal operator Proxµ

2
∥·∥22 , which can be computed as

Proxµ
2
∥·∥22(u) =

1

1 + µ
u.

# Proximal operator of l2^2 norm

prox.operator.l2 <- function(u, mu){

# Optimal solution beta

return(u/(1 + mu))

}
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• ℓ1 + ℓ22-norm regularization (Elastic-net [30])

Let
Ω(β) = ∥β∥1 +

γ

2
∥β∥22, for β = (β1, . . . , βp) ∈ Rp and γ > 0.

Then, its proximal operator Prox∥·∥1+ γ
2
∥·∥22 can be computed as

Proxµ(∥·∥1+ γ
2
∥·∥22)

(u) =
1

1 + µγ
Proxµ∥·∥1(u).

# Proximal operator of l1 + l2^2 norm

prox.operator.l1.l2 <- function(u, mu , gamma){

# Optimal solution beta

return(prox.operator.l2(prox.operator.l1(u, mu), mu*gamma))

}

• ℓ1/ℓ2-norm regularization (Group Lasso [29])

For S different groups, let

Ω(β) :=
S∑

i=1

√
pi∥βi∥2, for β = (β1, . . . , βS) with βi ∈ Rpi .

Then, its proximal operator ProxµΩ can be computed, separately in each i-th group, as

(ProxµΩ(u))i =

(
1−

√
piµ

∥ui∥2

)
+

ui = max

(
1−

√
piµ

∥ui∥2
, 0

)
ui, for i = 1, . . . , S.

# Proximal operator of l1/l2 norm

prox.operator.l1_l2 <- function(p, u, mu){

if(length(u) != sum(p))

return(u)

# Optimal solution beta

beta <- numeric(length = length(u))

# Partition range

group.init <- 1

for(i in 1:length(p)){

group.end <- group.init + p[i]

group.range <- group.init:(group.end - 1)

# Since the problem is separable , we compute the optimal

# solution for each group
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l2.norm.u_group <- (sum(u[group.range ]^2))^(1/2)

beta[group.range] <- max((1 - sqrt(p[i])*mu/l2.norm.u_group), 0)*

u[group.range]

group.init <- group.end

}

return(beta)

}

3.1.1.2 Algorithm

Here, we code (3.5) for different forms of Ω by assuming that the gradient value is known:

# Proximal gradient method

prox.grad.method <- function(beta , lambda , L, gradient , omega ,

p, gamma){

# Vector hat beta and mu

u <- beta - gradient/L

mu <- lambda/L

switch (

omega ,

# Omega being l1 norm

"LR" = return(prox.operator.l1(u, mu)),

# Omega being l2 norm

"RR" = return(prox.operator.l2(u, mu)),

# Omega being l1 + l2^2 norm

"EN" = return(prox.operator.l1.l2(u, mu, gamma)),

# Omega being l1/l2 norm

"GL" = if(!is.null(p)) return(prox.operator.l1_l2(p, u, mu))

else return(u)

)

return(u)

}

32



Sergi Baena i Miret 3.1 Gradient iteration methods

3.1.2 Norm projection iteration method

A norm projection iteration method is a forward-backward splitting method aimed to solve an
objective of the form (2.3) whenever Ω is a norm. In particular, similar as in (3.3), the problem
(2.3) reduces to the projection onto the Ω-ball

min
β∈Rp

1

2

∥∥∥∥β −
(
βt − 1

L
∇L(βt)

)∥∥∥∥2
2

subject to Ω(β) ≤ λ, (3.6)

and, therefore, the problem that we have to confront is: given β̂ ∈ Rp, compute

min
β∈Rp

1

2

∥∥∥β − β̂
∥∥∥2
2

subject to Ω(β) ≤ λ. (3.7)

Now, in (3.7), ignoring the case Ω(β̂) ≤ λ (which has the trivial solution β = β̂) there exists
for each λ > 0 a µ = µ(λ) > 0 satisfying

Ω(ProxµΩ(β̂)) = λ (3.8)

such that the optimization problem

min
β∈Rp

1

2

∥∥∥β − β̂
∥∥∥2
2
+ µΩ(β) (3.9)

has the same solution as (3.7). Indeed, we have already seen in Section 3.1.1.1 that ProxµΩ(β̂)

is a solution of (3.9). Hence, if we denote β∗ = ProxµΩ(β̂), then

1

2

∥∥∥β − β̂
∥∥∥2
2
+ µΩ(β) ≥ 1

2

∥∥∥β∗ − β̂
∥∥∥2
2
+ µΩ(β∗), ∀β ∈ Rp,

and since we are assuming that Ω(β∗) = λ,

1

2

∥∥∥β − β̂
∥∥∥2
2
≥ 1

2

∥∥∥β∗ − β̂
∥∥∥2
2
+ µ(Ω(β∗)− Ω(β)) ≥ 1

2

∥∥∥β∗ − β̂
∥∥∥2
2

subject to Ω(β) ≤ λ,

so that β∗ is also a solution of (3.7).
Thus, the cornerstone on solving (2.3) consists on finding a µ satisfying (3.8) and then

computing

βt+1 = ProxµΩ

(
βt − 1

L
∇L(βt)

)
whenever Ω

(
βt − 1

L
∇L(βt)

)
> λ.

The remainder of this section is devoted to developing a method for finding such µ for different
forms of Ω that induce sparse solutions (see, for instance, [21]):

• ℓ1-norm projection (Lasso penalty)
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Let Ω = ∥·∥1, so we have to find µ such that

φ(µ) :=
∥∥∥Sµ(β̂)

∥∥∥
1
= λ with (componentwise) Sµ(β) = sign(β)max(|β| − µ, 0),

where we are assuming that ∥β̂∥1 > λ.
Let bi, i = 1, . . . , p, be the absolute values of β̂ in decreasing order, and define bp+1 = 0. It

is an easy computation to show that then there exists some k ∈ {1, . . . , p} such that

φ(bk) ≤ λ < φ(bk+1).

Hence, suppose that k is given. So, it is only need to find some 0 ≤ δ < bk − bk+1 such that

λ = φ(bk − δ) =

p∑
i=1

max(bi − bk + δ, 0) =
k−1∑
i=1

(bi − bk) + kδ = φ(bk) + kδ;

that is,

δ :=
λ− φ(bk)

k
=

λ−
∥∥∥Sbk(β̂)

∥∥∥
1

k
,

and hence µ = bk − δ.

# Computation of the parameter mu with l1-norm

mu_computation.l1 <- function(beta , lambda ){

# Define vector b

b <- c(abs(beta), 0)

b <- b[order(b, decreasing = TRUE)]

# Seeking for the index k

k <- 2

S.bk <- sum(abs(prox.operator.l1(beta , b[k])))

# Do the loop until the index k is found

while(lambda > S.bk){

k <- k + 1

S.bk <- sum(abs(prox.operator.l1(beta , b[k])))

}

k <- k - 1

S.bk <- sum(abs(prox.operator.l1(beta , b[k])))

return(b[k] - (lambda - S.bk)/k)

}

• ℓ22-norm projection (ridge penalty)
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Let Ω = 1
2
∥·∥22, so we have to find µ such that

1

2

∥∥∥Proxµ
2
∥·∥22(β̂)

∥∥∥2
2
=

1

2

∥∥∥∥ 1

1 + µ
β̂

∥∥∥∥2
2

= λ ⇐⇒ µ =
1√
2λ

∥β̂∥2 − 1,

where we are assuming that 1
2
∥β̂∥22 > λ.

# Computation of the parameter mu with l2^2-norm

mu_computation.l2 <- function(beta , lambda ){

return(sqrt(sum(beta^2)/(2*lambda )) - 1)

}

3.1.2.1 Algorithm

Here, we code (3.6) for different forms of Ω by assuming that the gradient value is known:

# Norm projection method

norm.proj.method <- function(beta , lambda , L, gradient , omega ,

tol = 1e-3){

# Vector hat beta

u <- beta - gradient/L

switch (

omega ,

# Omega being l1 norm

"LR" =

if(sum(abs(u)) > lambda + tol)

return(prox.operator.l1(u, mu_computation.l1(u, lambda ))),

# Omega being l2^2 norm

"RR" =

if(sum(u^2)/2 > lambda + tol)

return(prox.operator.l2(u, mu_computation.l2(u, lambda ))),

)

return(u)

}

3.1.3 Finding a solution for a suitable value of L

Recall that a suitable value of L can be obtained by iteratively increasing L by a constant
factor until the condition in (3.4) is met. Further, since we are considering a gradient iteration
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method, we should assume that L ≥ Lmin where the parameter Lmin is chosen as the inverse of
the two-point approximation to the quasi-Newton secant equations [2]; that is,

L ≥ Lmin :=
(βt − βt−1)T (∇L(βt)−∇L(βt−1))

(βt − βt−1)T (βt − βt−1)
.

# Computing L.min

L.min <- function(beta.current , beta.prev , gradient ){

diff.beta <- beta.current - beta.prev

diff.grad.beta <- gradient(beta.current) - gradient(beta.prev)

return(as.numeric(diff.beta %*% diff.grad.beta/

(diff.beta %*% diff.beta )))

}

Finally, the following code compute iteratively the coefficients β∗
L by using the proper

method according to the framework to face up to (either regularized (2.2) or constrained (2.3)):

beta.suitable.L <- function(beta , lambda , function.L, gradient.L,

L.min , omega , optimization , L.step ,

maxIter , tol , p = NULL , gamma = 1){

# Compute gradient vector evaluated at beta

gradient <- gradient.L(beta)

# Compute objective value evaluated at beta

objective <- function.L(beta)

# Choose framework

method.beta.star <- switch(

optimization ,

"reg" = function(L){ return(prox.grad.method(beta , lambda , L,

gradient , omega , p, gamma))},

"cons" = function(L){ return(norm.proj.method(beta , lambda , L,

gradient , omega ))},

)

# Compute beta star from L

L <- L.min

beta.star <- method.beta.star(L)

# Linearization of objective

diff.beta <- beta.star - beta

linear.L <- as.numeric(objective - function.L(beta.star) +
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gradient %*% diff.beta + L/2*sum(diff.beta^2))

iter <- 0

while(linear.L < tol && iter < maxIter ){

# Compute next beta star from L

L <- L*L.step

beta.star <- method.beta.star(L)

# Linearization of objective

diff.beta <- beta.star - beta

linear.L <- as.numeric(objective - function.L(beta.star) +

gradient %*% diff.beta + L/2*sum(diff.beta^2))

iter <- iter + 1

}

return(beta.star)

}

3.2 iSFS model for the least square loss function

On this section, a solution is given for the model (3.1) by assuming that φ is the least square
loss function (that is, φ = 1

2
∥·∥22) which could be adapted, with the necessary modifications, to

another convex loss function φ. In this case, the objective function can be coded as follows:

# Objective function computation

objective.fun <- function(p, X, y, beta , alpha , pf.vec){

# Number of sources

S <- length(p)

# Profiles

profiles <- levels(pf.vec)

# Objective function computing

obj.func <- 0

for(i in 1:length(profiles )){

# Profile m

m <- as.integer(profiles[i])

# Profile alpha vec

alpha.m <- alpha [[i]]

# Block samples for the profile m
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block.samples <- getBlockSamples(pf.vec , m, S)

X.m <- X[block.samples$samples ,]

# We update the value inside the norm

col <- 1

vec.sum <- numeric(length = dim(X.m)[1])

for(j in 1:S) {

nextcol <- col + p[j] - 1

if(j %in% block.samples$sources)
vec.sum <- vec.sum + alpha.m[j]*X.m[, col:nextcol ]%*%

beta[col:nextcol]

col <- nextcol + 1

}

vec.sum <- as.vector(vec.sum) - y[block.samples$samples]

# We update the value of the objective function

obj.func <- obj.func + sum(vec.sum^2)/(2*dim(X.m)[1])

}

return(obj.func/length(profiles ))

}

Now, before going further, let us recall that (3.1) consists on learning a consistent model
(denoted with a variable β) across different source combinations, while within each combination,
some weights for different sources (denoted by the variable α) are computed adaptively.

As an illustration, in Figure 3.1 we have n samples with variables taken in three different
data sources and the profile vector (once converted the profiles from binary to natural numbers)
is pf = (4, 7, 3, 2) (so that |pf | = 4). Hence, the data is divided in four blocks according the
availability of complete data on the sources contained on each profile, as highlighted by the
red boxes. Therefore, in this particular case, the goal is to learn three models β1, β2 and β3

independently for each data source as well as the weights (vectors of four components) α1, α2

and α3 that combines them. Notice that, for the i-th data source, βi remains identical while
αi
j may vary across each different group j.
On what follows, we will devote it to see how to compute the models β and the weights α

for the model (3.1) when φ is the least square loss function.

3.2.1 Computing α when β is fixed

When β is fixed, the objective function of (3.1) is decoupled with respect to αm and, for each
m ∈ pf , the optimal αm is given by the optimal solution of the following problem:

min
αm

f(αm) such that Ω1(αm) ≤ 1, αm = (α1
m, . . . , α

S
m) ∈ RS, (3.10)
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Figure 3.1: Illustration of the proposed learning model (see [25]). Notice that the missing data
emerges in a block-wise way, i.e., for a sample, certain data source is either available or lost
completely.

where

f(αm) =
1

2

∥∥∥∥∥
S∑

i=1

αi
mβ̃

i
m − ym

∥∥∥∥∥
2

2

with β̃i
m = X i

mβ
i ∈ Rnm×1.

# Compute function f

f <- function(y.m, alpha.m, tilde.beta){

# Number of sources

S <- dim(tilde.beta)[2]

# Value to compute inside norm

val <- numeric(length = length(y.m))

for(j in 1:S)

val <- val + alpha.m[j]* tilde.beta[,j]

val <- val - y.m

return(sum(val^2)/2)

}

Further, for each i-th data source, the gradient ∇f(α) with respect each αi can be computed
as follows:

∇f(α) = (∂1f(α), . . . , ∂Sf(α)) with ∂if(α) = αi∥β̃i∥22 − ⟨β̃i, y⟩,
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where ⟨·, ·⟩ denotes the inner product of two vectors.

# Compute alpha gradient

gradient.f <- function(y.m, alpha.m, tilde.beta){

# Number of sources

S <- dim(tilde.beta)[2]

# Gradient of f

gradient.alpha <- numeric(length = S)

for(i in 1:S)

gradient.alpha[i] <- alpha.m[i]*sum(tilde.beta[,i]^2) -

sum(tilde.beta[,i]%*%y.m)

return(gradient.alpha)

}

And since

∥∇f(α)−∇f(α̃)∥22 =
S∑

i=1

(αi − α̃i)2∥β̃i∥42 ≤ max
(
∥β̃1∥2, . . . , ∥β̃S∥2

)4
∥α− α̃∥22, ∀α, α̃ ∈ Rp,

we can bound the Lipschitz constant Kf of the function f as follows:

Kf ≤ max
(
∥β̃1∥2, . . . , ∥β̃S∥2

)2
.

# Lipschitz constant of the function f

const.Lipschitz.alpha <- function(tilde.beta){

sum.sq <- numeric(length = dim(tilde.beta)[2])

for(j in 1:dim(tilde.beta)[2])

sum.sq[j] <- sum(tilde.beta[,j]^2)

return(max(sum.sq))

}

Now, since we want to solve the optimization problem (3.10), we will make use of the Ω1-
norm projection iteration method (see Section 3.1.2) where we will allow Ω1 to be either the
ℓ1-norm penalty or the ridge penalty. To do so, we first need to initialize some weights α0:

# Initializing alpha0 weights uniformly

alpha.initialization <- function(pf.vec , S, keep.alpha ){

# alpha0 weights
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alpha0 <- list()

# Profiles

profiles <- levels(pf.vec)

# Initialize alpha

if(keep.alpha){

# All alpha ’s set to 1/n

for(i in 1:length(profiles ))

alpha0[[i]] <- rep(1/length(pf.vec), S)

} else {

# All alpha ’s on profile set to 1/n_m (number of samples

# of each profile)

for(i in 1:length(profiles )){

# Profile m

m <- as.integer(profiles[i])

# Get block samples

block.samples <- getBlockSamples(pf.vec , m, S)

# Initialize alpha_m with 0’s on the sources

# that are not involved on the profile m

alpha0.aux <- numeric(length = S)

alpha0.aux[block.samples$sources]
<- 1/length(block.samples$samples)

alpha0[[i]] <- alpha0.aux

}

}

return(alpha0)

}

And the Ω1-norm projection iteration method can be coded as follows:

# Omega -norm projection iteration method

omega.norm.proj.method <- function(y.m, alpha0, tilde.beta , omega ,

L.step , maxIter , tol){

# Function f and its gradient depending just on alpha

func.f <- function(alpha){f(y.m, alpha , tilde.beta)}

grad.f <- function(alpha){ gradient.f(y.m, alpha , tilde.beta)}

# First L.min value

Lmin <- const.Lipschitz.alpha(tilde.beta)
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# Next alpha vector

alpha <- beta.suitable.L(alpha0, 1, func.f, grad.f, 1, omega ,

"cons", L.step , maxIter , tol)

# Number of iterations

iter <- 0

# Repeat until getting solution or achieving maxIter index

diff.func.alpha <- abs(func.f(alpha) - func.f(alpha0))

while(diff.func.alpha > tol && iter < maxIter ){

# Next alpha vector

alpha0 <- alpha

alpha <- beta.suitable.L(alpha0, 1, func.f, grad.f, Lmin , omega ,

"cons", L.step , maxIter , tol)

# Next difference function value and iteration

diff.func.alpha <- abs(func.f(alpha) - func.f(alpha0))

iter <- iter + 1

}

return(alpha)

}

Finally, the code to compute α when β is fixed is the following:

# Computing alpha when beta is fixed

alpha.compute <- function(p, X, y, beta , alpha0, pf.vec , omega ,

L.step , maxIter , tol){

# Number of sources

S <- length(p)

alpha <- list()

# For each profile

for(i in 1:length(levels(pf.vec ))){

# Profile

m <- as.integer(levels(pf.vec)[i])

if(m == 0){

alpha [[i]] <- rep(0, S)

next

}

# Samples with current profile

block.samples <- getBlockSamples(pf.vec , m, S)

X.m <- X[block.samples$samples ,]
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# Prediction matrix from sample

tilde.beta <- numeric ()

col <- 1

for(j in 1:S){

nextCol <- col + p[j] - 1

if(j %in% block.samples$sources)
tilde.beta <- cbind(tilde.beta , X.m[, col:nextCol ]%*%

beta[col:nextCol ])

else tilde.beta <- cbind(tilde.beta , rep(0, dim(X.m)[1]))

col <- nextCol + 1

}

# Computing updated alpha

alpha[[i]] <- omega.norm.proj.method(y[block.samples$samples],
alpha0[[i]], tilde.beta ,

omega , L.step , maxIter , tol)

}

return(alpha)

}

3.2.2 Computing β when α is fixed

When α is fixed, then (3.1) becomes an unconstrained regularization problem; that is,

min
β

g(β) + λΩ2(β), (3.11)

where

g(β) =
1

|pf |
∑
m∈pf

1

2nm

∥∥∥∥∥
S∑

i=1

(αi
mX

i
m)β

i − ym

∥∥∥∥∥
2

2

,

which coincide with the objective function in (3.1).

# Computing function g given vector beta

g <- function(p, X, y, alpha , beta , pf.vec){

return(objective.fun(p, X, y, beta , alpha , pf.vec))

}

Further, for each i-th data source, the gradient ∇g(β) with respect to βi can be computed
as follows:

∇g(βi) =
1

|pf |
∑
m∈pf

1

nm

χ{m&2S−i ̸=0}
(
αi
mX

i
m

)T ( S∑
j=1

αj
mX

j
mβ

j − ym

)
,
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where χ{·} is the indicator function which has value 1 when the condition is satisfied and 0
otherwise, and

{
m&2S−i ̸= 0

}
stands for whether the source i is contained (or not) on the

profile m. So, the gradient ∇g(β) can be coded as follows:

# Computing gradient of function g given vector beta

gradient.g <- function(p, X, y, alpha , beta , pf.vec){

# Number of sources

S <- length(p)

# Profiles

profiles <- levels(pf.vec)

# Gradient vector

grad.vec <- numeric(length = length(beta))

col.source <- 1

for(i.source in 1:S){

# Initialize gradient value

gradient <- numeric(length = p[i.source ])

next.col.source <- col.source + p[i.source] - 1

# First value to compute

for(i in 1:length(profiles )){

# Profile m

m <- as.integer(profiles[i])

# Check if the source is on this profile

if(!as.binary(m, n = S)[i.source ])

next;

# Profile m alpha weights

alpha.m <- alpha [[i]]

# Samples with current profile

block.samples <- getBlockSamples(pf.vec , m, S)

X.m <- X[block.samples$samples ,]

# First value to compute

val1 <- numeric(length = dim(X.m)[1])

col <- 1

for(j in 1:S){

nextcol <- col + p[j] - 1

if(j %in% block.samples$sources)
val1 <- val1 + alpha.m[j]*(X.m[, col:nextcol ]%*%

beta[col:nextcol ])
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col <- nextcol + 1

}

val1 <- val1 - y[block.samples$samples]

# Second value to compute

val2 <- t(alpha.m[i.source ]*X.m[,col.source:next.col.source ])

# Gradient update

gradient <- gradient + (val2%*%val1)/dim(X.m)[1]

}

grad.vec[col.source:next.col.source] <- gradient

col.source <- next.col.source + 1

}

return(grad.vec/length(profiles ))

}

Now, since we want to solve the optimization problem (3.11) we will make use of the proximal
gradient iteration method (see Section 3.1.1). To do so, we first initialize some models β0 by
learning them for each data source independently and following different methods. Indeed, we
will use linear regression and Lasso regression models. The most important thing in Lasso
models boils down to select an optimal parameter λ, which will be determined with a process
of cross-validation by taking the value of λ that minimizes the mean cross-validation error.

# We initialize beta0 by fitting each source individually

# on the available data

beta.initialization <- function(p, X, y, beta0.comp){

# Number of sources

S <- length(p)

# beta0 initialization model

beta0.compute <- switch (

beta0.comp ,

# Linear Model Regression

# We use a robust one for the presence of outliers

"LMR" = function(X, y){

return(as.vector(rlm(y ~ . + 0, data =

data.frame(X))$ coefficients ))
},

# Lasso Regression

"LR" = function(X, y){
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# Lasso (alpha = 1, lasso penalty)

cv_lasso_model <- cv.glmnet(x = as.matrix(X), y = y, family

= "gaussian", alpha = 1, intercept

= F, nfolds = 5)

# Best lambda value model

lambda_lasso <- cv_lasso_model$lambda.min
return(as.vector(glmnet(x = as.matrix(X), y = y, family =

"gaussian", alpha = 1, intercept

= F, lambda = lambda_lasso )$beta[,1]))
},

return(NULL)

)

# Beta coefficients

beta.coeff <- numeric(length = dim(X)[2])

col <- 1

for(i in 1:S){

nextCol <- col + p[i] - 1

# Samples in source i with complete data

ind.samp <- rowSums(is.na(X[, col:nextCol ])) == 0

X.complete <- X[ind.samp , col:nextCol]

# Beta coefficient for source i

beta.coeff[col:nextCol] <- beta0.compute(X.complete , y[ind.samp])

col <- nextCol + 1

}

return(beta.coeff)

}

And finally, once we have the initial models β0, we are able to compute for each step t
the models βt+1 as in (3.5), and we will continue iterating until the objective function stops
decreasing.

# Proximal gradient iteration method

prox.grad.iter.method <- function(p, X, y, alpha , beta0, pf.vec ,

lambda , omega , L.step , maxIter ,

tol , gamma){

# Function g and its gradient depending just on beta
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func.g <- function(beta){g(p, X, y, alpha , beta , pf.vec)}

grad.g <- function(beta){ gradient.g(p, X, y, alpha , beta , pf.vec)}

# Next beta vector

# We start with L.min = 1

beta <- beta.suitable.L(beta0, lambda , func.g, grad.g, 1,

omega , "reg", L.step , maxIter , tol ,

p, gamma)

# Number of iterations

iter <- 0

# Repeat until getting solution or achieving maxIter index

diff.func.beta <- abs(func.g(beta) - func.g(beta0))

Lmin <- 0

while(diff.func.beta > tol && iter < maxIter ){

# L.min value

Lmin.aux <- L.min(beta , beta0, grad.g)

if(Lmin.aux > Lmin) Lmin <- Lmin.aux

# Next beta vector

beta0 <- beta

beta <- beta.suitable.L(beta0, lambda , func.g, grad.g, Lmin ,

omega , "reg", L.step , maxIter , tol ,

p, gamma)

# Next difference function value and iteration

diff.func.beta <- abs(func.g(beta) - func.g(beta0))

iter <- iter + 1

}

return(beta)

}

3.2.3 Algorithm of the iSFS model for the least square loss function

At this point, we know how to compute both the models β and the weights α, so we are in
conditions to write down the proposed alternating algorithm for solving (3.1) with φ being the
least square loss function (see Appendix B.1.1). Indeed, Algorithm 3.1 summarizes our iSFS
model for block-wise missing data.

Remark 3.2.1 On Algorithm 3.1, when all the weights α are fixed and equal to 1
n
(so that its

step 6 is missed) then the problem is restricted to a unified learning model for multi-source data
(see [24, 25]). That happens, for instance, when the data is complete.

Further, now we are able to make predictions of the outcome from an iSFS model (see
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Algorithm 3.1 iSFS model for the least square loss function

1: Input: X, y, λ
2: Output: Solutions α and β to (3.1) when φ = 1

2
∥·∥22

3: Initialize α0 with the function alpha.initialization of Section 3.2.1
4: Initialize β0 with the function beta.initialization of Section 3.2.2
5: for t = 1, 2, . . . do
6: Compute αt by means of the function alpha.compute of Section 3.2.1
7: Compute βt by means of the function prox.grad.iter.method of Section 3.2.2
8: if the objective function on (3.1) stops decreasing then

return α = αt and β = βt

9: end if
10: end for

Appendix B.1.2) so that we can evaluate its performance and effectiveness, which will be done
in Chapter 4.
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Chapter 4

Discussion and applications of the iSFS
model on simulated and exposome data

We dedicate this chapter to examine the efficacy of the proposed bi-level feature learning
model by reporting its performance based on both synthetic and exposome data (see Sec-
tions 2.3.1 and 2.3.2). First, to do so, we will train the model on training data and we will
make predictions on some testing data, for which we will use evaluation measures such as R
square/adjusted R square, mean square error(MSE)/root mean square error(RMSE) and mean
absolute error(MAE)/root mean absolute error(RMAE) (see Appendix C). Further, we will
plot the predicted outcomes obtained together with the real ones.

We should mention here that we will work on different scenarios of the simulated data and
the exposome data, respectively. On the former, we will separate the study according on the
“grade” of correlation; while on the latter we will work with only numeric data and data where
factors has been converted to binary dummy variables, applied to the four numeric outcomes
of exposome data, namely hs zbmi who, e3 bw, hs correct raven and hs Gen Tot. Finally, we
will compare those data with its corresponding block-wise missing case. Indeed, we will try to
answer the following questions that araised on Chapter 2:

• How is the performance of the algorithm on Section 3.2.3 with both synthetic and expo-
some data?

• Which features on both synthetic and exposome complete data set are the most relevant
for the model (that is, which features have non-zero values on the estimator β̂)?

• How does affect the missing data on both synthetic and exposome data sets on the
performance of the model?

• How does affect the data correlation on the predictions for the synthetic block-wise missing
case?

• Is there any difference between the performance of the model according to the four out-
comes of the exposome data?
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• Is it better to work with all the numeric variables or with all the variables where the
factors have been converted to binary dummy variables (both scenarios of the exposome
data)?

Before going into details, we should mention that in all the models we have observed the
following: the objective function tends to decrease as we increase the number of iterations on
the model. So, putting more iterations for each model (and may decreasing or vanishing the
tolerance value) will have as a consequence better performances, but we will pay the price of
needing more computing time. Further, we will not discuss the performance of the model in
[24, 25] with the model on this manuscript since the data aimed for the study is not the same
that the one used there.

4.1 Simulated data

To discuss the evaluation of the iSFS model performance on simulated data, we have separated
each data set in training (67%) and testing (33%) as shown in Appendix C.1.

4.1.1 Comparison on complete data

We observe on Tables C.1 and C.2, Tables C.3 and C.4, and Tables C.5 and C.6, that, as
expected, the model is doing a great job on non-, low- and high-correlated data, since the
adjusted R squared in all cases is very close to 1. Indeed, this is borne out with the plots on
Figures C.1 and C.2, Figures C.3 and C.4, and Figures C.5 and C.6, where the predicted and
the real outcomes form an almost perfect straight line.

Further, according to the adjusted R squared, we observe that the non-correlated data case
is getting a better performance on both the training and testing data sets compared to the
low-correlated case (though for a little difference). Besides, we observe that the high-correlated
data case has the “worst” performance on both the training and testing data sets compared to
the others data sets.

Moreover, for the non-correlated model we have that the variable 166 is not relevant, while
for the low-correlated model all variables are relevant and for the high-correlated model the
variable 172 is not relevant.

4.1.2 Comparison on incomplete data

We observe on Tables C.7 and C.8, Tables C.9 and C.10, and Tables C.11 and C.12, that the
model is doing a quite good job on non-, low- and high-correlated data, since the adjusted
R squared in all cases for the testing data set is greater than 0.5, having the best result for
the non-correlated case with a value of 0.7. Indeed, this is corroborated with the plots on
Figures C.7 and C.8, Figures C.9 and C.10, and Figures C.11 and C.12, where the predicted
and the real outcomes seem to follow a line.

Further, according to the adjusted R squared, we observe that the non-correlated case has
the best performance, followed (in order) by the low-correlated and the high-correlated cases.
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4.1.3 Discussion on simulated data

First, we shall say that with the data generated from the theoretical model (3.1), we have
obtained, as one could have expected, great results and, clearly, we have succeeded more with
the complete data case than with the block-wise missing one, so we could say (at least with
the data used) that the missing data affects on the performance of the model by decreasing its
effectiveness, since we can observe that the values MSE/RMSE and MAE/RMAE increase in
all cases for the block-wise missing data sets compared to the complete data sets.

Further, surprisingly, the non-correlated case has obtained the best results, as well as the
low-correlated better results than the high-correlated.

Moreover, we have not recovered the truly sparse beta model for none of the different data
used (where we have used the value 0.001 as a threshold for a component to be non-relevant).
This could be caused due to the low iterations needed to obtain each model. Hence, may be
with a lower tolerance or allowing the model going through the whole iterations will allow us
to obtain better results.

Finally, we should point out that the time used for the computation of such models has
been quiet fast.

4.2 Exposome data

To discuss the evaluation of the iSFS model performance on exposome data, we have separated
each data set in training (67%) and test (33%) as shown in Appendix C.2. First, we shall
mention that for the exposome data with factors converted to binary dummy variables we have
not computed, for the testing data set, the adjusted R-squared due to the low number of testing
samples (428 samples) compared to the number of variables (294 variables) which will always
result in a negative value.

4.2.1 Comparison on complete data

4.2.1.1 Numeric variables

We observe in Tables C.13 and C.14, and Tables C.17 and C.18, that the best results are
obtained for the outcomes hs zbmi who and hs correct raven with adjusted R squared greater
than 0.53 for the training data while for the testing data we obtain 0.375 on hs zbmi who and
0.128 on hs correct raven. Further, in Figures C.13 and C.14, and Figures C.17 and C.18, we
see how the tendency on the plots is to follow the line ypred = yreal.

Nevertheless, we can not say the same for the outcomes e3 bw and hs Gen Tot, where
the effectiveness of the model is poor (see Tables C.15 and C.16, Tables C.19 and C.20), with
adjusted R squared negative on the testing data and not following at all (due to some “outliers”
predicted values) the line ypred = yreal (see Figures C.15 and C.16, and Figures C.19 and C.20),
having the worst performance for the outcome hs Gen Tot.

Further, for the outcome hs zbmi who we have that the non-relevant variables are h NO2 Log
and h trafload preg pow1over3, while for the outcome e3 bw the non-relevant variables are
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h builtdens300 preg Sqrt, hs builtdens300 h Sqrt and hs builtdens300 s Sqrt. Moreover, for the
outcomes hs correct raven and hs Gen Tot, all variables seem to be relevant.

4.2.1.2 Dummy variables

We observe in Tables C.21 and C.22, and Tables C.25 and C.26, that the best results are
obtained, as in the numeric case, for the outcomes hs zbmi who and hs correct raven with
adjusted R squared greater than 0.45 for the training data while for the R squared on the
testing data we obtain 0.64 on hs zbmi who and 0.485 on hs correct raven. Further, in Figures
C.21 and C.22, and Figures C.25 and C.26, we see how the tendency on the plots is to follow
the line ypred = yreal.

Nevertheless, we can not say the same for the outcomes e3 bw and hs Gen Tot, where the
effectiveness of the model is poor (see Tables C.23 and C.24, and Tables C.27 and C.28) and
not following at all (due to some “outliers” predicted values) the line ypred = yreal (see Figures
C.23 and C.24, and Figures C.27 and C.28), having the worst performance for the outcome
hs Gen Tot.

Further, for the outcome hs zbmi who we have that the non-relevant variables are vari-
able.female, h landuseshan300 preg None, hs connind300 h Log, hs builtdens300 s Sqrt and also
variable..0.6....6.9., while for the outcome e3 bw the four variables hs builtdens300 h Sqrt,
hs builtdens300 s Sqrt, variable.0.1 and hs trcs madj Log2 are not relevant. Moreover, for the
outcomes hs correct raven and hs Gen Tot, all variables seem to be relevant. In this case, we
have used the value 0.05 as a threshold for a component to be non-relevant.

4.2.2 Comparison on incomplete data

4.2.2.1 Numeric variables

We observe in Tables C.29 and C.30 that the best result is obtained for the outcome hs zbmi who
with adjusted R squared greater than 0.414 for the training data while for the testing data we
obtain 0.118. Further, in Figures C.29 and C.30 we see how the tendency on the plots is (more
or less) to follow the line ypred = yreal.

Nevertheless, in this case we can not say the same for the outcomes e3 bw, hs correct raven
and hs Gen Tot, where the effectiveness of the model is poor (see Tables C.31 and C.32, Ta-
bles C.33 and C.34, and Tables C.35 and C.36), with adjusted R squared negative on the testing
data and not following at all (due to some “outliers” predicted values) the line ypred = yreal (see
Figures C.31 and C.32, Figures C.33 and C.34, and Figures C.35 and C.36), having the worst
performance (among those three outcomes) for the outcome hs Gen Tot and the best one for
the outcome hs correct raven (with which we shall say that, a part from some points, it is not
so far for the line ypred = yreal).

4.2.2.2 Dummy variables

We observe in Tables C.37 and C.38 that the best result is obtained for the outcome hs zbmi who
with adjusted R squared greater than 0.429 for the training data while for the testing data we
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obtain an R squared of 0.58. Further, in Figures C.37 and C.38 we see how the tendency on
the plots is (more or less) to follow the line ypred = yreal.

Nevertheless, in this case we can not say the same for the outcomes e3 bw, hs correct raven
and hs Gen Tot, where the effectiveness of the model is poor (see Tables C.39 and C.40, Ta-
bles C.41 and C.42, and Tables C.43 and C.44), with adjusted R squared negative on the training
data and not following at all (due to some “outliers” predicted values) the line ypred = yreal (see
Figures C.39 and C.40, Figures C.41 and C.42, and Figures C.43 and C.44), having the worst
performance (among those three outcomes) for the outcome hs correct raven and the best one
for the outcome e3 bw.

4.2.3 Discussion on exposome data

First, we shall say that with the complete exposome data we have obtained quite good results
when the outcome were either hs zbmi who or hs correct raven in both numeric and dummy
variables, while for the block-wise missing data the best results have been got when the outcome
is hs zbmi who. Indeed, in Section 2.3.2 we saw that the variables that could be compensated
if having some missing values where those related with the BMI, the height and the weight,
which could give us an idea why the best performance is related with the outcome hs zbmi who.

Further, as expected, we have succeeded more with the complete data case than with the
block-wise missing one, so we could say that (at least with the data used) that the missing data
affects on the performance of the model by decreasing its effectiveness, since we can observe
that the values MSE/RMSE and MAE/RMAE increase in all cases for the block-wise missing
data sets compared to the complete data sets.

Moreover, when comparing between numeric variables and dummy variables, we obtain
that the best results depend strongly on the outcome and if the data is complete or block-wise
missing (see Table 4.1). However, the model needs more computational time for the dummy
variables than for the numeric variables, which should also be taken into account.

Complete data Block-wise missing data
hs zbmi who Numeric variables Dummy variables

e3 bw Numeric variables Dummy variables (for a little bit)
hs correct raven Dummy variables (for a little bit) Numeric variables
hs Gen Tot Dummy variables Numeric variables (for a little bit)

Table 4.1: Best results between numeric variables and dummy variables data sets according
whether the data is complete or not and for the four numeric outcomes of exposome data.
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Chapter 5

Conclusions

On this chapter, we present the conclusions of this thesis. Among them, we will also talk
about the future research that can be done from this manuscript and the schedule tracking
during the time that we have been working on this project.

5.1 Conclusions

When I asked to professors Ferran Reverter and Esteban Vegas whether I can work with them
in a project with mathematical background but, of course, with also biostatistical basis, they
present me the following issue: on many occasions the information that one can gather is not
complete, since for some observations not all data sources are available (what is known as
block-wise missing data) so how we could implement an integrative process with block-wise
missing data based on a Lasso’s type approximation that then could be applied to real omics
data.

That is why in this manuscript we have studied a bi-level feature learning model motivated
by the exposome data (see Section 2.3.2) and we have implemented a code that approaches for
both complete and block-wise missing data (see Chapter 3). Specifically, we have introduced
a unified feature learning model for complete data, which contains several classical convex
models (see Section 3.1.1.1) that has been easily extended to handling the more challenging
case: the block-wise missing data. Further, the effectiveness of the proposed models has been
verified through both simulated data and exposome data (see Chapter 4). Therefore, at the
end we have succeed in presenting an optimization regression model that given complete or
block-wise missing data, we can obtain information from it in order to make predictions for
similar structured data.

Finally, I would like to thank the treatment and predisposition received by my tutors, with
whom I have had the opportunity to meet periodically in order to advance on this thesis in the
best way together. Further, I want to say that coming from a mathematical academic line (by
doing a PhD on mathematical analysis) and jumping to this computing optimization problem
has been a challenging and interesting change, for which I am very grateful.
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5.2 Future research

The future work’s lines that have not been explored in this work (so have remained pending)
and which we hope to be addressed in the near future are the following:

• Code the model in Python language and then upload it to Github.

• Generate a code for the model in Chapter 3 that deals with an iSFS model for the logistic
function. Moreover, modify the model in such a way that could work with factors.

• Study deeper the model in order to decrease its computing time and increase its effec-
tiveness. For instance, one could improve the seek of the parameter β∗

L (see Section 3.1.3)
by using back-tracking line by means of, for example, the Amijo’s rule [7]. Indeed, one
could also apply a different L step for each component independently. Besides, we could
have studied more Ω norms for the parameter α than the two proposed in Section 3.1.2.

• For the study of the current model, we could have used different parameters (tuning)
and k-fold cross-validation to the sake of better results. Further, we could allowed more
iterations since it has been observed that the error model decreases monotonically (at least
for the data used) with each iteration. Besides, to help the study of its performance and
effectiveness, we could have predicted fictional scenarios or we could have used different
Ω functions (for α and β parameters, respectively) and compare between them. All in all,
we could have used all the different functionalities that our model have (as, for instance,
data normalization) in order to obtain the best possible combination of parameters.

• Generalize the model having also missing values (not just blocks of them) and with sources
having just one variable.

• Study the model with the data used in [24, 25] (the reference papers) and compare their
results with ours.

• Compare the effectiveness and performance of the model with imputation methods.

5.3 Schedule tracking

In general lines, all the objectives initially proposed in the planning of the study have been
achieved. However, the part of investigating possible variants of the model either by using
different models or different approaches could have been studied deeper (as we can see on Sec-
tion 5.2) but the generation of the code that implements an optimization algorithm that models
an integrative learning model on either complete or block-wise missing data, and its consequent
evaluation, has precised more time than expected. Indeed, due to unforeseen contingencies ex-
ternal to the student, there are variants of the current model that were willing to be addressed
and will be in a near future.
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For the methodology (see Section 2) we shall mention that we have been able to give an
answer for the questions that arised there, so we can affirm that it has been adequate for a
thesis of this type, especially for the time we have to develop and write it.

Finally, about the scheduling, we had realized while we were on the half of this journey
that before working on treating the exposome data (doing data quality control by seeing how
the data is distributed using graphs) first we had to generate random and simulated block-wise
missing data and to evaluate the model performance and effectiveness with that data. Also,
when computing the parameters α and β of the iSFS model (see Section 3) we had to work
hard in order to develop a satisfactory algorithm that compute them. In particular, we run into
unexpected problems when dealing with the parameter α that, at the end, have been solved.
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Chapter 6

Glossary

The purpose of this chapter is to mention the definitions of the most relevant terms and
acronyms used on this thesis alphabetically arranged:

Adjusted R squared: Correction of R squared proposed by Mordecai Ezekiel [27].
Bi-level learning: Performs simultaneously feature-level and source-level analysis.
BiB/EDEN/INMA/
KANC/MoBa/Rhea: UK/France/Spain/Lithuania/Norway/Greece.
BMI: Body Mass Index.
BTEX: Compounds of Benzene, Toluene, Ethylbenzene and Xylene.
CBCL: Child Behavior Checklist.
GIS: Geographic Information System.
HELIX: Human Early-Life Exposome.
Imputation: Assignment of a value to something by inference from the

value of the products or processes to which it contributes.
iSFS model: Incomplete Source Feature Selection.
Lasso: Least Absolute Shrinkage and Selection Operator.
MAE/RMAE: Mean Absolute Error/Root Mean Absolute Error.
MSE/RMSE: Mean Square Error/Root Mean Square Error.
Multi-source analysis: Comparison of data from multiple sources or from a single

source at different times.
NO2: Nitrogen Dioxide.
PACs: Plural of the Catalan acronym for Continuous Assessment Test.
PM: Particular Matter (also called particular pollution).
Profile: Information described by a decimal integer of the binary indicator

vector that specify whether a certain data source is present or not.
R squared: Coefficient of determination.
RAVEN test: Psychometric test that measures the level of intelligence.
Sparse model: Model with a small number of coefficients that are non-zero.
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Appendix A

Code and figures: methodology and
materials

A.1 Software for the project development

A.1.1 R and RStudio

# Packages used for the development of this manuscript ’s code

library(ade4)

library(binaryLogic)

library(caret)

library(corrplot)

library(devtools)

library(factoextra)

library(glmnet)

library(MASS)

library(mvtnorm)

library(naniar)

A.2 A unified feature learning model for complete and

block-wise missing multi-source data

A.2.1 Missing blocks and profiles

# Computing the profile vector given the dimensions p_i of each source

# A block of a source with missing data will correspond to samples

# that have any NA in that source
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get_profile <- function(p, X){

# Samples and Sources

n <- dim(X)[1]

S <- length(p)

# Profile vector

pf.vec <- numeric(length = n)

for(i in 1:n){

# Profile of i-th sample

pf <- 0

col <- 1

for(j in 1:S){

nextCol <- col + p[j]

if(!any(is.na(X[i, col:( nextCol - 1)])))

pf <- pf + 2^(S - j)

col <- nextCol

}

# Add the i-th profile to the profile vector

pf.vec[i] <- pf

}

return(as.factor(pf.vec))

}

# Group all the samples which have m as a profile together

# with those that have complete data in all the sources

# that are contained in the profile m

getBlockSamples <- function(pf.vec , m, S){

# Get sources of the given profile

sources.on.profile <- which(as.binary(m, n = S))

# Set profiles

profiles <- levels(pf.vec)

# Add corresponding samples to the block

samples.block <- numeric ()

for(i in 1:length(profiles )){

profile <- as.integer(profiles[i])

if(all(as.binary(profile , n = S)[ sources.on.profile ]))

samples.block <-

c(samples.block , which(pf.vec == profile ))

}
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# Return the block and the sources related to that block

return(list(samples = samples.block ,

sources = sources.on.profile ))

}

A.3 Data

A.3.1 Simulated data

# Number of samples

n <- 1500

# Number of sources

S <- 20

# Seed for reproducing the whole code

set.seed(123456)

# Sparsity index: number of non -zero elements of non -zero coefficients

sparsity_ind <- 3

# Dimensions of the underlying true model

p.synth <- sample(sparsity_ind:20, size = S, replace = TRUE)

# Values of the non -zero coefficients

values <- c(10, 8, 6, 4, 2, 1)

# Sparse underlying true model

beta <- c()

for(i in 1:S){

min <- min(sparsity_ind , p.synth[i])

coef <- c(rep(values[i], each = min),

rep(0, each = p.synth[i] - min))

beta <- c(beta , coef*ifelse(rbinom(p.synth[i], 1, 0.5) == 0, -1, 1))

}

beta <- c(beta , rep(0, sum(p.synth) - length(beta )))

# Noise term

eps <- rnorm(n, mean = 0, sd = 0.5)
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• Non-correlation between variables

# Number of variables

num.var <- sum(p.synth)

# Mean vector equals 0

meanVec <- numeric(length = num.var)

# Standard deviation diagonal matrix

sdDiag <- diag(rep(0.5, num.var))

# Correlation and covariance matrices

corMat_nc <- diag(1, num.var)

Sigma_nc <- sdDiag %*% corMat_nc%*% sdDiag

# Non -correlation between variables

X_nc <- rmvnorm(n = n, mean = meanVec , sigma = Sigma_nc)

• Low-correlation between variables

# Correlation and covariance matrices

corMat_lc <- diag(0, num.var)

corMat_lc[lower.tri(corMat_lc , diag = FALSE)] <-

runif(num.var*(num.var - 1)/2, min = 0, max = 0.5)

corMat_lc[upper.tri(corMat_lc)] <-

t(corMat_lc)[upper.tri(corMat_lc)]

corMat_lc <- corMat_lc%*%t(corMat_lc)

corMat_lc <- corMat_lc/(2*max(corMat_lc))

diag(corMat_lc) <- 1

Sigma_lc <- sdDiag %*% corMat_lc%*% sdDiag

# Low -correlation between variables

X_lc <- rmvnorm(n = n, mean = meanVec , sigma = Sigma_lc)

• High-correlation between variables

# Correlation and covariance matrices

corMat_hc <- diag(0, num.var)

corMat_hc[lower.tri(corMat_hc , diag = FALSE)] <-

runif(num.var*(num.var - 1)/2, min = 0.5, max = 1)

corMat_hc[upper.tri(corMat_hc)] <-

t(corMat_hc)[upper.tri(corMat_hc)]

corMat_hc <- corMat_hc%*%t(corMat_hc)

corMat_hc <- corMat_hc/max(corMat_hc)
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diag(corMat_hc) <- 1

Sigma_hc <- sdDiag %*% corMat_hc%*% sdDiag

# High -correlation between variables

X_hc <- rmvnorm(n = n, mean = meanVec , sigma = Sigma_hc)

# Convert complete data matrix to incomplete data randomly

X.NA <- function(X, p){

S <- length(p)

X_NA <- X

for(i in 1:dim(X)[1]){

num.missing.sources <- sample(1:S, 1)

missing.sources <- sample(1:length(p), num.missing.sources)

col <- 1

for(j in 1:S){

nextCol <- col + p[j] - 1

if(j %in% missing.sources)

X_NA[i, col:nextCol] <- NA

col <- nextCol

}

}

return(X_NA)

}

X.NA_nc <- X.NA(X_nc, p.synth)

X.NA_lc <- X.NA(X_lc, p.synth)

X.NA_hc <- X.NA(X_hc, p.synth)

# Outcome

y_nc <- eps

y_lc <- eps

y_hc <- eps

col <- 1

for(i in 1:20){

nextCol <- col + p.synth[i] - 1

y_nc <- y_nc + X_nc[, col:nextCol ]%*% beta[col:nextCol]

y_lc <- y_lc + X_lc[, col:nextCol ]%*% beta[col:nextCol]

y_hc <- y_hc + X_hc[, col:nextCol ]%*% beta[col:nextCol]
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col <- nextCol + 1

}

A.3.2 Exposome data

# Exposome variables without ID

exposome <- exposome[,-1]

exposomeNA <- exposomeNA[,-1]

# All families except covariates and outcome variables

families <- levels(codebook$family)[-c(3,14)]

# Complete data

exposome.data <- covariates[,-1]

for(i in 1:length(families ))

exposome.data <- data.frame(exposome.data ,

exposome[, codebook$family == families[i]])

# Incomplete data

exposomeNA.data <- covariatesNA[,-1]

for(i in 1:length(families ))

exposomeNA.data <-

data.frame(exposomeNA.data ,

exposomeNA[, codebook$family == families[i]])

# Outcome without ID

y <- phenotype[,-1]

# g to kg

y$e3_bw <- y$e3_bw/1000

# Source of each variable

sources <- rep("0.Covariates", dim(covariates[,-1])[2])

for(i in 1:length(families ))

sources <- c(sources , rep(families[i],

sum(codebook$family == families[i])))

# Distribution of the missing values

vis_miss(exposomeNA.data[,1:20])
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Figure A.1: Missing values pattern of the exposome data with missing data (exposomeNA).

# Brief description of the exposome variables consisting

# on the smallest data value , the first quantile , the

# median , the third quantile , and the largest data value

# of each variable respectively

summary(exposome.data)

h_cohort e3_sex_None e3_yearbir_None h_mbmi_None

1:202 female:608 2003: 55 Min. :15.88

2:198 male :693 2004:107 1st Qu.:21.26

3:224 2005:241 Median :24.02

4:207 2006:256 Mean :25.03

5:272 2007:250 3rd Qu.:27.34

6:198 2008:379 Max. :51.42

2009: 13

hs_wgtgain_None e3_gac_None h_age_None h_edumc_None

Min. : 0.0 Min. :28.00 Min. :16.00 1:178

1st Qu.: 9.0 1st Qu.:38.71 1st Qu.:27.64 2:449

Median :12.0 Median :40.00 Median :31.00 3:674

Mean :13.5 Mean :39.63 Mean :30.80

3rd Qu.:18.0 3rd Qu.:40.71 3rd Qu.:34.06
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Max. :55.0 Max. :44.14 Max. :43.51

h_native_None h_parity_None hs_child_age_None hs_c_height_None

0: 146 0:601 Min. : 5.437 Min. :1.054

1: 67 1:464 1st Qu.: 6.500 1st Qu.:1.209

2:1088 2:236 Median : 8.033 Median :1.280

Mean : 7.976 Mean :1.291

3rd Qu.: 8.920 3rd Qu.:1.365

Max. :12.101 Max. :1.685

hs_c_weight_None h_abs_ratio_preg_Log h_no2_ratio_preg_Log

Min. :16.00 Min. :-0.47756 Min. :2.105

1st Qu.:22.90 1st Qu.: 0.09776 1st Qu.:2.670

Median :26.90 Median : 0.30203 Median :2.963

Mean :28.52 Mean : 0.39089 Mean :3.004

3rd Qu.:32.70 3rd Qu.: 0.72516 3rd Qu.:3.298

Max. :71.10 Max. : 1.70921 Max. :4.525

h_pm10_ratio_preg_None h_pm25_ratio_preg_None hs_no2_dy_hs_h_Log

Min. : 8.066 Min. : 6.957 Min. :0.3797

1st Qu.:17.535 1st Qu.:13.289 1st Qu.:2.2867

Median :23.018 Median :14.879 Median :2.9618

Mean :23.504 Mean :15.028 Mean :2.8307

3rd Qu.:27.677 3rd Qu.:16.999 3rd Qu.:3.4474

Max. :47.698 Max. :22.238 Max. :5.1849

hs_no2_wk_hs_h_Log hs_no2_yr_hs_h_Log hs_pm10_dy_hs_h_None

Min. :0.9523 Min. :0.6185 Min. : 2.916

1st Qu.:2.3313 1st Qu.:2.3800 1st Qu.: 17.818

Median :2.9806 Median :3.0238 Median : 22.899

Mean :2.8638 Mean :2.8975 Mean : 26.214

3rd Qu.:3.3932 3rd Qu.:3.4085 3rd Qu.: 30.937

Max. :4.8047 Max. :4.4225 Max. :157.397

hs_pm10_wk_hs_h_None hs_pm10_yr_hs_h_None hs_pm25_dy_hs_h_None

Min. : 5.838 Min. :11.50 Min. : 1.518

1st Qu.: 19.142 1st Qu.:21.68 1st Qu.: 7.950

Median : 24.891 Median :24.75 Median :12.244

Mean : 26.409 Mean :25.10 Mean :12.897

3rd Qu.: 32.131 3rd Qu.:31.26 3rd Qu.:16.263

Max. :211.297 Max. :46.82 Max. :58.884

hs_pm25_wk_hs_h_None hs_pm25_yr_hs_h_None hs_pm25abs_dy_hs_h_Log
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Min. : 3.139 Min. : 4.829 Min. :-1.78220

1st Qu.: 9.340 1st Qu.:10.410 1st Qu.:-0.25857

Median :12.702 Median :13.110 Median : 0.02163

Mean :13.153 Mean :12.916 Mean : 0.11514

3rd Qu.:16.152 3rd Qu.:15.122 3rd Qu.: 0.54459

Max. :75.093 Max. :21.917 Max. : 2.26537

hs_pm25abs_wk_hs_h_Log hs_pm25abs_yr_hs_h_Log

Min. :-1.03415 Min. :-0.59670

1st Qu.:-0.13869 1st Qu.:-0.01657

Median : 0.04672 Median : 0.17773

Mean : 0.16413 Mean : 0.18058

3rd Qu.: 0.53700 3rd Qu.: 0.31331

Max. : 1.87776 Max. : 1.36495

h_accesslines300_preg_dic0 h_accesspoints300_preg_Log

Min. :0.0000 Min. :1.270

1st Qu.:0.0000 1st Qu.:1.963

Median :0.0000 Median :2.879

Mean :0.1991 Mean :2.670

3rd Qu.:0.0000 3rd Qu.:3.349

Max. :1.0000 Max. :4.528

h_builtdens300_preg_Sqrt h_connind300_preg_Sqrt

Min. : 11.02 Min. : 1.887

1st Qu.:340.04 1st Qu.: 9.983

Median :401.49 Median :12.935

Mean :417.06 Mean :12.737

3rd Qu.:502.97 3rd Qu.:15.898

Max. :807.57 Max. :27.276

h_fdensity300_preg_Log h_frichness300_preg_None

Min. :10.26 Min. :0.00000

1st Qu.:10.26 1st Qu.:0.00000

Median :11.36 Median :0.03509

Mean :11.61 Mean :0.06605

3rd Qu.:12.83 3rd Qu.:0.12281

Max. :15.60 Max. :0.42105

h_landuseshan300_preg_None h_popdens_preg_Sqrt

Min. :0.0000 Min. : 0.00

1st Qu.:0.3408 1st Qu.: 53.79

Median :0.4232 Median : 74.98
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Mean :0.4213 Mean : 77.02

3rd Qu.:0.5070 3rd Qu.: 96.21

Max. :1.0000 Max. :261.50

h_walkability_mean_preg_None hs_accesslines300_h_dic0

Min. :0.1000 Min. :0.0000

1st Qu.:0.2000 1st Qu.:0.0000

Median :0.2500 Median :0.0000

Mean :0.2674 Mean :0.1852

3rd Qu.:0.3250 3rd Qu.:0.0000

Max. :0.6250 Max. :1.0000

hs_accesspoints300_h_Log hs_builtdens300_h_Sqrt hs_connind300_h_Log

Min. :0.5771 Min. : 20.3 Min. :1.270

1st Qu.:1.6753 1st Qu.:300.4 1st Qu.:4.405

Median :2.7738 Median :375.5 Median :4.959

Mean :2.4051 Mean :381.1 Mean :4.776

3rd Qu.:3.2846 3rd Qu.:459.1 3rd Qu.:5.364

Max. :4.5838 Max. :805.8 Max. :6.617

hs_fdensity300_h_Log hs_landuseshan300_h_None hs_popdens_h_Sqrt

Min. :10.26 Min. :0.0000 Min. : 1.732

1st Qu.:10.26 1st Qu.:0.3138 1st Qu.: 30.036

Median :10.96 Median :0.4028 Median : 67.405

Mean :11.38 Mean :0.3970 Mean : 67.652

3rd Qu.:12.34 3rd Qu.:0.4929 3rd Qu.: 84.988

Max. :14.98 Max. :0.6619 Max. :261.500

hs_walkability_mean_h_None hs_accesslines300_s_dic0

Min. :0.100 Min. :0.0000

1st Qu.:0.275 1st Qu.:0.0000

Median :0.300 Median :0.0000

Mean :0.326 Mean :0.1883

3rd Qu.:0.375 3rd Qu.:0.0000

Max. :0.600 Max. :1.0000

hs_accesspoints300_s_Log hs_builtdens300_s_Sqrt hs_connind300_s_Log

Min. :0.5771 Min. : 6.432 Min. :1.270

1st Qu.:1.6753 1st Qu.:314.349 1st Qu.:4.528

Median :2.5225 Median :380.503 Median :4.933

Mean :2.3902 Mean :400.029 Mean :4.791

3rd Qu.:3.2846 3rd Qu.:480.133 3rd Qu.:5.364

Max. :4.0730 Max. :805.140 Max. :6.578
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hs_fdensity300_s_Log hs_landuseshan300_s_None hs_popdens_s_Sqrt

Min. :10.26 Min. :0.08298 Min. : 0.00

1st Qu.:10.26 1st Qu.:0.34004 1st Qu.: 38.56

Median :11.36 Median :0.44793 Median : 69.26

Mean :11.56 Mean :0.42993 Mean : 68.10

3rd Qu.:12.57 3rd Qu.:0.53689 3rd Qu.: 84.99

Max. :15.25 Max. :0.72770 Max. :210.95

h_Absorbance_Log h_Benzene_Log h_NO2_Log

Min. :-0.92737 Min. :-0.3296 Min. :1.573

1st Qu.:-0.54273 1st Qu.: 0.3141 1st Qu.:2.979

Median :-0.26937 Median : 0.5600 Median :3.617

Mean :-0.16919 Mean : 0.5987 Mean :3.833

3rd Qu.: 0.02422 3rd Qu.: 0.8437 3rd Qu.:4.576

Max. : 3.40474 Max. : 1.9975 Max. :7.093

h_PM_Log h_TEX_Log e3_alcpreg_yn_None

Min. :1.549 Min. :1.926 0:896

1st Qu.:2.069 1st Qu.:2.601 1:405

Median :2.304 Median :2.976

Mean :2.443 Mean :2.999

3rd Qu.:2.699 3rd Qu.:3.363

Max. :5.236 Max. :4.944

h_bfdur_Ter h_cereal_preg_Ter h_dairy_preg_Ter

(0,10.8] :506 (0,9] :531 (0,17.1] :270

(10.8,34.9]:270 (9,27.3] :459 (17.1,27.1]:380

(34.9,Inf] :525 (27.3,Inf]:311 (27.1,Inf] :651

h_fastfood_preg_Ter h_fish_preg_Ter h_folic_t1_None

(0,0.25] : 94 (0,1.9] :343 0:606

(0.25,0.83]:535 (1.9,4.1]:490 1:695

(0.83,Inf] :672 (4.1,Inf]:468

h_fruit_preg_Ter h_legume_preg_Ter h_meat_preg_Ter

(0,0.6] : 6 (0,0.5]:245 (0,6.5] :427
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(0.6,18.2]:922 (0.5,2]:269 (6.5,10]:387

(18.2,Inf]:373 (2,Inf]:787 (10,Inf]:487

h_pamod_t3_None h_pavig_t3_None h_veg_preg_Ter

None : 42 High : 47 (0,8.8] :539

Often :474 Low :952 (8.8,16.5]:470

Sometimes :191 Medium:302 (16.5,Inf]:292

Very Often:594

hs_bakery_prod_Ter hs_beverages_Ter hs_break_cer_Ter

(0,2] :345 (0,0.132]:331 (0,1.1] :291

(2,6] :423 (0.132,1]:454 (1.1,5.5]:521

(6,Inf]:533 (1,Inf] :516 (5.5,Inf]:489

hs_caff_drink_Ter hs_dairy_Ter hs_fastfood_Ter

(0,0.132] :808 (0,14.6] :359 (0,0.132] :143

(0.132,Inf]:493 (14.6,25.6]:465 (0.132,0.5]:603

(25.6,Inf] :477 (0.5,Inf] :555

hs_KIDMED_None hs_mvpa_prd_alt_None hs_org_food_Ter

Min. :-3.000 Min. :-27.76 (0,0.132]:429

1st Qu.: 2.000 1st Qu.: 23.27 (0.132,1]:396

Median : 3.000 Median : 34.71 (1,Inf] :476

Mean : 2.881 Mean : 37.87

3rd Qu.: 4.000 3rd Qu.: 47.75

Max. : 9.000 Max. :146.75

hs_pet_cat_r2_None hs_pet_dog_r2_None hs_pet_None hs_proc_meat_Ter

0:1059 0:1108 No :807 (0,1.5]:366

1: 242 1: 193 Yes:494 (1.5,4]:471

(4,Inf]:464
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hs_readymade_Ter hs_sd_wk_None hs_total_bread_Ter

(0,0.132] :327 Min. : 3.143 (0,7] :431

(0.132,0.5]:296 1st Qu.:155.714 (7,17.5] :381

(0.5,Inf] :678 Median :210.000 (17.5,Inf]:489

Mean :235.809

3rd Qu.:282.857

Max. :994.286

hs_total_cereal_Ter hs_total_fish_Ter hs_total_fruits_Ter

(0,14.1] :418 (0,1.5]:389 (0,7] :413

(14.1,23.6]:442 (1.5,3]:454 (7,14.1] :407

(23.6,Inf] :441 (3,Inf]:458 (14.1,Inf]:481

hs_total_lipids_Ter hs_total_meat_Ter hs_total_potatoes_Ter

(0,3] :397 (0,6] :425 (0,3] :417

(3,7] :403 (6,9] :411 (3,4] :405

(7,Inf]:501 (9,Inf]:465 (4,Inf]:479

hs_total_sweets_Ter hs_total_veg_Ter hs_total_yog_Ter

(0,4.1] :344 (0,6] :404 (0,6] :779

(4.1,8.5]:516 (6,8.5] :314 (6,8.5] :308

(8.5,Inf]:441 (8.5,Inf]:583 (8.5,Inf]:214

hs_dif_hours_total_None hs_as_c_Log2 hs_as_m_Log2

Min. : 7.901 Min. :-15.0124 Min. :-38.625

1st Qu.: 9.794 1st Qu.: -4.0075 1st Qu.: -5.419

Median :10.330 Median : 0.4854 Median : -1.925

Mean :10.296 Mean : -0.9947 Mean : -3.011

3rd Qu.:10.741 3rd Qu.: 1.2630 3rd Qu.: 1.007

Max. :12.852 Max. : 4.8227 Max. : 6.493
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hs_cd_c_Log2 hs_cd_m_Log2 hs_co_c_Log2

Min. :-10.395 Min. :-7.844 Min. :-5.546

1st Qu.: -4.399 1st Qu.:-2.671 1st Qu.:-2.718

Median : -3.818 Median :-2.427 Median :-2.427

Mean : -3.969 Mean :-2.179 Mean :-2.344

3rd Qu.: -3.393 3rd Qu.:-1.713 3rd Qu.:-2.041

Max. : 0.840 Max. : 4.802 Max. : 1.401

hs_co_m_Log2 hs_cs_c_Log2 hs_cs_m_Log2

Min. :-5.184 Min. :-1.45403 Min. :-1.15843

1st Qu.:-2.515 1st Qu.: 0.05658 1st Qu.: 0.07039

Median :-2.012 Median : 0.46467 Median : 0.40054

Mean :-1.694 Mean : 0.44276 Mean : 0.48140

3rd Qu.:-0.550 3rd Qu.: 0.80735 3rd Qu.: 0.80736

Max. : 2.503 Max. : 3.06523 Max. : 3.44626

hs_cu_c_Log2 hs_cu_m_Log2 hs_hg_c_Log2

Min. : 9.079 Min. : 9.036 Min. :-10.8954

1st Qu.: 9.681 1st Qu.:10.253 1st Qu.: -1.2277

Median : 9.828 Median :10.441 Median : -0.1959

Mean : 9.828 Mean :10.402 Mean : -0.2980

3rd Qu.: 9.966 3rd Qu.:10.541 3rd Qu.: 0.8237

Max. :12.123 Max. :11.167 Max. : 3.6554

hs_hg_m_Log2 hs_mn_c_Log2 hs_mn_m_Log2

Min. :-9.0230 Min. :1.705 Min. :1.655

1st Qu.:-0.3094 1st Qu.:2.836 1st Qu.:3.291

Median : 0.5753 Median :3.119 Median :3.573

Mean : 0.5698 Mean :3.128 Mean :3.542

3rd Qu.: 1.5705 3rd Qu.:3.392 3rd Qu.:3.807

Max. : 5.4429 Max. :4.792 Max. :5.446

hs_mo_c_Log2 hs_mo_m_Log2 hs_pb_c_Log2

Min. :-9.23481 Min. :-2.7179 Min. :1.084

1st Qu.:-0.76121 1st Qu.:-0.9828 1st Qu.:2.680

Median :-0.40354 Median :-0.7322 Median :3.103

Mean :-0.31526 Mean :-0.6933 Mean :3.108

3rd Qu.: 0.02857 3rd Qu.:-0.3978 3rd Qu.:3.485

Max. : 5.12101 Max. : 6.1334 Max. :7.735

hs_pb_m_Log2 hs_tl_cdich_None hs_tl_mdich_None

Min. :1.220 Detected : 102 Detected : 17

1st Qu.:2.618 Undetected:1199 Undetected:1284

75



Sergi Baena i Miret A.3 Data

Median :3.189

Mean :3.211

3rd Qu.:3.807

Max. :7.547

h_humidity_preg_None h_pressure_preg_None h_temperature_preg_None

Min. :55.83 Min. : 974.9 Min. : 3.120

1st Qu.:70.63 1st Qu.: 980.8 1st Qu.: 8.127

Median :77.10 Median : 983.4 Median :10.155

Mean :76.56 Mean : 991.5 Mean :11.195

3rd Qu.:86.54 3rd Qu.:1002.3 3rd Qu.:13.798

Max. :90.67 Max. :1015.5 Max. :22.566

hs_hum_mt_hs_h_None hs_tm_mt_hs_h_None hs_uvdvf_mt_hs_h_None

Min. :52.05 Min. :-3.477 Min. :0.007

1st Qu.:64.99 1st Qu.: 6.761 1st Qu.:0.259

Median :72.89 Median :12.442 Median :1.009

Mean :73.91 Mean :11.611 Mean :1.403

3rd Qu.:82.55 3rd Qu.:16.092 3rd Qu.:2.308

Max. :96.14 Max. :27.271 Max. :5.150

hs_hum_dy_hs_h_None hs_hum_wk_hs_h_None hs_tm_dy_hs_h_None

Min. : 26.19 Min. :48.59 Min. :-7.90

1st Qu.: 59.15 1st Qu.:63.82 1st Qu.: 6.20

Median : 72.27 Median :73.75 Median :12.00

Mean : 72.75 Mean :74.07 Mean :11.44

3rd Qu.: 85.00 3rd Qu.:84.38 3rd Qu.:16.18

Max. :100.00 Max. :98.62 Max. :30.70

hs_tm_wk_hs_h_None hs_uvdvf_dy_hs_h_None hs_uvdvf_wk_hs_h_None

Min. :-5.605 Min. :0.000 Min. :0.001429

1st Qu.: 6.745 1st Qu.:0.220 1st Qu.:0.234286

Median :12.375 Median :1.030 Median :1.101429

Mean :11.442 Mean :1.439 Mean :1.446599

3rd Qu.:16.167 3rd Qu.:2.380 3rd Qu.:2.407143

Max. :27.688 Max. :5.550 Max. :5.254286

hs_blueyn300_s_None h_blueyn300_preg_None h_greenyn300_preg_None

0:1208 0:1194 0:321

1: 93 1: 107 1:980
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h_ndvi100_preg_None hs_greenyn300_s_None hs_blueyn300_h_None

Min. :0.1062 0: 283 0:1184

1st Qu.:0.2488 1:1018 1: 117

Median :0.4105

Mean :0.3917

3rd Qu.:0.5158

Max. :0.7354

hs_greenyn300_h_None hs_ndvi100_h_None hs_ndvi100_s_None

0: 274 Min. :0.09675 Min. :0.09519

1:1027 1st Qu.:0.31847 1st Qu.:0.31576

Median :0.47907 Median :0.44998

Mean :0.45053 Mean :0.41609

3rd Qu.:0.57471 3rd Qu.:0.52503

Max. :0.81432 Max. :0.75681

h_lden_cat_preg_None hs_ln_cat_h_None hs_lden_cat_s_None

Min. :33.92 1:476 1:580

1st Qu.:50.00 2:633 2:265

Median :58.63 3:104 3:299

Mean :57.47 4: 61 4:104

3rd Qu.:64.36 5: 27 5: 37

Max. :77.40 6: 16

hs_dde_cadj_Log2 hs_dde_madj_Log2 hs_ddt_cadj_Log2

Min. : 1.192 Min. : 0.8634 Min. :-15.4250

1st Qu.: 3.563 1st Qu.: 4.4580 1st Qu.: -1.7517

Median : 4.454 Median : 5.5719 Median : -0.4731

Mean : 4.669 Mean : 5.8409 Mean : -1.5790

3rd Qu.: 5.509 3rd Qu.: 7.0023 3rd Qu.: 0.7681

Max. :11.075 Max. :10.8937 Max. : 7.6305

hs_ddt_madj_Log2 hs_hcb_cadj_Log2 hs_hcb_madj_Log2

Min. :-14.1418 Min. :-13.136 Min. :-9.420

1st Qu.: -0.2646 1st Qu.: 2.650 1st Qu.: 2.315

Median : 0.6778 Median : 3.050 Median : 2.797

Mean : 0.8748 Mean : 3.154 Mean : 2.955

3rd Qu.: 1.5125 3rd Qu.: 3.520 3rd Qu.: 3.486

Max. : 6.5566 Max. : 6.461 Max. : 7.357

hs_pcb118_cadj_Log2 hs_pcb118_madj_Log2 hs_pcb138_cadj_Log2
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Min. :-6.9507 Min. :-1.170 Min. :-9.432

1st Qu.: 0.6038 1st Qu.: 0.627 1st Qu.: 1.744

Median : 1.0007 Median : 1.052 Median : 2.416

Mean : 1.1023 Mean : 1.250 Mean : 2.402

3rd Qu.: 1.5596 3rd Qu.: 1.829 3rd Qu.: 3.110

Max. : 4.7829 Max. : 7.426 Max. : 7.746

hs_pcb138_madj_Log2 hs_pcb153_cadj_Log2 hs_pcb153_madj_Log2

Min. :-10.187 Min. :1.207 Min. :1.110

1st Qu.: 1.788 1st Qu.:2.858 1st Qu.:2.852

Median : 2.921 Median :3.519 Median :3.854

Mean : 2.868 Mean :3.555 Mean :3.892

3rd Qu.: 3.794 3rd Qu.:4.218 3rd Qu.:4.739

Max. : 8.206 Max. :7.764 Max. :9.839

hs_pcb170_cadj_Log2 hs_pcb170_madj_Log2 hs_pcb180_cadj_Log2

Min. :-16.8417 Min. :-2.0418 Min. :-11.7198

1st Qu.: -0.8488 1st Qu.:-0.3211 1st Qu.: 0.6983

Median : 0.2765 Median : 0.8727 Median : 1.8340

Mean : -0.3076 Mean : 1.0875 Mean : 1.7477

3rd Qu.: 1.3909 3rd Qu.: 2.2000 3rd Qu.: 3.0077

Max. : 4.7832 Max. : 7.7831 Max. : 5.8781

hs_pcb180_madj_Log2 hs_sumPCBs5_cadj_Log2 hs_sumPCBs5_madj_Log2

Min. :-10.121 Min. :2.182 Min. :2.299

1st Qu.: 2.069 1st Qu.:3.857 1st Qu.:4.007

Median : 2.990 Median :4.612 Median :4.715

Mean : 2.946 Mean :4.647 Mean :4.860

3rd Qu.: 4.034 3rd Qu.:5.372 3rd Qu.:5.738

Max. : 9.349 Max. :9.277 Max. :9.341

hs_dep_cadj_Log2 hs_dep_madj_Log2 hs_detp_cadj_Log2

Min. :-12.5924 Min. :-13.4083 Min. :-15.4450

1st Qu.: -0.9973 1st Qu.: 0.9887 1st Qu.: -5.1816

Median : 0.9287 Median : 1.6631 Median : -3.3437

Mean : 0.1606 Mean : 1.7010 Mean : -2.4230

3rd Qu.: 2.2958 3rd Qu.: 2.6659 3rd Qu.: 0.7957

Max. : 9.3767 Max. : 7.5853 Max. : 6.2939

hs_detp_madj_Log2 hs_dmdtp_cdich_None hs_dmp_cadj_Log2

Min. :-28.3791 Detected : 227 Min. :-16.6419

1st Qu.: -3.9329 Undetected:1074 1st Qu.: -4.7344

Median : -0.5251 Median : -0.2684
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Mean : -1.5667 Mean : -1.4156

3rd Qu.: 1.0079 3rd Qu.: 2.2472

Max. : 5.4700 Max. : 6.3794

hs_dmp_madj_Log2 hs_dmtp_cadj_Log2 hs_dmtp_madj_Log2

Min. :-17.141 Min. :-10.6455 Min. :-15.327

1st Qu.: 2.011 1st Qu.: 0.3311 1st Qu.: 1.072

Median : 2.796 Median : 1.5927 Median : 2.225

Mean : 2.243 Mean : 1.1332 Mean : 1.612

3rd Qu.: 3.756 3rd Qu.: 2.7625 3rd Qu.: 3.489

Max. : 8.333 Max. : 8.6635 Max. : 7.780

hs_pfhxs_c_Log2 hs_pfhxs_m_Log2 hs_pfna_c_Log2

Min. :-8.8953 Min. :-17.8296 Min. :-8.1484

1st Qu.:-2.3783 1st Qu.: -1.7277 1st Qu.:-1.7387

Median :-1.4426 Median : -0.9284 Median :-1.0643

Mean :-1.5722 Mean : -0.9841 Mean :-1.0798

3rd Qu.:-0.7102 3rd Qu.: -0.1648 3rd Qu.:-0.4677

Max. : 4.8309 Max. : 3.7592 Max. : 2.7178

hs_pfna_m_Log2 hs_pfoa_c_Log2 hs_pfoa_m_Log2

Min. :-10.75405 Min. :-2.2197 Min. :-5.4760

1st Qu.: -1.31140 1st Qu.: 0.2453 1st Qu.: 0.4107

Median : -0.58631 Median : 0.6274 Median : 1.2007

Mean : -0.75352 Mean : 0.6102 Mean : 1.0479

3rd Qu.: 0.09482 3rd Qu.: 0.9507 3rd Qu.: 1.7450

Max. : 2.56486 Max. : 2.7352 Max. : 4.9836

hs_pfos_c_Log2 hs_pfos_m_Log2 hs_pfunda_c_Log2

Min. :-10.4131 Min. :-1.824 Min. :-11.784

1st Qu.: 0.3699 1st Qu.: 1.961 1st Qu.: -5.013

Median : 1.0274 Median : 2.649 Median : -4.078

Mean : 0.9700 Mean : 2.556 Mean : -4.246

3rd Qu.: 1.6747 3rd Qu.: 3.213 3rd Qu.: -3.272

Max. : 5.0801 Max. : 5.584 Max. : 0.593

hs_pfunda_m_Log2 hs_bpa_cadj_Log2 hs_bpa_madj_Log2

Min. :-26.21246 Min. :-7.150 Min. :-11.020

1st Qu.: -3.21222 1st Qu.: 1.270 1st Qu.: 0.292

Median : -2.47816 Median : 2.014 Median : 1.146

Mean : -2.65699 Mean : 2.144 Mean : 1.467

3rd Qu.: -1.71446 3rd Qu.: 2.875 3rd Qu.: 2.340

Max. : -0.04217 Max. : 7.833 Max. : 6.736
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hs_bupa_cadj_Log2 hs_bupa_madj_Log2 hs_etpa_cadj_Log2

Min. :-13.940 Min. :-15.578 Min. :-6.0647

1st Qu.: -4.385 1st Qu.: -1.341 1st Qu.:-1.2022

Median : -3.472 Median : 1.420 Median :-0.5644

Mean : -3.532 Mean : 1.016 Mean :-0.1302

3rd Qu.: -2.574 3rd Qu.: 3.603 3rd Qu.: 0.3723

Max. : 6.597 Max. : 8.534 Max. :10.9895

hs_etpa_madj_Log2 hs_mepa_cadj_Log2 hs_mepa_madj_Log2

Min. :-12.119 Min. :-6.907 Min. :-0.3096

1st Qu.: 1.240 1st Qu.: 1.696 1st Qu.: 5.8817

Median : 3.280 Median : 2.672 Median : 7.7170

Mean : 3.330 Mean : 3.394 Mean : 7.3042

3rd Qu.: 5.127 3rd Qu.: 4.692 3rd Qu.: 8.6247

Max. : 12.726 Max. :14.549 Max. :15.2601

hs_oxbe_cadj_Log2 hs_oxbe_madj_Log2 hs_prpa_cadj_Log2

Min. :-4.1446 Min. :-10.5100 Min. :-12.0208

1st Qu.:-0.1665 1st Qu.: 0.7601 1st Qu.: -4.3879

Median : 1.1184 Median : 2.5546 Median : -2.2575

Mean : 1.4523 Mean : 3.0346 Mean : -1.6065

3rd Qu.: 2.7929 3rd Qu.: 4.7789 3rd Qu.: 0.8151

Max. :12.9631 Max. : 13.6480 Max. : 10.7801

hs_prpa_madj_Log2 hs_trcs_cadj_Log2 hs_trcs_madj_Log2

Min. :-14.154 Min. :-4.3599 Min. :-4.8110

1st Qu.: 3.754 1st Qu.:-1.6413 1st Qu.: 0.5526

Median : 5.775 Median :-0.7294 Median : 2.6584

Mean : 5.228 Mean :-0.3519 Mean : 3.4281

3rd Qu.: 7.073 3rd Qu.: 0.5389 3rd Qu.: 6.5909

Max. : 13.605 Max. : 9.2782 Max. :10.6909

hs_mbzp_cadj_Log2 hs_mbzp_madj_Log2 hs_mecpp_cadj_Log2

Min. :-0.5586 Min. :-3.738 Min. : 2.631

1st Qu.: 1.6442 1st Qu.: 1.861 1st Qu.: 4.412

Median : 2.3435 Median : 2.887 Median : 5.136

Mean : 2.4435 Mean : 2.978 Mean : 5.190

3rd Qu.: 3.1093 3rd Qu.: 4.097 3rd Qu.: 5.915

Max. : 7.1847 Max. : 9.304 Max. :10.628

hs_mecpp_madj_Log2 hs_mehhp_cadj_Log2 hs_mehhp_madj_Log2

Min. : 2.427 Min. : 1.820 Min. :-0.4596
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1st Qu.: 4.327 1st Qu.: 3.644 1st Qu.: 3.4564

Median : 4.851 Median : 4.350 Median : 4.0677

Mean : 5.027 Mean : 4.398 Mean : 4.1568

3rd Qu.: 5.632 3rd Qu.: 5.050 3rd Qu.: 4.7897

Max. :10.411 Max. :11.130 Max. : 9.9176

hs_mehp_cadj_Log2 hs_mehp_madj_Log2 hs_meohp_cadj_Log2

Min. :-1.6330 Min. :-7.469 Min. : 1.138

1st Qu.: 0.8235 1st Qu.: 1.793 1st Qu.: 2.903

Median : 1.5741 Median : 3.057 Median : 3.633

Mean : 1.6142 Mean : 2.940 Mean : 3.696

3rd Qu.: 2.3459 3rd Qu.: 3.808 3rd Qu.: 4.378

Max. : 8.1407 Max. : 8.702 Max. :10.332

hs_meohp_madj_Log2 hs_mep_cadj_Log2 hs_mep_madj_Log2

Min. :-0.0179 Min. : 1.748 Min. : 3.292

1st Qu.: 3.1001 1st Qu.: 4.015 1st Qu.: 6.398

Median : 3.6836 Median : 5.054 Median : 7.776

Mean : 3.7810 Mean : 5.261 Mean : 7.772

3rd Qu.: 4.4199 3rd Qu.: 6.257 3rd Qu.: 8.911

Max. : 9.6122 Max. :11.642 Max. :14.114

hs_mibp_cadj_Log2 hs_mibp_madj_Log2 hs_mnbp_cadj_Log2

Min. :2.321 Min. :0.9264 Min. :1.866

1st Qu.:4.719 1st Qu.:4.5921 1st Qu.:3.962

Median :5.413 Median :5.3438 Median :4.621

Mean :5.461 Mean :5.3105 Mean :4.676

3rd Qu.:6.196 3rd Qu.:5.9232 3rd Qu.:5.304

Max. :9.750 Max. :9.4609 Max. :8.932

hs_mnbp_madj_Log2 hs_ohminp_cadj_Log2 hs_ohminp_madj_Log2

Min. :-0.7106 Min. :-0.2821 Min. :-11.4619

1st Qu.: 4.1958 1st Qu.: 1.7093 1st Qu.: -0.7237

Median : 4.8550 Median : 2.4143 Median : -0.2093

Mean : 4.9574 Mean : 2.5870 Mean : -0.2990

3rd Qu.: 5.5687 3rd Qu.: 3.1967 3rd Qu.: 0.2665

Max. :12.6539 Max. : 9.0983 Max. : 6.0560

hs_oxominp_cadj_Log2 hs_oxominp_madj_Log2 hs_sumDEHP_cadj_Log2

Min. :-0.9126 Min. :-11.55154 Min. : 2.648

1st Qu.: 0.8939 1st Qu.: -0.69643 1st Qu.: 5.244

Median : 1.4939 Median : -0.01846 Median : 6.004

Mean : 1.6735 Mean : -0.05541 Mean : 6.049
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3rd Qu.: 2.2830 3rd Qu.: 0.51914 3rd Qu.: 6.839

Max. : 9.4093 Max. : 5.55327 Max. :10.052

hs_sumDEHP_madj_Log2 hs_pbde153_cadj_Log2 hs_pbde153_madj_Log2

Min. : 3.211 Min. :-17.631 Min. :-15.0030

1st Qu.: 5.226 1st Qu.: -7.963 1st Qu.: -1.8848

Median : 5.880 Median : -2.618 Median : -0.9487

Mean : 6.015 Mean : -4.525 Mean : -1.7406

3rd Qu.: 6.697 3rd Qu.: -1.246 3rd Qu.: -0.0321

Max. :11.691 Max. : 4.045 Max. : 6.4338

hs_pbde47_cadj_Log2 hs_pbde47_madj_Log2 FAS_cat_None

Min. :-15.357 Min. :-11.5808 Low :146

1st Qu.: -2.729 1st Qu.: -1.7581 Middle:486

Median : -2.148 Median : -0.9687 High :669

Mean : -2.606 Mean : -0.7793

3rd Qu.: -1.535 3rd Qu.: 0.1183

Max. : 5.381 Max. : 5.1183

hs_contactfam_3cat_num_None hs_hm_pers_None

(almost) Daily :863 Min. : 1.000

Once a week :382 1st Qu.: 4.000

Less than once a week: 56 Median : 4.000

Mean : 4.248

3rd Qu.: 5.000

Max. :10.000

hs_participation_3cat_None e3_asmokcigd_p_None

None :748 Min. : 0.000

1 organisation :355 1st Qu.: 0.000

2 or more organisations:198 Median : 0.000

Mean : 0.494

3rd Qu.: 0.000

Max. :15.238

hs_cotinine_cdich_None hs_cotinine_mcat_None hs_globalexp2_None

Detected : 223 Non-smokers:759 exposure :463

Undetected:1078 SHS smokers:157 no exposure:838

Smokers :385
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hs_smk_parents_None h_distinvnear1_preg_Log

both :142 Min. :-10.022

neither:814 1st Qu.: -3.980

one :345 Median : -3.002

Mean : -3.153

3rd Qu.: -2.256

Max. : 2.794

h_trafload_preg_pow1over3 h_trafnear_preg_pow1over3

Min. : 0.3458 Min. : 0.000

1st Qu.: 33.6542 1st Qu.: 7.937

Median : 66.6101 Median :12.119

Mean : 75.5390 Mean :14.989

3rd Qu.:113.0812 3rd Qu.:21.397

Max. :294.2705 Max. :39.321

hs_trafload_h_pow1over3 hs_trafnear_h_pow1over3 h_bro_preg_Log

Min. : 0.00 Min. : 0.000 Min. :-2.9759

1st Qu.: 77.42 1st Qu.: 8.434 1st Qu.:-0.5009

Median :114.87 Median :14.841 Median : 1.8701

Mean :112.70 Mean :15.977 Mean : 1.2640

3rd Qu.:136.00 3rd Qu.:22.104 3rd Qu.: 2.7488

Max. :293.58 Max. :49.348 Max. : 4.9016

h_clf_preg_Log h_thm_preg_Log

Min. :-6.9078 Min. :-1.600

1st Qu.:-0.4959 1st Qu.: 1.849

Median : 2.0776 Median : 2.912

Mean : 0.9645 Mean : 2.709

3rd Qu.: 3.1781 3rd Qu.: 3.839

Max. : 3.8334 Max. : 5.031

# Variables type without outcomes

var_indexes <- which (!( codebook$family == "Phenotype"))

var_type <- codebook$var_type[var_indexes]

# Percentages of variable ’s type

round(table(var_type)/ length(var_type), 4)*100

var_type

factor numeric

25.11 74.89
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• Exposome data without factor variables (numeric variables)

# Factors on exposome data

factors.exposome <- which(as.vector(sapply(exposome.data , is.factor )))

# Exposome data with only numeric variables

exposome.data.nv <- exposome.data[, -factors.exposome]

exposomeNA.data.nv <- exposomeNA.data[, -factors.exposome]

# Sources of each sample

sources.nv <- sources[-factors.exposome]

# Number of variables for each source with only numeric variables

p.nv <- as.vector(table(sources.nv))

# Sources with just one variable

one.var <- which(p.nv == 1)

sources.one.var <- c()

for(i in 1:length(one.var))

sources.one.var <- c(sources.one.var ,

sources.nv[sum(p.nv[1:one.var[i]])])

sources.one.var

[1] "Noise" "Social and economic capital" "Tobacco Smoke"

# Only variables to near sources

sources.nv[sources.nv == "Noise"] <- "Traffic"

sources.nv[sources.nv == "Social␣and␣economic␣capital"] <- "Lifestyle"

sources.nv[sources.nv == "Tobacco␣Smoke"] <- "Lifestyle"

new.order <- order(sources.nv)

# Exposome data

exposome.data.nv <- exposome.data.nv[,new.order]

exposomeNA.data.nv <- exposomeNA.data.nv[,new.order]

# Sources of each sample

sources.nv <- sources.nv[new.order]

# Number of variables for each source with only numeric variables

p.nv <- as.vector(table(sources.nv))
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# Correlogram between covariates variables and variables with

# absolute correlation greater than 0.5

# Correlation matrix

cor.matrix <- cor(exposome.data.nv)

# Cumulative sum of number of variables for each source

cum.sum.p.nv <- cumsum(p.nv)

# Covariates indexes

covariates.var <- 1:p.nv[1]

# High.correlated sources indexes

curr.index <- 1

high.correlated.cov <- list()

# Correograms of high correlated sources

for(i in 2:length(cum.sum.p.nv)){

next.var <- (cum.sum.p.nv[i - 1] + 1):cum.sum.p.nv[i]

# Current correlation matrix

cor.mat <- cor.matrix[covariates.var , next.var]

# High correlated sources

if(length(cor.mat[abs(cor.mat) > 0.5]) > 0){

# Correograms

corrplot(cor.mat , method = "circle", type = "upper",

title = paste0("Covariates␣vs␣",

sources.nv[cum.sum.p.nv[i - 1] + 1]),

tl.cex = 0.5, tl.col = "black", mar = c(0,0,1,0))

# High.correlated sources indexes

high.correlated.cov[[curr.index]] <- next.var

curr.index <- curr.index + 1

}

}
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Figure A.2: Correlogram between Covariates variables and Air Pollution variables.

Figure A.3: Correlogram between Covariates variables and Metals variables.
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Figure A.4: Correlogram between Covariates variables and Organochlorines variables.

Figure A.5: Correlogram between Covariates variables and PFAS variables.
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# Correlation matrix of covariates

cor.mat <- cor.matrix[covariates.var , covariates.var]

# Correlogram between covariates

corrplot(cor.mat , method = "circle", type = "upper",

title = "Covariates␣vs␣Covariates",

tl.cex = 0.5, tl.col = "black", mar = c(0,0,1,0))

Figure A.6: Correlogram between Covariates variables.

# Correlograms betwen sources that are high correlated with covariates

for(i in 1:( length(high.correlated.cov) - 1)){

for(j in (i + 1): length(high.correlated.cov)){

# Current correlation matrix

cor.mat <- cor.matrix[high.correlated.cov[[i]],

high.correlated.cov[[j]]]

# Correograms

corrplot(cor.mat , method = "circle", type = "upper",

title = paste0(sources.nv[high.correlated.cov[[i]][1]],

"␣vs␣",

sources.nv[high.correlated.cov[[j]][1]]),
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tl.cex = 0.5, tl.col = "black", mar = c(0,0,1,0))

}

}

Figure A.7: Correlogram between Air Pollution variables and Metals variables.
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Figure A.8: Correlogram between Air Pollution variables and Organochlorines variables.
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Figure A.9: Correlogram between Air Pollution variables and PFAS variables.
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Figure A.10: Correlogram between Metals variables and Organochlorines variables.

92



Sergi Baena i Miret A.3 Data

Figure A.11: Correlogram between Metals variables and PFAS variables.
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Figure A.12: Correlogram between Organochlorines variables and PFAS variables.

# Creating new subsources for covariates

age.cov <- c("e3_yearbir_None", "h_age_None", "e3_gac_None",

"hs_child_age_None")

body_measures.cov <- c("h_mbmi_None", "hs_c_weight_None",

"hs_wgtgain_None", "hs_c_height_None")

childs.info <- c("h_native_None", "e3_sex_None")

parents.info <- c("h_cohort", "h_edumc_None", "h_parity_None")

# Dividing Covariates source into subsources for both

# numeric exposome data and the general one

colnames <- colnames(exposome.data)

colnames.nv <- colnames(exposome.data.nv)

sources[colnames %in% age.cov] <- "0.Covariates.Age"

sources.nv[colnames.nv %in% age.cov] <- "0.Covariates.Age"

sources[colnames %in% body_measures.cov]

<- "0.Covariates.Body.Measures"

sources.nv[colnames.nv %in% body_measures.cov]

<- "0.Covariates.Body.Measures"

sources[colnames %in% parents.info] <- "0.Covariates.Parents.Info"

sources[colnames %in% childs.info] <- "0.Covariates.Childs.Info"
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# Order sources and data

order.sources <- order(sources)

order.sources.nv <- order(sources.nv)

sources <- sources[order.sources]

exposome.data <- exposome.data[, order.sources]

sources.nv <- sources.nv[order.sources.nv]

exposome.data.nv <- exposome.data.nv[, order.sources.nv]

# Number of variables for each source with only numeric variables

p.nv <- as.vector(table(sources.nv))

# Boxplot of all covariates variables

boxplot(exposome.data.nv[, covariates.var], las = 2, cex.axis = 0.5)

Figure A.13: Boxplot of all the Covariates variables.

# Printing outliers

outliers <- c()

covariates.var.names <- colnames(exposome.data.nv)[ covariates.var]

for(i in 1:length(covariates.var)){

out.values <-

boxplot.stats(exposome.data.nv[, covariates.var[i]])$ out
out.samples <-

which(exposome.data.nv[, covariates.var[i]] %in% out.values)
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if(length(out.samples) > 0){

cat(paste0("The␣variable␣", covariates.var.names[i],

"␣has␣the␣following␣ouliers :\n"))

print(out.samples)

cat("\n")

# Outliers

outliers <- c(outliers , out.samples)

}

}

cat(paste0("Total␣number␣of␣outliers:␣", length(unique(outliers ))))

The variable e3_gac_None has the following ouliers:

[1] 32 62 131 167 279 335 352 383 397 425 445

484 488 647 648 668 712 753

[19] 792 822 832 833 834 844 848 877 914 935 962

975 1098 1173 1226 1232 1281

The variable h_age_None has the following ouliers:

[1] 78 247 273 307 345 586 594 725 851 856 962 1059 1154

The variable h_mbmi_None has the following ouliers:

[1] 10 15 18 30 46 48 77 115 138 177 189

203 209 225 226 255 256 285

[19] 288 297 324 406 407 410 416 461 492 504 540

569 573 574 614 615 616 626

[37] 658 705 718 726 728 751 769 864 936 940 947

973 1047 1053 1059 1074 1187 1190

[55] 1204 1275

The variable hs_wgtgain_None has the following ouliers:

[1] 225 453 530 563 721 817 917 992 1045

The variable hs_c_height_None has the following ouliers:

[1] 55 195 400 613 1285

The variable hs_c_weight_None has the following ouliers:

[1] 12 43 79 181 285 299 407 441 453 487 608

613 617 623 663 686 690 737

[19] 758 869 875 880 939 985 991 1020 1045 1061 1177

1182 1212 1250 1285
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Total number of outliers: 142

#Asthma factor

asthma <- as.factor(y$hs_asthma)
levels(asthma) <- c("None", "Yes")

# Boxplots

for(i in 1:length(covariates.var))

boxplot(exposome.data.nv[, covariates.var[i]] ~ asthma ,

ylab = covariates.var.names[i],

xlab = "Asthma")

Figure A.14: Boxplot of the covariate variable e3 gac None according to the factor Asthma.
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Figure A.15: Boxplot of the covariate variable h age None according to the factor Asthma.
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Figure A.16: Boxplot of the covariate variable hs child age None according to the factor
Asthma.
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Figure A.17: Boxplot of the covariate variable h mbmi None according to the factor Asthma.

Figure A.18: Boxplot of the covariate variable hs wgtgain None according to the factor Asthma.
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Figure A.19: Boxplot of the covariate variable hs c height None according to the factor Asthma.

Figure A.20: Boxplot of the covariate variable hs c weight None according to the factor Asthma.
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# Principal component analysis

prin.comp <- prcomp(exposome.data.nv[, covariates.var], retx = T,

center = T, scale. = T)

# Percentage of variation explained for the PCA dimension

cat(paste0("PCA", 1:7, "␣␣"))

cat("\n")

cat(paste0(round(cumsum(prin.comp$sdev)/sum(prin.comp$sdev), 4)*100,

"%"))

PCA1 PCA2 PCA3 PCA4 PCA5 PCA6 PCA7

24.97% 41.16% 56.97% 71.7% 86.19% 94.5% 100%

# Biplot two first principal components

fviz_pca_biplot(prin.comp , axes = c(1,2), xlab = "First␣Component",

ylab = "Second␣Component", geom = c("point"),

habillage = asthma , labelsize = 1)

Figure A.21: Biplot of the two first principal components according to the factor Asthma.

• Exposome data with factor variables converted to dummy binary variables

# Factors on exposome data

factors.exposome <- which(as.vector(sapply(exposome.data , is.factor )))
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# Non -binary factors

non.binary.factors <- c()

for(i in 1:length(factors.exposome )){

if(length(levels(exposome.data[, factors.exposome[i]])) > 2){

print(table(exposome.data[, factors.exposome[i]],

dnn = colnames(exposome.data)[ factors.exposome[i]]))

non.binary.factors <- c(non.binary.factors , factors.exposome[i])

}

}

e3_yearbir_None

2003 2004 2005 2006 2007 2008 2009

55 107 241 256 250 379 13

h_native_None

0 1 2

146 67 1088

h_cohort

1 2 3 4 5 6

202 198 224 207 272 198

h_edumc_None

1 2 3

178 449 674

h_parity_None

0 1 2

601 464 236

h_bfdur_Ter

(0,10.8] (10.8,34.9] (34.9,Inf]

506 270 525

h_cereal_preg_Ter

(0,9] (9,27.3] (27.3,Inf]

531 459 311

h_dairy_preg_Ter

(0,17.1] (17.1,27.1] (27.1,Inf]

270 380 651

h_fastfood_preg_Ter

(0,0.25] (0.25,0.83] (0.83,Inf]

94 535 672

h_fish_preg_Ter

(0,1.9] (1.9,4.1] (4.1,Inf]

343 490 468

h_fruit_preg_Ter

(0,0.6] (0.6,18.2] (18.2,Inf]
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6 922 373

h_legume_preg_Ter

(0,0.5] (0.5,2] (2,Inf]

245 269 787

h_meat_preg_Ter

(0,6.5] (6.5,10] (10,Inf]

427 387 487

h_pamod_t3_None

None Often Sometimes Very Often

42 474 191 594

h_pavig_t3_None

High Low Medium

47 952 302

h_veg_preg_Ter

(0,8.8] (8.8,16.5] (16.5,Inf]

539 470 292

hs_bakery_prod_Ter

(0,2] (2,6] (6,Inf]

345 423 533

hs_beverages_Ter

(0,0.132] (0.132,1] (1,Inf]

331 454 516

hs_break_cer_Ter

(0,1.1] (1.1,5.5] (5.5,Inf]

291 521 489

hs_dairy_Ter

(0,14.6] (14.6,25.6] (25.6,Inf]

359 465 477

hs_fastfood_Ter

(0,0.132] (0.132,0.5] (0.5,Inf]

143 603 555

hs_org_food_Ter

(0,0.132] (0.132,1] (1,Inf]

429 396 476

hs_proc_meat_Ter

(0,1.5] (1.5,4] (4,Inf]

366 471 464

hs_readymade_Ter

(0,0.132] (0.132,0.5] (0.5,Inf]

327 296 678

hs_total_bread_Ter

(0,7] (7,17.5] (17.5,Inf]

431 381 489
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hs_total_cereal_Ter

(0,14.1] (14.1,23.6] (23.6,Inf]

418 442 441

hs_total_fish_Ter

(0,1.5] (1.5,3] (3,Inf]

389 454 458

hs_total_fruits_Ter

(0,7] (7,14.1] (14.1,Inf]

413 407 481

hs_total_lipids_Ter

(0,3] (3,7] (7,Inf]

397 403 501

hs_total_meat_Ter

(0,6] (6,9] (9,Inf]

425 411 465

hs_total_potatoes_Ter

(0,3] (3,4] (4,Inf]

417 405 479

hs_total_sweets_Ter

(0,4.1] (4.1,8.5] (8.5,Inf]

344 516 441

hs_total_veg_Ter

(0,6] (6,8.5] (8.5,Inf]

404 314 583

hs_total_yog_Ter

(0,6] (6,8.5] (8.5,Inf]

779 308 214

hs_ln_cat_h_None

1 2 3 4 5

476 633 104 61 27

hs_lden_cat_s_None

1 2 3 4 5 6

580 265 299 104 37 16

FAS_cat_None

Low Middle High

146 486 669

hs_contactfam_3cat_num_None

(almost) Daily Once a week Less than once a week

863 382 56

hs_participation_3cat_None

None 1 organisation 2 or more organisations

748 355 198

hs_cotinine_mcat_None
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Non-smokers SHS smokers Smokers

759 157 385

hs_smk_parents_None

both neither one

142 814 345

# Three levels factors to binary

for(i in 1:length(non.binary.factors )){

factor <- exposome.data[, non.binary.factors[i]]

levels <- levels(factor)

if(length(levels) == 3){

sum1 <- sum(factor %in% levels[1:2])

sum2 <- sum(factor %in% levels[2:3])

if(sum1 < sum2){

levels(exposome.data[, non.binary.factors[i]])[1:2] <-

paste0(levels[1], ",␣", levels[2])

} else {

levels(exposome.data[, non.binary.factors[i]])[2:3] <-

paste0(levels[2], ",␣", levels[3])

}

}

}

# More than three levels factors to binary

# h_cohort

levels <- levels(exposome.data$h_cohort)
levels(exposome.data$h_cohort )[ levels %in% c(4, 5, 6)] <- "4,␣5,␣6"

levels(exposome.data$h_cohort )[ levels %in% c(1, 2, 3)] <- "1,␣2,␣3"

# e3_yearbir_None

levels <- levels(exposome.data$e3_yearbir_None)
levels(exposome.data$e3_yearbir_None)[ levels

%in% c(2007, 2008, 2009)] <-

"2007,␣2008,␣2009"

levels(exposome.data$e3_yearbir_None)[ levels
%in% c(2003, 2004, 2005, 2006)] <-

"2003,␣2004,␣2005,␣2006"

# h_pamod_t3_None

levels <- levels(exposome.data$h_pamod_t3_None)
levels(exposome.data$h_pamod_t3_None)[ levels %in%

c("None", "Often", "Sometimes")] <- "Non␣Very␣Often"
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# hs_ln_cat_h_None

levels <- levels(exposome.data$hs_ln_cat_h_None)
levels(exposome.data$hs_ln_cat_h_None)[ levels %in% c(1, 3, 4, 5)] <-

"1,␣3,␣4,␣5"

# hs_lden_cat_s_None

levels <- levels(exposome.data$hs_lden_cat_s_None)
levels(exposome.data$hs_lden_cat_s_None)[ levels

%in% c(2, 3, 4, 5, 6)] <-

"2,␣3,␣4,␣5,␣6"

# Exposome data with factors being dummy variables

exposome.data.dv <- exposome.data

exposomeNA.data.dv <- exposomeNA.data

# Sources with factors being dummy variables

sources.dv <- sources

# Change a factor for a dummy variable in data

update.factor.to.dummy <- function(data , factor.index){

# Factor variable

variable <- data[, factor.index]

dummy.variable <- acm.disjonctif(data.frame(variable ))

if(any(is.na(variable ))){

NA.samples <- which(is.na(variable ))

dummy.variable[NA.samples , ] <- rep(NA, length(dummy.variable ))

}

if(factor.index > 1)

data <- data.frame(data[, 1:( factor.index - 1)],

dummy.variable ,

data[, (factor.index + 1): length(data )])

else

data <- data.frame(dummy.variable ,

data[, (factor.index + 1): length(data )])

return(data)

}

for(i in length(factors.exposome ):1){

# Factor to convert to dummy

factor.exposome <- factors.exposome[i]
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# Updated sources with dummy variables

sources.dv <-

c(sources.dv[1:factor.exposome],

rep(sources.dv[factor.exposome],

length(levels(exposome.data.dv[, factor.exposome ])) - 1),

sources.dv[( factor.exposome + 1):

length(sources.dv)])

# Updated exposome data with dummy variables

exposome.data.dv <- update.factor.to.dummy(exposome.data.dv,

factor.exposome)

exposomeNA.data.dv <- update.factor.to.dummy(exposomeNA.data.dv,

factor.exposome)

}

# Number of variables for each source with factors

# being dummy variable

p.dv <- as.vector(table(sources.dv))
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Appendix B

Code: an incomplete source feature
selection (iSFS) model

B.1 iSFS model for the least square loss function

B.1.1 Algorithm of the iSFS model for the least square loss function

# iSFS algorithm

iSFS <- function(p, X, y, lambda , L.step = 1.5, maxIter.iSFS = 300,

tol.iSFS = 1e-12, omega.alpha = "LR", tol.alpha

= 1e-12, maxIter.alpha = 20, omega.beta = "LR",

beta0.comp = "LMR", tol.beta = 1e-12,

maxIter.beta = 20, gamma = 1, to.normalize = F,

beta0, alpha0){

# Initializes the progress bar

pb <- txtProgressBar(min = 0, # Minimum value of the progress bar

max = maxIter.iSFS*length(lambda), # Maximum value of

# the progress bar

style = 3, # Progress bar style

width = 50, # Progress bar width

char = "=") # Character used to create the bar

# L.step factor definition

L.step <- max(1.001, L.step)

# Features

X <- as.matrix(X)

translation <- c()

scale <- c()

if(to.normalize ){

for(j in 1:dim(X)[2]){
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x <- X[, j]

x <- x[!is.na(x)]

min.x <- min(x)

max.x <- max(x)

translation <- c(translation , min.x)

scale <- c(scale , max.x - min.x)

X[, j] <- (X[, j] - translation[j])/ scale[j]

}

}

# Outcome

if(is.factor(y))

y <- as.numeric(as.character(y))

# Number of sources

S <- length(p)

# We compute the profiles

pf.vec <- get_profile(p, X)

# If it is complete data , alpha weights are fixed

keep.alpha <- length(levels(pf.vec)) == 1

# Best alpha , beta and lambda parameters

if(missing(alpha0))

best.alpha <- alpha.initialization(pf.vec , S, keep.alpha)

else if(is.list(alpha0)) best.alpha <- alpha0

else best.alpha <- as.list(alpha0)

if(missing(beta0))

best.beta <- beta.initialization(p, X, y, beta0.comp)

else if(is.list(beta0)) best.beta <- beta0

else best.beta <- as.list(beta0)

best.lambda <- NA

# Best objective function value

obj.func.best <- objective.fun(p, X, y, best.beta , best.alpha ,

pf.vec)

for(j in 1:length(lambda )){

# Initial objective function value

obj.func0 <- obj.func.best

# We initialize alpha0 weights

alpha0 <- best.alpha

# We initialize beta0 models

beta0 <- best.beta
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# If alpha is always fixed

if(keep.alpha){

# We compute the optimal beta

for(k in 1:maxIter.iSFS){

# Computing beta when alpha is fixed

beta <- prox.grad.iter.method(p, X, y, alpha0, beta0, pf.vec ,

lambda[j], omega.beta , L.step ,

maxIter.beta , tol.beta , gamma)

# Objective function computation

obj.func <- objective.fun(p, X, y, beta , alpha0, pf.vec)

# If the objective stops decreasing , we stop computing

if(abs(obj.func - obj.func0) < tol.iSFS){

if(obj.func < obj.func0){

# We update the beta vector

beta0 <- beta

# and the objective function value

obj.func0 <- obj.func

}

break;

}

# Otherwise , we update the beta vector

beta0 <- beta

# and the objective function value

obj.func0 <- obj.func

# Sets the progress bar to the current state

setTxtProgressBar(pb, k + (j - 1)* maxIter.iSFS)

}

} else {

# We compute the optimal alpha and beta

for(k in 1:maxIter.iSFS){

# Computing alpha when beta is fixed

alpha <- alpha.compute(p, X, y, beta0, alpha0, pf.vec ,

omega.alpha , L.step , maxIter.alpha ,

tol.alpha)

# Computing beta when alpha is fixed

beta <- prox.grad.iter.method(p, X, y, alpha , beta0, pf.vec ,

lambda[j], omega.beta , L.step ,

maxIter.beta , tol.beta , gamma)

# Objective function computation
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obj.func <- objective.fun(p, X, y, beta , alpha , pf.vec)

# If the objective stops decreasing , we stop computing

if(abs(obj.func - obj.func0) < tol.iSFS){

if(obj.func < obj.func0){

# We update both alpha and beta vectors

beta0 <- beta

alpha0 <- alpha

# and the objective function value

obj.func0 <- obj.func

}

break;

}

# Otherwise , we update both alpha and beta vectors

beta0 <- beta

alpha0 <- alpha

# and the objective function value

obj.func0 <- obj.func

# Sets the progress bar to the current state

setTxtProgressBar(pb, k + (j - 1)* maxIter.iSFS)

}

}

# Get best parameters

if(obj.func0 < obj.func.best){

best.beta <- beta0

best.alpha <- alpha0

best.lambda <- lambda[j]

obj.func.best <- obj.func0

}

}

# Ending progress bar

setTxtProgressBar(pb, maxIter.iSFS*length(lambda ))

# Final coefficients

return(list(alpha = best.alpha , beta = best.beta ,

lambda = best.lambda , profile.vector = pf.vec ,

to.normalize = to.normalize , translation = translation ,

scale = scale ))

}
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B.1.2 Predictions on the iSFS algorithm

# Predictions of the iSFS model

predict.iSFS <- function(iSFS.model , X, p){

# Features as matrix

X <- as.matrix(X)

if(iSFS.model$to.normalize)
for(j in 1:dim(X)[2])

X[, j] <- (X[, j] - iSFS.model$translation[j])/
iSFS.model$scale[j]

# Samples and sources

n <- dim(X)[1]

S <- length(p)

# Profiles of data to predict

pf.vec.pred <- get_profile(p, X)

pf.vec.pred <- as.numeric(levels(pf.vec.pred ))[pf.vec.pred]

# Predicted outcome

y.pred <- numeric(length = n)

for(i in 1:n){

# Profile m of sample i

m <- pf.vec.pred[i]

# Block sample for profile

model.profile.index <- which(levels(iSFS.model$profile.vector)
== m)

if(length(model.profile.index) == 0)

y.pred[i] <- NA

else {

sources.profile <- which(as.binary(m, n = S))

model.profile.index <- as.integer(model.profile.index[1])

col <- 1

for(j in 1:S){

nextCol <- col + p[j] - 1

if(j %in% sources.profile)

y.pred[i] <- y.pred[i] +

iSFS.model$alpha[[ model.profile.index ]][j]*
X[i, col:nextCol ]%*% iSFS.model$beta[col:nextCol]

col <- nextCol + 1

}

}

}
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return(y.pred)

}
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Appendix C

Code, figures and tables: discussion
and applications of the iSFS model on
simulated and exposome data

# Evaluation values for the iSFS model

evaluation.model.param <- function(y.test , y.pred , n.vars = 0){

# Convert factor to numeric

if(is.factor(y.test))

y.test <- as.numeric(as.character(y.test))

# Number of samples

n <- length(y.test)

# Error term (y - predictions)

error <- y.test - y.pred

# Compute mean square error

mean.sq.error <- sum(error^2)/n

# Compute root mean square error

root.mean.sq.error <- sqrt(mean.sq.error)

# Compute mean absolute error

mean.abs.error <- sum(abs(error ))/n

# Compute root mean absolute error

root.mean.abs.error <- sqrt(mean.abs.error)

# Compute R squared

SS.res <- sum(error^2)
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mean.y <- mean(y.test)

SS.tot <- sum((y.test - mean.y)^2)

R.squared <- 1 - SS.res/SS.tot

# Compute adjusted R squared

adj.R.squared <- 1 - (SS.res*(n - 1))/(SS.tot*(n - n.vars - 1))

# Evaluation parameters

evaluation_param <- data.frame(mean.sq.error , root.mean.sq.error ,

mean.abs.error , root.mean.abs.error ,

R.squared , adj.R.squared)

colnames(evaluation_param) <- c("MSE", "RMSE", "MAE", "RMAE",

"R␣squared", "Adjusted␣R␣squared")

# Table with evaluation parameters

knitr ::kable(evaluation_param , format = "simple", caption =

"Evaluation␣values␣for␣iSFS␣model␣predictions.",

align = rep(’c’, 6))

return(evaluation_param)

}

C.1 Simulated data

# Data sets separated in training 67\% and test (33%)

# We select the indices that we will use for training

indexes_partition <- createDataPartition(y = 1:dim(X_nc)[1],

p = prob_train , list = FALSE)

# Data matrix non correlation

X_nc_train <- X_nc[indexes_partition , ]

X_nc_test <- X_nc[-indexes_partition , ]

X.NA_nc_train <- X.NA_nc[indexes_partition , ]

X.NA_nc_test <- X.NA_nc[-indexes_partition , ]

# Data matrix low correlation

X_lc_train <- X_lc[indexes_partition , ]

X_lc_test <- X_lc[-indexes_partition , ]

X.NA_lc_train <- X.NA_lc[indexes_partition , ]

X.NA_lc_test <- X.NA_lc[-indexes_partition , ]

# Data matrix high correlation
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X_hc_train <- X_hc[indexes_partition , ]

X_hc_test <- X_hc[-indexes_partition , ]

X.NA_hc_train <- X.NA_hc[indexes_partition , ]

X.NA_hc_test <- X.NA_hc[-indexes_partition , ]

# Outcome non correlation

y_nc_train <- y_nc[indexes_partition]

y_nc_test <- y_nc[-indexes_partition]

# Outcome low correlation

y_lc_train <- y_lc[indexes_partition]

y_lc_test <- y_lc[-indexes_partition]

# Outcome high correlation

y_hc_train <- y_hc[indexes_partition]

y_hc_test <- y_hc[-indexes_partition]

C.1.1 Comparison on complete data

• Non-correlated data

iSFS.Model_nc <- iSFS(p = p.synth , X = X_nc_train , y = y_nc_train ,

lambda = 0.00000005, L.step = 10, maxIter.iSFS

= 100, maxIter.alpha = 20, maxIter.beta = 50)

y_nc.pred_train <- predict.iSFS(iSFS.Model_nc, X_nc_train , p.synth)

evaluation.model.param(y_nc_train , y_nc.pred_train , sum(p.synth ))

y_nc.pred_test <- predict.iSFS(iSFS.Model_nc, X_nc_test , p.synth)

evaluation.model.param(y_nc_test , y_nc.pred_test , sum(p.synth ))

plot(y_nc_train , y_nc.pred_train)

abline(a = 0, b = 1)

plot(y_nc_test , y_nc.pred_test)

abline(a = 0, b = 1)

MSE RMSE MAE RMAE R squared Adjusted R squared
0.2058177 0.4536713 0.3618598 0.6015478 0.9986472 0.9982907

Table C.1: Evaluation values for the model when used complete non-correlated synthetic train-
ing data.
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MSE RMSE MAE RMAE R squared Adjusted R squared
0.2821816 0.5312077 0.425397 0.6522247 0.9983073 0.9970423

Table C.2: Evaluation values for the model when used complete non-correlated synthetic testing
data.

Figure C.1: Predicted training outcome vs real training outcome for complete non-correlated
synthetic data.

Figure C.2: Predicted testing outcome vs real testing outcome for complete non-correlated
synthetic data.

# Non -relevant features

which(abs(iSFS.Model_nc$beta) < 0.0001)

[1] 166

• Low-correlated data
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iSFS.Model_lc <- iSFS(p = p.synth , X = X_lc_train , y = y_lc_train ,

lambda = 0.00000005, L.step = 10, maxIter.iSFS

= 100, maxIter.alpha = 20, maxIter.beta = 50)

y_lc.pred_train <- predict.iSFS(iSFS.Model_lc, X_lc_train , p.synth)

evaluation.model.param(y_lc_train , y_lc.pred_train , sum(p.synth ))

y_lc.pred_test <- predict.iSFS(iSFS.Model_lc, X_lc_test , p.synth)

evaluation.model.param(y_lc_test , y_lc.pred_test , sum(p.synth ))

plot(y_lc_train , y_lc.pred_train)

abline(a = 0, b = 1)

plot(y_lc_test , y_lc.pred_test)

abline(a = 0, b = 1)

MSE RMSE MAE RMAE R squared Adjusted R squared
0.2018781 0.4493085 0.3581987 0.598497 0.9980928 0.9975903

Table C.3: Evaluation values for the model when used complete low-correlated synthetic train-
ing data.

MSE RMSE MAE RMAE R squared Adjusted R squared
0.2928369 0.5411441 0.4351202 0.6596364 0.9975627 0.9957413

Table C.4: Evaluation values for the model when used complete low-correlated synthetic testing
data.

Figure C.3: Predicted training outcome vs real training outcome for complete low-correlated
synthetic data.
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Figure C.4: Predicted testing outcome vs real testing outcome for complete low-correlated
synthetic data.

# Non -relevant features

which(abs(iSFS.Model_lc$beta) < 0.0001)

integer(0)

• High-correlated data

iSFS.Model_hc <- iSFS(p = p.synth , X = X_hc_train , y = y_hc_train ,

lambda = 0.00000005, L.step = 10, maxIter.iSFS

= 100, maxIter.alpha = 20, maxIter.beta = 50)

y_hc.pred_train <- predict.iSFS(iSFS.Model_hc, X_hc_train , p.synth)

evaluation.model.param(y_hc_train , y_hc.pred_train , sum(p.synth ))

y_hc.pred_test <- predict.iSFS(iSFS.Model_hc, X_hc_test , p.synth)

evaluation.model.param(y_hc_test , y_hc.pred_test , sum(p.synth ))

plot(y_hc_train , y_hc.pred_train)

abline(a = 0, b = 1)

plot(y_hc_test , y_hc.pred_test)

abline(a = 0, b = 1)

MSE RMSE MAE RMAE R squared Adjusted R squared
0.2060892 0.4539705 0.3575158 0.5979262 0.9907714 0.9883398

Table C.5: Evaluation values for the model when used complete high-correlated synthetic
training data.
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MSE RMSE MAE RMAE R squared Adjusted R squared
0.3114668 0.5580921 0.4437904 0.6661759 0.9862592 0.9759902

Table C.6: Evaluation values for the model when used complete high-correlated synthetic
testing data.

Figure C.5: Predicted training outcome vs real training outcome for complete high-correlated
synthetic data.

Figure C.6: Predicted testing outcome vs real testing outcome for complete high-correlated
synthetic data.

# Non -relevant features

which(abs(iSFS.Model_hc$beta) < 0.0001)

[1] 172
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C.1.2 Comparison on incomplete data

• Non-correlated data

iSFS.ModelNA_nc <- iSFS(p = p.synth , X = X.NA_nc_train ,

y = y_nc_train , lambda = 0.00000005,

L.step = 10, maxIter.iSFS = 20,

maxIter.alpha = 20, maxIter.beta = 20)

yNA_nc.pred_train <- predict.iSFS(iSFS.ModelNA_nc , X.NA_nc_train ,

p.synth)

evaluation.model.param(y_nc_train , yNA_nc.pred_train , sum(p.synth ))

yNA_nc.pred_test <- predict.iSFS(iSFS.ModelNA_nc , X.NA_nc_test ,

p.synth)

evaluation.model.param(y_nc_test , yNA_nc.pred_test , sum(p.synth ))

plot(y_nc_train , yNA_nc.pred_train)

abline(a = 0, b = 1)

plot(y_nc_test , yNA_nc.pred_test)

abline(a = 0, b = 1)

MSE RMSE MAE RMAE R squared Adjusted R squared
15.29041 3.910295 2.863431 1.692168 0.8994971 0.8730157

Table C.7: Evaluation values for the model when used block-wise missing non-correlated syn-
thetic training data.

MSE RMSE MAE RMAE R squared Adjusted R squared
28.60194 5.348078 3.701681 1.923975 0.8284309 0.7002119

Table C.8: Evaluation values for the model when used block-wise missing non-correlated syn-
thetic testing data.
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Figure C.7: Predicted training outcome vs real training outcome for block-wise missing non-
correlated synthetic data.

Figure C.8: Predicted testing outcome vs real testing outcome for block-wise missing non-
correlated synthetic data.

• Low-correlated data

iSFS.ModelNA_lc <- iSFS(p = p.synth , X = X.NA_lc_train ,

y = y_lc_train , lambda = 0.00000005,

L.step = 10, maxIter.iSFS = 20,

maxIter.alpha = 20, maxIter.beta = 20)

yNA_lc.pred_train <- predict.iSFS(iSFS.ModelNA_lc , X.NA_lc_train ,

p.synth)

evaluation.model.param(y_lc_train , yNA_lc.pred_train , sum(p.synth ))

yNA_lc.pred_test <- predict.iSFS(iSFS.ModelNA_lc , X.NA_lc_test ,

p.synth)

evaluation.model.param(y_lc_test , yNA_lc.pred_test , sum(p.synth ))
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plot(y_lc_train , yNA_lc.pred_train)

abline(a = 0, b = 1)

plot(y_lc_test , yNA_lc.pred_test)

abline(a = 0, b = 1)

MSE RMSE MAE RMAE R squared Adjusted R squared
18.36427 4.285356 3.264594 1.806819 0.8265111 0.7807988

Table C.9: Evaluation values for the model when used block-wise missing low-correlated syn-
thetic training data.

MSE RMSE MAE RMAE R squared Adjusted R squared
30.2046 5.495871 3.983668 1.995913 0.7418698 0.5489612

Table C.10: Evaluation values for the model when used block-wise missing low-correlated syn-
thetic testing data.

Figure C.9: Predicted training outcome vs real training outcome for block-wise missing low-
correlated synthetic data.
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Figure C.10: Predicted testing outcome vs real testing outcome for block-wise missing low-
correlated synthetic data.

• High-correlated data

iSFS.ModelNA_hc <- iSFS(p = p.synth , X = X.NA_hc_train ,

y = y_hc_train , lambda = 0.00000005,

L.step = 10, maxIter.iSFS = 20,

maxIter.alpha = 20, maxIter.beta = 20)

yNA_hc.pred_train <- predict.iSFS(iSFS.ModelNA_hc , X.NA_hc_train ,

p.synth)

evaluation.model.param(y_hc_train , yNA_hc.pred_train , sum(p.synth ))

yNA_hc.pred_test <- predict.iSFS(iSFS.ModelNA_hc , X.NA_hc_test ,

p.synth)

evaluation.model.param(y_hc_test , yNA_hc.pred_test , sum(p.synth ))

plot(y_hc_train , yNA_hc.pred_train)

abline(a = 0, b = 1)

plot(y_hc_test , yNA_hc.pred_test)

abline(a = 0, b = 1)

MSE RMSE MAE RMAE R squared Adjusted R squared
4.758615 2.181425 1.669518 1.292098 0.7869108 0.7307644

Table C.11: Evaluation values for the model when used block-wise missing high-correlated
synthetic training data.
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MSE RMSE MAE RMAE R squared Adjusted R squared
6.160887 2.482113 1.88701 1.373685 0.7282028 0.5250803

Table C.12: Evaluation values for the model when used block-wise missing high-correlated
synthetic testing data.

Figure C.11: Predicted training outcome vs real training outcome for block-wise missing high-
correlated synthetic data.

Figure C.12: Predicted testing outcome vs real testing outcome for block-wise missing high-
correlated synthetic data.

C.2 Exposome data

# We select the indices that we will use for training

indexes_partition <-

createDataPartition(y = 1:dim(exposome.data.nv)[1], p = prob_train ,

list = FALSE)
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# Data matrix numeric variables

exposome.data.nv_train <- exposome.data.nv[indexes_partition , ]

exposome.data.nv_test <- exposome.data.nv[-indexes_partition , ]

exposomeNA.data.nv_train <- exposomeNA.data.nv[indexes_partition , ]

exposomeNA.data.nv_test <- exposomeNA.data.nv[-indexes_partition , ]

# Data matrix dummy variables

exposome.data.dv_train <- exposome.data.dv[indexes_partition , ]

exposome.data.dv_test <- exposome.data.dv[-indexes_partition , ]

exposomeNA.data.dv_train <- exposomeNA.data.dv[indexes_partition , ]

exposomeNA.data.dv_test <- exposomeNA.data.dv[-indexes_partition , ]

# Outcome

y_train <- y[indexes_partition , ]

y_test <- y[-indexes_partition , ]

C.2.1 Comparison on complete data

C.2.1.1 Numeric variables

• Outcome hs zbmi who

iSFS.Model.nv <- iSFS(p = p.nv , X = exposome.data.nv_train ,

y = y_train$hs_zbmi_who , lambda = 0.00000005,

L.step = 10, maxIter.iSFS = 100,

maxIter.alpha = 20, maxIter.beta = 50)

y.nv.pred_train <- predict.iSFS(iSFS.Model.nv, exposome.data.nv_train ,

p.nv)

evaluation.model.param(y_train$hs_zbmi_who , y.nv.pred_train ,

sum(p.nv))

y.nv.pred_test <- predict.iSFS(iSFS.Model.nv, exposome.data.nv_test ,

p.nv)

evaluation.model.param(y_test$hs_zbmi_who , y.nv.pred_test ,

sum(p.nv))

plot(y_train$hs_zbmi_who , y.nv.pred_train)

abline(a = 0, b = 1)

plot(y_test$hs_zbmi_who , y.nv.pred_test)

abline(a = 0, b = 1)
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MSE RMSE MAE RMAE R squared Adjusted R squared
0.4146917 0.6439656 0.492233 0.7015932 0.7151116 0.6430708

Table C.13: Evaluation values for the model when used complete exposome (numeric variables)
training data for the outcome hs zbmi who.

MSE RMSE MAE RMAE R squared Adjusted R squared
0.4891764 0.6994115 0.5407398 0.7353501 0.6325844 0.3749544

Table C.14: Evaluation values for the model when used complete exposome (numeric variables)
testing data for the outcome hs zbmi who.

Figure C.13: Predicted training outcome vs real training outcome for complete exposome (nu-
meric variables) data and for the outcome hs zbmi who.

Figure C.14: Predicted testing outcome vs real testing outcome for complete exposome (numeric
variables) data and for the outcome hs zbmi who.
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# Numeric variables names

nv.colnames <- colnames(exposome.data.nv_train)

# Non -relevant features

nv.colnames[which(abs(iSFS.Model.nv$beta) < 0.05)]

[1] "h_NO2_Log" "h_trafload_preg_pow1over3"

• Outcome e3 bw

iSFS.Model.nv <- iSFS(p = p.nv , X = exposome.data.nv_train ,

y = y_train$e3_bw , lambda = 0.00000005,

L.step = 10, maxIter.iSFS = 100,

maxIter.alpha = 20, maxIter.beta = 50)

y.nv.pred_train <- predict.iSFS(iSFS.Model.nv, exposome.data.nv_train ,

p.nv)

evaluation.model.param(y_train$e3_bw , y.nv.pred_train , sum(p.nv))

y.nv.pred_test <- predict.iSFS(iSFS.Model.nv, exposome.data.nv_test ,

p.nv)

evaluation.model.param(y_test$e3_bw , y.nv.pred_test , sum(p.nv))

plot(y_train$e3_bw , y.nv.pred_train)

abline(a = 0, b = 1)

plot(y_test$e3_bw , y.nv.pred_test)

abline(a = 0, b = 1)

MSE RMSE MAE RMAE R squared Adjusted R squared
0.1470631 0.3834881 0.2967765 0.5447719 0.4360478 0.2934392

Table C.15: Evaluation values for the model when used complete exposome (numeric variables)
training data for the outcome e3 bw.

MSE RMSE MAE RMAE R squared Adjusted R squared
0.1713531 0.4139482 0.3200768 0.5657533 0.3326442 -0.1353025

Table C.16: Evaluation values for the model when used complete exposome (numeric variables)
testing data for the outcome e3 bw.
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Figure C.15: Predicted training outcome vs real training outcome for complete exposome (nu-
meric variables) data and for the outcome e3 bw.

Figure C.16: Predicted testing outcome vs real testing outcome for complete exposome (numeric
variables) data and for the outcome e3 bw.

# Non -relevant features

nv.colnames[which(abs(iSFS.Model.nv$beta) < 0.05)]

[1] "h_builtdens300_preg_Sqrt" "hs_builtdens300_h_Sqrt"

[3] "hs_builtdens300_s_Sqrt"

• Outcome hs correct raven

iSFS.Model.nv <- iSFS(p = p.nv , X = exposome.data.nv_train ,

y = y_train$hs_correct_raven , lambda =

0.00000005, L.step = 10, maxIter.iSFS = 100,

maxIter.alpha = 20, maxIter.beta = 50)
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y.nv.pred_train <- predict.iSFS(iSFS.Model.nv, exposome.data.nv_train ,

p.nv)

evaluation.model.param(y_train$hs_correct_raven , y.nv.pred_train ,

sum(p.nv))

y.nv.pred_test <- predict.iSFS(iSFS.Model.nv, exposome.data.nv_test ,

p.nv)

evaluation.model.param(y_test$hs_correct_raven , y.nv.pred_test ,

sum(p.nv))

plot(y_train$hs_correct_raven , y.nv.pred_train)

abline(a = 0, b = 1)

plot(y_test$hs_correct_raven , y.nv.pred_test)

abline(a = 0, b = 1)

MSE RMSE MAE RMAE R squared Adjusted R squared
16.1775 4.022126 3.152536 1.775538 0.631782 0.5386694

Table C.17: Evaluation values for the model when used complete exposome (numeric variables)
training data for the outcome hs correct raven.

MSE RMSE MAE RMAE R squared Adjusted R squared
18.68362 4.322455 3.371796 1.836245 0.4873281 0.127845

Table C.18: Evaluation values for the model when used complete exposome (numeric variables)
testing data for the outcome hs correct raven.

Figure C.17: Predicted training outcome vs real training outcome for complete exposome (nu-
meric variables) data and for the outcome hs correct raven.
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Figure C.18: Predicted testing outcome vs real testing outcome for complete exposome (numeric
variables) data and for the outcome hs correct raven.

# Non -relevant features

nv.colnames[which(abs(iSFS.Model.nv$beta) < 0.05)]

character(0)

• Outcome hs Gen Tot

iSFS.Model.nv <- iSFS(p = p.nv , X = exposome.data.nv_train ,

y = y_train$hs_Gen_Tot , lambda = 0.00000005,

L.step = 10, maxIter.iSFS = 100, maxIter.alpha

= 20, maxIter.beta = 50)

y.nv.pred_train <- predict.iSFS(iSFS.Model.nv, exposome.data.nv_train ,

p.nv)

evaluation.model.param(y_train$hs_Gen_Tot , y.nv.pred_train , sum(p.nv))

y.nv.pred_test <- predict.iSFS(iSFS.Model.nv, exposome.data.nv_test ,

p.nv)

evaluation.model.param(y_test$hs_Gen_Tot , y.nv.pred_test , sum(p.nv))

plot(y_train$hs_Gen_Tot , y.nv.pred_train)

abline(a = 0, b = 1)

plot(y_test$hs_Gen_Tot , y.nv.pred_test)

abline(a = 0, b = 1)
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MSE RMSE MAE RMAE R squared Adjusted R squared
247.2055 15.72277 12.0205 3.467059 0.3535896 0.1901295

Table C.19: Evaluation values for the model when used complete exposome (numeric variables)
training data for the outcome hs Gen Tot.

MSE RMSE MAE RMAE R squared Adjusted R squared
341.1913 18.47136 14.03774 3.746698 -0.07623641 -0.8308882

Table C.20: Evaluation values for the model when used complete exposome (numeric variables)
testing data for the outcome hs Gen Tot.

Figure C.19: Predicted training outcome vs real training outcome for complete exposome (nu-
meric variables) data and for the outcome hs Gen Tot.

Figure C.20: Predicted testing outcome vs real testing outcome for complete exposome (numeric
variables) data and for the outcome hs Gen Tot.
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# Non -relevant features

nv.colnames[which(abs(iSFS.Model.nv$beta) < 0.05)]

character(0)

C.2.1.2 Dummy variables

• Outcome hs zbmi who

iSFS.Model.dv <- iSFS(p = p.dv , X = exposome.data.dv_train , y =

y_train$hs_zbmi_who , lambda = 0.00000005,

L.step = 10, maxIter.iSFS = 100,

maxIter.alpha = 20, maxIter.beta = 50,

beta0.comp = "LR")

y.dv.pred_train <- predict.iSFS(iSFS.Model.dv, exposome.data.dv_train ,

p.dv)

evaluation.model.param(y_train$hs_zbmi_who , y.dv.pred_train ,

sum(p.dv))

y.dv.pred_test <- predict.iSFS(iSFS.Model.dv, exposome.data.dv_test ,

p.dv)

evaluation.model.param(y_test$hs_zbmi_who , y.dv.pred_test)

plot(y_train$hs_zbmi_who , y.dv.pred_train)

abline(a = 0, b = 1)

plot(y_test$hs_zbmi_who , y.dv.pred_test)

abline(a = 0, b = 1)

MSE RMSE MAE RMAE R squared Adjusted R squared
0.4290164 0.6549934 0.5020886 0.7085821 0.7052706 0.5553564

Table C.21: Evaluation values for the model when used complete exposome (dummy variables)
training data for the outcome hs zbmi who.

MSE RMSE MAE RMAE R squared
0.479162 0.6922153 0.5320198 0.7293969 0.6401061

Table C.22: Evaluation values for the model when used complete exposome (dummy variables)
testing data for the outcome hs zbmi who.
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Figure C.21: Predicted training outcome vs real training outcome for complete exposome
(dummy variables) data and for the outcome hs zbmi who.

Figure C.22: Predicted testing outcome vs real testing outcome for complete exposome (dummy
variables) data and for the outcome hs zbmi who.

# Dummy variables names

dv.colnames <- colnames(exposome.data.dv_train)

# Non -relevant features

dv.colnames[which(abs(iSFS.Model.dv$beta) < 0.05)]

[1] "variable.female" "h_landuseshan300_preg_None"

[3] "hs_connind300_h_Log" "hs_builtdens300_s_Sqrt"

[5] "variable..0.6....6.9."

• Outcome e3 bw
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iSFS.Model.dv <- iSFS(p = p.dv , X = exposome.data.dv_train , y =

y_train$e3_bw , lambda = 0.00000005,

L.step = 10, maxIter.iSFS = 100,

maxIter.alpha = 20, maxIter.beta = 50,

beta0.comp = "LR")

y.dv.pred_train <- predict.iSFS(iSFS.Model.dv, exposome.data.dv_train ,

p.dv)

evaluation.model.param(y_train$e3_bw , y.dv.pred_train , sum(p.dv))

y.dv.pred_test <- predict.iSFS(iSFS.Model.dv, exposome.data.dv_test ,

p.dv)

evaluation.model.param(y_test$e3_bw, y.dv.pred_test)

plot(y_train$e3_bw , y.dv.pred_train)

abline(a = 0, b = 1)

plot(y_test$e3_bw , y.dv.pred_test)

abline(a = 0, b = 1)

MSE RMSE MAE RMAE R squared Adjusted R squared
0.1614898 0.401858 0.3120213 0.5585887 0.3807247 0.06572992

Table C.23: Evaluation values for the model when used complete exposome (dummy variables)
training data for the outcome e3 bw.

MSE RMSE MAE RMAE R squared
0.1815342 0.4260683 0.3301896 0.5746213 0.2929926

Table C.24: Evaluation values for the model when used complete exposome (dummy variables)
testing data for the outcome e3 bw.
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Figure C.23: Predicted training outcome vs real training outcome for complete exposome
(dummy variables) data and for the outcome e3 bw.

Figure C.24: Predicted testing outcome vs real testing outcome for complete exposome (dummy
variables) data and for the outcome e3 bw.

# Non -relevant features

dv.colnames[which(abs(iSFS.Model.dv$beta) < 0.05)]

[1] "hs_builtdens300_h_Sqrt" "hs_builtdens300_s_Sqrt" "variable.0.1"

[4] "hs_trcs_madj_Log2"

• Outcome hs correct raven

iSFS.Model.dv <- iSFS(p = p.dv , X = exposome.data.dv_train , y =

y_train$hs_correct_raven , lambda = 0.00000005,

L.step = 10, maxIter.iSFS = 100,

maxIter.alpha = 20, maxIter.beta = 50,

beta0.comp = "LR")
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y.dv.pred_train <- predict.iSFS(iSFS.Model.dv, exposome.data.dv_train ,

p.dv)

evaluation.model.param(y_train$hs_correct_raven , y.dv.pred_train ,

sum(p.dv))

y.dv.pred_test <- predict.iSFS(iSFS.Model.dv, exposome.data.dv_test ,

p.dv)

evaluation.model.param(y_test$hs_correct_raven , y.dv.pred_test)

plot(y_train$hs_correct_raven , y.dv.pred_train)

abline(a = 0, b = 1)

plot(y_test$hs_correct_raven , y.dv.pred_test)

abline(a = 0, b = 1)

MSE RMSE MAE RMAE R squared Adjusted R squared
15.76673 3.970734 3.10729 1.762751 0.6411315 0.4585928

Table C.25: Evaluation values for the model when used complete exposome (dummy variables)
training data for the outcome hs correct raven.

MSE RMSE MAE RMAE R squared
18.76777 4.332178 3.382309 1.839105 0.4850191

Table C.26: Evaluation values for the model when used complete exposome (dummy variables)
testing data for the outcome hs correct raven.

Figure C.25: Predicted training outcome vs real training outcome for complete exposome
(dummy variables) data and for the outcome hs correct raven.
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Figure C.26: Predicted testing outcome vs real testing outcome for complete exposome (dummy
variables) data and for the outcome hs correct raven.

# Non -relevant features

dv.colnames[which(abs(iSFS.Model.dv$beta) < 0.05)]

character(0)

• Outcome hs Gen Tot

iSFS.Model.dv <- iSFS(p = p.dv , X = exposome.data.dv_train , y =

y_train$hs_Gen_Tot , lambda = 0.00000005,

L.step = 10, maxIter.iSFS = 100,

maxIter.alpha = 20, maxIter.beta = 50,

beta0.comp = "LR")

y.dv.pred_train <- predict.iSFS(iSFS.Model.dv, exposome.data.dv_train ,

p.dv)

evaluation.model.param(y_train$hs_Gen_Tot , y.dv.pred_train , sum(p.dv))

y.dv.pred_test <- predict.iSFS(iSFS.Model.dv, exposome.data.dv_test ,

p.dv)

evaluation.model.param(y_test$hs_Gen_Tot , y.dv.pred_test)

plot(y_train$hs_Gen_Tot , y.dv.pred_train)

abline(a = 0, b = 1)

plot(y_test$hs_Gen_Tot , y.dv.pred_test)

abline(a = 0, b = 1)
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MSE RMSE MAE RMAE R squared Adjusted R squared
239.9175 15.48927 11.75104 3.42798 0.3726469 0.05354336

Table C.27: Evaluation values for the model when used complete exposome (dummy variables)
training data for the outcome hs Gen Tot.

MSE RMSE MAE RMAE R squared
318.5169 17.84704 13.43383 3.665219 -0.00471336

Table C.28: Evaluation values for the model when used complete exposome (dummy variables)
testing data for the outcome hs Gen Tot.

Figure C.27: Predicted training outcome vs real training outcome for complete exposome
(dummy variables) data and for the outcome hs Gen Tot.

Figure C.28: Predicted testing outcome vs real testing outcome for complete exposome (dummy
variables) data and for the outcome hs Gen Tot.
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# Non -relevant features

dv.colnames[which(abs(iSFS.Model.dv$beta) < 0.05)]

character(0)

C.2.2 Comparison on incomplete data

C.2.2.1 Numeric variables

• Outcome hs zbmi who

iSFS.ModelNA.nv <- iSFS(p = p.nv , X = exposomeNA.data.nv_train ,

y = y_train$hs_zbmi_who , lambda = 0.00000005,

L.step = 10, maxIter.iSFS = 100,

maxIter.alpha = 20, maxIter.beta = 50)

yNA.nv.pred_train <- predict.iSFS(iSFS.ModelNA.nv ,

exposomeNA.data.nv_train , p.nv)

evaluation.model.param(y_train$hs_zbmi_who , yNA.nv.pred_train ,

sum(p.nv))

yNA.nv.pred_test <- predict.iSFS(iSFS.ModelNA.nv ,

exposomeNA.data.nv_test , p.nv)

evaluation.model.param(y_test$hs_zbmi_who , yNA.nv.pred_test ,

sum(p.nv))

plot(y_train$hs_zbmi_who , yNA.nv.pred_train)

abline(a = 0, b = 1)

plot(y_test$hs_zbmi_who , yNA.nv.pred_test)

abline(a = 0, b = 1)

MSE RMSE MAE RMAE R squared Adjusted R squared
0.6807339 0.825066 0.6389482 0.7993424 0.5323436 0.4140857

Table C.29: Evaluation values for the model when used block-wise missing exposome (numeric
variables) training data for the outcome hs zbmi who.

MSE RMSE MAE RMAE R squared Adjusted R squared
0.6904253 0.8309184 0.6388579 0.7992858 0.4814284 0.1178084

Table C.30: Evaluation values for the model when used block-wise missing exposome (numeric
variables) testing data for the outcome hs zbmi who.
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Figure C.29: Predicted training outcome vs real training outcome for block-wise missing expo-
some (numeric variables) data and for the outcome hs zbmi who.

Figure C.30: Predicted testing outcome vs real testing outcome for block-wise missing exposome
(numeric variables) data and for the outcome hs zbmi who.

• Outcome e3 bw

iSFS.ModelNA.nv <- iSFS(p = p.nv , X = exposomeNA.data.nv_train ,

y = y_train$e3_bw, lambda = 0.00000005,

L.step = 10, maxIter.iSFS = 100,

maxIter.alpha = 20, maxIter.beta = 50)

yNA.nv.pred_train <- predict.iSFS(iSFS.ModelNA.nv ,

exposomeNA.data.nv_train , p.nv)

evaluation.model.param(y_train$e3_bw , yNA.nv.pred_train , sum(p.nv))

yNA.nv.pred_test <- predict.iSFS(iSFS.ModelNA.nv ,

exposomeNA.data.nv_test , p.nv)

evaluation.model.param(y_test$e3_bw, yNA.nv.pred_test , sum(p.nv))
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plot(y_train$e3_bw , yNA.nv.pred_train)

abline(a = 0, b = 1)

plot(y_test$e3_bw , yNA.nv.pred_test)

abline(a = 0, b = 1)

MSE RMSE MAE RMAE R squared Adjusted R squared
0.229331 0.4788851 0.3683425 0.6069123 0.1205699 -0.1018147

Table C.31: Evaluation values for the model when used block-wise missing exposome (numeric
variables) training data for the outcome e3 bw.

MSE RMSE MAE RMAE R squared Adjusted R squared
0.2532475 0.503237 0.3896707 0.6242361 0.01369617 -0.6778954

Table C.32: Evaluation values for the model when used block-wise missing exposome (numeric
variables) testing data for the outcome e3 bw.

Figure C.31: Predicted training outcome vs real training outcome for block-wise missing expo-
some (numeric variables) data and for the outcome e3 bw.
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Figure C.32: Predicted testing outcome vs real testing outcome for block-wise missing exposome
(numeric variables) data and for the outcome e3 bw.

• Outcome hs correct raven

iSFS.ModelNA.nv <- iSFS(p = p.nv , X = exposomeNA.data.nv_train ,

y = y_train$hs_correct_raven ,
lambda = 0.00000005, L.step = 10,

maxIter.iSFS = 100, maxIter.alpha = 20,

maxIter.beta = 50)

yNA.nv.pred_train <- predict.iSFS(iSFS.ModelNA.nv ,

exposomeNA.data.nv_train , p.nv)

evaluation.model.param(y_train$hs_correct_raven , yNA.nv.pred_train ,

sum(p.nv))

yNA.nv.pred_test <- predict.iSFS(iSFS.ModelNA.nv ,

exposomeNA.data.nv_test , p.nv)

evaluation.model.param(y_test$hs_correct_raven , yNA.nv.pred_test ,

sum(p.nv))

plot(y_train$hs_correct_raven , yNA.nv.pred_train)

abline(a = 0, b = 1)

plot(y_test$hs_correct_raven , yNA.nv.pred_test)

abline(a = 0, b = 1)

MSE RMSE MAE RMAE R squared Adjusted R squared
27.79042 5.271662 4.202957 2.050111 0.3674587 0.2075057

Table C.33: Evaluation values for the model when used block-wise missing exposome (numeric
variables) training data for the outcome hs correct raven.

144



Sergi Baena i Miret C.2 Exposome data

MSE RMSE MAE RMAE R squared Adjusted R squared
28.23094 5.31328 4.186105 2.045997 0.2253529 -0.3178259

Table C.34: Evaluation values for the model when used block-wise missing exposome (numeric
variables) testing data for the outcome hs correct raven.

Figure C.33: Predicted training outcome vs real training outcome for block-wise missing expo-
some (numeric variables) data and for the outcome hs correct raven.

Figure C.34: Predicted testing outcome vs real testing outcome for block-wise missing exposome
(numeric variables) data and for the outcome hs correct raven.

• Outcome hs Gen Tot

iSFS.ModelNA.nv <- iSFS(p = p.nv , X = exposomeNA.data.nv_train ,

y = y_train$hs_Gen_Tot , lambda = 0.00000005,

L.step = 10, maxIter.iSFS = 100,

maxIter.alpha = 20, maxIter.beta = 50)

yNA.nv.pred_train <- predict.iSFS(iSFS.ModelNA.nv ,
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exposomeNA.data.nv_train , p.nv)

evaluation.model.param(y_train$hs_Gen_Tot , yNA.nv.pred_train ,

sum(p.nv))

yNA.nv.pred_test <- predict.iSFS(iSFS.ModelNA.nv ,

exposomeNA.data.nv_test , p.nv)

evaluation.model.param(y_test$hs_Gen_Tot , yNA.nv.pred_test ,

sum(p.nv))

plot(y_train$hs_Gen_Tot , yNA.nv.pred_train)

abline(a = 0, b = 1)

plot(y_test$hs_Gen_Tot , yNA.nv.pred_test)

abline(a = 0, b = 1)

MSE RMSE MAE RMAE R squared Adjusted R squared
346.1951 18.60632 14.40539 3.795444 0.09474464 -0.1341705

Table C.35: Evaluation values for the model when used block-wise missing exposome (numeric
variables) training data for the outcome hs Gen Tot.

MSE RMSE MAE RMAE R squared Adjusted R squared
339.9409 18.43749 14.36977 3.790748 -0.07229228 -0.8241785

Table C.36: Evaluation values for the model when used block-wise missing exposome (numeric
variables) testing data for the outcome hs Gen Tot.

Figure C.35: Predicted training outcome vs real training outcome for block-wise missing expo-
some (numeric variables) data and for the outcome hs Gen Tot.
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Figure C.36: Predicted testing outcome vs real testing outcome for block-wise missing exposome
(numeric variables) data and for the outcome hs Gen Tot.

C.2.2.2 Dummy variables

• Outcome hs zbmi who

iSFS.ModelNA.dv <- iSFS(p = p.dv , X = exposomeNA.data.dv_train , y =

y_train$hs_zbmi_who , lambda = 0.00000005,

L.step = 10, maxIter.iSFS = 100,

maxIter.alpha = 20, maxIter.beta = 50,

beta0.comp = "LR")

yNA.dv.pred_train <- predict.iSFS(iSFS.ModelNA.dv ,

exposomeNA.data.dv_train ,

p.dv)

evaluation.model.param(y_train$hs_zbmi_who , yNA.dv.pred_train ,

sum(p.dv))

yNA.dv.pred_test <- predict.iSFS(iSFS.ModelNA.dv ,

exposomeNA.data.dv_test ,

p.dv)

evaluation.model.param(y_test$hs_zbmi_who , yNA.dv.pred_test)

plot(y_train$hs_zbmi_who , yNA.dv.pred_train)

abline(a = 0, b = 1)

plot(y_test$hs_zbmi_who , yNA.dv.pred_test)

abline(a = 0, b = 1)

147



Sergi Baena i Miret C.2 Exposome data

MSE RMSE MAE RMAE R squared Adjusted R squared
0.5511214 0.7423755 0.577232 0.7597579 0.6213859 0.4288036

Table C.37: Evaluation values for the model when used block-wise missing exposome (dummy
variables) training data for the outcome hs zbmi who.

MSE RMSE MAE RMAE R squared
0.5596416 0.748092 0.5717857 0.7561651 0.5796587

Table C.38: Evaluation values for the model when used block-wise missing exposome (dummy
variables) testing data for the outcome hs zbmi who.

Figure C.37: Predicted training outcome vs real training outcome for block-wise missing expo-
some (dummy variables) data and for the outcome hs zbmi who.

Figure C.38: Predicted testing outcome vs real testing outcome for block-wise missing exposome
(dummy variables) data and for the outcome hs zbmi who.

• Outcome e3 bw
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iSFS.ModelNA.dv <- iSFS(p = p.dv , X = exposomeNA.data.dv_train , y =

y_train$e3_bw, lambda = 0.00000005,

L.step = 10, maxIter.iSFS = 100,

maxIter.alpha = 20, maxIter.beta = 50,

beta0.comp = "LR")

yNA.dv.pred_train <- predict.iSFS(iSFS.ModelNA.dv ,

exposomeNA.data.dv_train ,

p.dv)

evaluation.model.param(y_train$e3_bw , yNA.dv.pred_train ,

sum(p.dv))

yNA.dv.pred_test <- predict.iSFS(iSFS.ModelNA.dv ,

exposomeNA.data.dv_test ,

p.dv)

evaluation.model.param(y_test$e3_bw, yNA.dv.pred_test)

plot(y_train$e3_bw , yNA.dv.pred_train)

abline(a = 0, b = 1)

plot(y_test$e3_bw , yNA.dv.pred_test)

abline(a = 0, b = 1)

MSE RMSE MAE RMAE R squared Adjusted R squared
0.2206533 0.4697374 0.3617135 0.6014262 0.1538469 -0.2765493

Table C.39: Evaluation values for the model when used block-wise missing exposome (dummy
variables) training data for the outcome e3 bw.

MSE RMSE MAE RMAE R squared
0.2475389 0.4975328 0.3818376 0.6179301 0.03592912

Table C.40: Evaluation values for the model when used block-wise missing exposome (dummy
variables) testing data for the outcome e3 bw.
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Figure C.39: Predicted training outcome vs real training outcome for block-wise missing expo-
some (dummy variables) data and for the outcome e3 bw.

Figure C.40: Predicted testing outcome vs real testing outcome for block-wise missing exposome
(dummy variables) data and for the outcome e3 bw.

• Outcome hs correct raven

iSFS.ModelNA.dv <- iSFS(p = p.dv , X = exposomeNA.data.dv_train , y =

y_train$hs_correct_raven , lambda = 0.00000005,

L.step = 10, maxIter.iSFS = 100,

maxIter.alpha = 20, maxIter.beta = 50,

beta0.comp = "LR")

yNA.dv.pred_train <- predict.iSFS(iSFS.ModelNA.dv ,

exposomeNA.data.dv_train ,

p.dv)

evaluation.model.param(y_train$hs_correct_raven , yNA.dv.pred_train ,

sum(p.dv))

yNA.dv.pred_test <- predict.iSFS(iSFS.ModelNA.dv ,
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exposomeNA.data.dv_test , p.dv)

evaluation.model.param(y_test$hs_correct_raven , yNA.dv.pred_test)

plot(y_train$hs_correct_raven , yNA.dv.pred_train)

abline(a = 0, b = 1)

plot(y_test$hs_correct_raven , yNA.dv.pred_test)

abline(a = 0, b = 1)

MSE RMSE MAE RMAE R squared Adjusted R squared
41.77967 6.463719 5.406547 2.325198 0.04904769 -0.4346547

Table C.41: Evaluation values for the model when used block-wise missing exposome (dummy
variables) training data for the outcome hs correct raven.

MSE RMSE MAE RMAE R squared
40.75194 6.383725 5.313987 2.305209 -0.1182188

Table C.42: Evaluation values for the model when used block-wise missing exposome (dummy
variables) testing data for the outcome hs correct raven.

Figure C.41: Predicted training outcome vs real training outcome for block-wise missing expo-
some (dummy variables) data and for the outcome hs correct raven.
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Figure C.42: Predicted testing outcome vs real testing outcome for block-wise missing exposome
(dummy variables) data and for the outcome hs correct raven.

• Outcome hs Gen Tot

iSFS.ModelNA.dv <- iSFS(p = p.dv , X = exposomeNA.data.dv_train , y =

y_train$hs_Gen_Tot , lambda = 0.00000005,

L.step = 10, maxIter.iSFS = 100,

maxIter.alpha = 20, maxIter.beta = 50,

beta0.comp = "LR")

yNA.dv.pred_train <- predict.iSFS(iSFS.ModelNA.dv ,

exposomeNA.data.dv_train ,

p.dv)

evaluation.model.param(y_train$hs_Gen_Tot , yNA.dv.pred_train ,

sum(p.dv))

yNA.dv.pred_test <- predict.iSFS(iSFS.ModelNA.dv ,

exposomeNA.data.dv_test , p.dv)

evaluation.model.param(y_test$hs_Gen_Tot , yNA.dv.pred_test)

plot(y_train$hs_Gen_Tot , yNA.dv.pred_train)

abline(a = 0, b = 1)

plot(y_test$hs_Gen_Tot , yNA.dv.pred_test)

abline(a = 0, b = 1)

MSE RMSE MAE RMAE R squared Adjusted R squared
356.5169 18.88165 14.64036 3.826272 0.06775462 -0.4064325

Table C.43: Evaluation values for the model when used block-wise missing exposome (dummy
variables) training data for the outcome hs Gen Tot.
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MSE RMSE MAE RMAE R squared
349.911 18.70591 14.53511 3.812494 -0.1037414

Table C.44: Evaluation values for the model when used block-wise missing exposome (dummy
variables) testing data for the outcome hs Gen Tot.

Figure C.43: Predicted training outcome vs real training outcome for block-wise missing expo-
some (dummy variables) data and for the outcome hs Gen Tot.

Figure C.44: Predicted testing outcome vs real testing outcome for block-wise missing exposome
(dummy variables) data and for the outcome hs Gen Tot.
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