Integrative learning for heterogeneous blockwise missing omics data

Sergi Baena i Miret

Area 5, subarea 1: statistics and bioinformatics
Master's degree in Bioinformatics and Biostatistics
Ferran Reverter Comes and Esteban Vegas Lozano

This license lets others distribute, remix, adapt, and build upon your work, even commercially, as long as they credit you for the original creation. This is the most accommodating of licenses offered. Recommended for maximum dissemination and use of licensed materials.
https://creativecommons.org/licenses/by-nc/3.0

FINAL WORK CARD

Title:	Integrative learning for heterogeneous block-wise miss- ing omics data
Author:	Sergi Baena i Miret
Tutor:	Ferran Reverter Comes and Esteban Vegas Lozano
Date of delivery:	June 2, 2022
Studies:	Master's degree in Bioinformatics and Biostatistics
Area:	Area 5, subarea 1: statistics and bioinformatics
Language:	English
Number of credits:	15
Keywords:	Block-wise missing data, multi-source, optimization re- gression model, machine learning, omics data, exposome data

Resum

En moltes ocasions la informació que es pot recollir no està completa, ja que per a algunes observacions no totes les fonts de dades estan disponibles (el que es coneix com a dades faltants per blocs) per la qual cosa la pregunta que sorgeix és com es podria implementar un procés d'integració amb dades que contenen blocs faltants basat en una aproximació de tipus Lasso, que després es podria aplicar a dades òmiques reals. De fet, en aquesta tesi resoldrem un problema d'optimització de regressió consistent en un model d'aprenentatge de característiques unificades per a blocs heterogenis faltants de dades (o fins i tot completes) que realitzin anàlisis tant a nivell de característiques com de fonts simultàniament.

La novetat d'aquesta tesi es basa en que encara que es pot trobar la formulació i l'optimització teòrica del problema, no hem pogut trobar la seva implementació de codi enlloc, per la qual cosa ens ha estat impossible (fins que no hem aconseguit implementar-lo) donar una valoració raonable del model. De fet, per a l'avaluació del model (l'estudi de la seva efectivitat i rendiment) hem utilitzat dades simulades generades per un model de regressió lineal i dades reals extretes d'un nou projecte de recerca col-laboratiu anomenat Human Early-Life Exposome (HELIX).

Tot plegat, en aquest manuscrit hem estudiat un model d'aprenentatge binivell de característiques motivat per les dades de l'exposome i hem implementat un codi que tant serveix per a dades completes com amb blocs faltants. Concretament, hem introduït un model d'aprenentatge de característiques unificades per a dades completes, que conté diversos models convexos clàssics que s'han estès fàcilment per gestionar el cas més difícil: el de les dades faltants per blocs. Al final hem aconseguit presentar un model d'optimització de regressió que donades les dades completes o faltants per blocs, podem obtenir-ne informació per tal de fer prediccions per a dades que tinguin una estructura similar. En particular, hem observat resultats excel•lents per a les dades simulades i resultats força bons per a les dades d' exposome.

Abstract

On many occasions the information that one can gather is not complete, since for some observations not all data sources are available (what is known as block-wise missing data) so the question that arises is how we could implement an integrative process with block-wise missing data based on a Lasso's type approximation that then could be applied to real omics data. Indeed, in this thesis we will solve an optimization regression problem consisting on a unified feature learning model for heterogeneous block-wise missing (or even complete) data that performs both feature-level and source-level analysis simultaneously.

The novelty on this thesis relies on that although one can find the formulation and the theoretical optimization of the problem, we have not been able to find its code implementation anywhere, so it has been impossible for us (until we have succeed implementing them) to give a reasonable evaluation of the model. Indeed, for the evaluation of the model (the study of its effectiveness and performance) we will use synthetic data generated by a linear regression model and real data drawn from a new collaborative research project called the Human Early-Life Exposome (HELIX).

All in all, in this manuscript we have studied a bi-level feature learning model motivated by the exposome data and we have implemented a code that approaches for both complete and block-wise missing data. Specifically, we have introduced a unified feature learning model for complete data, which contains several classical convex models that has been easily extended to handling the more challenging case: the block-wise missing data. At the end we have succeed in presenting an optimization regression model that given complete or block-wise missing data, we can obtain information from it in order to make predictions for similar structured data. In particular, we have observed great results for the simulated data and quite good results for this exposome data.

Contents

1 Introduction 14
1.1 Context and justification of the thesis 14
1.2 Overview 15
1.3 State-of-the-art 15
1.4 Objectives 16
1.5 Approach and method 16
1.6 Planning 17
1.7 Brief summary of contributions 19
1.8 Brief description of each chapter 19
2 Methodology and materials 20
2.1 Software for the project development 20
2.1.1 R and RStudio 20
2.1.2 Overleaf and LaTeX 21
2.2 A unified feature learning model for complete and block-wise missing multi- source data 21
2.2.1 Missing blocks and profiles 22
2.3 Data 23
2.3.1 Simulated data 23
2.3.2 Exposome data 24
3 An incomplete source feature selection (iSFS) model 28
3.1 Gradient iteration methods 28
3.1.1 Proximal gradient iteration method 29
3.1.1.1 Proximal operator 29
3.1.1.2 Algorithm 32
3.1.2 Norm projection iteration method 33
3.1.2.1 Algorithm 35
3.1.3 Finding a solution for a suitable value of L 35
3.2 iSFS model for the least square loss function 37
3.2.1 Computing α when β is fixed 38
3.2.2 Computing β when α is fixed 43
3.2.3 Algorithm of the iSFS model for the least square loss function 47
4 Discussion and applications of the iSFS model on simulated and exposome data 49
4.1 Simulated data 50
4.1.1 Comparison on complete data 50
4.1.2 Comparison on incomplete data 50
4.1.3 Discussion on simulated data 51
4.2 Exposome data 51
4.2.1 Comparison on complete data 51
4.2.1.1 Numeric variables 51
4.2.1.2 Dummy variables 52
4.2.2 Comparison on incomplete data 52
4.2.2.1 Numeric variables 52
4.2.2.2 Dummy variables 52
4.2.3 Discussion on exposome data 53
5 Conclusions 54
5.1 Conclusions 54
5.2 Future research 55
5.3 Schedule tracking 55
6 Glossary 57
A Code and figures: methodology and materials 62
A. 1 Software for the project development 62
A.1.1 R and RStudio 62
A. 2 A unified feature learning model for complete and block-wise missing multi- source data 62
A.2.1 Missing blocks and profiles 62
A. 3 Data 64
A.3.1 Simulated data 64
A.3.2 Exposome data 67
B Code: an incomplete source feature selection (iSFS) model 109
B. 1 iSFS model for the least square loss function 109
B.1.1 Algorithm of the iSFS model for the least square loss function 109
B.1.2 Predictions on the iSFS algorithm 113
C Code, figures and tables: discussion and applications of the iSFS model on simulated and exposome data 115
C. 1 Simulated data 116
C.1.1 Comparison on complete data 117
C.1.2 Comparison on incomplete data 122
C. 2 Exposome data 126
C.2.1 Comparison on complete data 127
C.2.1.1 Numeric variables 127
C.2.1.2 Dummy variables 134
C.2.2 Comparison on incomplete data 141
C.2.2.1 Numeric variables 141
C.2.2.2 Dummy variables 147

List of Figures

2.1 Illustration of sparse features [25]. The white blocks represent zero elements, while the non-zero values are represented by different colors. 23
3.1 Illustration of the proposed learning model (see [25]). Notice that the missing data emerges in a block-wise way, i.e., for a sample, certain data source is either available or lost completely. 39
A. 1 Missing values pattern of the exposome data with missing data (exposomeNA). 68
A. 2 Correlogram between Covariates variables and Air Pollution variables. 86
A. 3 Correlogram between Covariates variables and Metals variables. 86
A. 4 Correlogram between Covariates variables and Organochlorines variables. 87
A. 5 Correlogram between Covariates variables and PFAS variables. 87
A. 6 Correlogram between Covariates variables. 88
A. 7 Correlogram between Air Pollution variables and Metals variables. 89
A. 8 Correlogram between Air Pollution variables and Organochlorines variables 90
A. 9 Correlogram between Air Pollution variables and PFAS variables. 91
A. 10 Correlogram between Metals variables and Organochlorines variables. 92
A. 11 Correlogram between Metals variables and PFAS variables 93
A. 12 Correlogram between Organochlorines variables and PFAS variables. 94
A. 13 Boxplot of all the Covariates variables. 95
A. 14 Boxplot of the covariate variable e3_gac_None according to the factor Asthma. 97
A. 15 Boxplot of the covariate variable h_age_None according to the factor Asthma. 98
A. 16 Boxplot of the covariate variable hs_child_age_None according to the factor Asthma. 99
A. 17 Boxplot of the covariate variable $h_{-} m b m i _$None according to the factor Asthma. 100
A. 18 Boxplot of the covariate variable hs_wgtgain_None according to the factor Asthma. 100
A. 19 Boxplot of the covariate variable hs_c_height_None according to the factor Asthma. 101
A. 20 Boxplot of the covariate variable hs_c_weight_None according to the factor Asthma. 101
A. 21 Biplot of the two first principal components according to the factor Asthma. 102
C. 1 Predicted training outcome vs real training outcome for complete non-correlated synthetic data. 118
C. 2 Predicted testing outcome vs real testing outcome for complete non-correlated synthetic data. 118
C. 3 Predicted training outcome vs real training outcome for complete low-correlated synthetic data.
119
C. 4 Predicted testing outcome vs real testing outcome for complete low-correlated synthetic data. 120
C. 5 Predicted training outcome vs real training outcome for complete high-correlated synthetic data. 121
C. 6 Predicted testing outcome vs real testing outcome for complete high-correlated synthetic data. 121
C. 7 Predicted training outcome vs real training outcome for block-wise missing non- correlated synthetic data. 123
C. 8 Predicted testing outcome vs real testing outcome for block-wise missing non- correlated synthetic data. 123
C. 9 Predicted training outcome vs real training outcome for block-wise missing low- correlated synthetic data 124
C. 10 Predicted testing outcome vs real testing outcome for block-wise missing low- correlated synthetic data. 125
C. 11 Predicted training outcome vs real training outcome for block-wise missing high- correlated synthetic data. 126
C. 12 Predicted testing outcome vs real testing outcome for block-wise missing high- correlated synthetic data. 126
C. 13 Predicted training outcome vs real training outcome for complete exposome (nu- meric variables) data and for the outcome hs_zbmi_who. 128
C. 14 Predicted testing outcome vs real testing outcome for complete exposome (nu- meric variables) data and for the outcome $h s_{-} z b m i _w h o$. 128
C. 15 Predicted training outcome vs real training outcome for complete exposome (nu- meric variables) data and for the outcome e3_bw. 130
C. 16 Predicted testing outcome vs real testing outcome for complete exposome (nu- meric variables) data and for the outcome e3_bw. 130
C. 17 Predicted training outcome vs real training outcome for complete exposome (nu- meric variables) data and for the outcome hs_correct_raven. 131
C. 18 Predicted testing outcome vs real testing outcome for complete exposome (nu- meric variables) data and for the outcome $h s$ _correct_raven. 132
C. 19 Predicted training outcome vs real training outcome for complete exposome (nu- meric variables) data and for the outcome $h s_{-} G e n_{-}$Tot. 133
C. 20 Predicted testing outcome vs real testing outcome for complete exposome (nu- meric variables) data and for the outcome $h s_{-} G e n_{-}$Tot. 133
C. 21 Predicted training outcome vs real training outcome for complete exposome (dummy variables) data and for the outcome hs_zbmi_who. 135
C. 22 Predicted testing outcome vs real testing outcome for complete exposome (dummy variables) data and for the outcome hs_zbmi_who. 135
C. 23 Predicted training outcome vs real training outcome for complete exposome (dummy variables) data and for the outcome e3_bw. 137
C. 24 Predicted testing outcome vs real testing outcome for complete exposome (dummy variables) data and for the outcome e3_bw. 137
C. 25 Predicted training outcome vs real training outcome for complete exposome (dummy variables) data and for the outcome hs_correct_raven. 138
C. 26 Predicted testing outcome vs real testing outcome for complete exposome (dummy variables) data and for the outcome hs_correct_raven. 139
C. 27 Predicted training outcome vs real training outcome for complete exposome (dummy variables) data and for the outcome hs_Gen_Tot. 140
C. 28 Predicted testing outcome vs real testing outcome for complete exposome (dummy variables) data and for the outcome $h s_{-} G e n_{-} T o t$. 140
C. 29 Predicted training outcome vs real training outcome for block-wise missing ex- posome (numeric variables) data and for the outcome hs_zbmi_who. 142
C. 30 Predicted testing outcome vs real testing outcome for block-wise missing expo- some (numeric variables) data and for the outcome $h s_{-} z b m i_{-} w h o$. 142
C. 31 Predicted training outcome vs real training outcome for block-wise missing ex- posome (numeric variables) data and for the outcome e3_bw. 143
C. 32 Predicted testing outcome vs real testing outcome for block-wise missing expo- some (numeric variables) data and for the outcome e3_bw. 144
C. 33 Predicted training outcome vs real training outcome for block-wise missing ex- posome (numeric variables) data and for the outcome hs_correct_raven. 145
C. 34 Predicted testing outcome vs real testing outcome for block-wise missing expo- some (numeric variables) data and for the outcome $h s$ _correct_raven. 145
C. 35 Predicted training outcome vs real training outcome for block-wise missing ex- posome (numeric variables) data and for the outcome hs_Gen_Tot. 146
C. 36 Predicted testing outcome vs real testing outcome for block-wise missing expo- some (numeric variables) data and for the outcome $h s_{-} G e n_{-} T o t$. 147
C. 37 Predicted training outcome vs real training outcome for block-wise missing ex- posome (dummy variables) data and for the outcome hs_zbmi_who 148
C. 38 Predicted testing outcome vs real testing outcome for block-wise missing expo- some (dummy variables) data and for the outcome hs_zbmi_who. 148
C. 39 Predicted training outcome vs real training outcome for block-wise missing ex- posome (dummy variables) data and for the outcome e3_bw. 150
C. 40 Predicted testing outcome vs real testing outcome for block-wise missing expo- some (dummy variables) data and for the outcome e3_bw. 150
C. 41 Predicted training outcome vs real training outcome for block-wise missing ex- posome (dummy variables) data and for the outcome $h s$ _correct_raven 151
C. 42 Predicted testing outcome vs real testing outcome for block-wise missing expo- some (dummy variables) data and for the outcome $h s$ _correct_raven. 152
C. 43 Predicted training outcome vs real training outcome for block-wise missing ex- posome (dummy variables) data and for the outcome $h s_{-} G e n_{-}$Tot. 153
C. 44 Predicted testing outcome vs real testing outcome for block-wise missing expo- some (dummy variables) data and for the outcome $h s_{-} G e n_{-} T o t$. 153

List of Tables

4.1 Best results between numeric variables and dummy variables data sets accord- ing whether the data is complete or not and for the four numeric outcomes of exposome data. 53
C. 1 Evaluation values for the model when used complete non-correlated synthetic training data. 117
C. 2 Evaluation values for the model when used complete non-correlated synthetic testing data. 118
C. 3 Evaluation values for the model when used complete low-correlated synthetic training data. 119
C. 4 Evaluation values for the model when used complete low-correlated synthetic testing data. 119
C. 5 Evaluation values for the model when used complete high-correlated synthetic training data. 120
C. 6 Evaluation values for the model when used complete high-correlated synthetic testing data. 121
C. 7 Evaluation values for the model when used block-wise missing non-correlated synthetic training data. 122
C. 8 Evaluation values for the model when used block-wise missing non-correlated synthetic testing data. 122
C. 9 Evaluation values for the model when used block-wise missing low-correlated synthetic training data. 124
C. 10 Evaluation values for the model when used block-wise missing low-correlated synthetic testing data. 124
C. 11 Evaluation values for the model when used block-wise missing high-correlated synthetic training data. 125
C. 12 Evaluation values for the model when used block-wise missing high-correlated synthetic testing data. 126
C. 13 Evaluation values for the model when used complete exposome (numeric vari- ables) training data for the outcome $h s_{-} z b m i _w h o$. 128
C. 14 Evaluation values for the model when used complete exposome (numeric vari- ables) testing data for the outcome $h s_{-} z b m i _w h o$. 128
C. 15 Evaluation values for the model when used complete exposome (numeric vari- ables) training data for the outcome e3_bw. 129
C. 16 Evaluation values for the model when used complete exposome (numeric vari- ables) testing data for the outcome e3_bw. 129
C. 17 Evaluation values for the model when used complete exposome (numeric vari- ables) training data for the outcome hs_correct_raven. 131
C. 18 Evaluation values for the model when used complete exposome (numeric vari- ables) testing data for the outcome $h s$ _correct_raven. 131
C. 19 Evaluation values for the model when used complete exposome (numeric vari- ables) training data for the outcome $h s_{-} G e n_{-} T o t$. 133
C. 20 Evaluation values for the model when used complete exposome (numeric vari- ables) testing data for the outcome hs_Gen_Tot. 133
C. 21 Evaluation values for the model when used complete exposome (dummy vari- ables) training data for the outcome $h s_{-} z b m i_{-} w h o$. 134
C. 22 Evaluation values for the model when used complete exposome (dummy vari- ables) testing data for the outcome $h s_{-} z b m i_{-} w h o$. 134
C. 23 Evaluation values for the model when used complete exposome (dummy vari- ables) training data for the outcome e3_bw. 136
C. 24 Evaluation values for the model when used complete exposome (dummy vari- ables) testing data for the outcome e3_bw. 136
C. 25 Evaluation values for the model when used complete exposome (dummy vari- ables) training data for the outcome hs_correct_raven. 138
C. 26 Evaluation values for the model when used complete exposome (dummy vari- ables) testing data for the outcome $h s_{-}$correct_raven. 138
C. 27 Evaluation values for the model when used complete exposome (dummy vari- ables) training data for the outcome $h s_{-} G e n_{-}$Tot. 140
C. 28 Evaluation values for the model when used complete exposome (dummy vari- ables) testing data for the outcome $h s_{-} G e n_{-}$Tot. 140
C. 29 Evaluation values for the model when used block-wise missing exposome (nu- meric variables) training data for the outcome $h s_{-} z b m i i_{-} w h o$. 141
C. 30 Evaluation values for the model when used block-wise missing exposome (nu- meric variables) testing data for the outcome $h s_{-} z b m i _w h o$. 141
C. 31 Evaluation values for the model when used block-wise missing exposome (nu- meric variables) training data for the outcome e3_bw. 143
C. 32 Evaluation values for the model when used block-wise missing exposome (nu- meric variables) testing data for the outcome e3_bw. 143
C. 33 Evaluation values for the model when used block-wise missing exposome (nu- meric variables) training data for the outcome hs_correct_raven. 144
C. 34 Evaluation values for the model when used block-wise missing exposome (nu- meric variables) testing data for the outcome hs_correct_raven. 145
C. 35 Evaluation values for the model when used block-wise missing exposome (nu- meric variables) training data for the outcome $h s_{-} G e n_{-} T o t$. 146
C. 36 Evaluation values for the model when used block-wise missing exposome (nu- meric variables) testing data for the outcome $h s_{-}$Gen_Tot. 146
C. 37 Evaluation values for the model when used block-wise missing exposome (dummy variables) training data for the outcome $h s_{-} z b m i_{-} w h o$. 148
C. 38 Evaluation values for the model when used block-wise missing exposome (dummy variables) testing data for the outcome hs_zbmi_who. 148
C. 39 Evaluation values for the model when used block-wise missing exposome (dummy variables) training data for the outcome $e 3 _b w$. 149
C. 40 Evaluation values for the model when used block-wise missing exposome (dummy variables) testing data for the outcome e3_bw. 149
C. 41 Evaluation values for the model when used block-wise missing exposome (dummy variables) training data for the outcome hs_correct_raven. 151
C. 42 Evaluation values for the model when used block-wise missing exposome (dummy variables) testing data for the outcome hs_correct_raven. 151
C. 43 Evaluation values for the model when used block-wise missing exposome (dummy variables) training data for the outcome hs_Gen_Tot. 152
C. 44 Evaluation values for the model when used block-wise missing exposome (dummy variables) testing data for the outcome hs_Gen_Tot. 153

Chapter 1

Introduction

This short chapter is intended to be a brief description of our project.

1.1 Context and justification of the thesis

The Omics technologies are high-throughput biochemical assays that, in a comprehensive and simultaneous way, measure molecules of the same type from a biological sample. For example, transcriptomics measure transcripts; metabolomics quantify metabolites while proteomics quantify proteins; genomics profile DNA... Then, omics data are those consisting on all the data generated by Omics technologies applied to a set of samples.

Indeed, the "omics" notion refers to the fact that all (or nearly all) instances of the target molecular space are measured in the assay. Initially, omics experiments tended to concentrate on one type of assay (i.e., transcriptomics) so that provide single omics data. However, it is believed that a joint learning of multiple data sources (in that case, from multiple different omics) is beneficial as different data sources may contain complementary information, which should be properly integrated and leveraged. In fact, machine learning algorithms have being increasingly used to analyze multi-source data [5, 20, 26, 28] which has gained great attention in biomedical research (see, for instance, [9]). So now, researchers are combining multiple assays (e.g., genome, transcriptome, proteome, epigenome, metabolome...) from the same set of samples in order to create what is known as multi-omics data sets.

Nevertheless, on many occasions the information that one can collect is not complete, since for some assays not all data can be gathered (for some observations some data is not available, that is, there is some information missing from some sources). This is what is known as block-wise missing data. Indeed, there has been a growing interest in both data mining and machine learning community, not only for omics data but for general data, to fill the gaps of the missing blocks or, at least, to extract as much as possible the necessary information from the unknown data (see [24, 25, 28]). Now, for the former (filling gaps with imputed information) there exist some well-known missing value estimation techniques like ExpectationMaximization (EM) [6], iterative singular value decomposition (SVD) and matrix completion [12], which perform imputation on the missing part of the data. However, those approaches fail to capture the patterns of the missing data and have to estimate a significant amount of missing
values with high-dimensional data, which can lead to unstable performance [28]. Otherwise, one could also apply existing feature learning approaches directly, as discarding all samples that have missing entries, but this can lead to an important lost of information.

This thesis is focused on the challenge about how to effectively integrate information from multiple heterogeneous sources in the presence of block-wise missing data, which is going to be restricted to an optimization problem (see [24, 25]). Then, the main problem that is addressed on this thesis is to implement an integrative process with block-wise missing data based on a Lasso's type approximation [18], which will be applied to either simulated data and real data, so that both will be used for the model evaluation.

1.2 Overview

The main aim of this thesis has been to understand the algorithms proposed on [24] and [25] respectively, which define an integrative process with block-wise missing data based on a Lasso's type approximation that result on some regression models, and to generate a code that implement them so that we can computationally evaluate both its performance and its effectiveness by using simulated data or high-dimensional omics data.

Indeed, a unified bi-level learning model has been proposed, which consists on a "bi-level analysis" (which performs simultaneously feature-level and source-level analysis) for multisource incomplete data, a method that avoids direct imputation of the missing elements. The term bi-level analysis was first coined in [4] and, although it has recently drawn increasing attention (see, for instance, [23]) how to extend existing techniques to deal with block-wise missing data remains largely unexplored. Indeed, bi-level learning models provide better performances than usual imputations methods, since the former try to extract complementary information from the data.

This thesis has been developed almost entirely through the use of the R programming language and both R Markdown reports and LaTeX typesetting system. The R language and its development framework has been used to generate the scripts that fulfill the functions of: data download, data simulation, study and treatment of data, training and testing of the bilevel learning model, and generation of packages with functions that works with block-wise missing data.

1.3 State-of-the-art

The novelty on this thesis relies on that although one can find the formulation and the theoretical optimization of the problem, we have not been able to find its code implementation anywhere, so it has been impossible for us (until we have succeed implementing them) to give a reasonable evaluation of the proposed algorithms. Indeed, a model that contemplates either complete or block-wise missing data is still new with no so much references of it (if one does not take into account techniques such as the imputation where part of the information on the data is lost).

1.4 Objectives

In this section we present the general objectives of this thesis, which we have broken down into other more concrete:
(i) Development of a code that implements integrative learning for heterogeneous block-wise missing data:
a) Read and understand the algorithms proposed on [24] and [25], respectively.
b) Generate a code that implements an optimization algorithm that models an integrative learning model on block-wise missing (or even complete) data.
(ii) Evaluation of the performance and the effectiveness of the previous code with highdimensional data, either simulated and real data:
a) Treat the data that will be used for the evaluation of the code. That is (if necessary) to do data quality control by seeing how the data is distributed using graphs and also to do data normalization.
b) Generate random and simulated block-wise missing data.
c) Evaluate the model performance and effectiveness. To do so, it will be made use of evaluation measures such as R square/adjusted R square, mean square error(MSE)/root mean square error(RMSE) or even mean absolute error(MAE)/root mean absolute error(RMAE).
(iii) Improvement of the previous code or finding some variants of it:
a) Try to improve the performance and effectiveness of the model by changing the parameters used on it or modifying conveniently the data used for it.
b) Investigate possible variants of the model either by using different models or different approaches (recall that the main code will result on a regression model).

1.5 Approach and method

The approach and methodology to be followed will be of a scientific type, since we are in front of a computational optimization (mathematical) regression problem that will be tackled from a high-dimensional data analysis point of view.

Hence, an approach to the problem to be investigated and how to approach it will be made. Furthermore, theoretical support will be sought through the search for related and interesting studies (references), data will be experimented with in order to find significant results for the study and finally some conclusions will be obtained and provided due to the evaluation of the experiment.

Within this type of methodology, in this thesis a quantitative type will be proposed, where the data used will be subjected to a rigorous analysis (using numerical methods) and its results are going to be analyzed with statistical techniques. In this way, the results obtained with this type of methodology will be objective.

1.6 Planning

In this section we have broken down the tasks that are carried out during this thesis in order to achieve the objectives set and we have proposed a time plan by means of a Gantt chart and by marking milestones.

The main tasks basically correspond to the objectives indicated in Section 1.4. However, within those tasks it is necessary to include others dedicated to the search for references and information, together with the installation and learning of the operation of programming libraries. In addition, the drafting of the PACs (plural of the Catalan acronym for continuous assessment test) that make up this thesis must also be taking into account. Both in the tasks related to the objectives and those related to the PACs, an estimation time for their duration has been established.

Therefore, the tasks corresponding to the objectives are defined in this way:

- Development of a code that implements integrative learning for heterogeneous block-wise missing data. (126h)
T. 1 Read and understand the algorithms proposed on [24] and [25], respectively. (36h)
T. 2 Generate a code that implements an optimization algorithm that models an integrative learning model on block-wise missing (or even complete) data. (90h)
- Evaluation of the performance and the effectiveness of the previous code with highdimensional data, either simulated and real data. (72h)
T. 3 Treat the data that will be used for the evaluation of the code. That is (if necessary) to do data quality control by seeing how the data is distributed using graphs and also to do data normalization. (18h)
T. 4 Generate random and simulated block-wise missing data. (18h)
T. 5 Evaluate the model performance and effectiveness. To do so, it will be made use of evaluation measures such as R square/adjusted R square, mean square error(MSE)/root mean square error(RMSE) or even mean absolute error(MAE). (36h)
- Improving of the previous code or finding some variants of it. (63h)
T. 6 Try to improve the performance and effectiveness of the model by changing the parameters used on it or modifying conveniently the data used for it. (31.5h)
T. 7 Investigate possible variants of the model either by using different models or different approaches (recall that the main code will result on a regression model). (31.5h)

Further, the tasks related to carrying out the PACs are defined as follows:
PAC0 TFM proposal. (4.5h)
PAC1 Work's plan. (9h)
PAC2 Work development - phase 1. (13.5h)
PAC3 Work development - phase 2. (13.5h)
PAC4 Thesis' memory writing. (45h)
PAC5a Preparation of the presentation. (18h)
PAC5b Public thesis defense. (13.5h)
To ease the schedule of the tasks corresponding to the objectives and the PACs, in this section it is showed a calendar (Gantt chart) that follows the notation used above.

WEEK	1	2		3	4		5		6	7		8	9	10	11	12	13	14	15	16	17	18	19
T. 1																							
T. 1.2																							
T. 3																							
T. 4.																							
T. 5.5																							
T. 6																							
T. 7.7																							
PACO																							
PAC1																							
PAC2																							
PAC3																							
PAC4																							
PACSa																							
PACSb																							

The planning shown before has been carried out according to an estimate of the time required. Further, the milestones are set in four date ranges that mark the end of the development of the key objectives set.

- February 16 - April 12: Study and development of the main code of this thesis together with the realization of PACs 0,1 and almost all 2 .
- April 13 - May 9: Evaluation of the performance and the effectiveness of the code together with the realization of the last of PAC2 and almost all PAC3.
- May 10 - June 2: Improving of the previous code or finding some variants of it together with the last of PAC3 and the finalization of the memory's thesis writing (PAC4).
- June 3-June 6: Elaboration of the virtual presentation (PAC5a).

1.7 Brief summary of contributions

The official documents for the UOC consisting on PACs are the following:

- TFM proposal (PAC0), work's plan (PAC1), work development - phase 1 (PAC2), work development - phase 2 (PAC3), thesis' memory writing (PAC4) and TFM presentation (PAC5).

The results from the study are:

- An algorithm that deal with block-wise missing data in order to generate a regression model.
- R scripts (which can be found in the file algorithm_tfm.Rmd) containing all the code of the algorithm together with the simulation of the synthetic data, the reading of the real data and the treatment and summary of both simulated and real data.

1.8 Brief description of each chapter

The manuscript is organized as follows:
In the first chapter we introduce the thesis: in particular, we contextualize and justify the topic to study, we show its importance and what it contributes with the state-of-the-art, the main set objectives, the approach and the method followed to obtain the results, the planning that was scheduled before starting with it and a brief summary of the contributions got from it.

In the second chapter, the methodology and materials used are detailed: we highlight the software needed for the correct development of this thesis, we explain the main algorithm which motivates this thesis and consists on a regression model on block-wise missing (or even complete) data, and we summarize the synthetic and the real (exposome) data to be applied to our main algorithm along with the treatment and study of that data.

In the third chapter, the code for the main algorithm can be found. Indeed, there we explain all the mathematics behind the algorithm together its optimization and how to make predictions from the implemented model. For the sake of convenience and clarity of the thesis, throughout this chapter we will combine the mathematical notations and explanations together with its code in R.

In the fourth chapter, we expose the discussion of this thesis together with the applications of the model applied to both simulated and real data. Indeed, we will compare the different scenarios where we will have both complete and block-wise missing data cases by showing all the results obtained from them.

Finally, in the fifth chapter, the conclusions are detailed, along with the future research lines and the schedule tracking.

Chapter 2

Methodology and materials

We devote this chapter to describe the methodology and the materials used along this thesis. In particular, we will talk about the software employed here and we will introduce the model to be studied together with the data (either simulated or real) applied for its proper evaluation.

2.1 Software for the project development

This section explains and justifies the software used on this thesis. Indeed, we will talk about the R and RStudio software (see Section 2.1.1) and the online LaTe X editor called Overleaf (see Section 2.1.2).

2.1.1 R and RStudio

Aimed for the analysis of the data, the development of all the code and for its corresponding evaluation on the data, the free software R [16] was used through the RStudio interface [17]. The reason why this software has been chosen is because of the wide variety of statistical models and graphical techniques that they provide. R is an integrated set of software facilities for data manipulation, computation, and graphical display. In addition, it allows users to create extension packages by creating new very useful tools for data analysis. On the other side, the RStudio interface is an integrated development environment for R , which facilitates the use and understanding of the code, in addition to that ease the writing of both the code and its mathematical formulas. Indeed, RStudio presents different areas within the work window where it can be seen data tables, user-defined variables, command console, graph display, and the help tool that prints the manual of the functions integrated in R and in the loaded extension packages.

Within all the extension packages offered by R , we highlight the "glmnet" package [8], which has been used to generate some initial models called β_{0} (see Section 3.2.2). Indeed, "glmnet" contains the function cv.glmnet, which does k-fold cross-validation to produce a Lasso regression model by setting the parameter alpha to 1. All in all, in Appendix A.1.1 can be seen all the packages used for the code of this manuscript.

2.1.2 Overleaf and LaTeX

Overleaf [15] is an open-source online real-time collaborative cloud-based LaTeX editor, while $\mathrm{LaTeX}[10]$ is a high-quality typesetting system aimed for the communication and publication of scientific documents. Indeed, Overleaf takes advantage of LaTeX with a multi-panel interface, so that in its left the document can be seen formatted using LaTeX commands (the enriched version) just as it is seen in any domestic text editor and, to its right, it is shown how we will see the document once compiled.

For the writing of this thesis it has been used Overleaf since it makes the whole process of writing, editing and publishing scientific documents, in an structured way, much quicker and easier due to its great variety of packages and environments. Indeed, it allows to write R code together with any kind of mathematical formulas, allowing to obtain a self-contained manuscript. Further, since it integrates LaTeX typesetting, which is in continuous development, it has lots of new functionalities each year and many online resources that can be consulted easily. Besides, LaTeX uses BibTeX as a bibliographic tool to help to organize the user's references and to create a bibliography and, nowadays, almost any book or article citation can be found in that format.

2.2 A unified feature learning model for complete and block-wise missing multi-source data

Given a collection X of n samples from S data sources; that is,

$$
X=\left[X_{1}, \ldots, X_{S}\right] \in \mathbb{R}^{n \times p}, \quad y \in \mathbb{R}^{n}
$$

where $X_{i} \in \mathbb{R}^{n \times p_{i}}$ is the data matrix of the i-th source (which may or not contain missing data) with $p_{i} \geq 2$ variables (so that $p=p_{1}+\cdots+p_{S}$) and y is the corresponding outcome for each sample. We consider the following linear regression model:

$$
\begin{equation*}
y=\sum_{i=1}^{S} X_{i} \beta_{i}+\varepsilon=X \beta+\varepsilon \tag{2.1}
\end{equation*}
$$

where ε represents the noise term and β is the underlying true model which is usually unknown in real-world applications. Based on (X, y), we want to use an statistical method called supervised learning to learn an estimator of β, denoted as $\hat{\beta}$, whose non-zero elements correspond to the relevant features (in other words, features that correspond to the zero elements of β are discarded). To do so, in essence, we will consider both the regularization framework

$$
\begin{equation*}
\min _{\beta \in \mathbb{R}^{p}} \mathcal{L}(\beta)+\lambda \Omega(\beta), \quad \text { for some } \lambda>0 \tag{2.2}
\end{equation*}
$$

and its constrained form

$$
\begin{equation*}
\min _{\beta \in \mathbb{R}^{p}} \mathcal{L}(\beta) \quad \text { such that } \quad \Omega(\beta) \leq \lambda, \quad \text { for some } \lambda>0 \tag{2.3}
\end{equation*}
$$

where $\mathcal{L}: \mathbb{R}^{p} \rightarrow \mathbb{R}$ is a convex differentiable function with Lipschitz-continuous gradient ${ }^{1}$ called data-fitting term and $\Omega: \mathbb{R}^{p} \rightarrow \mathbb{R}$ is a sparsity-inducing ${ }^{2}$ (typically non-differentiable) norm called the regularization term, which encodes our prior knowledge about β. The choice of Ω would enable us to perform a bi-level analysis; that is, performing simultaneously both featurelevel and source-level analysis. Towards this end, a natural approach is a two-stage model: first we learn different models for each data source and then we combine these learned models properly, where the regularization/constrain should be imposed independently on each stage to assure the bi-level analysis.

2.2.1 Missing blocks and profiles

In most of the cases, the data to be modeled is not complete for every data source but lack one or more data blocks. To apply existing feature learning approaches directly, we can either discard all samples that have missing entries or estimate the missing values based on the observed entries. However, the former approach may significantly reduce the size of the data set while the latter approach heavily relies on our prior knowledge about the missing values. Moreover, both approaches neglect the block-wise missing patterns in the data and therefore could lead to sub-optimal performances. When willing to use the maximum information of the known data, one way is to partition the whole data set into multiple groups according to the availability of data sources.

Given S data sources and assuming that each participant has at least one data source available, then there are $2^{S}-1$ possible missing patterns, since

$$
\binom{S}{1}+\binom{S}{2}+\cdots+\binom{S}{S-1}+\binom{S}{S}=(1+1)^{S}-\binom{S}{0}=2^{S}-1
$$

Now, for each participant, based on whether a certain data source is present, we can obtain a binary indicator vector that will simplify the analysis and which is defined as

$$
I[1, \ldots, S]=[I(1), \ldots, I(S)] \quad \text { where } \quad I(i)= \begin{cases}1, & i \text {-th data source is available }, \\ 0, & \text { otherwise }\end{cases}
$$

Moreover, it is not needed to store the complete vector for each participant but just to record a single decimal integer (if it is converted this binary vector to a binary number) i.e., the information in the indicator vector can be completely described by a decimal integer, which is called profile. All these profiles will be stored in a vector $p f$ of dimension n, where n is the number of samples (see Appendix A.2.1).

Once the availability of data sources is known (due to the profile vector) we can break down the whole data on complete data blocks so that we can extract the maximum information of

[^0]

Figure 2.1: Illustration of sparse features [25]. The white blocks represent zero elements, while the non-zero values are represented by different colors.
the known data as highlighted in red boxes on Figure 3.1. To do so, for a given profile m, we will group all the samples which have m as a profile together with those that have complete data in all the sources that are contained in the profile m, i.e., in all the profiles that contains also m as a profile (see Appendix A.2.1).

2.3 Data

This section explains the data used on the study, the variables in which the information of interest is contained and its origin. The data will be used to evaluate the model on Chapter 3 and it will consist on simulated and real data respectively. Indeed, for each data set we will have either complete and block-wise missing data so that we will be able to compare both cases.

2.3.1 Simulated data

The synthetic data that will be used on the analysis is generated by the linear regression model (2.1) and its code can be found in Appendix A.3.1. The parameter setting will follow the similar strategy described in [25]. In particular, it is chosen $n=1500$ samples and $S=20$ sources in total, and the underlying true model is

$$
\beta=\left[\beta_{1}^{T}, \ldots, \beta_{S}^{T}\right]^{T}=\left(\beta_{1,1}, \ldots, \beta_{1, p_{1}}, \ldots, \beta_{S, 1}, \ldots, \beta_{S, p_{S}}\right)
$$

being some of them sparse and with only taking non-zero values in the first six sources (that is, $\beta_{i}=0$ for $\left.i \geq 6\right)$ whose values are $\pm 10, \pm 8, \pm 6, \pm 4, \pm 2$ and ± 1 respectively, where the sign of each of its coordinates is chosen randomly (see Figure 2.1).

Further, $\varepsilon \sim N(0,0.5)$ (that is, it follows the multivariate Gaussian distribution with zero mean and standard deviation of $\sigma=0.5$). And the same holds for the data matrix $X=$ [X_{1}, \ldots, X_{S}], where we have simulated three different data matrices according on how correlated the variables are (non-correlated, low-correlated and high-correlated) between them. Besides, we also have imposed missing blocks for those simulated data. We should emphasize here that this distinction on the correlation is aimed to quantify the disagreement of the model (2.1) once we impose each data matrix to have some missing data, i.e., how much affect the quantity of missing blocks as a function of how correlated the data is.

Finally, the outcome y can be computed from (2.1) for each matrix data X by combining the previous parameters in a suitable way.

2.3.2 Exposome data

The real data that will be used on the analysis are drawn from a new collaborative research project called the Human Early-Life Exposome (HELIX). In fact, HELIX aims to characterize early-life exposure to multiple environmental factors (early-life exposome) and associate these with omics biomarkers and child health outcomes (see [11, 22] for more information about this topic). The project HELIX used a multilevel study design where the entire study population sums up to 31,472 pairs of mothers and childs, that were recruited during the pregnancy period, distributed in six different cohorts ($\mathrm{BiB}, \mathrm{MoBa}, \mathrm{KANC}, ~ E D E N, ~ I N M A ~ a n d ~ R H E A) . ~ F u r t h e r, ~$ a subcohort of 1301 pairs of mothers and childs where biomarkers, and child health outcomes were measured at ages ranging between 6 and 11 years.

In that project, there are two available main data sets of exposome data (which measures all the exposures of some individuals in a lifetime and how those exposures are related to health) whose variables, to facilitate the analysis, were transformed to approach a normal distribution. One of the data sets is a complete case data (distributed on exposome and covariates data sets) and the other includes missing data (distributed on exposomeNA and covariatesNA data sets), both with $n=1301$ samples. Further, together with both data sets there is an object called codebook with all their more important information. Indeed, we see there that, in particular, those data sets have 235 different variables in total from 19 sources (or families) classified in five domains, namely Indoor air, Outdoor exposures, Covariates, Exposure to chemicals and Lifestyles.

Indoor air (BTEX, NO2, PM)

- Indoor air with 5 variables.

Outdoor exposures (GIS)

- Air pollution with 16 variables.
- Built environment with 24 variables.
- Meteorological with 12 variables.
- Natural Spaces with 9 variables.
- Noise with 3 variables.
- Traffic with 5 variables.
- Water DBPs with 3 variables.

Covariates (potential confounders)

- Child covariates with 7 variables.
- Maternal covariates with 6 variables.

Those variables are available at two time points (pregnancy and childhood) except from the covariates, which are available at a single time point (either pregnancy or childhood).

Finally, on both data sets there are variables inside the family phenotype, which consists on the health outcome data:

Phenotype (Outcomes)

- Asthma (ever) at childhood, 6-11 years (categorical variable).
- Birth weight (kg) at birth time (numeric variable).
- Body mass index (categories) at childhood, 6-11 years (categorical variable).
- Body mass index (z-score) at childhood, 6-11 years (numeric variable).
- Intelligence quotient - Total correct answers (RAVEN test) at childhood, 6-11 years (numeric variable).
- Neuro behaviour - Internalizing and externalizing problems (CBCL scale) at childhood, 6-11 years (numeric variable).

Now, both data sets (ordered by each source) together with the outcome variables can be declared in R as we did in Appendix A.3.2. There, we observe that all the missing values of the exposomeNA data set can be found on the Covariates variables, which means that the only missing block that the samples could have correspond to the source Covariates. The distribution of the missing values is shown in Figure A.1.

Further, in Appendix A.3.2 it is also made a first brief description of the exposome variables consisting on the smallest data value, the first quantile, the median, the third quantile, and the largest data value of each variable respectively, and we observe that not all variables ranges between the same values, so that it could be a good idea to normalize them. However, since we are in front of a regression problem, and we are aimed to get some predictions, we will let the normalization step as part of the regression algorithm (see Section 3.2.3) so we can keep the values used for such normalization (scaling and translation) for future values oblivious to the current data. Further, we also see that there are both numeric and categorical variables and, indeed, using the object codebook (from the exposome data) we are able to see that around the 25.11% are categorical and 74.89% are numeric.

Nevertheless, when dealing with regression problems is advised to work only with numeric variables. That's why we will consider two cases for the previous exposome data sets: one without factors (just numeric variables) and another with the factor variables imposed to be binary and then converted to dummy variables.

- Exposome data without factor variables (numeric variables)

In this case, we remove from the data (both complete and with missing blocks) the variables that are factors. However, since we need each source having more than two variables, and due to the factor variable removal we obtain sources with just one variable, we add this "only variables" to its more near sources in the sense of those that have closer attributes (see Appendix A.3.2). Indeed, those sources that result to have just one variable are Noise, Social and economic capital and Tobacco Smoke, which are added to the sources Traffic (for the former) and Lifestyle (for the others).

At this point, before going into details of the "dummy variables" case, taking into account that the cornerstone of the regression problem of Chapter 3 for missing block data consists on
getting information for the missing data from the known data, it is important to study how correlated are the numeric variables between them.

First, recall that all the missing values on the exposomeNA data set are concentrated on the Covariates source; in particular, in Figure A. 1 we observe which variables have missing values and with which proportion. However, at the end a sample with some missing value in some variable will mean a sample with missing values in the whole source where this variable belong so the Covariates source will be considered as a missing block for all the samples with missing values.

Now, in Figures A.2, A.3, A. 4 and A.5, we see the four sources that are more correlated with the Covariates source (which are Air Pollution, Metals, Organochlorines and PFAS). Besides, we observe that there are some variables that could be able to compensate the missing values of the following Covariates variables: hs_mbmi_None, hs_child_age_None, hs_c_height_None and $h s _c_{-} w e i g h t _N o n e$, and may be also for h_{-}age_None, but it could be more difficult for the variables hs_wgtgain_None and e3_gac_None.

On the other side, when we study the correlation between the Covariates, we obtain that there are highly correlated variables between them (see Figure A.6). In particular, the variable $h s _c h i l d _a g e _$_None (child age at postnatal examination in years) is correlated with the variables $h _m b m i _N o n e ~(m a t e r n a l ~ p r e-p r e g n a n c y ~ b o d y ~ m a s s ~ i n d e x ~ i n ~ k g / m 2), ~ h s _c _h e i g h t _N o n e ~(h e i g h t ~$ of the child at 6-11 years old in meters) and hs_c_weight_None (weight of the child at 6-11 years old in kg).

Besides, in Figures A.7, A.8, A.9, A.10, A. 11 and A. 12 we study how correlated are the four sources Air Pollution, Metals, Organochlorines and PFAS between them, observing that there exists some correlation, being the Air Pollution source the most correlated with the others (than the others between them).

Therefore, in view of the previous results and with the aim of losing the less information possible between variables, it could be interesting on breaking down the source Covariates in subsources strategically. This subdivision will be applied to both only numeric exposome data and the original exposome data set, where from the latter we will take benefit of it when we create the exposome data set with dummy binary variables (see below). Indeed, we will split the source Covariates on the sources Covariates.Age, Covariates.Body.Measures, Covariates.Parents.Info and Covariates.Childs.Info (see Appendix A.3.2).

Now, to continue with this study of the numeric variables, let us do a brief study of the Covariates variables. For instance, in Figure A. 13 it is shown the boxplot of all the variables in order to see how they are distributed and for the search of outliers. There, we observe that the variables are quite centered but with different scales, and also that there is a great presence of outliers (with a total of 142 outliers). For instance, it could be also interesting to study the boxplot of each variable separately according to the binary categorical outcome variable Asthma in order to see if there exist differences between each class. Indeed, we observe that the majority of the outliers are concentrated on the samples with no asthma and that the variables with more differences between classes are h_age_None, hs_child_age_None, h_mbmi_None and hs_c_height_None (see Figures A.14, A.15, A.16, A.17, A.18, A. 19 and A.20).

Moreover, we observe that when doing a principal component analysis we need at least five dimensions in order to have a number of principal components that explain more than the
80% of the total variation of the Covariates variables, and the biplot of the two first principal components show that, as expected, we can not say a lot about the two classes from them. Besides, from the biplot we also see that the variables hs_c_weight_None, hs_c_height_None and hs_child_age_None are much closer between them than the others, and the same happens between e3_gac_None and hs_wgtgain_None (see Figure A.21).

- Exposome data with factor variables converted to dummy binary variables

In this case, we will first impose all factor variables to be binary and then we will convert them to dummy variables using the original exposome data once the source subdivision has been applied. In fact, for any non-binary factor, if there exists a "ruling" class in the sense that there is one class with much more samples than the others, we will classify that variable between being inside this class and not being inside it; while if all the classes are equitable, we will break it exactly on its half (see Appendix A.3.2).

Chapter 3

An incomplete source feature selection (iSFS) model

Based on [24, 25], this chapter is aimed to present the main ingredients needed to solve an optimization algorithm consisting on a unified feature learning model for heterogeneous blockwise missing (or even complete) data that performs both feature-level and source-level analysis simultaneously. Indeed, the model to be solved is the following:

$$
\begin{equation*}
\min _{\alpha, \beta} \frac{1}{|p f|} \sum_{m \in p f} \frac{1}{n_{m}} \varphi\left(\sum_{i=1}^{S} \alpha_{m}^{i} X_{m}^{i} \beta^{i}, y_{m}\right)+\lambda \Omega_{2}(\beta) \quad \text { subject to } \quad \Omega_{1}\left(\alpha_{m}\right) \leq 1 \quad \forall m \in p f \tag{3.1}
\end{equation*}
$$

where the subscript m denotes the matrix (or vector) restricted to the samples that contain m in their profiles and n_{m} is the number of rows of X_{m}, while the superscript i represents the data matrix (or vector) of the i-th source. For instance, here φ can be any convex loss function such as the least squares loss function or the logistic loss function.

To solve (3.1) we will first initialize β by learning an individual model on each data source and compute the optimal α via solving a constrained Lasso problem (see Section 3.2.1). Then β will be updated based on the computed α and next we will compute a new α based on the updated β via solving a regularized Lasso problem (see Section 3.2.2) and we will keep this iterative procedure until convergence of the objective function in (3.1).

At the end, in essence, we will have to deal with the regularization framework on (2.2) and its constrained form (2.3), which can be solved via gradient iteration methods.

3.1 Gradient iteration methods

On this section we present two gradient iteration methods that are aimed to solve the regularization framework (2.2) (see Section 3.1.1) and its constrained form (2.3) (see Section 3.1.2) respectively.

3.1.1 Proximal gradient iteration method

A proximal gradient iteration method is a forward-backward splitting method specifically tailored to optimize an objective of the form (2.2) and can be described as follows [3, 14]: at each iteration $t=1,2,3, \ldots$ the function \mathcal{L} is linearized around the current point β^{t} (using its Taylor expansion) and a problem of the form

$$
\begin{equation*}
\min _{\beta \in \mathbb{R}^{p}} \mathcal{L}\left(\beta^{t}\right)+\nabla \mathcal{L}\left(\beta^{t}\right)^{T}\left(\beta-\beta^{t}\right)+\frac{L}{2}\left\|\beta-\beta^{t}\right\|_{2}^{2}+\lambda \Omega(\beta) \tag{3.2}
\end{equation*}
$$

is solved. In (3.2), the quadratic term (i.e. the error term) called proximal term, keeps the update in a neighborhood of the current iterate β^{t} where \mathcal{L} is close to its linear approximation, and $L>0$ is a parameter which should essentially be an upper bound on the Lipschitz constant of $\nabla \mathcal{L}$. Besides, by means of the inner product induced by the norm $\|\cdot\|_{2},(3.2)$ can be rewritten as

$$
\begin{equation*}
\min _{\beta \in \mathbb{R}^{p}} \frac{1}{2}\left\|\beta-\left(\beta^{t}-\frac{1}{L} \nabla \mathcal{L}\left(\beta^{t}\right)\right)\right\|_{2}^{2}+\frac{\lambda}{L} \Omega(\beta) \tag{3.3}
\end{equation*}
$$

Then, a basic proximal gradient iteration method uses the solution of problem (3.3) as the next update β^{t+1}; however, in order to find such a solution is important to compute previously a suitable value for L. Often, an upper bound on the Lipschitz constant of $\nabla \mathcal{L}$ is not known, and even if it is, it is often better to obtain a local estimate. For instance, a suitable value for L can be obtained by iteratively increasing L by a constant factor until the condition

$$
\begin{equation*}
\mathcal{L}\left(\beta_{L}^{*}\right) \leq \mathcal{L}\left(\beta^{t}\right)+\nabla \mathcal{L}\left(\beta^{t}\right)^{T}\left(\beta_{L}^{*}-\beta^{t}\right)+\frac{L}{2}\left\|\beta_{L}^{*}-\beta^{t}\right\|_{2}^{2} \tag{3.4}
\end{equation*}
$$

is met (see [1]) where β_{L}^{*} denotes the solution of (3.3).

3.1.1.1 Proximal operator

The proximal operator, which is denoted by $\operatorname{Prox}_{\mu \Omega}$, was defined in [13] as the function that maps a vector $u \in \mathbb{R}^{p}$ to the unique solution (since $\frac{1}{2}\|\cdot\|$ is strongly convex) of

$$
\min _{\beta \in \mathbb{R}^{p}} \frac{1}{2}\|u-\beta\|_{2}^{2}+\mu \Omega(\beta)
$$

This operator is clearly central to proximal gradient iteration methods due to their main step consists on computing

$$
\begin{equation*}
\beta^{t+1}:=\operatorname{Prox}_{\mu \Omega}(u)=\operatorname{Prox}_{\frac{\lambda}{L} \Omega}\left(\beta^{t}-\frac{1}{L} \nabla \mathcal{L}\left(\beta^{t}\right)\right) \tag{3.5}
\end{equation*}
$$

since (3.5) results on being the solution of (3.3). We will dedicate the following to compute the proximal operator for several function norms Ω that induce sparse solutions (see, for instance, [1, Ch. 3.3]):

- ℓ_{1}-norm regularization (Lasso Regression [19])

Let

$$
\Omega(\beta)=\|\beta\|_{1}:=\sum_{j=1}^{p}\left|\beta_{j}\right|, \quad \text { for } \beta=\left(\beta_{1}, \ldots, \beta_{p}\right) \in \mathbb{R}^{p}
$$

Then, its proximal operator $\operatorname{Prox}_{\mu\|\cdot\|_{1}}$ can be computed, separately in each component, as

$$
\left(\operatorname{Prox}_{\mu\|\cdot\|_{1}}(u)\right)_{j}=\operatorname{sign}\left(u_{j}\right)\left(\left|u_{j}\right|-\mu\right)_{+}=\operatorname{sign}\left(u_{j}\right) \max \left(\left|u_{j}\right|-\mu, 0\right), \quad \forall j=1, \ldots, p,
$$

where

$$
\operatorname{sign}(x)=\left\{\begin{array}{cc}
\frac{x}{|x|}, & x \neq 0 \\
0, & x=0
\end{array}\right.
$$

```
# Proximal operator of l1 norm
prox.operator.l1 <- function(u, mu){
    len_u <- length(u)
    # Optimal solution beta
    beta <- numeric(length = len_u)
    # Since the problem is separable, we compute
    # the optimal solution for each component
    for(j in 1:len_u)
        beta[j] <- sign(u[j])*max(abs(u[j]) - mu, 0)
    return(beta)
}
```

- ℓ_{2}^{2}-norm regularization (Ridge Regression)

Let

$$
\Omega(\beta)=\frac{1}{2}\|\beta\|_{2}^{2}:=\frac{1}{2} \sum_{j=1}^{p}\left|\beta_{j}\right|^{2}, \quad \text { for } \beta=\left(\beta_{1}, \ldots, \beta_{p}\right) \in \mathbb{R}^{p}
$$

Although this regularization function does not induce sparsity, it is nonetheless widely used and it is worth mentioning its proximal operator $\operatorname{Prox} \frac{\mu}{2}\|\cdot\|_{2}^{2}$, which can be computed as

$$
\operatorname{Prox}_{\frac{\mu}{2}\|\cdot\|_{2}^{2}}(u)=\frac{1}{1+\mu} u
$$

```
# Proximal operator of l2^2 norm
prox.operator.l2 <- function(u, mu){
    # Optimal solution beta
    return(u/(1 + mu))
}
```


- $\ell_{1}+\ell_{2}^{2}$-norm regularization (Elastic-net [30])

Let

$$
\Omega(\beta)=\|\beta\|_{1}+\frac{\gamma}{2}\|\beta\|_{2}^{2}, \quad \text { for } \beta=\left(\beta_{1}, \ldots, \beta_{p}\right) \in \mathbb{R}^{p} \text { and } \gamma>0
$$

Then, its proximal operator $\operatorname{Prox}_{\|\cdot\|_{1}+\frac{\gamma}{2}\|\cdot\|_{2}^{2}}$ can be computed as

$$
\operatorname{Prox}_{\mu\left(\|\cdot\|_{1}+\frac{\gamma}{2}\|\cdot\|_{2}^{2}\right)}(u)=\frac{1}{1+\mu \gamma} \operatorname{Prox}_{\mu\|\cdot\|_{1}}(u) .
$$

```
# Proximal operator of l1 + 12^2 norm
prox.operator.l1.l2 <- function(u, mu, gamma){
    # Optimal solution beta
    return(prox.operator.l2(prox.operator.l1(u, mu), mu*gamma))
}
```


- ℓ_{1} / ℓ_{2}-norm regularization (Group Lasso [29])

For S different groups, let

$$
\Omega(\beta):=\sum_{i=1}^{S} \sqrt{p_{i}}\left\|\beta_{i}\right\|_{2}, \quad \text { for } \beta=\left(\beta_{1}, \ldots, \beta_{S}\right) \text { with } \beta_{i} \in \mathbb{R}^{p_{i}} .
$$

Then, its proximal operator $\operatorname{Prox}_{\mu \Omega}$ can be computed, separately in each i-th group, as

$$
\left(\operatorname{Prox}_{\mu \Omega}(u)\right)_{i}=\left(1-\frac{\sqrt{p_{i}} \mu}{\left\|u_{i}\right\|_{2}}\right)_{+} u_{i}=\max \left(1-\frac{\sqrt{p_{i}} \mu}{\left\|u_{i}\right\|_{2}}, 0\right) u_{i}, \quad \text { for } i=1, \ldots, S
$$

```
# Proximal operator of l1/l2 norm
prox.operator.l1_l2 <- function(p, u, mu){
    if(length(u) != sum(p))
        return(u)
    # Optimal solution beta
    beta <- numeric(length = length(u))
    # Partition range
    group.init <- 1
    for(i in 1:length(p)){
        group.end <- group.init + p[i]
        group.range <- group.init:(group.end - 1)
        # Since the problem is separable, we compute the optimal
        # solution for each group
```

```
        l2.norm.u_group <- (sum(u[group.range]^2))^(1/2)
        beta[group.range] <- max((1 - sqrt(p[i])*mu/l2.norm.u_group), 0)*
                        u[group.range]
        group.init <- group.end
    }
    return(beta)
}
```


3.1.1.2 Algorithm

Here, we code (3.5) for different forms of Ω by assuming that the gradient value is known:

```
# Proximal gradient method
prox.grad.method <- function(beta, lambda, L, gradient, omega,
                                    p, gamma){
    # Vector hat beta and mu
    u <- beta - gradient/L
    mu <- lambda/L
    switch (
        omega,
        # Omega being l1 norm
        "LR" = return(prox.operator.l1(u, mu)),
        # Omega being l2 norm
        "RR" = return(prox.operator.l2(u, mu)),
        # Omega being l1 + l2^2 norm
        "EN" = return(prox.operator.l1.l2(u, mu, gamma)),
        # Omega being l1/l2 norm
        "GL" = if(!is.null(p)) return(prox.operator.l1_l2(p, u, mu))
                else return(u)
    )
    return(u)
}
```


3.1.2 Norm projection iteration method

A norm projection iteration method is a forward-backward splitting method aimed to solve an objective of the form (2.3) whenever Ω is a norm. In particular, similar as in (3.3), the problem (2.3) reduces to the projection onto the Ω-ball

$$
\begin{equation*}
\min _{\beta \in \mathbb{R}^{p}} \frac{1}{2}\left\|\beta-\left(\beta^{t}-\frac{1}{L} \nabla \mathcal{L}\left(\beta^{t}\right)\right)\right\|_{2}^{2} \quad \text { subject to } \quad \Omega(\beta) \leq \lambda \tag{3.6}
\end{equation*}
$$

and, therefore, the problem that we have to confront is: given $\hat{\beta} \in \mathbb{R}^{p}$, compute

$$
\begin{equation*}
\min _{\beta \in \mathbb{R}^{p}} \frac{1}{2}\|\beta-\hat{\beta}\|_{2}^{2} \quad \text { subject to } \quad \Omega(\beta) \leq \lambda \tag{3.7}
\end{equation*}
$$

Now, in (3.7), ignoring the case $\Omega(\hat{\beta}) \leq \lambda$ (which has the trivial solution $\beta=\hat{\beta}$) there exists for each $\lambda>0$ a $\mu=\mu(\lambda)>0$ satisfying

$$
\begin{equation*}
\Omega\left(\operatorname{Prox}_{\mu \Omega}(\hat{\beta})\right)=\lambda \tag{3.8}
\end{equation*}
$$

such that the optimization problem

$$
\begin{equation*}
\min _{\beta \in \mathbb{R}^{p}} \frac{1}{2}\|\beta-\hat{\beta}\|_{2}^{2}+\mu \Omega(\beta) \tag{3.9}
\end{equation*}
$$

has the same solution as (3.7). Indeed, we have already seen in Section 3.1.1.1 that $\operatorname{Prox}_{\mu \Omega}(\hat{\beta})$ is a solution of (3.9). Hence, if we denote $\beta^{*}=\operatorname{Prox}_{\mu \Omega}(\hat{\beta})$, then

$$
\frac{1}{2}\|\beta-\hat{\beta}\|_{2}^{2}+\mu \Omega(\beta) \geq \frac{1}{2}\left\|\beta^{*}-\hat{\beta}\right\|_{2}^{2}+\mu \Omega\left(\beta^{*}\right), \quad \forall \beta \in \mathbb{R}^{p}
$$

and since we are assuming that $\Omega\left(\beta^{*}\right)=\lambda$,

$$
\frac{1}{2}\|\beta-\hat{\beta}\|_{2}^{2} \geq \frac{1}{2}\left\|\beta^{*}-\hat{\beta}\right\|_{2}^{2}+\mu\left(\Omega\left(\beta^{*}\right)-\Omega(\beta)\right) \geq \frac{1}{2}\left\|\beta^{*}-\hat{\beta}\right\|_{2}^{2} \quad \text { subject to } \quad \Omega(\beta) \leq \lambda
$$

so that β^{*} is also a solution of (3.7).
Thus, the cornerstone on solving (2.3) consists on finding a μ satisfying (3.8) and then computing

$$
\beta^{t+1}=\operatorname{Prox}_{\mu \Omega}\left(\beta^{t}-\frac{1}{L} \nabla \mathcal{L}\left(\beta^{t}\right)\right) \quad \text { whenever } \quad \Omega\left(\beta^{t}-\frac{1}{L} \nabla \mathcal{L}\left(\beta^{t}\right)\right)>\lambda
$$

The remainder of this section is devoted to developing a method for finding such μ for different forms of Ω that induce sparse solutions (see, for instance, [21]):

- ℓ_{1}-norm projection (Lasso penalty)

Let $\Omega=\|\cdot\|_{1}$, so we have to find μ such that

$$
\varphi(\mu):=\left\|S_{\mu}(\hat{\beta})\right\|_{1}=\lambda \quad \text { with (componentwise) } \quad S_{\mu}(\beta)=\operatorname{sign}(\beta) \max (|\beta|-\mu, 0)
$$

where we are assuming that $\|\hat{\beta}\|_{1}>\lambda$.
Let $b_{i}, i=1, \ldots, p$, be the absolute values of $\hat{\beta}$ in decreasing order, and define $b_{p+1}=0$. It is an easy computation to show that then there exists some $k \in\{1, \ldots, p\}$ such that

$$
\varphi\left(b_{k}\right) \leq \lambda<\varphi\left(b_{k+1}\right) .
$$

Hence, suppose that k is given. So, it is only need to find some $0 \leq \delta<b_{k}-b_{k+1}$ such that

$$
\lambda=\varphi\left(b_{k}-\delta\right)=\sum_{i=1}^{p} \max \left(b_{i}-b_{k}+\delta, 0\right)=\sum_{i=1}^{k-1}\left(b_{i}-b_{k}\right)+k \delta=\varphi\left(b_{k}\right)+k \delta ;
$$

that is,

$$
\delta:=\frac{\lambda-\varphi\left(b_{k}\right)}{k}=\frac{\lambda-\left\|S_{b_{k}}(\hat{\beta})\right\|_{1}}{k},
$$

and hence $\mu=b_{k}-\delta$.

```
# Computation of the parameter mu with l1-norm
mu_computation.l1 <- function(beta, lambda){
    # Define vector b
    b <- c(abs(beta), 0)
    b <- b[order(b, decreasing = TRUE)]
    # Seeking for the index k
    k <- 2
    S.bk <- sum(abs(prox.operator.l1(beta, b[k])))
    # Do the loop until the index k is found
    while(lambda > S.bk){
        k <- k + 1
        S.bk <- sum(abs(prox.operator.l1(beta, b[k])))
    }
    k <- k - 1
    S.bk <- sum(abs(prox.operator.l1(beta, b[k])))
    return(b[k] - (lambda - S.bk)/k)
}
```

- ℓ_{2}^{2}-norm projection (ridge penalty)

Let $\Omega=\frac{1}{2}\|\cdot\|_{2}^{2}$, so we have to find μ such that

$$
\frac{1}{2}\left\|\operatorname{Prox}_{\frac{\mu}{2}\|\cdot\|_{2}^{2}}(\hat{\beta})\right\|_{2}^{2}=\frac{1}{2}\left\|\frac{1}{1+\mu} \hat{\beta}\right\|_{2}^{2}=\lambda \quad \Longleftrightarrow \quad \mu=\frac{1}{\sqrt{2 \lambda}}\|\hat{\beta}\|_{2}-1
$$

where we are assuming that $\frac{1}{2}\|\hat{\beta}\|_{2}^{2}>\lambda$.

```
# Computation of the parameter mu with l2^2-norm
mu_computation.l2 <- function(beta, lambda){
    return(sqrt(sum(beta^2)/(2*lambda)) - 1)
}
```


3.1.2.1 Algorithm

Here, we code (3.6) for different forms of Ω by assuming that the gradient value is known:

```
# Norm projection method
norm.proj.method <- function(beta, lambda, L, gradient, omega,
                                    tol=1e-3){
    # Vector hat beta
    u <- beta - gradient/L
    switch (
        omega,
        # Omega being l1 norm
        "LR" =
        if(sum(abs(u)) > lambda + tol)
            return(prox.operator.l1(u, mu_computation.l1(u, lambda))),
        # Omega being l2^2 norm
        "RR" =
        if(sum(u^2)/2 > lambda + tol)
            return(prox.operator.l2(u, mu_computation.l2(u, lambda))),
    )
    return(u)
}
```


3.1.3 Finding a solution for a suitable value of L

Recall that a suitable value of L can be obtained by iteratively increasing L by a constant factor until the condition in (3.4) is met. Further, since we are considering a gradient iteration
method, we should assume that $L \geq L_{\min }$ where the parameter $L_{\min }$ is chosen as the inverse of the two-point approximation to the quasi-Newton secant equations [2]; that is,

$$
L \geq L_{\min }:=\frac{\left(\beta^{t}-\beta^{t-1}\right)^{T}\left(\nabla \mathcal{L}\left(\beta^{t}\right)-\nabla \mathcal{L}\left(\beta^{t-1}\right)\right)}{\left(\beta^{t}-\beta^{t-1}\right)^{T}\left(\beta^{t}-\beta^{t-1}\right)}
$$

```
# Computing L.min
L.min <- function(beta.current, beta.prev, gradient){
    diff.beta <- beta.current - beta.prev
    diff.grad.beta <- gradient(beta.current) - gradient(beta.prev)
    return(as.numeric(diff.beta%*%diff.grad.beta/
        (diff.beta%*%%iff.beta)))
}
```

Finally, the following code compute iteratively the coefficients β_{L}^{*} by using the proper method according to the framework to face up to (either regularized (2.2) or constrained (2.3)):

```
beta.suitable.L <- function(beta, lambda, function.L, gradient.L,
        L.min, omega, optimization, L.step,
        maxIter, tol, p = NULL, gamma = 1){
    # Compute gradient vector evaluated at beta
    gradient <- gradient.L(beta)
    # Compute objective value evaluated at beta
    objective <- function.L(beta)
    # Choose framework
    method.beta.star <- switch(
        optimization,
        "reg" = function(L){return(prox.grad.method(beta, lambda, L,
        gradient, omega, p, gamma))},
        "cons" = function(L){return(norm.proj.method(beta, lambda, L,
        gradient, omega))},
        )
    # Compute beta star from L
    L <- L.min
    beta.star <- method.beta.star(L)
    # Linearization of objective
    diff.beta <- beta.star - beta
    linear.L <- as.numeric(objective - function.L(beta.star) +
```

```
                            gradient%*%diff.beta + L/2*sum(diff.beta^2))
```

```
    iter <- 0
    while(linear.L < tol && iter < maxIter){
        # Compute next beta star from L
        L <- L*L.step
        beta.star <- method.beta.star(L)
        # Linearization of objective
        diff.beta <- beta.star - beta
        linear.L <- as.numeric(objective - function.L(beta.star) +
                                    gradient%*%diff.beta + L/ 2*sum(diff.beta^2))
    iter <- iter + 1
    }
    return(beta.star)
}
```


3.2 iSFS model for the least square loss function

On this section, a solution is given for the model (3.1) by assuming that φ is the least square loss function (that is, $\varphi=\frac{1}{2}\|\cdot\|_{2}^{2}$) which could be adapted, with the necessary modifications, to another convex loss function φ. In this case, the objective function can be coded as follows:

```
# Objective function computation
objective.fun <- function(p, X, y, beta, alpha, pf.vec){
    # Number of sources
    S <- length(p)
    # Profiles
    profiles <- levels(pf.vec)
    # Objective function computing
    obj.func <- 0
    for(i in 1:length(profiles)){
        # Profile m
        m <- as.integer(profiles[i])
        # Profile alpha vec
        alpha.m <- alpha[[i]]
        # Block samples for the profile m
```

```
    block.samples <- getBlockSamples(pf.vec, m, S)
    X.m <- X[block.samples$samples,]
    # We update the value inside the norm
    col <- 1
    vec.sum <- numeric(length = dim(X.m)[1])
    for(j in 1:S) {
        nextcol <- col + p[j] - 1
        if(j %in% block.samples$sources)
            vec.sum <- vec.sum + alpha.m[j]*X.m[, col:nextcol]%*%
                                    beta[col:nextcol]
        col <- nextcol + 1
    }
    vec.sum <- as.vector(vec.sum) - y[block.samples$samples]
    # We update the value of the objective function
    obj.func <- obj.func + sum(vec.sum^2)/(2*dim(X.m)[1])
    }
    return(obj.func/length(profiles))
}
```

Now, before going further, let us recall that (3.1) consists on learning a consistent model (denoted with a variable β) across different source combinations, while within each combination, some weights for different sources (denoted by the variable α) are computed adaptively.

As an illustration, in Figure 3.1 we have n samples with variables taken in three different data sources and the profile vector (once converted the profiles from binary to natural numbers) is $p f=(4,7,3,2)$ (so that $|p f|=4$). Hence, the data is divided in four blocks according the availability of complete data on the sources contained on each profile, as highlighted by the red boxes. Therefore, in this particular case, the goal is to learn three models β^{1}, β^{2} and β^{3} independently for each data source as well as the weights (vectors of four components) α^{1}, α^{2} and α^{3} that combines them. Notice that, for the i-th data source, β^{i} remains identical while α_{j}^{i} may vary across each different group j.

On what follows, we will devote it to see how to compute the models β and the weights α for the model (3.1) when φ is the least square loss function.

3.2.1 Computing α when β is fixed

When β is fixed, the objective function of (3.1) is decoupled with respect to α_{m} and, for each $m \in p f$, the optimal α_{m} is given by the optimal solution of the following problem:

$$
\begin{equation*}
\min _{\alpha_{m}} f\left(\alpha_{m}\right) \quad \text { such that } \quad \Omega_{1}\left(\alpha_{m}\right) \leq 1, \quad \alpha_{m}=\left(\alpha_{m}^{1}, \ldots, \alpha_{m}^{S}\right) \in \mathbb{R}^{S}, \tag{3.10}
\end{equation*}
$$

Figure 3.1: Illustration of the proposed learning model (see [25]). Notice that the missing data emerges in a block-wise way, i.e., for a sample, certain data source is either available or lost completely.
where

$$
f\left(\alpha_{m}\right)=\frac{1}{2}\left\|\sum_{i=1}^{S} \alpha_{m}^{i} \tilde{\beta}_{m}^{i}-y_{m}\right\|_{2}^{2} \quad \text { with } \quad \tilde{\beta}_{m}^{i}=X_{m}^{i} \beta^{i} \in \mathbb{R}^{n_{m} \times 1}
$$

```
# Compute function f
f <- function(y.m, alpha.m, tilde.beta){
    # Number of sources
    S <- dim(tilde.beta)[2]
    # Value to compute inside norm
    val <- numeric(length = length(y.m))
    for(j in 1:S)
        val <- val + alpha.m[j]*tilde.beta[,j]
    val <- val - y.m
    return(sum(val^2)/2)
}
```

Further, for each i-th data source, the gradient $\nabla f(\alpha)$ with respect each α^{i} can be computed as follows:

$$
\nabla f(\alpha)=\left(\partial_{1} f(\alpha), \ldots, \partial_{S} f(\alpha)\right) \quad \text { with } \quad \partial_{i} f(\alpha)=\alpha^{i}\left\|\tilde{\beta}^{i}\right\|_{2}^{2}-\left\langle\tilde{\beta}^{i}, y\right\rangle
$$

where $\langle\cdot, \cdot\rangle$ denotes the inner product of two vectors.

```
# Compute alpha gradient
gradient.f <- function(y.m, alpha.m, tilde.beta){
    # Number of sources
    S <- dim(tilde.beta)[2]
    # Gradient of f
    gradient.alpha <- numeric(length = S)
    for(i in 1:S)
        gradient.alpha[i] <- alpha.m[i]*sum(tilde.beta[,i]^2) -
                                sum(tilde.beta[,i]%*%y.m)
    return(gradient.alpha)
}
```

And since

$$
\|\nabla f(\alpha)-\nabla f(\tilde{\alpha})\|_{2}^{2}=\sum_{i=1}^{S}\left(\alpha^{i}-\tilde{\alpha}^{i}\right)^{2}\left\|\tilde{\beta}^{i}\right\|_{2}^{4} \leq \max \left(\left\|\tilde{\beta}^{1}\right\|_{2}, \ldots,\left\|\tilde{\beta}^{S}\right\|_{2}\right)^{4}\|\alpha-\tilde{\alpha}\|_{2}^{2}, \quad \forall \alpha, \tilde{\alpha} \in \mathbb{R}^{p},
$$

we can bound the Lipschitz constant K_{f} of the function f as follows:

$$
K_{f} \leq \max \left(\left\|\tilde{\beta}^{1}\right\|_{2}, \ldots,\left\|\tilde{\beta}^{S}\right\|_{2}\right)^{2}
$$

```
# Lipschitz constant of the function f
const.Lipschitz.alpha <- function(tilde.beta){
    sum.sq <- numeric(length = dim(tilde.beta)[2])
    for(j in 1:dim(tilde.beta)[2])
        sum.sq[j] <- sum(tilde.beta[,j]^2)
    return(max(sum.sq))
}
```

Now, since we want to solve the optimization problem (3.10), we will make use of the Ω_{1-} norm projection iteration method (see Section 3.1.2) where we will allow Ω_{1} to be either the ℓ_{1}-norm penalty or the ridge penalty. To do so, we first need to initialize some weights α_{0} :

```
# Initializing alphaO weights uniformly
alpha.initialization <- function(pf.vec, S, keep.alpha){
    # alpha0 weights
```

```
    alpha0 <- list()
    # Profiles
    profiles <- levels(pf.vec)
    # Initialize alpha
    if(keep.alpha){
    # All alpha's set to 1/n
    for(i in 1:length(profiles))
            alpha0[[i]] <- rep(1/length(pf.vec), S)
    } else {
        # All alpha's on profile set to 1/n_m (number of samples
    # of each profile)
        for(i in 1:length(profiles)){
            # Profile m
            m <- as.integer(profiles[i])
            # Get block samples
            block.samples <- getBlockSamples(pf.vec, m, S)
            # Initialize alpha_m with O's on the sources
            # that are not involved on the profile m
            alpha0.aux <- numeric(length = S)
            alpha0.aux[block.samples$sources]
                    <- 1/length(block.samples$samples)
        alpha0[[i]] <- alpha0.aux
    }
    }
    return(alpha0)
}
```

And the Ω_{1}-norm projection iteration method can be coded as follows:

```
# Omega-norm projection iteration method
omega.norm.proj.method <- function(y.m, alpha0, tilde.beta, omega,
                                    L.step, maxIter, tol){
    # Function f and its gradient depending just on alpha
    func.f <- function(alpha){f(y.m, alpha, tilde.beta)}
    grad.f <- function(alpha){gradient.f(y.m, alpha, tilde.beta)}
    # First L.min value
    Lmin <- const.Lipschitz.alpha(tilde.beta)
```

```
    # Next alpha vector
    alpha <- beta.suitable.L(alpha0, 1, func.f, grad.f, 1, omega,
                            "cons", L.step, maxIter, tol)
    # Number of iterations
    iter <- 0
    # Repeat until getting solution or achieving maxIter index
    diff.func.alpha <- abs(func.f(alpha) - func.f(alpha0))
    while(diff.func.alpha > tol && iter < maxIter){
        # Next alpha vector
        alpha0 <- alpha
        alpha <- beta.suitable.L(alpha0, 1, func.f, grad.f, Lmin, omega,
                            "cons", L.step, maxIter, tol)
        # Next difference function value and iteration
        diff.func.alpha <- abs(func.f(alpha) - func.f(alpha0))
        iter <- iter + 1
    }
    return(alpha)
}
```

Finally, the code to compute α when β is fixed is the following:

```
# Computing alpha when beta is fixed
alpha.compute <- function(p, X, y, beta, alpha0, pf.vec, omega,
            L.step, maxIter, tol){
    # Number of sources
    S <- length(p)
    alpha <- list()
# For each profile
for(i in 1:length(levels(pf.vec))){
    # Profile
    m <- as.integer(levels(pf.vec)[i])
    if(m == 0){
            alpha[[i]] <- rep(0, S)
            next
    }
    # Samples with current profile
    block.samples <- getBlockSamples(pf.vec, m, S)
    X.m <- X[block.samples$samples,]
```

```
        # Prediction matrix from sample
        tilde.beta <- numeric()
        col <- 1
        for(j in 1:S){
            nextCol <- col + p[j] - 1
            if(j %in% block.samples$sources)
            tilde.beta <- cbind(tilde.beta, X.m[, col:nextCol]%*%
                                    beta[col:nextCol])
            else tilde.beta <- cbind(tilde.beta, rep(0, dim(X.m)[1]))
            col <- nextCol + 1
        }
        # Computing updated alpha
        alpha[[i]] <- omega.norm.proj.method(y[block.samples$samples],
                                    alpha0[[i]], tilde.beta,
                                    omega, L.step, maxIter, tol)
}
    return(alpha)
}
```


3.2.2 Computing β when α is fixed

When α is fixed, then (3.1) becomes an unconstrained regularization problem; that is,

$$
\begin{equation*}
\min _{\beta} g(\beta)+\lambda \Omega_{2}(\beta), \tag{3.11}
\end{equation*}
$$

where

$$
g(\beta)=\frac{1}{|p f|} \sum_{m \in p f} \frac{1}{2 n_{m}}\left\|\sum_{i=1}^{S}\left(\alpha_{m}^{i} X_{m}^{i}\right) \beta^{i}-y_{m}\right\|_{2}^{2}
$$

which coincide with the objective function in (3.1).

```
# Computing function g given vector beta
g <- function(p, X, y, alpha, beta, pf.vec){
    return(objective.fun(p, X, y, beta, alpha, pf.vec))
}
```

Further, for each i-th data source, the gradient $\nabla g(\beta)$ with respect to β^{i} can be computed as follows:

$$
\nabla g\left(\beta^{i}\right)=\frac{1}{|p f|} \sum_{m \in p f} \frac{1}{n_{m}} \chi_{\left\{m \& 2^{S-i} \neq 0\right\}}\left(\alpha_{m}^{i} X_{m}^{i}\right)^{T}\left(\sum_{j=1}^{S} \alpha_{m}^{j} X_{m}^{j} \beta^{j}-y_{m}\right),
$$

where $\chi_{\{\cdot\}}$ is the indicator function which has value 1 when the condition is satisfied and 0 otherwise, and $\left\{m \& 2^{S-i} \neq 0\right\}$ stands for whether the source i is contained (or not) on the profile m. So, the gradient $\nabla g(\beta)$ can be coded as follows:

```
# Computing gradient of function g given vector beta
gradient.g <- function(p, X, y, alpha, beta, pf.vec){
    # Number of sources
    S <- length(p)
    # Profiles
    profiles <- levels(pf.vec)
    # Gradient vector
    grad.vec <- numeric(length = length(beta))
    col.source <- 1
    for(i.source in 1:S){
        # Initialize gradient value
        gradient <- numeric(length = p[i.source])
        next.col.source <- col.source + p[i.source] - 1
        # First value to compute
        for(i in 1:length(profiles)){
            # Profile m
            m <- as.integer(profiles[i])
            # Check if the source is on this profile
            if(!as.binary(m, n = S)[i.source])
            next;
            # Profile m alpha weights
            alpha.m <- alpha[[i]]
            # Samples with current profile
            block.samples <- getBlockSamples(pf.vec, m, S)
            X.m <- X[block.samples$samples,]
            # First value to compute
            val1 <- numeric(length = dim(X.m)[1])
            col <- 1
            for(j in 1:S){
            nextcol <- col + p[j] - 1
            if(j %in% block.samples$sources)
                val1 <- val1 + alpha.m[j]*(X.m[, col:nextcol]%*%
                    beta[col:nextcol])
```

```
                col <- nextcol + 1
                }
            val1 <- val1 - y[block.samples$samples]
            # Second value to compute
            val2 <- t(alpha.m[i.source]*X.m[,col.source:next.col.source])
            # Gradient update
            gradient <- gradient + (val 2%*%val1)/dim(X.m)[1]
        }
        grad.vec[col.source:next.col.source] <- gradient
        col.source <- next.col.source + 1
    }
    return(grad.vec/length(profiles))
}
```

Now, since we want to solve the optimization problem (3.11) we will make use of the proximal gradient iteration method (see Section 3.1.1). To do so, we first initialize some models β_{0} by learning them for each data source independently and following different methods. Indeed, we will use linear regression and Lasso regression models. The most important thing in Lasso models boils down to select an optimal parameter λ, which will be determined with a process of cross-validation by taking the value of λ that minimizes the mean cross-validation error.

```
# We initialize betaO by fitting each source individually
# on the available data
beta.initialization <- function(p, X, y, beta0.comp){
    # Number of sources
    S <- length(p)
    # betaO initialization model
    beta0.compute <- switch (
        beta0.comp,
        # Linear Model Regression
        # We use a robust one for the presence of outliers
        "LMR" = function(X, y){
            return(as.vector(rlm(y ~ . + 0, data =
                                    data.frame(X))$coefficients))
        },
        # Lasso Regression
        "LR" = function(X, y){
```

```
                # Lasso (alpha = 1, lasso penalty)
                cv_lasso_model <- cv.glmnet(x = as.matrix(X), y = y, family
                            = "gaussian", alpha = 1, intercept
                            = F, nfolds = 5)
                # Best lambda value model
                lambda_lasso <- cv_lasso_model$lambda.min
                return(as.vector(glmnet(x = as.matrix(X), y = y, family =
                    "gaussian", alpha = 1, intercept
                                    = F, lambda = lambda_lasso)$beta[,1]))
        },
        return(NULL)
    )
    # Beta coefficients
    beta.coeff <- numeric(length = dim(X)[2])
    col <- 1
    for(i in 1:S){
        nextCol <- col + p[i] - 1
        # Samples in source i with complete data
        ind.samp <- rowSums(is.na(X[, col:nextCol])) == 0
        X.complete <- X[ind.samp, col:nextCol]
        # Beta coefficient for source i
        beta.coeff[col:nextCol] <- beta0.compute(X.complete, y[ind.samp])
    col <- nextCol + 1
}
    return(beta.coeff)
}
```

And finally, once we have the initial models β_{0}, we are able to compute for each step t the models β^{t+1} as in (3.5), and we will continue iterating until the objective function stops decreasing.

```
# Proximal gradient iteration method
prox.grad.iter.method <- function(p, X, y, alpha, beta0, pf.vec,
    lambda, omega, L.step, maxIter,
    tol, gamma){
    # Function g and its gradient depending just on beta
```

```
    func.g <- function(beta){g(p, X, y, alpha, beta, pf.vec)}
    grad.g <- function(beta){gradient.g(p, X, y, alpha, beta, pf.vec)}
    # Next beta vector
    # We start with L.min = 1
    beta <- beta.suitable.L(beta0, lambda, func.g, grad.g, 1,
        omega, "reg", L.step, maxIter, tol,
        p, gamma)
    # Number of iterations
    iter <- 0
    # Repeat until getting solution or achieving maxIter index
    diff.func.beta <- abs(func.g(beta) - func.g(beta0))
    Lmin <- 0
    while(diff.func.beta > tol && iter < maxIter){
    # L.min value
    Lmin.aux <- L.min(beta, beta0, grad.g)
    if(Lmin.aux > Lmin) Lmin <- Lmin.aux
    # Next beta vector
    beta0 <- beta
    beta <- beta.suitable.L(beta0, lambda, func.g, grad.g, Lmin,
                            omega, "reg", L.step, maxIter, tol,
                        p, gamma)
    # Next difference function value and iteration
    diff.func.beta <- abs(func.g(beta) - func.g(beta0))
    iter <- iter + 1
}
    return(beta)
}
```


3.2.3 Algorithm of the iSFS model for the least square loss function

At this point, we know how to compute both the models β and the weights α, so we are in conditions to write down the proposed alternating algorithm for solving (3.1) with φ being the least square loss function (see Appendix B.1.1). Indeed, Algorithm 3.1 summarizes our iSFS model for block-wise missing data.

Remark 3.2.1 On Algorithm 3.1, when all the weights α are fixed and equal to $\frac{1}{n}$ (so that its step 6 is missed) then the problem is restricted to a unified learning model for multi-source data (see [24, 25]). That happens, for instance, when the data is complete.

Further, now we are able to make predictions of the outcome from an iSFS model (see

```
Algorithm 3.1 iSFS model for the least square loss function
    Input: \(X, y, \lambda\)
    Output: Solutions \(\alpha\) and \(\beta\) to (3.1) when \(\varphi=\frac{1}{2}\|\cdot\|_{2}^{2}\)
    Initialize \(\alpha_{0}\) with the function alpha.initialization of Section 3.2.1
    Initialize \(\beta_{0}\) with the function beta.initialization of Section 3.2.2
    for \(t=1,2, \ldots\) do
        Compute \(\alpha^{t}\) by means of the function alpha.compute of Section 3.2.1
        Compute \(\beta^{t}\) by means of the function prox.grad.iter.method of Section 3.2.2
        if the objective function on (3.1) stops decreasing then
        return \(\alpha=\alpha^{t}\) and \(\beta=\beta^{t}\)
        end if
    end for
```

Appendix B.1.2) so that we can evaluate its performance and effectiveness, which will be done in Chapter 4.

Chapter 4

Discussion and applications of the iSFS model on simulated and exposome data

We dedicate this chapter to examine the efficacy of the proposed bi-level feature learning model by reporting its performance based on both synthetic and exposome data (see Sections 2.3.1 and 2.3.2). First, to do so, we will train the model on training data and we will make predictions on some testing data, for which we will use evaluation measures such as R square/adjusted R square, mean square error(MSE)/root mean square error(RMSE) and mean absolute error(MAE)/root mean absolute error(RMAE) (see Appendix C). Further, we will plot the predicted outcomes obtained together with the real ones.

We should mention here that we will work on different scenarios of the simulated data and the exposome data, respectively. On the former, we will separate the study according on the "grade" of correlation; while on the latter we will work with only numeric data and data where factors has been converted to binary dummy variables, applied to the four numeric outcomes of exposome data, namely hs_zbmi_who, e3_bw, hs_correct_raven and hs_Gen_Tot. Finally, we will compare those data with its corresponding block-wise missing case. Indeed, we will try to answer the following questions that araised on Chapter 2:

- How is the performance of the algorithm on Section 3.2.3 with both synthetic and exposome data?
- Which features on both synthetic and exposome complete data set are the most relevant for the model (that is, which features have non-zero values on the estimator $\hat{\beta}$)?
- How does affect the missing data on both synthetic and exposome data sets on the performance of the model?
- How does affect the data correlation on the predictions for the synthetic block-wise missing case?
- Is there any difference between the performance of the model according to the four outcomes of the exposome data?
- Is it better to work with all the numeric variables or with all the variables where the factors have been converted to binary dummy variables (both scenarios of the exposome data)?

Before going into details, we should mention that in all the models we have observed the following: the objective function tends to decrease as we increase the number of iterations on the model. So, putting more iterations for each model (and may decreasing or vanishing the tolerance value) will have as a consequence better performances, but we will pay the price of needing more computing time. Further, we will not discuss the performance of the model in [24, 25] with the model on this manuscript since the data aimed for the study is not the same that the one used there.

4.1 Simulated data

To discuss the evaluation of the iSFS model performance on simulated data, we have separated each data set in training (67%) and testing (33\%) as shown in Appendix C.1.

4.1.1 Comparison on complete data

We observe on Tables C. 1 and C.2, Tables C. 3 and C.4, and Tables C. 5 and C.6, that, as expected, the model is doing a great job on non-, low- and high-correlated data, since the adjusted R squared in all cases is very close to 1 . Indeed, this is borne out with the plots on Figures C. 1 and C.2, Figures C. 3 and C.4, and Figures C. 5 and C.6, where the predicted and the real outcomes form an almost perfect straight line.

Further, according to the adjusted R squared, we observe that the non-correlated data case is getting a better performance on both the training and testing data sets compared to the low-correlated case (though for a little difference). Besides, we observe that the high-correlated data case has the "worst" performance on both the training and testing data sets compared to the others data sets.

Moreover, for the non-correlated model we have that the variable 166 is not relevant, while for the low-correlated model all variables are relevant and for the high-correlated model the variable 172 is not relevant.

4.1.2 Comparison on incomplete data

We observe on Tables C. 7 and C.8, Tables C. 9 and C.10, and Tables C. 11 and C.12, that the model is doing a quite good job on non-, low- and high-correlated data, since the adjusted R squared in all cases for the testing data set is greater than 0.5 , having the best result for the non-correlated case with a value of 0.7 . Indeed, this is corroborated with the plots on Figures C. 7 and C.8, Figures C. 9 and C.10, and Figures C. 11 and C.12, where the predicted and the real outcomes seem to follow a line.

Further, according to the adjusted R squared, we observe that the non-correlated case has the best performance, followed (in order) by the low-correlated and the high-correlated cases.

4.1.3 Discussion on simulated data

First, we shall say that with the data generated from the theoretical model (3.1), we have obtained, as one could have expected, great results and, clearly, we have succeeded more with the complete data case than with the block-wise missing one, so we could say (at least with the data used) that the missing data affects on the performance of the model by decreasing its effectiveness, since we can observe that the values $M S E / R M S E$ and $M A E / R M A E$ increase in all cases for the block-wise missing data sets compared to the complete data sets.

Further, surprisingly, the non-correlated case has obtained the best results, as well as the low-correlated better results than the high-correlated.

Moreover, we have not recovered the truly sparse beta model for none of the different data used (where we have used the value 0.001 as a threshold for a component to be non-relevant). This could be caused due to the low iterations needed to obtain each model. Hence, may be with a lower tolerance or allowing the model going through the whole iterations will allow us to obtain better results.

Finally, we should point out that the time used for the computation of such models has been quiet fast.

4.2 Exposome data

To discuss the evaluation of the iSFS model performance on exposome data, we have separated each data set in training (67%) and test (33\%) as shown in Appendix C.2. First, we shall mention that for the exposome data with factors converted to binary dummy variables we have not computed, for the testing data set, the adjusted R-squared due to the low number of testing samples (428 samples) compared to the number of variables (294 variables) which will always result in a negative value.

4.2.1 Comparison on complete data

4.2.1.1 Numeric variables

We observe in Tables C. 13 and C.14, and Tables C. 17 and C.18, that the best results are obtained for the outcomes $h s_{-} z b m i i_{-} w h o$ and $h s_{-}$correct_raven with adjusted R squared greater than 0.53 for the training data while for the testing data we obtain 0.375 on $h s_{-} z b m i _w h o$ and 0.128 on hs_correct_raven. Further, in Figures C. 13 and C.14, and Figures C. 17 and C.18, we see how the tendency on the plots is to follow the line $y_{\text {pred }}=y_{\text {real }}$.

Nevertheless, we can not say the same for the outcomes e3_bw and hs_Gen_Tot, where the effectiveness of the model is poor (see Tables C. 15 and C.16, Tables C. 19 and C.20), with adjusted R squared negative on the testing data and not following at all (due to some "outliers" predicted values) the line $y_{\text {pred }}=y_{\text {real }}$ (see Figures C. 15 and C.16, and Figures C. 19 and C.20), having the worst performance for the outcome hs_Gen_Tot.

Further, for the outcome hs_zbmi_who we have that the non-relevant variables are h_{-}NO2_Log and h _trafload_preg_pow1over3, while for the outcome $e 3 _b w$ the non-relevant variables are
h_builtdens300_preg_Sqrt, hs_builtdens300_h_Sqrt and hs_builtdens300_s_Sqrt. Moreover, for the outcomes $h s$ _correct_raven and $h s_{-} G e n_{-} T o t$, all variables seem to be relevant.

4.2.1.2 Dummy variables

We observe in Tables C. 21 and C.22, and Tables C. 25 and C.26, that the best results are obtained, as in the numeric case, for the outcomes hs_zbmi_who and hs_correct_raven with adjusted R squared greater than 0.45 for the training data while for the R squared on the
 C. 21 and C.22, and Figures C. 25 and C.26, we see how the tendency on the plots is to follow the line $y_{\text {pred }}=y_{\text {real }}$.

Nevertheless, we can not say the same for the outcomes $e 3 _b w$ and $h s_{-} G e n_{-} T o t$, where the effectiveness of the model is poor (see Tables C. 23 and C.24, and Tables C. 27 and C.28) and not following at all (due to some "outliers" predicted values) the line $y_{\text {pred }}=y_{\text {real }}$ (see Figures C. 23 and C.24, and Figures C. 27 and C.28), having the worst performance for the outcome $h s_{-} G e n_{-} T o t$.

Further, for the outcome hs_zbmi_who we have that the non-relevant variables are variable.female, h_landuseshan300_preg_None, hs_connind300_h_Log, hs_builtdens300_s_Sqrt and also variable..0.6...6.9., while for the outcome $e 3 _b w$ the four variables hs_builtdens300_h_Sqrt, $h s_{-} b u i l t d e n s 300 _$_s_Sqrt, variable. 0.1 and $h s_{-}$trcs_madj_Log2 are not relevant. Moreover, for the outcomes hs_correct_raven and hs_Gen_Tot, all variables seem to be relevant. In this case, we have used the value 0.05 as a threshold for a component to be non-relevant.

4.2.2 Comparison on incomplete data

4.2.2.1 Numeric variables

We observe in Tables C. 29 and C. 30 that the best result is obtained for the outcome hs_zbmi_who with adjusted R squared greater than 0.414 for the training data while for the testing data we obtain 0.118. Further, in Figures C. 29 and C. 30 we see how the tendency on the plots is (more or less) to follow the line $y_{\text {pred }}=y_{\text {real }}$.

Nevertheless, in this case we can not say the same for the outcomes e3_bw, hs_correct_raven and $h s_{-} G e n_{-}$Tot, where the effectiveness of the model is poor (see Tables C. 31 and C.32, Tables C. 33 and C.34, and Tables C. 35 and C.36), with adjusted R squared negative on the testing data and not following at all (due to some "outliers" predicted values) the line $y_{\text {pred }}=y_{\text {real }}$ (see Figures C. 31 and C.32, Figures C. 33 and C.34, and Figures C. 35 and C.36), having the worst performance (among those three outcomes) for the outcome $h s_{-} G e n_{-} T o t$ and the best one for the outcome hs_correct_raven (with which we shall say that, a part from some points, it is not so far for the line $\left.y_{\text {pred }}=y_{\text {real }}\right)$.

4.2.2.2 Dummy variables

We observe in Tables C. 37 and C. 38 that the best result is obtained for the outcome hs_zbmi_who with adjusted R squared greater than 0.429 for the training data while for the testing data we
obtain an R squared of 0.58 . Further, in Figures C. 37 and C. 38 we see how the tendency on the plots is (more or less) to follow the line $y_{\text {pred }}=y_{\text {real }}$.

Nevertheless, in this case we can not say the same for the outcomes e3_bw, hs_correct_raven and $h s_{-} G e n_{-} T o t$, where the effectiveness of the model is poor (see Tables C. 39 and C.40, Tables C. 41 and C.42, and Tables C. 43 and C.44), with adjusted R squared negative on the training data and not following at all (due to some "outliers" predicted values) the line $y_{\text {pred }}=y_{\text {real }}$ (see Figures C. 39 and C.40, Figures C. 41 and C.42, and Figures C. 43 and C.44), having the worst performance (among those three outcomes) for the outcome hs_correct_raven and the best one for the outcome e3_bw.

4.2.3 Discussion on exposome data

First, we shall say that with the complete exposome data we have obtained quite good results when the outcome were either $h s_{-} z b m i _w h o$ or $h s_{-}$correct_raven in both numeric and dummy variables, while for the block-wise missing data the best results have been got when the outcome is $h s_{-} z b m i i_{-} w h o$. Indeed, in Section 2.3.2 we saw that the variables that could be compensated if having some missing values where those related with the BMI, the height and the weight, which could give us an idea why the best performance is related with the outcome hs_zbmi_who.

Further, as expected, we have succeeded more with the complete data case than with the block-wise missing one, so we could say that (at least with the data used) that the missing data affects on the performance of the model by decreasing its effectiveness, since we can observe that the values MSE/RMSE and MAE/RMAE increase in all cases for the block-wise missing data sets compared to the complete data sets.

Moreover, when comparing between numeric variables and dummy variables, we obtain that the best results depend strongly on the outcome and if the data is complete or block-wise missing (see Table 4.1). However, the model needs more computational time for the dummy variables than for the numeric variables, which should also be taken into account.

	Complete data	Block-wise missing data
$h s_{-} z b m i_{\text {_who }}$	Numeric variables	Dummy variables
$e 3$ bw	Numeric variables	Dummy variables (for a little bit)
$h s_{\text {_correct_raven }}$	Dummy variables (for a little bit)	Numeric variables
$h s_{-} G e n_{-}$Tot	Dummy variables	Numeric variables (for a little bit)

Table 4.1: Best results between numeric variables and dummy variables data sets according whether the data is complete or not and for the four numeric outcomes of exposome data.

Chapter 5

Conclusions

On this chapter, we present the conclusions of this thesis. Among them, we will also talk about the future research that can be done from this manuscript and the schedule tracking during the time that we have been working on this project.

5.1 Conclusions

When I asked to professors Ferran Reverter and Esteban Vegas whether I can work with them in a project with mathematical background but, of course, with also biostatistical basis, they present me the following issue: on many occasions the information that one can gather is not complete, since for some observations not all data sources are available (what is known as block-wise missing data) so how we could implement an integrative process with block-wise missing data based on a Lasso's type approximation that then could be applied to real omics data.

That is why in this manuscript we have studied a bi-level feature learning model motivated by the exposome data (see Section 2.3.2) and we have implemented a code that approaches for both complete and block-wise missing data (see Chapter 3). Specifically, we have introduced a unified feature learning model for complete data, which contains several classical convex models (see Section 3.1.1.1) that has been easily extended to handling the more challenging case: the block-wise missing data. Further, the effectiveness of the proposed models has been verified through both simulated data and exposome data (see Chapter 4). Therefore, at the end we have succeed in presenting an optimization regression model that given complete or block-wise missing data, we can obtain information from it in order to make predictions for similar structured data.

Finally, I would like to thank the treatment and predisposition received by my tutors, with whom I have had the opportunity to meet periodically in order to advance on this thesis in the best way together. Further, I want to say that coming from a mathematical academic line (by doing a PhD on mathematical analysis) and jumping to this computing optimization problem has been a challenging and interesting change, for which I am very grateful.

5.2 Future research

The future work's lines that have not been explored in this work (so have remained pending) and which we hope to be addressed in the near future are the following:

- Code the model in Python language and then upload it to Github.
- Generate a code for the model in Chapter 3 that deals with an iSFS model for the logistic function. Moreover, modify the model in such a way that could work with factors.
- Study deeper the model in order to decrease its computing time and increase its effectiveness. For instance, one could improve the seek of the parameter β_{L}^{*} (see Section 3.1.3) by using back-tracking line by means of, for example, the Amijo's rule [7]. Indeed, one could also apply a different L step for each component independently. Besides, we could have studied more Ω norms for the parameter α than the two proposed in Section 3.1.2.
- For the study of the current model, we could have used different parameters (tuning) and k-fold cross-validation to the sake of better results. Further, we could allowed more iterations since it has been observed that the error model decreases monotonically (at least for the data used) with each iteration. Besides, to help the study of its performance and effectiveness, we could have predicted fictional scenarios or we could have used different Ω functions (for α and β parameters, respectively) and compare between them. All in all, we could have used all the different functionalities that our model have (as, for instance, data normalization) in order to obtain the best possible combination of parameters.
- Generalize the model having also missing values (not just blocks of them) and with sources having just one variable.
- Study the model with the data used in [24, 25] (the reference papers) and compare their results with ours.
- Compare the effectiveness and performance of the model with imputation methods.

5.3 Schedule tracking

In general lines, all the objectives initially proposed in the planning of the study have been achieved. However, the part of investigating possible variants of the model either by using different models or different approaches could have been studied deeper (as we can see on Section 5.2) but the generation of the code that implements an optimization algorithm that models an integrative learning model on either complete or block-wise missing data, and its consequent evaluation, has precised more time than expected. Indeed, due to unforeseen contingencies external to the student, there are variants of the current model that were willing to be addressed and will be in a near future.

For the methodology (see Section 2) we shall mention that we have been able to give an answer for the questions that arised there, so we can affirm that it has been adequate for a thesis of this type, especially for the time we have to develop and write it.

Finally, about the scheduling, we had realized while we were on the half of this journey that before working on treating the exposome data (doing data quality control by seeing how the data is distributed using graphs) first we had to generate random and simulated block-wise missing data and to evaluate the model performance and effectiveness with that data. Also, when computing the parameters α and β of the iSFS model (see Section 3) we had to work hard in order to develop a satisfactory algorithm that compute them. In particular, we run into unexpected problems when dealing with the parameter α that, at the end, have been solved.

Chapter 6

Glossary

The purpose of this chapter is to mention the definitions of the most relevant terms and acronyms used on this thesis alphabetically arranged:

Adjusted R squared: Correction of R squared proposed by Mordecai Ezekiel [27].
Bi-level learning:
Performs simultaneously feature-level and source-level analysis.
BiB/EDEN/INMA/
KANC/MoBa/Rhea: UK/France/Spain/Lithuania/Norway/Greece.
BMI: Body Mass Index.
BTEX: Compounds of Benzene, Toluene, Ethylbenzene and Xylene.
CBCL: Child Behavior Checklist.
GIS: Geographic Information System.
HELIX: Human Early-Life Exposome.
Imputation: Assignment of a value to something by inference from the value of the products or processes to which it contributes.
iSFS model: Incomplete Source Feature Selection.
Lasso: Least Absolute Shrinkage and Selection Operator.
MAE/RMAE: Mean Absolute Error/Root Mean Absolute Error.
MSE/RMSE: Mean Square Error/Root Mean Square Error.
Multi-source analysis: Comparison of data from multiple sources or from a single source at different times.
NO2: Nitrogen Dioxide.
PACs: Plural of the Catalan acronym for Continuous Assessment Test.
PM: Particular Matter (also called particular pollution).
Profile: Information described by a decimal integer of the binary indicator vector that specify whether a certain data source is present or not.
R squared: Coefficient of determination.
RAVEN test: Psychometric test that measures the level of intelligence.
Sparse model: Model with a small number of coefficients that are non-zero.

Bibliography

[1] F. Bach, R. Jenatton, J. Mairal, and G. Obozinski. Optimization with Sparsity-Inducing Penalties, volume 4. Foundations and Trends in Machine Learning, 2012. Available at https://doi.org/10.1561/2200000015.
[2] J. BARZILAI and J. M. BORWEIN. Two-Point Step Size Gradient Methods. IMA Journal of Numerical Analysis, 8(1):141-148, 01 1988. Available at https://doi.org/10.1093/ imanum/8.1.141.
[3] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2(1):183-202, 2009. Available at https://doi.org/10.1137/080716542.
[4] P. Breheny and J. Huang. Penalized methods for bi-level variable selection, volume 2. Statistics and its interface, 2009. Available at https://dx.doi.org/10.4310/SII. 2009. v2.n3.a10.
[5] K. Crammer, M. Kearns, and J. Wortman. Learning from multiple sources. Journal of Machine Learning Research, 9(57):1757-1774, 2008. Available at http://jmlr.org/ papers/v9/crammer08a.html.
[6] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. John Wiley \& Sons, 2006. Available at https://www.researchgate.net/publication/238735054.
[7] Z. FITRIAH and S. ANAM. Modified armijo rule on gradient descent and conjugate gradient. E-Jurnal Matematika, 6(3):196-204, 2017. Available at https://ojs.unud.ac. id/index.php/mtk/article/view/32838.
[8] J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1):1-22, 2010. Available at https://doi.org/10.18637/jss.v033.i01.
[9] I. Huopaniemi, T. Suvitaival, J. Nikkilä, M. Orešič, and S. Kaski. Multivariate multi-way analysis of multi-source data. Bioinformatics, 26(12):i391-i398, 06 2010. Available at https://doi.org/10.1093/bioinformatics/btq174.
[10] LaTeX Team. The LaTeX Project. https://www.latex-project.org/. Accessed: 2022-06-02.
[11] L. Maitre, J. de Bont, M. Casas, O. Robinson, G. M. Aasvang, L. Agier, S. Andrušaitytė, F. Ballester, X. Basagaña, E. Borràs, C. Brochot, M. Bustamante, A. Carracedo, M. de Castro, A. Dedele, D. Donaire-Gonzalez, X. Estivill, J. Evandt, S. Fossati, L. Giorgis-Allemand, J. R Gonzalez, B. Granum, R. Grazuleviciene, K. Bjerve Gützkow, L. Småstuen Haug, C. Hernandez-Ferrer, B. Heude, J. Ibarluzea, J. Julvez, M. Karachaliou, H. C. Keun, N. Hjertager Krog, C.-H. E. Lau, V. Leventakou, S. Lyon-Caen, C. Manzano, D. Mason, R. McEachan, H. M. Meltzer, I. Petraviciene, J. Quentin, T. Roumeliotaki, E. Sabido, P.-J. Saulnier, A. P. Siskos, V. Siroux, J. Sunyer, I. Tamayo, J. Urquiza, M. Vafeiadi, D. van Gent, M. Vives-Usano, D. Waiblinger, C. Warembourg, L. Chatzi, M. Coen, P. van den Hazel, M. J. Nieuwenhuijsen, R. Slama, C. Thomsen, J. Wright, and M. Vrijheid. Human Early Life Exposome (HELIX) study: a European populationbased exposome cohort. BMJ Open, 8(9):e021311, Sept. 2018. Available at http: //dx.doi.org/10.1136/bmjopen-2017-021311.
[12] R. Mazumder, T. Hastie, and R. Tibshirani. Spectral regularization algorithms for learning large incomplete matrices. The Journal of Machine Learning Research, 11:2287-2322, 2010. Available at http://jmlr.org/papers/v11/mazumder10a.html.
[13] J. J. Moreau. Fonctions convexes duales et points proximaux dans un espace hilbertien. Comptes rendus hebdomadaires des séances de l'Académie des sciences, 255:2897-2899, 1962. Available at https://hal.archives-ouvertes.fr/hal-01867195.
[14] Y. Nesterov. Gradient methods for minimizing composite functions. Mathematical Programming, 140:1436-4646, 2013. Available at https://doi.org/10.1007/ s10107-012-0629-5.
[15] Overleaf Team. Overleaf. https://www.overleaf.com/. Accessed: 2022-06-02.
[16] R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria, 2022. Available at https://www.R-project. org/.
[17] RStudio Team. RStudio: Integrated Development Environment for R. RStudio, PBC, Boston, MA, 2022. Available at http://www.rstudio.com/.
[18] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58(1):267-288, 1996. Available at https: //www.jstor.org/stable/2346178.
[19] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. Series B (Methodological), 58(1):267-288, 1996. Available at https: //doi.org/10.1111/j.2517-6161.1996.tb02080.x.
[20] O. G. Troyanskaya, K. Dolinski, A. B. Owen, R. B. Altman, and D. Botstein. A bayesian framework for combining heterogeneous data sources for gene function prediction (in saccharomyces cerevisiae). Proceedings of the National Academy of Sciences, 100(14):83488353, 2003. Available at https://doi.org/10.1073/pnas. 0832373100.
[21] E. van den Berg, M. W. Schmidt, M. P. Friedlander, and K. P. Murphy. Group sparsity via linear-time projection. UBC - Department of Computer Science, 2008. Available at http://www.optimization-online.org/DB_FILE/2008/07/2056.pdf.
[22] M. Vrijheid, R. Slama, O. Robinson, L. Chatzi, M. Coen, P. van den Hazel, C. Thomsen, J. Wright, T. J. Athersuch, N. Avellana, X. Basagaña, C. Brochot, L. Bucchini, M. Bustamante, A. Carracedo, M. Casas, X. Estivill, L. Fairley, D. van Gent, J. R. Gonzalez, B. Granum, R. Gražulevic ${ }^{\text {iene, K. B. Gutzkow, J. Julvez, H. C. Keun, M. Kogevinas, }}$ R. R. McEachan, H. M. Meltzer, E. Sabidó, P. E. Schwarze, V. Siroux, J. Sunyer, E. J. Want, F. Zeman, and M. J. Nieuwenhuijsen. The human early-life exposome (helix): Project rationale and design. Environmental Health Perspectives, 122(6):535-544, 2014. Available at https://doi.org/10.1289/ehp. 1307204.
[23] S. Xiang, X. Tong, and J. Ye. Efficient sparse group feature selection via nonconvex optimization. In International Conference on Machine Learning, pages 284-292. PMLR, 2013. Available at https://proceedings.mlr.press/v28/xiang13.html.
[24] S. Xiang, L. Yuan, W. Fan, Y. Wang, P. M. Thompson, and J. Ye. Multi-source learning with block-wise missing data for Alzheimer's disease prediction. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '13, pages 185-193, New York, NY, USA, 2013. Association for Computing Machinery. Available at https://doi.org/10.1145/2487575.2487594.
[25] S. Xiang, L. Yuan, W. Fan, Y. Wang, P. M. Thompson, and J. Ye. Bi-level multi-source learning for heterogeneous block-wise missing data. Neuroimage, 102:192-206, November 2014. Available at https://doi.org/10.1016/j.neuroimage.2013.08.015.
[26] Z. Xu, I. King, and M. R. Lyu. Web page classification with heterogeneous data fusion. In Proceedings of the 16th International Conference on World Wide Web, WWW '07, page 1171-1172, New York, NY, USA, 2007. Association for Computing Machinery. Available at https://doi.org/10.1145/1242572.1242750.
[27] P. Yin and X. Fan. Estimating R^{2} Shrinkage in Multiple Regression: A Comparison of Different Analytical Methods. The Journal of Experimental Education, 69(2):203-224, 2001. Available at https://doi.org/10.1080/00220970109600656.
[28] L. Yuan, Y. Wang, P. M. Thompson, V. A. Narayan, and J. Ye. Multi-source feature learning for joint analysis of incomplete multiple heterogeneous neuroimaging data. NeuroImage, 61(3):622-632, 2012. Available at https://doi.org/10.1016/j.neuroimage. 2012.03. 059 .
[29] M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables. Journal of the Royal Statistical Society Series B, 68:49-67, 02 2006. Available at https: //doi.org/10.1111/j.1467-9868.2005.00532.x.
[30] H. Zou and T. Hastie. Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society. Series B (Statistical Methodology), 67(2):301-320, 2005. Available at https://doi.org/10.1111/j.1467-9868.2005.00503.x.

Appendix A

Code and figures: methodology and materials

A. 1 Software for the project development

A.1. $1 \quad \mathrm{R}$ and RStudio

```
# Packages used for the development of this manuscript's code
library(ade4)
library(binaryLogic)
library(caret)
library(corrplot)
library(devtools)
library(factoextra)
library(glmnet)
library(MASS)
library(mvtnorm)
library(naniar)
```


A. 2 A unified feature learning model for complete and block-wise missing multi-source data

A.2.1 Missing blocks and profiles

```
# Computing the profile vector given the dimensions p_i of each source
# A block of a source with missing data will correspond to samples
# that have any NA in that source
```

```
get_profile <- function(p, X){
    # Samples and Sources
    n <- dim(X)[1]
    S <- length(p)
    # Profile vector
    pf.vec <- numeric(length = n)
    for(i in 1:n){
        # Profile of i-th sample
        pf <- 0
        col <- 1
        for(j in 1:S){
            nextCol <- col + p[j]
            if(!any(is.na(X[i, col:(nextCol - 1)])))
                pf <- pf + 2^(S - j)
            col <- nextCol
        }
        # Add the i-th profile to the profile vector
        pf.vec[i] <- pf
    }
    return(as.factor(pf.vec))
}
```

\# Group all the samples which have m as a profile together
\# with those that have complete data in all the sources
\# that are contained in the profile m
getBlockSamples <- function (pf.vec, m, S)\{
\# Get sources of the given profile
sources.on.profile <- which(as.binary (m, $n=S)$)
\# Set profiles
profiles <- levels (pf.vec)
\# Add corresponding samples to the block
samples.block <- numeric()
for (i in 1:length (profiles)) \{
profile <- as.integer (profiles [i])
if (all(as.binary (profile, $n=S$ [sources.on.profile]))
samples.block <-
c(samples.block, which(pf.vec == profile))
\}

```
    # Return the block and the sources related to that block
    return(list(samples = samples.block,
        sources = sources.on.profile))
}
```


A. 3 Data

A.3.1 Simulated data

```
# Number of samples
n <- 1500
# Number of sources
S <- 20
# Seed for reproducing the whole code
set.seed(123456)
# Sparsity index: number of non-zero elements of non-zero coefficients
sparsity_ind <- 3
# Dimensions of the underlying true model
p.synth <- sample(sparsity_ind:20, size = S, replace = TRUE)
# Values of the non-zero coefficients
values <- c(10, 8, 6, 4, 2, 1)
# Sparse underlying true model
beta <- c()
for(i in 1:S){
    min <- min(sparsity_ind, p.synth[i])
    coef <- c(rep(values[i], each = min),
        rep(0, each = p.synth[i] - min))
    beta <- c(beta, coef*ifelse(rbinom(p.synth[i], 1, 0.5) == 0, -1, 1))
}
beta <- c(beta, rep(0, sum(p.synth) - length(beta)))
# Noise term
eps <- rnorm(n, mean = 0, sd = 0.5)
```

- Non-correlation between variables

```
# Number of variables
num.var <- sum(p.synth)
# Mean vector equals 0
meanVec <- numeric(length = num.var)
# Standard deviation diagonal matrix
sdDiag <- diag(rep(0.5, num.var))
# Correlation and covariance matrices
corMat_nc <- diag(1, num.var)
Sigma_nc <- sdDiag%*%corMat_nc%*%sdDiag
# Non-correlation between variables
X_nc <- rmvnorm(n = n, mean = meanVec, sigma = Sigma_nc)
```

- Low-correlation between variables

```
# Correlation and covariance matrices
corMat_lc <- diag(0, num.var)
corMat_lc[lower.tri(corMat_lc, diag = FALSE)] <-
runif(num.var*(num.var - 1)/2, min = 0, max = 0.5)
corMat_lc[upper.tri(corMat_lc)] <-
            t(corMat_lc)[upper.tri(corMat_lc)]
corMat_lc <- corMat_lc%*%t(corMat_lc)
corMat_lc <- corMat_lc/(2*max(corMat_lc))
diag(corMat_lc) <- 1
Sigma_lc <- sdDiag%*%corMat_lc%*%sdDiag
# Low-correlation between variables
X_lc <- rmvnorm(n = n, mean = meanVec, sigma = Sigma_lc)
```

- High-correlation between variables

```
# Correlation and covariance matrices
corMat_hc <- diag(0, num.var)
corMat_hc[lower.tri(corMat_hc, diag = FALSE)] <-
runif(num.var*(num.var - 1)/2, min = 0.5, max = 1)
corMat_hc[upper.tri(corMat_hc)] <-
    t(corMat_hc)[upper.tri(corMat_hc)]
corMat_hc <- corMat_hc%*%t(corMat_hc)
corMat_hc <- corMat_hc/max(corMat_hc)
```

```
diag(corMat_hc) <- 1
Sigma_hc <- sdDiag%*%corMat_hc%*%sdDiag
# High-correlation between variables
X_hc <- rmvnorm(n = n, mean = meanVec, sigma = Sigma_hc)
```

```
# Convert complete data matrix to incomplete data randomly
X.NA <- function(X, p){
    S <- length(p)
    X_NA <- X
    for(i in 1:dim(X)[1]){
            num.missing.sources <- sample(1:S, 1)
            missing.sources <- sample(1:length(p), num.missing.sources)
            col <- 1
            for(j in 1:S){
                nextCol <- col + p[j] - 1
                if(j %in% missing.sources)
                    X_NA[i, col:nextCol] <- NA
            col <- nextCol
        }
    }
    return(X_NA)
}
X.NA_nc <- X.NA(X_nc, p.synth)
X.NA_lc <- X.NA(X_lc, p.synth)
X.NA_hc <- X.NA(X_hc, p.synth)
```

\# Outcome
y_nc <- eps
y_lc <- eps
y_hc <- eps
col <- 1
for (i in 1:20)\{
nextCol <- col + p.synth[i] - 1
y_nc <- $y_{_} n c+X_{_} n c[, ~ c o l: n e x t C o l] \% * \% b e t a[c o l: n e x t C o l] ~$
y_lc <- y_lc + X_lc[, col:nextCol] $\%$ *\% beta[col:nextCol]
y_hc <- $y_{-} h c+X_{-} h c[, ~ c o l: n e x t C o l] \% * \% b e t a[c o l: n e x t C o l]$

```
    col <- nextCol + 1
}
```


A.3.2 Exposome data

```
# Exposome variables without ID
exposome <- exposome[,-1]
exposomeNA <- exposomeNA[,-1]
# All families except covariates and outcome variables
families <- levels(codebook$family)[-c (3,14)]
# Complete data
exposome.data <- covariates[,-1]
for(i in 1:length(families))
    exposome.data <- data.frame(exposome.data,
                            exposome[, codebook$family == families[i]])
# Incomplete data
exposomeNA.data <- covariatesNA[, -1]
for(i in 1:length(families))
    exposomeNA.data <-
    data.frame(exposomeNA.data,
        exposomeNA[, codebook$family == families[i]])
# Outcome without ID
y <- phenotype[,-1]
# g to kg
y$e3_bw <- y$e3_bw/1000
# Source of each variable
sources <- rep("O.Covariates", dim(covariates[,-1])[2])
for(i in 1:length(families))
    sources <- c(sources, rep(families[i],
                                    sum(codebook$family == families[i])))
# Distribution of the missing values
vis_miss(exposomeNA.data[,1:20])
```


Figure A.1: Missing values pattern of the exposome data with missing data (exposomeNA).

```
# Brief description of the exposome variables consisting
# on the smallest data value, the first quantile, the
# median, the third quantile, and the largest data value
# of each variable respectively
summary(exposome.data)
```

h_cohort	e3_sex_None	e3_yearbir_None	h_mbmi_None
$1: 202$	female:608	$2003: 55$	Min. $: 15.88$
$2: 198$	male $: 693$	$2004: 107$	1st Qu.:21.26
$3: 224$		$2005: 241$	Median $: 24.02$
$4: 207$		$2006: 256$	Mean $: 25.03$
$5: 272$		$2007: 250$	3rd Qu.:27.34
$6: 198$		$2008: 379$	Max. $: 51.42$

 hs_wgtgain_None e3_gac_None
 Min. : 0.0 Min. :28.00 Min. :16.00 1:178
 1st Qu.: 9.0 1st Qu.:38.71 1st Qu.:27.64 2:449
 Median :12.0 Median :40.00 Median :31.00 3:674
 Mean :13.5 Mean :39.63 Mean :30.80
 3rd Qu.:18.0 3rd Qu.:40.71 3rd Qu.:34.06
 Max. :55.0 Max. :44.14 Max. :43.51
h_native_None h_parity_None hs_child_age_None hs_c_height_None

| $0: 146$ | $0: 601$ | Min. $: 5.437$ | Min. $: 1.054$ |
| :--- | :--- | :--- | :--- | :--- |
| $1: 67$ | $1: 464$ | 1st Qu.: 6.500 | 1st Qu.:1.209 |
| $2: 1088$ | $2: 236$ | Median $: 8.033$ | Median $: 1.280$ |
| | | Mean $: 7.976$ | Mean $: 1.291$ |
| | | 3rd Qu.: 8.920 | 3rd Qu.: 1.365 |
| | | Max. $: 12.101$ | Max. $: 1.685$ |

hs_c_weight_None h_abs_ratio_preg_Log h_no2_ratio_preg_Log
Min. :16.00 Min. :-0.47756 Min. :2.105
1st Qu.:22.90 1st Qu.: 0.09776 1st Qu.:2.670
Median :26.90 Median : 0.30203 Median :2.963
Mean :28.52 Mean : 0.39089 Mean :3.004
3rd Qu.:32.70 3rd Qu.: 0.72516 3rd Qu.:3.298
Max. :71.10 Max. : 1.70921 Max. :4.525
h_pm10_ratio_preg_None h_pm25_ratio_preg_None hs_no2_dy_hs_h_Log
Min. : 8.066 Min. : 6.957 Min. :0.3797
1st Qu.:17.535 1st Qu.:13.289 1st Qu.:2.2867
Median :23.018 Median :14.879 Median :2.9618
Mean :23.504 Mean :15.028 Mean :2.8307
3rd Qu.:27.677 3rd Qu.:16.999 3rd Qu.:3.4474
Max. :47.698 Max. :22.238 Max. :5.1849
hs_no2_wk_hs_h_Log hs_no2_yr_hs_h_Log hs_pm10_dy_hs_h_None
Min. :0.9523 Min. :0.6185 Min. : 2.916
1st Qu.:2.3313 1st Qu.:2.3800 1st Qu.: 17.818
Median :2.9806 Median :3.0238 Median : 22.899
Mean :2.8638 Mean :2.8975 Mean : 26.214
3rd Qu.:3.3932 3rd Qu.:3.4085 3rd Qu.: 30.937
Max. :4.8047 Max. :4.4225 Max. :157.397
hs_pm10_wk_hs_h_None hs_pm10_yr_hs_h_None hs_pm25_dy_hs_h_None
Min. : 5.838 Min. :11.50 Min. : 1.518
1st Qu.: 19.142 1st Qu.:21.68 1st Qu.: 7.950
Median : 24.891 Median :24.75 Median :12.244
Mean : 26.409 Mean :25.10 Mean :12.897
3rd Qu.: 32.131 3rd Qu.:31.26 3rd Qu.:16.263
Max. :211.297 Max. :46.82 Max. :58.884
hs_pm25_wk_hs_h_None hs_pm25_yr_hs_h_None hs_pm25abs_dy_hs_h_Log

```
Min. : 3.139 Min. : 4.829 Min. :-1.78220
1st Qu.: 9.340 1st Qu.:10.410 1st Qu.:-0.25857
Median :12.702 Median :13.110 Median : 0.02163
Mean :13.153 Mean :12.916 Mean : 0.11514
3rd Qu.:16.152 3rd Qu.:15.122 3rd Qu.: 0.54459
Max. :75.093 Max. :21.917 Max. : 2.26537
hs_pm25abs_wk_hs_h_Log hs_pm25abs_yr_hs_h_Log
Min. :-1.03415 Min. :-0.59670
1st Qu.:-0.13869 1st Qu.:-0.01657
Median : 0.04672 Median : 0.17773
Mean : 0.16413 Mean : 0.18058
3rd Qu.: 0.53700 3rd Qu.: 0.31331
Max. : 1.87776 Max. : 1.36495
h_accesslines300_preg_dic0 h_accesspoints300_preg_Log
Min. :0.0000 Min. :1.270
1st Qu.:0.0000 1st Qu.:1.963
Median :0.0000 Median :2.879
Mean :0.1991 Mean :2.670
3rd Qu.:0.0000 3rd Qu.:3.349
Max. :1.0000 Max. :4.528
h_builtdens300_preg_Sqrt h_connind300_preg_Sqrt
Min. : 11.02 Min. : 1.887
1st Qu.:340.04 1st Qu.: 9.983
Median :401.49 Median :12.935
Mean :417.06 Mean :12.737
3rd Qu.:502.97 3rd Qu.:15.898
Max. :807.57 Max. :27.276
h_fdensity300_preg_Log h_frichness300_preg_None
Min. :10.26 Min. :0.00000
1st Qu.:10.26 1st Qu.:0.00000
Median :11.36 Median :0.03509
Mean :11.61 Mean :0.06605
3rd Qu.:12.83 3rd Qu.:0.12281
Max. :15.60 Max. :0.42105
h_landuseshan300_preg_None h_popdens_preg_Sqrt
Min. :0.0000 Min. : 0.00
1st Qu.:0.3408 1st Qu.: 53.79
Median :0.4232 Median : 74.98
```

Mean	$: 0.4213$	Mean : 77.02
3rd Q	:0.5070	3rd Qu.: 96.21
Max.	$: 1.0000$	Max. $: 261.50$
h_walkability_mean_preg_None hs_accesslines300_h_dic0		
Min.	:0.1000	Min. 0.0000
1st Qu	:0.2000	1st Qu.:0.0000
Media	:0.2500	Median :0.0000
Mean	:0.2674	Mean :0.1852
3rd Q	$: 0.3250$	3rd Qu.:0.0000
Max.	:0.6250	Max. : 1.0000

hs_accesspoints300_h_Log hs_builtdens300_h_Sqrt hs_connind300_h_Log
Min. :0.5771 Min. : 20.3 Min. :1.270

1st Qu.:1.6753 1st Qu.:300.4 1st Qu.:4.405
Median :2.7738 Median :375.5 Median :4.959
Mean :2.4051
3rd Qu.:3.2846
Max. : 4.5838
Mean :381.1 Mean :4.776
3rd Qu.:459.1 3rd Qu.:5.364
Max. :805.8 Max. :6.617
hs_fdensity300_h_Log hs_landuseshan300_h_None hs_popdens_h_Sqrt
Min. : 10.26 Min. $: 0.0000 \quad$ Min. : 1.732
1st Qu.:10.26 1st Qu.:0.3138 1st Qu.: 30.036
Median :10.96 Median :0.4028 Median : 67.405
Mean : 11.38 Mean $: 0.3970$ Mean : 67.652
3rd Qu.:12.34 3rd Qu.:0.4929 3rd Qu.: 84.988
Max. :14.98 Max. :0.6619 Max. :261.500
hs_walkability_mean_h_None hs_accesslines300_s_dic0
Min. :0.100 Min. : 0.0000
1st Qu.:0.275 1st Qu.:0.0000
Median :0.300 Median :0.0000
Mean :0.326 Mean :0.1883
3rd Qu.:0.375 3rd Qu.:0.0000
Max. :0.600 Max. :1.0000
hs_accesspoints300_s_Log hs_builtdens300_s_Sqrt hs_connind300_s_Log
Min. :0.5771 Min. : 6.432 Min. :1.270
1st Qu.:1.6753
Median :2.5225
Mean :2.3902
3rd Qu.:3. 2846
Max. : 4.0730

1st Qu.:314.349
Median :380.503
Mean : 400.029
3rd Qu.:480.133
Max. :805.140 Max. :6.578

Min. : 10.26	Min. 0.08298	Min. : 0.00
1st Qu.: 10.26	1st Qu.:0.34004	1st Qu.: 38.56
Median :11.36	Median :0.44793	Median : 69.26
Mean : 11.56	Mean :0.42993	Mean : 68.10
3rd Qu.: 12.57	3rd Qu.:0.53689	3rd Qu.: 84.99
Max. : 15.25	Max. 0.0 .72770	Max. 210.95
h_Absorbance_Log	h_Benzene_Log	h_NO2_Log
Min. : -0.92737	7 Min. $:-0.3296$	Min. $: 1.573$
1st Qu.:-0.54273	3 1st Qu.: 0.3141	1st Qu.:2.979
Median : -0. 26937	7 Median : 0.5600	Median :3.617
Mean : -0.16919	9 Mean : 0.5987	Mean :3.833
3rd Qu.: 0.02422	3rd Qu.: 0.8437	3rd Qu.:4.576
Max. $\quad 3.40474$	4 Max. : 1.9975	Max. $: 7.093$
h_PM_Log	h_TEX_Log e3_al	lcpreg_yn_None
Min. 1.549	Min. $\quad 1.926$ 0:896	
1st Qu.:2.069	1st Qu.:2.601 1:405	
Median :2.304	Median :2.976	
Mean :2.443	Mean :2.999	
3rd Qu.:2.699	3rd Qu.:3.363	
Max. 5.236	Max. 4.944	
h_bfdur_Ter	h_cereal_preg_Ter	h_dairy_preg_Ter
(0,10.8] :506	(0,9] :531	(0,17.1] :270
(10.8,34.9]:270	(9,27.3] :459	(17.1, 27.1]:380
(34.9,Inf] :525	(27.3, Inf]:311	(27.1,Inf] :651
h_fastfood_preg_Ter h_fish_preg_Ter h_folic_t1_None		
(0,0.25] : 94	(0,1.9] :343	0:606
(0.25,0.83]:535	(1.9, 4.1]:490	1:695
(0.83,Inf] :672	(4.1, Inf]:468	

> h_fruit_preg_Ter h_legume_preg_Ter h_meat_preg_Ter $(0,0.6]: 6 \quad(0,0.5]: 245 \quad(0,6.5]: 427$
(0.6,18.2]:922
(0.5,2]:269
$(6.5,10]: 387$
(18.2, Inf]:373
($2, \mathrm{Inf}$]:787
(10, Inf]:487

| h_pamod_t3_None | | h_pavig_t3_None | h_veg_preg_Ter |
| :--- | :--- | :--- | :--- | :--- |
| None | $: 42$ | High $: 47$ | $(0,8.8]: 539$ |
| Often | $: 474$ | Low $: 952$ | $(8.8,16.5]: 470$ |
| Sometimes | $: 191$ | Medium:302 | $(16.5$, Inf] $: 292$ |

Very Often:594
hs_bakery_prod_Ter hs_beverages_Ter hs_break_cer_Ter

$(0,2]$	$: 345$	$(0,0.132]: 331$	$(0,1.1]: 291$
$(2,6]$	$: 423$	$(0.132,1]: 454$	$(1.1,5.5]: 521$

(6, Inf]:533
(1,Inf] :516
(5.5, Inf]:489
hs_caff_drink_Ter hs_dairy_Ter hs_fastfood_Ter
(0,0.132] :808 (0,14.6] :359 (0,0.132] :143
(0.132,Inf]:493 (14.6,25.6]:465 (0.132,0.5]:603
(25.6,Inf] :477 (0.5,Inf] :555

hs_KIDMED_None	hs_mvpa_prd_alt_None	hs_org_food_Ter
Min. : -3.000	Min. : -27.76	(0,0.132]:429
1st Qu.: 2.000	1st Qu.: 23.27	(0.132, 1]:396
Median : 3.000	Median : 34.71	(1,Inf] :476
Mean : 2.881	Mean : 37.87	
3rd Qu.: 4.000	3rd Qu.: 47.75	
Max. : 9.000	Max. $: 146.75$	
hs_pet_cat_r2_None hs_pet_dog_r2_None		hs_pet_None hs_proc_meat_Ter
0:1059	0:1108	No :807 (0,1.5]:366
1: 242	1: 193	Yes:494 (1.5,4]:471
		($4, \mathrm{Inf}$]:464

hs_readymade_Ter		hs_sd_wk_None	hs_total_bread_Ter	
$(0,0.132]: 327$	Min. $: \quad: 3.143$	$(0,7]$	$: 431$	
$(0.132,0.5]: 296$	1st Qu. $: 155.714$	$(7,17.5]: 381$		
$(0.5$, Inf] $: 678$	Median $: 210.000$	(17.5, Inf] $: 489$		
	Mean $: 235.809$			
	3rd Qu. $: 282.857$			
	Max. $: 994.286$			

hs_total_cereal_Ter hs_total_fish_Ter hs_total_fruits_Ter
(0,14.1] :418 (0,1.5]:389 (0,7] :413
$(14.1,23.6]: 442 \quad(1.5,3]: 454 \quad(7,14.1]$:407
(23.6,Inf] :441 (3,Inf]:458 (14.1,Inf]:481
hs_total_lipids_Ter hs_total_meat_Ter hs_total_potatoes_Ter
$(0,3]: 397 \quad(0,6] \quad: 425 \quad(0,3]: 417$
$(3,7]: 403 \quad(6,9] \quad: 411 \quad(3,4]: 405$
(7, Inf]:501 (9, Inf]:465 (4, Inf]:479
hs_total_sweets_Ter hs_total_veg_Ter hs_total_yog_Ter
(0,4.1] :344 (0,6] :404 (0,6] :779
(4.1,8.5]:516 $(6,8.5] \quad 314 \quad(6,8.5]$:308
(8.5,Inf]:441 (8.5,Inf]:583 (8.5,Inf]:214

e	hs_as_c_Log2	hs_as_m_Log2
Min. : 7.901	Min. :-15.0124	Min. : -38.625
1st Qu.: 9.794	1st Qu.: -4.0075	1st Qu.: -5.419
Median :10.330	Median : 0.4854	Median : -1.925
Mean :10.296	Mean : -0.9947	Mean : -3.011
3rd Qu.:10.741	3rd Qu.: 1.2630	3rd Qu.: 1.007
Max. :12.852	Max. : 4.8227	Max. : 6.4

hs_cd_c_Log2	hs_cd_m_Log2	hs_co_c_Log2
Min. : -10.395	Min. :-7.844	Min. : -5.546
1st Qu.: -4.399	1st Qu.:-2.671	1st Qu.:-2.718
Median : -3.818	Median :-2.427	Median :-2.427
Mean : -3.969	Mean :-2.179	Mean :-2.344
3rd Qu.: -3.393	3rd Qu.:-1.713	3rd Qu.:-2.041
Max. : 0.840	Max. : 4.802	Max. : 1.401
hs_co_m_Log2	hs_cs_c_Log2	hs_cs_m_Log2
Min. :-5.184	Min. : -1.45403	Min. :-1.15843
1st Qu.:-2.515	1st Qu.: 0.05658	1st Qu.: 0.07039
Median :-2.012	Median : 0.46467	Median : 0.40054
Mean : -1.694	Mean : 0.44276	Mean : 0.48140
3rd Qu.:-0.550	3rd Qu.: 0.80735	3rd Qu.: 0.80736
Max. : 2.503	Max. : 3.06523	Max. : 3.4462

hs_cu_c_Log2	hs_cu_m_Log2	hs_hg_c_Log2
Min. : 9.079	Min. : 9.036	Min.
1st Qu.: 9.681	1st Qu.:10.253	1st Qu.
Median : 9.828	Median : 10.441	Median
9.828	Mean : 10.402	Mean : -0.
d Qu. : 9.966	3rd Qu.:10.541	3rd Qu.: 0.
x. :12.123	11.	Max. : 3.6

hs_hg_m_Log2	hs_mn_c_Log2	hs_mn_m_Log2
Min. :-9.0230	Min. :1.705	Min. :1.655
1st Qu.:-0.3094	1st Qu.:2.836	1st Qu.:3.291
Median : 0.5753	Median :3.119	Median :3.573
Mean : 0.5698	Mean :3.128	Mean :3.542
3rd Qu.: 1.5705	3rd Qu.:3.392	3rd Qu.:3.807
Max. : 5.4429	Max. $: 4.792$	Max. 5.5446
hs_mo_c_Log2	hs_mo_m_Log2	hs_pb_c_Log2
Min. :-9.23481	Min. :-2.7179	Min. :1.084
1st Qu.:-0.76121	1st Qu.:-0.9828	1st Qu.:2.680
Median :-0.40354	Median :-0.7322	Median :3.103
Mean : -0.31526	Mean : -0.6933	3 Mean :3.108
3rd Qu.: 0.02857	3rd Qu.:-0.3978	8 3rd Qu.:3.485
Max. : 5.12101	Max. : 6.1334	4 Max. :7.735

hs_pb_m_Log2 hs_tl_cdich_None hs_tl_mdich_None
Min. :1.220 Detected : 102 Detected : 17
1st Qu.:2.618 Undetected:1199 Undetected:1284

Median :3.189
Mean :3.211
3rd Qu.:3.807
Max. :7.547
h_humidity_preg_None h_pressure_preg_None h_temperature_preg_None
Min. :55.83 Min. : 974.9 Min. : 3.120
1st Qu.:70.63 1st Qu.: 980.8 1st Qu.: 8.127
Median :77.10 Median : 983.4 Median :10.155
Mean :76.56 Mean : 991.5 Mean :11.195
3rd Qu.:86.54 3rd Qu.:1002.3 3rd Qu.:13.798
Max. :90.67 Max. :1015.5 Max. :22.566
hs_hum_mt_hs_h_None hs_tm_mt_hs_h_None hs_uvdvf_mt_hs_h_None
Min. :52.05 Min. :-3.477 Min. :0.007
1st Qu.:64.99 1st Qu.: 6.761 1st Qu.:0.259
Median :72.89 Median :12.442 Median :1.009
Mean :73.91 Mean :11.611 Mean :1.403
3rd Qu.:82.55 3rd Qu.:16.092 3rd Qu.:2.308
Max. :96.14 Max. :27.271 Max. :5.150
hs_hum_dy_hs_h_None hs_hum_wk_hs_h_None hs_tm_dy_hs_h_None
Min. : 26.19 Min. : 48.59 Min. :-7.90
1st Qu.: 59.15 1st Qu.:63.82 1st Qu.: 6.20
Median : 72.27 Median :73.75 Median :12.00
Mean : 72.75 Mean :74.07 Mean :11.44
3rd Qu.: 85.00 3rd Qu.:84.38 3rd Qu.:16.18
Max. :100.00 Max. :98.62 Max. :30.70
hs_tm_wk_hs_h_None hs_uvdvf_dy_hs_h_None hs_uvdvf_wk_hs_h_None
Min. :-5.605 Min. :0.000 Min. :0.001429
1st Qu.: 6.745 1st Qu.:0.220 1st Qu.:0.234286
Median :12.375 Median :1.030 Median :1.101429
Mean :11.442 Mean :1.439 Mean :1.446599
3rd Qu.:16.167 3rd Qu.:2.380 3rd Qu.:2.407143
Max. :27.688 Max. :5.550 Max. :5.254286
hs_blueyn300_s_None h_blueyn300_preg_None h_greenyn300_preg_None

$0: 1208$	$0: 1194$	$0: 321$
$1: 93$	$1: 107$	$1: 980$

h_ndvi100_preg_None hs_greenyn300_s_None hs_blueyn300_h_None
Min. $00.10620: 283 \quad 0: 1184$
1st Qu.:0.2488 1:1018 1: 117
Median :0.4105
Mean :0.3917
3rd Qu.:0.5158
Max. :0.7354
hs_greenyn300_h_None hs_ndvi100_h_None hs_ndvi100_s_None
0: 274 Min. :0.09675 Min. :0.09519
1:1027 1st Qu.:0.31847 1st Qu.:0.31576
Median :0.47907 Median :0.44998
Mean :0.45053 Mean :0.41609
3rd Qu.:0.57471 3rd Qu.:0.52503
Max. :0.81432 Max. :0.75681
h_lden_cat_preg_None hs_ln_cat_h_None hs_lden_cat_s_None
Min. :33.92 1:476 1:580

1st Qu.:50.00 2:633 2:265
Median :58.63 3:104 3:299
Mean :57.47 4: 61 4:104
3rd Qu.:64.36 5: 27 5: 37
Max. :77.40
6: 16

```
hs_dde_cadj_Log2 hs_dde_madj_Log2 hs_ddt_cadj_Log2
Min. : 1.192 Min. : 0.8634 Min. :-15.4250
1st Qu.: 3.563 1st Qu.: 4.4580 1st Qu.: -1.7517
Median : 4.454 Median : 5.5719 Median : -0.4731
Mean : 4.669 Mean : 5.8409 Mean : -1.5790
3rd Qu.: 5.509 3rd Qu.: 7.0023 3rd Qu.: 0.7681
Max. :11.075 Max. :10.8937 Max. : 7.6305
hs_ddt_madj_Log2 hs_hcb_cadj_Log2 hs_hcb_madj_Log2
Min. :-14.1418 Min. :-13.136 Min. :-9.420
1st Qu.: -0.2646 1st Qu.: 2.650 1st Qu.: 2.315
Median : 0.6778 Median : 3.050 Median : 2.797
Mean : 0.8748 Mean : 3.154 Mean : 2.955
3rd Qu.: 1.5125 3rd Qu.: 3.520 3rd Qu.: 3.486
Max. : 6.5566 Max. : 6.461 Max. : 7.357
hs_pcb118_cadj_Log2 hs_pcb118_madj_Log2 hs_pcb138_cadj_Log2
```

Min. : -6.9507	Min. : -1.170	Min. : -9.432
1st Qu.: 0.6038	1st Qu.: 0.627	1st Qu.: 1.744
Median : 1.0007	Median : 1.052	Median : 2.416
Mean : 1.1023	Mean : 1.250	Mean : 2.402
3rd Qu.: 1.5596	3rd Qu.: 1.829	3rd Qu.: 3.110
Max. : 4.7829	Max. : 7.426	Max. : 7.746
hs_pcb138_madj_Log2 hs_pcb153_cadj_Log2 hs_pcb153_madj_Log2		
Min. $:-10.187$	Min. : 1.207	Min. 11.110
1st Qu.: 1.788	1st Qu.:2.858	1st Qu.:2.852
Median : 2.921	Median :3.519	Median :3.854
Mean : 2.868	Mean :3.555	Mean :3.892
3rd Qu.: 3.794	3rd Qu.:4.218	3rd Qu.:4.739
Max. : 8.206	Max. $\quad 7.764$	Max. $: 9.839$
hs_pcb170_cadj_Log2 hs_pcb170_madj_Log2 hs_pcb180_cadj_Log2		
Min. \quad - 16.8417	Min. $:-2.0418$	Min. $:-11.7198$
1st Qu.: -0.8488	1st Qu.:-0.3211	1st Qu.: 0.6983
Median : 0.2765	Median : 0.8727	Median : 1.8340
Mean : -0.3076	Mean : 1.0875	Mean : 1.7477
3rd Qu.: 1.3909	3rd Qu.: 2.2000	3rd Qu.: 3.0077
Max. : 4.7832	Max. : 7.7831	Max. : 5.8781
hs_pcb180_madj_Log2 hs_sumPCBs5_cadj_Log2 hs_sumPCBs5_madj_Log2		
Min. \quad - 10.121	Min. 2.182	Min. 22.299
1st Qu.: 2.069	1st Qu.:3.857	1st Qu.:4.007
Median : 2.990	Median : 4.612	Median : 4.715
Mean : 2.946	Mean : 4.647	Mean : 4.860
3rd Qu.: 4.034	3rd Qu.:5.372	3rd Qu.:5.738
Max. : 9.349	Max. $\quad 9.277$	Max. $\quad 9.341$
hs_dep_cadj_Log2	hs_dep_madj_Log2	hs_detp_cadj_Log2
Min. : -12.5924	Min. : -13.4083	Min. : -15.4450
1st Qu.: -0.9973	1st Qu.: 0.9887	1st Qu.: -5.1816
Median : 0.9287	Median : 1.6631	Median : -3.3437
Mean : 0.1606	Mean : 1.7010	Mean : -2.4230
3rd Qu.: 2.2958	3rd Qu.: 2.6659	3rd Qu.: 0.7957
Max. : 9.3767	Max. : 7.5853	Max. : 6.2939
hs_detp_madj_Log2 hs_dmdtp_cdich_None hs_dmp_cadj_Log2		
Min. $:-28.3791$	Detected : 227	Min. $:-16.6419$
1st Qu.: -3.9329	Undetected: 1074	1st Qu.: -4.7344
Median : -0.5251		Median : -0.2684

Mean : -1.5667		Mean : -1.4156
3rd Qu.: 1.0079		3rd Qu.: 2.2472
Max. : 5.4700		Max. : 6.3794
hs_dmp_madj_Log2	hs_dmtp_cadj_Log2	hs_dmtp_madj_Log2
Min. :-17.141	Min. : -10.6455	Min. :-15.327
1st Qu.: 2.011	1st Qu.: 0.3311	1st Qu.: 1.072
Median : 2.796	Median : 1.5927	Median : 2.225
Mean : 2.243	Mean : 1.1332	Mean : 1.612
3rd Qu.: 3.756	3rd Qu.: 2.7625	3rd Qu.: 3.489
Max. : 8.333	Max. : 8.6635	Max. : 7.780
hs_pfhxs_c_Log2	hs_pfhxs_m_Log2	hs_pfna_c_Log2
Min. :-8.8953	Min. : -17.8296	Min. :-8.1484
1st Qu.:-2.3783	1st Qu.: -1.7277	1st Qu.:-1.7387
Median :-1.4426	Median : -0.9284	Median :-1.0643
Mean :-1.5722	Mean : -0.9841	Mean :-1.0798
3rd Qu.:-0.7102	3rd Qu.: -0.1648	3rd Qu.:-0.4677
Max. : 4.8309	Max. : 3.7592	Max. : 2.7178
hs_pfna_m_Log2	hs_pfoa_c_Log2	hs_pfoa_m_Log2
Min. : -10.75405	Min. : -2.2197	Min. : -5.4760
1st Qu.: -1.31140	1st Qu.: 0.2453	1st Qu.: 0.4107
Median : -0.58631	Median : 0.6274	Median : 1.2007
Mean : -0.75352	Mean : 0.6102	Mean : 1.0479
3rd Qu.: 0.09482	3rd Qu.: 0.9507	3rd Qu.: 1.7450
Max. : 2.56486	Max. : 2.7352	Max. : 4.9836
hs_pfos_c_Log2	hs_pfos_m_Log2	hs_pfunda_c_Log2
Min. : -10.4131	Min. : -1.824	Min. : -11.784
1st Qu.: 0.3699	1st Qu.: 1.961	1st Qu.: -5.013
Median : 1.0274	Median : 2.649	Median : -4.078
Mean : 0.9700	Mean : 2.556	Mean : -4.246
3rd Qu.: 1.6747	3rd Qu.: 3.213	3rd Qu.: -3.272
Max. : 5.0801	Max. : 5.584	Max. : 0.593
hs_pfunda_m_Log2	hs_bpa_cadj_Log2	2 hs _bpa_madj_Log2
Min. : -26.21246	Min. : -7.150	Min. : -11.020
1st Qu.: -3.21222	1st Qu.: 1.270	1st Qu.: 0.292
Median : -2.47816	Median : 2.014	Median : 1.146
Mean : -2.65699	Mean : 2.144	Mean : 1.467
3rd Qu.: -1.71446	3rd Qu.: 2.875	3rd Qu.: 2.340
Max. : -0.04217	Max. : 7.833	Max. : 6.736

hs_bupa_cadj_Log2	hs_bupa_madj_Log2	hs_etpa_cadj_Log2
Min. :-13.940	Min. : -15.578	Min. :-6.0647
1st Qu.: -4.385	1st Qu.: -1.341	1st Qu.:-1.2022
Median : -3.472	Median : 1.420	Median :-0.5644
Mean : -3.532	Mean : 1.016	Mean : -0.1302
3rd Qu.: -2.574	3rd Qu.: 3.603	3rd Qu.: 0.3723
Max. : 6.597	Max. : 8.534	Max. : 10.9895
hs_etpa_madj_Log2	hs_mepa_cadj_Log2	hs_mepa_madj_Log2
Min. :-12.119	Min. :-6.907	Min. :-0.3096
1st Qu.: 1.240	1st Qu.: 1.696	1st Qu.: 5.8817
Median : 3.280	Median : 2.672	Median : 7.7170
Mean : 3.330	Mean : 3.394	Mean : 7.3042
3rd Qu.: 5.127	3rd Qu.: 4.692	3rd Qu.: 8.6247
Max. : 12.726	Max. : 14.549	Max. : 15.2601
hs_oxbe_cadj_Log2	hs_oxbe_madj_Log2	hs_prpa_cadj_Log2
Min. :-4.1446	Min. : -10.5100	Min. : -12.0208
1st Qu.:-0.1665	1st Qu.: 0.7601	1st Qu.: -4.3879
Median : 1.1184	Median : 2.5546	Median : -2.2575
Mean : 1.4523	Mean : 3.0346	Mean : -1.6065
3rd Qu.: 2.7929	3rd Qu.: 4.7789	3rd Qu.: 0.8151
Max. : 12.9631	Max. : 13.6480	Max. : 10.7801
hs_prpa_madj_Log2	hs_trcs_cadj_Log2	hs_trcs_madj_Log2
Min. :-14.154	Min. : -4.3599	Min. $:-4.8110$
1st Qu.: 3.754	1st Qu.:-1.6413	1st Qu.: 0.5526
Median : 5.775	Median :-0.7294	Median : 2.6584
Mean : 5.228	Mean : -0.3519	Mean : 3.4281
3rd Qu.: 7.073	3rd Qu.: 0.5389	3rd Qu.: 6.5909
Max. : 13.605	Max. : 9.2782	Max. : 10.6909
hs_mbzp_cadj_Log2	hs_mbzp_madj_Log2	hs_mecpp_cadj_Log2
Min. : -0.5586	Min. $:-3.738$	Min. : 2.631
1st Qu.: 1.6442	1st Qu.: 1.861	1st Qu.: 4.412
Median : 2.3435	Median : 2.887	Median : 5.136
Mean : 2.4435	Mean : 2.978	Mean : 5.190
3rd Qu.: 3.1093	3rd Qu.: 4.097	3rd Qu.: 5.915
Max. : 7.1847	Max. : 9.304	Max. : 10.628
hs_mecpp_madj_Log2 hs_mehhp_cadj_Log2 hs_mehhp_madj_Log2		
Min. : 2.427	Min. : 1.820	Min. : 0.4596

1st Qu.: 4.327	1st Qu.: 3.644	1st Qu.: 3.4564
Median : 4.851	Median : 4.350	Median : 4.0677
Mean : 5.027	Mean : 4.398	Mean : 4.1568
3rd Qu.: 5.632	3rd Qu.: 5.050	3rd Qu.: 4.7897
Max. $: 10.411$	Max. : 11.130	Max. : 9.9176
hs_mehp_cadj_Log2 hs_mehp_madj_Log2 hs_meohp_cadj_Log2		
Min. : -1.6330	Min. $:-7.469$	Min. : 1.138
1st Qu.: 0.8235	1st Qu.: 1.793	1st Qu.: 2.903
Median : 1.5741	Median : 3.057	Median : 3.633
Mean : 1.6142	Mean : 2.940	Mean : 3.696
3rd Qu.: 2.3459	3rd Qu.: 3.808	3rd Qu.: 4.378
Max. : 8.1407	Max. $: 8.702$	Max. $: 10.332$
hs_meohp_madj_Log2 hs_mep_cadj_Log2 hs_mep_madj_Log2		
Min. : -0.0179	Min. : 1.748	Min. : 3.292
1st Qu.: 3.1001	1st Qu.: 4.015	1st Qu.: 6.398
Median : 3.6836	Median : 5.054	Median : 7.776
Mean : 3.7810	Mean : 5.261	Mean : 7.772
3rd Qu.: 4.4199	3rd Qu.: 6.257	3rd Qu.: 8.911
Max. : 9.6122	Max. $: 11.642$	Max. $: 14.114$
hs_mibp_cadj_Log2 hs_mibp_madj_Log2 hs_mnbp_cadj_Log2		
Min. $: 2.321$	Min. $\quad 0.9264$	Min. $: 1.866$
1st Qu.:4.719	1st Qu.:4.5921	1st Qu.:3.962
Median :5.413	Median :5.3438	Median : 4.621
Mean :5.461	Mean :5.3105	Mean : 4.676
3rd Qu.:6.196	3rd Qu.:5.9232	3rd Qu.:5.304
Max. $: 9.750$	Max. 99.4609	Max. $: 8.932$
hs_mnbp_madj_Log2 hs_ohminp_cadj_Log2 hs_ohminp_madj_Log2		
Min. $:-0.7106$	Min. \quad-0.2821	Min. $:-11.4619$
1st Qu.: 4.1958	1st Qu.: 1.7093	1st Qu.: -0.7237
Median : 4.8550	Median : 2.4143	Median : -0.2093
Mean : 4.9574	Mean : 2.5870	Mean : -0.2990
3rd Qu.: 5.5687	3rd Qu.: 3.1967	3rd Qu.: 0.2665
Max. : 12.6539	Max. : 9.0983	Max. : 6.0560
hs_oxominp_cadj_Log2 hs_oxominp_madj_Log2 hs_sumDEHP_cadj_Log2		
Min. $:-0.9126$	Min. :-11.5	154 Min. : 2.648
1st Qu.: 0.8939	1st Qu.: -0.69643	643 1st Qu.: 5.244
Median : 1.4939	Median : -0.01846	846 Median : 6.004
Mean : 1.6735	Mean : -0.0	541 Mean : 6.049

3rd Qu.: 2.2830	3rd Qu.: 0.51914	3rd Qu.: 6.839
Max. : 9.4093	Max . $\quad 5.55327$	Max. $: 10.052$
hs_sumDEHP_madj_Log2 hs_pbde153_cadj_Log2 hs_pbde153_madj_Log2		
Min. : 3.211	Min. $:-17.631$	Min. $:-15.0030$
1st Qu.: 5.226	1st Qu.: -7.963	1st Qu.: -1.8848
Median : 5.880	Median : -2.618	Median : -0.9487
Mean : 6.015	Mean : -4.525	Mean : -1.7406
3rd Qu.: 6.697	3rd Qu.: -1.246	3rd Qu.: -0.0321
Max. $: 11.691$	Max. : 4.045	Max. : 6.4338
hs_pbde47_cadj_Log2 hs_pbde47_madj_Log2 FAS_cat_None		
Min. \quad - 15.357	Min. $:-11.5808$	Low :146
1st Qu.: -2.729	1st Qu.: -1.7581	Middle:486
Median : -2.148	Median : -0.9687	High :669
Mean : -2.606	Mean : -0.7793	
3rd Qu.: -1.535	3rd Qu.: 0.1183	
Max. : 5.381	Max. : 5.1183	
hs_contactfam_3cat_num_None hs_hm_pers_None		
(almost) Daily	:863 Min.	$: 1.000$
Once a week	:382 1st	u.: 4.000
Less than once a	k: 56 Medi	n : 4.000
	Mean	: 4.248
	3rd	u.: 5.000
	Max.	$: 10.000$
hs_participation_3cat_None e3_asmokcigd_p_None		
None	:748 Mi	$: 0.000$
1 organisation	:355 1s	Qu.: 0.000
2 or more organi	ons:198 Me	ian : 0.000
		n : 0.494
		Qu.: 0.000
		: 15.238
hs_cotinine_cdich_None hs_cotinine_mcat_None hs_globalexp2		
Detected : 223	Non-smokers:759	exposure :463
Undetected:1078	SHS smokers:157	no exposure:838
	Smokers :385	

```
hs_smk_parents_None h_distinvnear1_preg_Log
both :142 Min. :-10.022
neither:814 1st Qu.: -3.980
one :345 Median : -3.002
    Mean : -3.153
    3rd Qu.: -2.256
    Max. : 2.794
h_trafload_preg_pow1over3 h_trafnear_preg_pow1over3
Min. : 0.3458 Min. : 0.000
1st Qu.: 33.6542 1st Qu.: 7.937
Median : 66.6101 Median :12.119
Mean : 75.5390 Mean :14.989
3rd Qu.:113.0812 3rd Qu.:21.397
Max. :294.2705 Max. :39.321
hs_trafload_h_pow1over3 hs_trafnear_h_pow1over3 h_bro_preg_Log
Min. : 0.00 Min. : 0.000 Min. :-2.9759
1st Qu.: 77.42 1st Qu.: 8.434 1st Qu.:-0.5009
Median :114.87 Median :14.841 Median : 1.8701
Mean :112.70 Mean :15.977 Mean : 1.2640
3rd Qu.:136.00 3rd Qu.:22.104 3rd Qu.: 2.7488
Max. :293.58
                                Max. :49.348
Max. : 4.9016
h_clf_preg_Log h_thm_preg_Log
Min. :-6.9078 Min. :-1.600
1st Qu.:-0.4959 1st Qu.: 1.849
Median : 2.0776 Median : 2.912
Mean : 0.9645 Mean : 2.709
3rd Qu.: 3.1781 3rd Qu.: 3.839
Max. : 3.8334 Max. : 5.031
```

```
# Variables type without outcomes
var_indexes <- which(!(codebook$family == "Phenotype"))
var_type <- codebook$var_type[var_indexes]
# Percentages of variable's type
round(table(var_type)/length(var_type), 4)*100
```

```
var_type
    factor numeric
        25.11 74.89
```

- Exposome data without factor variables (numeric variables)

```
# Factors on exposome data
factors.exposome <- which(as.vector(sapply(exposome.data, is.factor)))
# Exposome data with only numeric variables
exposome.data.nv <- exposome.data[, -factors.exposome]
exposomeNA.data.nv <- exposomeNA.data[, -factors.exposome]
# Sources of each sample
sources.nv <- sources[-factors.exposome]
# Number of variables for each source with only numeric variables
p.nv <- as.vector(table(sources.nv))
```

```
# Sources with just one variable
```


Sources with just one variable

one.var <- which(p.nv == 1)
one.var <- which(p.nv == 1)
sources.one.var <- c()
sources.one.var <- c()
for(i in 1:length(one.var))
for(i in 1:length(one.var))
sources.one.var <- c(sources.one.var,
sources.one.var <- c(sources.one.var,
sources.nv[sum(p.nv[1:one.var[i]])])
sources.nv[sum(p.nv[1:one.var[i]])])
sources.one.var
sources.one.var
[1] "Noise" "Social and economic capital" "Tobacco Smoke"

Only variables to near sources

sources.nv[sources.nv == "Noise"] <- "Traffic"
sources.nv[sources.nv == "Social\sqcupand\sqcupeconomicьcapital"] <- "Lifestyle"
sources.nv[sources.nv == "Tobacco\sqcupSmoke"] <- "Lifestyle"
new.order <- order(sources.nv)

Exposome data

exposome.data.nv <- exposome.data.nv[,new.order]
exposomeNA.data.nv <- exposomeNA.data.nv[,new.order]

Sources of each sample

sources.nv <- sources.nv[new.order]

Number of variables for each source with only numeric variables

p.nv <- as.vector(table(sources.nv))

```
```


Correlogram between covariates variables and variables with

absolute correlation greater than 0.5

Correlation matrix

cor.matrix <- cor(exposome.data.nv)

Cumulative sum of number of variables for each source

cum.sum.p.nv <- cumsum(p.nv)

Covariates indexes

covariates.var <- 1:p.nv[1]

High.correlated sources indexes

curr.index <- 1
high.correlated.cov <- list()

Correograms of high correlated sources

for(i in 2:length(cum.sum.p.nv)){
next.var <- (cum.sum.p.nv[i - 1] + 1):cum.sum.p.nv[i]
\# Current correlation matrix
cor.mat <- cor.matrix[covariates.var, next.var]
\# High correlated sources
if(length(cor.mat[abs(cor.mat) > 0.5]) > 0){
\# Correograms
corrplot(cor.mat, method = "circle", type = "upper",
title = paste0("Covariates\sqcupvs\sqcup",
sources.nv[cum.sum.p.nv[i - 1] + 1]),
tl.cex = 0.5, tl.col = "black", mar = c(0,0,1,0))
\# High.correlated sources indexes
high.correlated.cov[[curr.index]] <- next.var
curr.index <- curr.index + 1
}
}

```

\section*{Covariates vs Air Pollution}


Figure A.2: Correlogram between Covariates variables and Air Pollution variables.

\section*{Covariates vs Metals}


Figure A.3: Correlogram between Covariates variables and Metals variables.

\section*{Covariates vs Organochlorines}


Figure A.4: Correlogram between Covariates variables and Organochlorines variables.


Figure A.5: Correlogram between Covariates variables and PFAS variables.
```


Correlation matrix of covariates

cor.mat <- cor.matrix[covariates.var, covariates.var]

Correlogram between covariates

corrplot(cor.mat, method = "circle", type = "upper",
title = "Covariates\sqcupvs\sqcupCovariates",
tl.cex = 0.5, tl.col = "black", mar = c(0,0,1,0))

```


Figure A.6: Correlogram between Covariates variables.
```


Correlograms betwen sources that are high correlated with covariates

for(i in 1:(length(high.correlated.cov) - 1)){
for(j in (i + 1):length(high.correlated.cov)){
\# Current correlation matrix
cor.mat <- cor.matrix[high.correlated.cov[[i]],
high.correlated.cov[[j]]]
\# Correograms
corrplot(cor.mat, method = "circle", type = "upper",
title = paste0(sources.nv[high.correlated.cov[[i]][1]],
"\sqcupvs!",
sources.nv[high.correlated.cov[[j]][1]]),

```
```

 tl.cex = 0.5, tl.col = "black", mar = c(0,0,1,0))
 }
 }

```

Air Pollution vs Metals


Figure A.7: Correlogram between Air Pollution variables and Metals variables.

Air Pollution vs Organochlorines


Figure A.8: Correlogram between Air Pollution variables and Organochlorines variables.

Air Pollution vs Per- and polyfluoroalkyl substances (PFAS)


Figure A.9: Correlogram between Air Pollution variables and PFAS variables.

Metals vs Organochlorines


Figure A.10: Correlogram between Metals variables and Organochlorines variables.


Figure A.11: Correlogram between Metals variables and PFAS variables.

\section*{Organochlorines vs Per- and polyfluoroalkyl substances (PFAS)}


Figure A.12: Correlogram between Organochlorines variables and PFAS variables.
```


Creating new subsources for covariates

age.cov <- c("e3_yearbir_None", "h_age_None", "e3_gac_None",
"hs_child_age_None")
body_measures.cov <- c("h_mbmi_None", "hs_c_weight_None",
"hs_wgtgain_None", "hs_c_height_None")
childs.info <- c("h_native_None", "e3_sex_None")
parents.info <- c("h_cohort", "h_edumc_None", "h_parity_None")

Dividing Covariates source into subsources for both

numeric exposome data and the general one

colnames <- colnames(exposome.data)
colnames.nv <- colnames (exposome.data.nv)
sources[colnames %in% age.cov] <- "O.Covariates.Age"
sources.nv[colnames.nv %in% age.cov] <- "O.Covariates.Age"
sources[colnames %in% body_measures.cov]
<- "O.Covariates.Body.Measures"
sources.nv[colnames.nv %in% body_measures.cov]
<- "O.Covariates.Body.Measures"
sources[colnames %in% parents.info] <- "O.Covariates.Parents.Info"
sources[colnames %in% childs.info] <- "O.Covariates.Childs.Info"

```
```


Order sources and data

order.sources <- order(sources)
order.sources.nv <- order(sources.nv)
sources <- sources[order.sources]
exposome.data <- exposome.data[, order.sources]
sources.nv <- sources.nv[order.sources.nv]
exposome.data.nv <- exposome.data.nv[, order.sources.nv]

Number of variables for each source with only numeric variables

p.nv <- as.vector(table(sources.nv))

```
```


Boxplot of all covariates variables

boxplot(exposome.data.nv[, covariates.var], las = 2, cex.axis = 0.5)

```


Figure A.13: Boxplot of all the Covariates variables.
```


Printing outliers

outliers <- c()
covariates.var.names <- colnames(exposome.data.nv)[covariates.var]
for(i in 1:length(covariates.var)){
out.values <-
boxplot.stats(exposome.data.nv[, covariates.var[i]])\$out
out.samples <-
which(exposome.data.nv[, covariates.var[i]] %in% out.values)

```
```

 if(length(out.samples) > 0){
 cat(paste0("The\sqcupvariableь", covariates.var.names[i],
 "\sqcuphas\sqcupthe\sqcupfollowingьouliers:\n"))
 print(out.samples)
 cat("\n")
 # Outliers
 outliers <- c(outliers, out.samples)
 }
 }
cat(paste0("Total\sqcupnumber\sqcupof \sqcupoutliers:\sqcup", length(unique(outliers))))

```

The variable e3_gac_None has the following ouliers:
[1] \begin{tabular}{llllllllllll}
32 & 62 & 131 & 167 & 279 & 335 & 352 & 383 & 397 & 425 & 445
\end{tabular}
\(\begin{array}{lllllll}484 & 488 & 647 & 648 & 668 & 712 & 753\end{array}\)
\(\begin{array}{llllllllllll}\text { [19] } & 792 & 822 & 832 & 833 & 834 & 844 & 848 & 877 & 914 & 935 & 962\end{array}\)
97510981173122612321281
The variable h_age_None has the following ouliers:
[1] \(\begin{array}{llllllllllllll}78 & 247 & 273 & 307 & 345 & 586 & 594 & 725 & 851 & 856 & 962 & 1059 & 1154\end{array}\)
The variable h_mbmi_None has the following ouliers:
\begin{tabular}{lrrrrrrrrrrl} 
[1] & 10 & 15 & 18 & 30 & 46 & 48 & 77 & 115 & 138 & 177 & 189 \\
203 & 209 & 225 & 226 & 255 & 256 & 285 & & & & & \\
{\([19]\)} & 288 & 297 & 324 & 406 & 407 & 410 & 416 & 461 & 492 & 504 & 540 \\
569 & 573 & 574 & 614 & 615 & 616 & 626 & & & & & \\
{\([37]\)} & 658 & 705 & 718 & 726 & 728 & 751 & 769 & 864 & 936 & 940 & 947 \\
973 & 1047 & 1053 & 1059 & 1074 & 1187 & 1190 & & & & & \\
{\([55]\)} & 1204 & 1275
\end{tabular}

The variable hs_wgtgain_None has the following ouliers:
[1] \(\quad 225 \quad 453 \quad 530 \quad 563 \quad 721 \quad 817 \quad 917 \quad 992 \quad 1045\)

The variable hs_c_height_None has the following ouliers:
[1] \(\quad 55 \quad 195 \quad 400 \quad 613 \quad 1285\)

The variable hs_c_weight_None has the following ouliers:
\begin{tabular}{rrrrrrrrrrrr}
{\([1]\)} & 12 & 43 & 79 & 181 & 285 & 299 & 407 & 441 & 453 & 487 & 608 \\
613 & 617 & 623 & 663 & 686 & 690 & 737 & & & & & \\
{\([19]\)} & 758 & 869 & 875 & 880 & 939 & 985 & 991 & 1020 & 1045 & 1061 & 1177 \\
1182 & 1212 & 1250 & 1285 & & & & & & & &
\end{tabular}

Total number of outliers: 142
```

\#Asthma factor
asthma <- as.factor(y\$hs_asthma)
levels(asthma) <- c("None", "Yes")

Boxplots

for(i in 1:length(covariates.var))
boxplot(exposome.data.nv[, covariates.var[i]] ~ asthma,
ylab = covariates.var.names[i],
xlab = "Asthma")

```


Figure A.14: Boxplot of the covariate variable e3_gac_None according to the factor Asthma.


Figure A.15: Boxplot of the covariate variable \(h \_a g e \_\)None according to the factor Asthma.


Figure A.16: Boxplot of the covariate variable hs_child_age_None according to the factor Asthma.


Figure A.17: Boxplot of the covariate variable h_mbmi_None according to the factor Asthma.


Figure A.18: Boxplot of the covariate variable hs_wgtgain_None according to the factor Asthma.


Figure A.19: Boxplot of the covariate variable hs_c_height_None according to the factor Asthma.


Figure A.20: Boxplot of the covariate variable hs_c_weight_None according to the factor Asthma.
```


Principal component analysis

prin.comp <- prcomp(exposome.data.nv[, covariates.var], retx = T,
center = T, scale. = T)

Percentage of variation explained for the PCA dimension

cat(paste0("PCA", 1:7, "ьப"))
cat("\n")
cat(paste0(round(cumsum(prin.comp$sdev)/sum(prin.comp$sdev), 4)*100,
"%"))

```

PCA1 PCA2 PCA3 PCA4 PCA5 PCA6 PCA7
\(24.97 \% 41.16 \% 56.97 \% 71.7 \% 86.19 \% 94.5 \% 100 \%\)
```


Biplot two first principal components

fviz_pca_biplot(prin.comp, axes = c(1,2), xlab = "FirstьComponent",
ylab = "SecondபComponent", geom = c("point"),
habillage = asthma, labelsize = 1)

```


Figure A.21: Biplot of the two first principal components according to the factor Asthma.
- Exposome data with factor variables converted to dummy binary variables
```


Factors on exposome data

factors.exposome <- which(as.vector(sapply(exposome.data, is.factor)))

```
```


Non-binary factors

non.binary.factors <- c()
for(i in 1:length(factors.exposome)){
if(length(levels(exposome.data[, factors.exposome[i]])) > 2){
print(table(exposome.data[, factors.exposome[i]],
dnn = colnames(exposome.data)[factors.exposome[i]]))
non.binary.factors <- c(non.binary.factors, factors.exposome[i])
}
}

```
e3_yearbir_None
2003200420052006200720082009
    \(\begin{array}{lllllll}55 & 107 & 241 & 256 & 250 & 379 & 13\end{array}\)
h_native_None
    \(\begin{array}{lll}0 & 1 & 2\end{array}\)
    146671088
h_cohort
    \(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6\end{array}\)
202198224207272198
h_edumc_None
    123
178449674
h_parity_None
    \(0 \quad 1 \quad 2\)
601464236
h_bfdur_Ter
        \((0,10.8](10.8,34.9] \quad(34.9, \operatorname{Inf}]\)
            506270525
h_cereal_preg_Ter
        \((0,9] \quad(9,27.3](27.3, \operatorname{Inf}]\)
            531459311
h_dairy_preg_Ter
        (0,17.1] (17.1,27.1] (27.1, Inf]
            270380651
h_fastfood_preg_Ter
        (0,0.25] (0.25,0.83] (0.83, Inf]
            \(94 \quad 535 \quad 672\)
h_fish_preg_Ter
    \((0,1.9](1.9,4.1](4.1, \operatorname{Inf}]\)
            343490468
h_fruit_preg_Ter
    ( \(0,0.6\) ] ( \(0.6,18.2\) ] (18.2, Inf]

```

hs_total_cereal_Ter
(0,14.1] (14.1,23.6] (23.6,Inf]
418 442 441
hs_total_fish_Ter
(0,1.5] (1.5,3] (3,Inf]
389 454 458
hs_total_fruits_Ter
(0,7] (7,14.1] (14.1,Inf]
413 407 481
hs_total_lipids_Ter
(0,3] (3,7] (7,Inf]
397 403 501
hs_total_meat_Ter
(0,6] (6,9] (9,Inf]
425 411 465
hs_total_potatoes_Ter
(0,3] (3,4] (4,Inf]
417 405 479
hs_total_sweets_Ter
(0,4.1] (4.1,8.5] (8.5,Inf]
344 516 441
hs_total_veg_Ter
(0,6] (6,8.5] (8.5,Inf]
404 314 583
hs_total_yog_Ter
(0,6] (6,8.5] (8.5,Inf]
779 308 214
hs_ln_cat_h_None
1
476 633 104 61 27
hs_lden_cat_s_None
1
580 265 299 104 37 16
FAS_cat_None
Low Middle High
146 486 669
hs_contactfam_3cat_num_None
(almost) Daily
863

```

Once a week Less than once a week 38256
1 organisation 2 or more organisations 355 198
```

hs_cotinine_mcat_None

```
```

Non-smokers SHS smokers Smokers
759 157 385
hs_smk_parents_None
both neither one
142 814 345

Three levels factors to binary

for(i in 1:length(non.binary.factors)){
factor <- exposome.data[, non.binary.factors[i]]
levels <- levels(factor)
if(length(levels) == 3){
sum1 <- sum(factor %in% levels [1:2])
sum2 <- sum(factor %in% levels [2:3])
if(sum1 < sum2){
levels(exposome.data[, non.binary.factors[i]])[1:2] <-
paste0(levels[1], ", ப", levels[2])
} else {
levels(exposome.data[, non.binary.factors[i]])[2:3] <-
paste0(levels[2], ",\sqcup", levels[3])
}
}
}

More than three levels factors to binary

h_cohort

levels <- levels(exposome.data$h_cohort)
levels(exposome.data$h_cohort)[levels %in% c(4, 5, 6)] <- "4, ப5, ப6"
levels(exposome.data\$h_cohort)[levels %in% c(1, 2, 3)] <- "1, ப2, ப3"

e3_yearbir_None

levels <- levels(exposome.data$e3_yearbir_None)
levels(exposome.data$e3_yearbir_None) [levels
%in% c(2007, 2008, 2009)] <-
"2007, ப2008, ப2009"
levels(exposome.data\$e3_yearbir_None)[levels
%in% c(2003, 2004, 2005, 2006)] <-
"2003,\sqcup2004, ப2005, ப2006"

h_pamod_t3_None

levels <- levels(exposome.data$h_pamod_t3_None)
levels(exposome.data$h_pamod_t3_None)[levels %in%
c("None", "Often", "Sometimes")] <- "Non \&VerybOften"

```
```


hs_ln_cat_h_None

levels <- levels(exposome.data$hs_ln_cat_h_None)
levels(exposome.data$hs_ln_cat_h_None)[levels %in% c(1, 3, 4, 5)] <-
" 1, ப3, ப4, ப5"

hs_lden_cat_s_None

levels <- levels(exposome.data$hs_lden_cat_s_None)
levels(exposome.data$hs_lden_cat_s_None)[levels
%in% c(2, 3, 4, 5, 6)] <-
" 2, \sqcup3, \sqcup4, ப5, \sqcup6"

Exposome data with factors being dummy variables

exposome.data.dv <- exposome.data
exposomeNA.data.dv <- exposomeNA.data

Sources with factors being dummy variables

sources.dv <- sources

Change a factor for a dummy variable in data

update.factor.to.dummy <- function(data, factor.index){
\# Factor variable
variable <- data[, factor.index]
dummy.variable <- acm.disjonctif(data.frame(variable))
if(any(is.na(variable))){
NA.samples <- which(is.na(variable))
dummy.variable[NA.samples,] <- rep(NA, length(dummy.variable))
}
if(factor.index > 1)
data <- data.frame(data[, 1:(factor.index - 1)],
dummy.variable,
data[, (factor.index + 1): length(data)])
else
data <- data.frame(dummy.variable,
data[, (factor.index + 1):length(data)])
return(data)
}
for(i in length(factors.exposome):1){
\# Factor to convert to dummy
factor.exposome <- factors.exposome[i]

```
```

 # Updated sources with dummy variables
 sources.dv <-
 c(sources.dv[1:factor.exposome],
 rep(sources.dv[factor.exposome],
 length(levels(exposome.data.dv[, factor.exposome])) - 1),
 sources.dv[(factor.exposome + 1):
 length(sources.dv)])
 # Updated exposome data with dummy variables
 exposome.data.dv <- update.factor.to.dummy(exposome.data.dv,
 factor.exposome)
 exposomeNA.data.dv <- update.factor.to.dummy(exposomeNA.data.dv,
 factor.exposome)
 }

Number of variables for each source with factors

being dummy variable

p.dv <- as.vector(table(sources.dv))

```

\section*{Appendix B}

\section*{Code: an incomplete source feature selection (iSFS) model}

\section*{B. 1 iSFS model for the least square loss function}

\section*{B.1.1 Algorithm of the iSFS model for the least square loss function}
```


iSFS algorithm

iSFS <- function(p, X, y, lambda, L.step = 1.5, maxIter.iSFS = 300,
tol.iSFS = 1e-12, omega.alpha = "LR", tol.alpha
= 1e-12, maxIter.alpha = 20, omega.beta = "LR",
beta0.comp = "LMR", tol.beta = 1e-12,
maxIter.beta = 20, gamma = 1, to.normalize = F,
beta0, alpha0){
\# Initializes the progress bar
pb <- txtProgressBar(min = 0, \# Minimum value of the progress bar
max = maxIter.iSFS*length(lambda), \# Maximum value of
\# the progress bar
style = 3, \# Progress bar style
width = 50, \# Progress bar width
char = "=") \# Character used to create the bar
\# L.step factor definition
L.step <- max(1.001, L.step)
\# Features
X <- as.matrix(X)
translation <- c()
scale <- c()
if(to.normalize){
for(j in 1:dim(X)[2]){

```
```

 x <- X[, j]
 x <- x[!is.na(x)]
 min.x <- min(x)
 max.x <- max(x)
 translation <- c(translation, min.x)
 scale <- c(scale, max.x - min.x)
 X[, j] <- (X[, j] - translation[j])/scale[j]
 }
 }

Outcome

if(is.factor(y))
y <- as.numeric(as.character(y))

Number of sources

S <- length(p)

We compute the profiles

pf.vec <- get_profile(p, X)

If it is complete data, alpha weights are fixed

keep.alpha <- length(levels(pf.vec)) == 1

Best alpha, beta and lambda parameters

if(missing(alpha0))
best.alpha <- alpha.initialization(pf.vec, S, keep.alpha)
else if(is.list(alpha0)) best.alpha <- alpha0
else best.alpha <- as.list(alpha0)
if(missing(beta0))
best.beta <- beta.initialization(p, X, y, beta0.comp)
else if(is.list(beta0)) best.beta <- beta0
else best.beta <- as.list(betaO)
best.lambda <- NA

Best objective function value

obj.func.best <- objective.fun(p, X, y, best.beta, best.alpha,
pf.vec)
for(j in 1:length(lambda)){
\# Initial objective function value
obj.func0 <- obj.func.best
\# We initialize alphaO weights
alpha0 <- best.alpha
\# We initialize betaO models
beta0 <- best.beta

```
```


If alpha is always fixed

if(keep.alpha){
\# We compute the optimal beta
for(k in 1:maxIter.iSFS){
\# Computing beta when alpha is fixed
beta <- prox.grad.iter.method(p, X, y, alpha0, beta0, pf.vec,
lambda[j], omega.beta, L.step,
maxIter.beta, tol.beta, gamma)
\# Objective function computation
obj.func <- objective.fun(p, X, y, beta, alpha0, pf.vec)
\# If the objective stops decreasing, we stop computing
if(abs(obj.func - obj.func0) < tol.iSFS){
if(obj.func < obj.func0){
\# We update the beta vector
betaO <- beta
\# and the objective function value
obj.func0 <- obj.func
}
break;
}
\# Otherwise, we update the beta vector
beta0 <- beta
\# and the objective function value
obj.func0 <- obj.func
\# Sets the progress bar to the current state
setTxtProgressBar(pb, k + (j - 1)*maxIter.iSFS)
}
} else {
\# We compute the optimal alpha and beta
for(k in 1:maxIter.iSFS){
\# Computing alpha when beta is fixed
alpha <- alpha.compute(p, X, y, beta0, alpha0, pf.vec,
omega.alpha, L.step, maxIter.alpha,
tol.alpha)
\# Computing beta when alpha is fixed
beta <- prox.grad.iter.method(p, X, y, alpha, beta0, pf.vec,
lambda[j], omega.beta, L.step,
maxIter.beta, tol.beta, gamma)
\# Objective function computation

```
```

 obj.func <- objective.fun(p, X, y, beta, alpha, pf.vec)
 # If the objective stops decreasing, we stop computing
 if(abs(obj.func - obj.func0) < tol.iSFS){
 if(obj.func < obj.func0){
 # We update both alpha and beta vectors
 beta0 <- beta
 alpha0 <- alpha
 # and the objective function value
 obj.func0 <- obj.func
 }
 break;
 }
 # Otherwise, we update both alpha and beta vectors
 beta0 <- beta
 alpha0 <- alpha
 # and the objective function value
 obj.func0 <- obj.func
 # Sets the progress bar to the current state
 setTxtProgressBar(pb, k + (j - 1)*maxIter.iSFS)
 }
 }
 # Get best parameters
 if(obj.func0 < obj.func.best){
 best.beta <- beta0
 best.alpha <- alpha0
 best.lambda <- lambda[j]
 obj.func.best <- obj.func0
 }
 }
 # Ending progress bar
 setTxtProgressBar(pb, maxIter.iSFS*length(lambda))
 # Final coefficients
 return(list(alpha = best.alpha, beta = best.beta,
 lambda = best.lambda, profile.vector = pf.vec,
 to.normalize = to.normalize, translation = translation,
 scale = scale))
 }

```

\section*{B.1.2 Predictions on the iSFS algorithm}
```


Predictions of the iSFS model

predict.iSFS <- function(iSFS.model, X, p){
\# Features as matrix
X <- as.matrix(X)
if(iSFS.model$to.normalize)
 for(j in 1:dim(X)[2])
 X[, j] <- (X[, j] - iSFS.model$translation[j])/
iSFS.model$scale[j]
 # Samples and sources
 n <- dim(X)[1]
 S <- length(p)
 # Profiles of data to predict
 pf.vec.pred <- get_profile(p, X)
 pf.vec.pred <- as.numeric(levels(pf.vec.pred))[pf.vec.pred]
 # Predicted outcome
 y.pred <- numeric(length = n)
 for(i in 1:n){
 # Profile m of sample i
 m <- pf.vec.pred[i]
 # Block sample for profile
 model.profile.index <- which(levels(iSFS.model$profile.vector)
== m)
if(length(model.profile.index) == 0)
y.pred[i] <- NA
else {
sources.profile <- which(as.binary(m, n = S))
model.profile.index <- as.integer(model.profile.index[1])
col <- 1
for(j in 1:S){
nextCol <- col + p[j] - 1
if(j %in% sources.profile)
y.pred[i] <- y.pred[i] +
iSFS.model$alpha[[model.profile.index]][j]*
 X[i, col:nextCol]%*%iSFS.model$beta[col:nextCol]
col <- nextCol + 1
}
}
}

```
B. 1 iSFS model for the least square loss function
return(y.pred)

\section*{Appendix C}

\section*{Code, figures and tables: discussion and applications of the iSFS model on simulated and exposome data}
```


Evaluation values for the iSFS model

evaluation.model.param <- function(y.test, y.pred, n.vars = 0){
\# Convert factor to numeric
if(is.factor(y.test))
y.test <- as.numeric(as.character(y.test))
\# Number of samples
n <- length(y.test)
\# Error term (y - predictions)
error <- y.test - y.pred
\# Compute mean square error
mean.sq.error <- sum(error^2)/n
\# Compute root mean square error
root.mean.sq.error <- sqrt(mean.sq.error)
\# Compute mean absolute error
mean.abs.error <- sum(abs(error))/n
\# Compute root mean absolute error
root.mean.abs.error <- sqrt(mean.abs.error)
\# Compute R squared
SS.res <- sum(error^2)

```
```

 mean.y <- mean(y.test)
 SS.tot <- sum((y.test - mean.y)^2)
 R.squared <- 1 - SS.res/SS.tot
 # Compute adjusted R squared
 adj.R.squared <- 1 - (SS.res*(n - 1))/(SS.tot*(n - n.vars - 1))
 # Evaluation parameters
 evaluation_param <- data.frame(mean.sq.error, root.mean.sq.error,
 mean.abs.error, root.mean.abs.error,
 R.squared, adj.R.squared)
 colnames(evaluation_param) <- c("MSE", "RMSE", "MAE", "RMAE",
 "R}\mp@subsup{R}{\sqcup}{
 # Table with evaluation parameters
 knitr::kable(evaluation_param, format = "simple", caption =
 "Evaluation}\sqcupvalues\sqcupfor\sqcupiSFS model\sqcuppredictions.",'
 align = rep('c', 6))
 return(evaluation_param)
 }

```

\section*{C. 1 Simulated data}
```


Data sets separated in training 67\% and test (33%)

We select the indices that we will use for training

indexes_partition <- createDataPartition(y = 1:dim(X_nc)[1],
p = prob_train, list = FALSE)

Data matrix non correlation

X_nc_train <- X_nc[indexes_partition,]
X_nc_test <- X_nc[-indexes_partition,]
X.NA_nc_train <- X.NA_nc[indexes_partition,]
X.NA_nc_test <- X.NA_nc[-indexes_partition,]

Data matrix low correlation

X_lc_train <- X_lc[indexes_partition,]
X_lc_test <- X_lc[-indexes_partition,]
X.NA_lc_train <- X.NA_lc[indexes_partition,]
X.NA_lc_test <- X.NA_lc[-indexes_partition,]

Data matrix high correlation

```
```

X_hc_train <- X_hc[indexes_partition,]
X_hc_test <- X_hc[-indexes_partition,]
X.NA_hc_train <- X.NA_hc[indexes_partition,]
X.NA_hc_test <- X.NA_hc[-indexes_partition,]

Outcome non correlation

y_nc_train <- y_nc[indexes_partition]
y_nc_test <- y_nc[-indexes_partition]

Outcome low correlation

y_lc_train <- y_lc[indexes_partition]
y_lc_test <- y_lc[-indexes_partition]

Outcome high correlation

y_hc_train <- y_hc[indexes_partition]
y_hc_test <- y_hc[-indexes_partition]

```

\section*{C.1.1 Comparison on complete data}
- Non-correlated data
```

iSFS.Model_nc <- iSFS(p = p.synth, X = X_nc_train, y = y_nc_train,
lambda = 0.00000005, L.step = 10, maxIter.iSFS
= 100, maxIter.alpha = 20, maxIter.beta = 50)
y_nc.pred_train <- predict.iSFS(iSFS.Model_nc, X_nc_train, p.synth)
evaluation.model.param(y_nc_train, y_nc.pred_train, sum(p.synth))
y_nc.pred_test <- predict.iSFS(iSFS.Model_nc, X_nc_test, p.synth)
evaluation.model.param(y_nc_test, y_nc.pred_test, sum(p.synth))
plot(y_nc_train, y_nc.pred_train)
abline(a = 0, b = 1)
plot(y_nc_test, y_nc.pred_test)
abline(a = 0, b = 1)

```
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 0.2058177 & 0.4536713 & 0.3618598 & 0.6015478 & 0.9986472 & 0.9982907
\end{tabular}

Table C.1: Evaluation values for the model when used complete non-correlated synthetic training data.
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 0.2821816 & 0.5312077 & 0.425397 & 0.6522247 & 0.9983073 & 0.9970423
\end{tabular}

Table C.2: Evaluation values for the model when used complete non-correlated synthetic testing data.


Figure C.1: Predicted training outcome vs real training outcome for complete non-correlated synthetic data.


Figure C.2: Predicted testing outcome vs real testing outcome for complete non-correlated synthetic data.
```


Non-relevant features

which(abs(iSFS.Model_nc\$beta) < 0.0001)

```
[1] 166
- Low-correlated data
```

iSFS.Model_lc <- iSFS(p = p.synth, X = X_lc_train, y = y_lc_train,
lambda = 0.00000005, L.step = 10, maxIter.iSFS
= 100, maxIter.alpha = 20, maxIter.beta = 50)
y_lc.pred_train <- predict.iSFS(iSFS.Model_lc, X_lc_train, p.synth)
evaluation.model.param(y_lc_train, y_lc.pred_train, sum(p.synth))
y_lc.pred_test <- predict.iSFS(iSFS.Model_lc, X_lc_test, p.synth)
evaluation.model.param(y_lc_test, y_lc.pred_test, sum(p.synth))
plot(y_lc_train, y_lc.pred_train)
abline(a = 0, b = 1)
plot(y_lc_test, y_lc.pred_test)
abline(a = 0, b = 1)

```
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 0.2018781 & 0.4493085 & 0.3581987 & 0.598497 & 0.9980928 & 0.9975903
\end{tabular}

Table C.3: Evaluation values for the model when used complete low-correlated synthetic training data.
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 0.2928369 & 0.5411441 & 0.4351202 & 0.6596364 & 0.9975627 & 0.9957413
\end{tabular}

Table C.4: Evaluation values for the model when used complete low-correlated synthetic testing data.


Figure C.3: Predicted training outcome vs real training outcome for complete low-correlated synthetic data.


Figure C.4: Predicted testing outcome vs real testing outcome for complete low-correlated synthetic data.
```


Non-relevant features

which(abs(iSFS.Model_lc\$beta) < 0.0001)

```
integer (0)
- High-correlated data
```

iSFS.Model_hc <- iSFS(p = p.synth, X = X_hc_train, y = y_hc_train,
lambda = 0.00000005, L.step = 10, maxIter.iSFS
= 100, maxIter.alpha = 20, maxIter.beta = 50)
y_hc.pred_train <- predict.iSFS(iSFS.Model_hc, X_hc_train, p.synth)
evaluation.model.param(y_hc_train, y_hc.pred_train, sum(p.synth))
y_hc.pred_test <- predict.iSFS(iSFS.Model_hc, X_hc_test, p.synth)
evaluation.model.param(y_hc_test, y_hc.pred_test, sum(p.synth))
plot(y_hc_train, y_hc.pred_train)
abline(a = 0, b = 1)
plot(y_hc_test, y_hc.pred_test)
abline(a = 0, b = 1)

```
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 0.2060892 & 0.4539705 & 0.3575158 & 0.5979262 & 0.9907714 & 0.9883398
\end{tabular}

Table C.5: Evaluation values for the model when used complete high-correlated synthetic training data.
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 0.3114668 & 0.5580921 & 0.4437904 & 0.6661759 & 0.9862592 & 0.9759902
\end{tabular}

Table C.6: Evaluation values for the model when used complete high-correlated synthetic testing data.


Figure C.5: Predicted training outcome vs real training outcome for complete high-correlated synthetic data.


Figure C.6: Predicted testing outcome vs real testing outcome for complete high-correlated synthetic data.
```


Non-relevant features

which(abs(iSFS.Model_hc\$beta) < 0.0001)

```
[1] 172

\section*{C.1.2 Comparison on incomplete data}
- Non-correlated data
```

iSFS.ModelNA_nc <- iSFS(p = p.synth, X = X.NA_nc_train,
y = y_nc_train, lambda = 0.00000005,
L.step = 10, maxIter.iSFS = 20,
maxIter.alpha = 20, maxIter.beta = 20)
yNA_nc.pred_train <- predict.iSFS(iSFS.ModelNA_nc, X.NA_nc_train,
p.synth)
evaluation.model.param(y_nc_train, yNA_nc.pred_train, sum(p.synth))
yNA_nc.pred_test <- predict.iSFS(iSFS.ModelNA_nc, X.NA_nc_test,
p.synth)
evaluation.model.param(y_nc_test, yNA_nc.pred_test, sum(p.synth))
plot(y_nc_train, yNA_nc.pred_train)
abline(a = 0, b = 1)
plot(y_nc_test, yNA_nc.pred_test)
abline(a = 0, b = 1)

```
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 15.29041 & 3.910295 & 2.863431 & 1.692168 & 0.8994971 & 0.8730157
\end{tabular}

Table C.7: Evaluation values for the model when used block-wise missing non-correlated synthetic training data.
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 28.60194 & 5.348078 & 3.701681 & 1.923975 & 0.8284309 & 0.7002119
\end{tabular}

Table C.8: Evaluation values for the model when used block-wise missing non-correlated synthetic testing data.


Figure C.7: Predicted training outcome vs real training outcome for block-wise missing noncorrelated synthetic data.


Figure C.8: Predicted testing outcome vs real testing outcome for block-wise missing noncorrelated synthetic data.
- Low-correlated data
```

iSFS.ModelNA_lc <- iSFS(p = p.synth, X = X.NA_lc_train,
y = y_lc_train, lambda = 0.00000005,
L.step = 10, maxIter.iSFS = 20,
maxIter.alpha = 20, maxIter.beta = 20)
yNA_lc.pred_train <- predict.iSFS(iSFS.ModelNA_lc, X.NA_lc_train,
p.synth)
evaluation.model.param(y_lc_train, yNA_lc.pred_train, sum(p.synth))
yNA_lc.pred_test <- predict.iSFS(iSFS.ModelNA_lc, X.NA_lc_test,
p.synth)
evaluation.model.param(y_lc_test, yNA_lc.pred_test, sum(p.synth))

```
```

plot(y_lc_train, yNA_lc.pred_train)
abline(a = 0, b = 1)
plot(y_lc_test, yNA_lc.pred_test)
abline(a = 0, b = 1)

```
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 18.36427 & 4.285356 & 3.264594 & 1.806819 & 0.8265111 & 0.7807988
\end{tabular}

Table C.9: Evaluation values for the model when used block-wise missing low-correlated synthetic training data.
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 30.2046 & 5.495871 & 3.983668 & 1.995913 & 0.7418698 & 0.5489612
\end{tabular}

Table C.10: Evaluation values for the model when used block-wise missing low-correlated synthetic testing data.


Figure C.9: Predicted training outcome vs real training outcome for block-wise missing lowcorrelated synthetic data.


Figure C.10: Predicted testing outcome vs real testing outcome for block-wise missing lowcorrelated synthetic data.
- High-correlated data
```

iSFS.ModelNA_hc <- iSFS(p = p.synth, X = X.NA_hc_train,
y = y_hc_train, lambda = 0.00000005,
L.step = 10, maxIter.iSFS = 20,
maxIter.alpha = 20, maxIter.beta = 20)
yNA_hc.pred_train <- predict.iSFS(iSFS.ModelNA_hc, X.NA_hc_train,
p.synth)
evaluation.model.param(y_hc_train, yNA_hc.pred_train, sum(p.synth))
yNA_hc.pred_test <- predict.iSFS(iSFS.ModelNA_hc, X.NA_hc_test,
p.synth)
evaluation.model.param(y_hc_test, yNA_hc.pred_test, sum(p.synth))
plot(y_hc_train, yNA_hc.pred_train)
abline(a = 0, b = 1)
plot(y_hc_test, yNA_hc.pred_test)
abline(a = 0, b = 1)

```
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 4.758615 & 2.181425 & 1.669518 & 1.292098 & 0.7869108 & 0.7307644
\end{tabular}

Table C.11: Evaluation values for the model when used block-wise missing high-correlated synthetic training data.
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 6.160887 & 2.482113 & 1.88701 & 1.373685 & 0.7282028 & 0.5250803
\end{tabular}

Table C.12: Evaluation values for the model when used block-wise missing high-correlated synthetic testing data.


Figure C.11: Predicted training outcome vs real training outcome for block-wise missing highcorrelated synthetic data.


Figure C.12: Predicted testing outcome vs real testing outcome for block-wise missing highcorrelated synthetic data.

\section*{C. 2 Exposome data}
```


We select the indices that we will use for training

indexes_partition <-
createDataPartition(y = 1:dim(exposome.data.nv)[1], p = prob_train,
list = FALSE)

```
```


Data matrix numeric variables

exposome.data.nv_train <- exposome.data.nv[indexes_partition,]
exposome.data.nv_test <- exposome.data.nv[-indexes_partition,]
exposomeNA.data.nv_train <- exposomeNA.data.nv[indexes_partition,]
exposomeNA.data.nv_test <- exposomeNA.data.nv[-indexes_partition,]

Data matrix dummy variables

exposome.data.dv_train <- exposome.data.dv[indexes_partition,]
exposome.data.dv_test <- exposome.data.dv[-indexes_partition,]
exposomeNA.data.dv_train <- exposomeNA.data.dv[indexes_partition,]
exposomeNA.data.dv_test <- exposomeNA.data.dv[-indexes_partition,]

Outcome

y_train <- y[indexes_partition,]
y_test <- y[-indexes_partition,]

```

\section*{C.2.1 Comparison on complete data}

\section*{C.2.1.1 Numeric variables}
- Outcome hs_zbmi_who
```

iSFS.Model.nv <- iSFS(p = p.nv, X = exposome.data.nv_train,
y = y_train$hs_zbmi_who, lambda = 0.000000005,
 L.step = 10, maxIter.iSFS = 100,
 maxIter.alpha = 20, maxIter.beta = 50)
y.nv.pred_train <- predict.iSFS(iSFS.Model.nv, exposome.data.nv_train,
 p.nv)
evaluation.model.param(y_train$hs_zbmi_who, y.nv.pred_train,
sum(p.nv))
y.nv.pred_test <- predict.iSFS(iSFS.Model.nv, exposome.data.nv_test,
p.nv)
evaluation.model.param(y_test$hs_zbmi_who, y.nv.pred_test,
 sum(p.nv))
plot(y_train$hs_zbmi_who, y.nv.pred_train)
abline(a = 0, b = 1)
plot(y_test\$hs_zbmi_who, y.nv.pred_test)
abline(a = 0, b = 1)

```
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 0.4146917 & 0.6439656 & 0.492233 & 0.7015932 & 0.7151116 & 0.6430708
\end{tabular}

Table C.13: Evaluation values for the model when used complete exposome (numeric variables) training data for the outcome hs_zbmi_who.
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 0.4891764 & 0.6994115 & 0.5407398 & 0.7353501 & 0.6325844 & 0.3749544
\end{tabular}

Table C.14: Evaluation values for the model when used complete exposome (numeric variables) testing data for the outcome hs_zbmi_who.


Figure C.13: Predicted training outcome vs real training outcome for complete exposome (numeric variables) data and for the outcome hs_zbmi_who.


Figure C.14: Predicted testing outcome vs real testing outcome for complete exposome (numeric variables) data and for the outcome hs_zbmi_who.
```


Numeric variables names

nv.colnames <- colnames(exposome.data.nv_train)

Non-relevant features

nv.colnames[which(abs(iSFS.Model.nv\$beta) < 0.05)]

```

\section*{[1] "h_NO2_Log"}
"h_trafload_preg_pow1over3"
- Outcome e3_bw
```

iSFS.Model.nv <- iSFS(p = p.nv, X = exposome.data.nv_train,
y = y_train$e3_bw, lambda = 0.00000005,
 L.step = 10, maxIter.iSFS = 100,
 maxIter.alpha = 20, maxIter.beta = 50)
y.nv.pred_train <- predict.iSFS(iSFS.Model.nv, exposome.data.nv_train,
 p.nv)
evaluation.model.param(y_train$e3_bw, y.nv.pred_train, sum(p.nv))
y.nv.pred_test <- predict.iSFS(iSFS.Model.nv, exposome.data.nv_test,
p.nv)
evaluation.model.param(y_test$e3_bw, y.nv.pred_test, sum(p.nv))
plot(y_train$e3_bw, y.nv.pred_train)
abline(a = 0, b = 1)
plot(y_test\$e3_bw, y.nv.pred_test)
abline(a = 0, b = 1)

```
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 0.1470631 & 0.3834881 & 0.2967765 & 0.5447719 & 0.4360478 & 0.2934392
\end{tabular}

Table C.15: Evaluation values for the model when used complete exposome (numeric variables) training data for the outcome e3_bw.
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 0.1713531 & 0.4139482 & 0.3200768 & 0.5657533 & 0.3326442 & -0.1353025
\end{tabular}

Table C.16: Evaluation values for the model when used complete exposome (numeric variables) testing data for the outcome e3_bw.


Figure C.15: Predicted training outcome vs real training outcome for complete exposome (numeric variables) data and for the outcome \(e 3 \_b w\).


Figure C.16: Predicted testing outcome vs real testing outcome for complete exposome (numeric variables) data and for the outcome e3_bw.
```


Non-relevant features

nv.colnames[which(abs(iSFS.Model.nv\$beta) < 0.05)]

```
[1] "h_builtdens300_preg_Sqrt" "hs_builtdens300_h_Sqrt"
[3] "hs_builtdens300_s_Sqrt"
- Outcome hs_correct_raven
```

iSFS.Model.nv <- iSFS(p = p.nv, X = exposome.data.nv_train,
y = y_train\$hs_correct_raven, lambda =
0.00000005, L.step = 10, maxIter.iSFS = 100,
maxIter.alpha = 20, maxIter.beta = 50)

```
```

y.nv.pred_train <- predict.iSFS(iSFS.Model.nv, exposome.data.nv_train,
p.nv)
evaluation.model.param(y_train$hs_correct_raven, y.nv.pred_train,
 sum(p.nv))
y.nv.pred_test <- predict.iSFS(iSFS.Model.nv, exposome.data.nv_test,
 p.nv)
evaluation.model.param(y_test$hs_correct_raven, y.nv.pred_test,
sum(p.nv))
plot(y_train$hs_correct_raven, y.nv.pred_train)
abline(a = 0, b = 1)
plot(y_test$hs_correct_raven, y.nv.pred_test)
abline(a = 0, b = 1)

```
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 16.1775 & 4.022126 & 3.152536 & 1.775538 & 0.631782 & 0.5386694
\end{tabular}

Table C.17: Evaluation values for the model when used complete exposome (numeric variables) training data for the outcome \(h\) s_correct_raven.
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 18.68362 & 4.322455 & 3.371796 & 1.836245 & 0.4873281 & 0.127845
\end{tabular}

Table C.18: Evaluation values for the model when used complete exposome (numeric variables) testing data for the outcome hs_correct_raven.


Figure C.17: Predicted training outcome vs real training outcome for complete exposome (numeric variables) data and for the outcome hs_correct_raven.


Figure C.18: Predicted testing outcome vs real testing outcome for complete exposome (numeric variables) data and for the outcome \(h s_{\text {_correct_raven. }}\)
```


Non-relevant features

nv.colnames[which(abs(iSFS.Model.nv\$beta) < 0.05)]

```
character (0)
- Outcome hs_Gen_Tot
```

iSFS.Model.nv <- iSFS(p = p.nv, X = exposome.data.nv_train,
y = y_train$hs_Gen_Tot, lambda = 0.00000005,
 L.step = 10, maxIter.iSFS = 100, maxIter.alpha
 = 20, maxIter.beta = 50)
y.nv.pred_train <- predict.iSFS(iSFS.Model.nv, exposome.data.nv_train,
 p.nv)
evaluation.model.param(y_train$hs_Gen_Tot, y.nv.pred_train, sum(p.nv))
y.nv.pred_test <- predict.iSFS(iSFS.Model.nv, exposome.data.nv_test,
p.nv)
evaluation.model.param(y_test$hs_Gen_Tot, y.nv.pred_test, sum(p.nv))
plot(y_train$hs_Gen_Tot, y.nv.pred_train)
abline(a = 0, b = 1)
plot(y_test\$hs_Gen_Tot, y.nv.pred_test)
abline(a = 0, b = 1)

```
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 247.2055 & 15.72277 & 12.0205 & 3.467059 & 0.3535896 & 0.1901295
\end{tabular}

Table C.19: Evaluation values for the model when used complete exposome (numeric variables) training data for the outcome \(h s_{-} G e n_{-}\)Tot.
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 341.1913 & 18.47136 & 14.03774 & 3.746698 & -0.07623641 & -0.8308882
\end{tabular}

Table C.20: Evaluation values for the model when used complete exposome (numeric variables) testing data for the outcome hs_Gen_Tot.


Figure C.19: Predicted training outcome vs real training outcome for complete exposome (numeric variables) data and for the outcome \(h s_{-} G e n_{-}\)Tot.


Figure C.20: Predicted testing outcome vs real testing outcome for complete exposome (numeric variables) data and for the outcome \(h s_{-} G e n_{-}\)Tot.
```


Non-relevant features

nv.colnames[which(abs(iSFS.Model.nv\$beta) < 0.05)]

```
character(0)

\section*{C.2.1.2 Dummy variables}
- Outcome hs_zbmi_who
```

iSFS.Model.dv <- iSFS(p = p.dv, X = exposome.data.dv_train, y =
y_train$hs_zbmi_who, lambda = 0.00000005,
 L.step = 10, maxIter.iSFS = 100,
 maxIter.alpha = 20, maxIter.beta = 50,
 beta0.comp = "LR")
y.dv.pred_train <- predict.iSFS(iSFS.Model.dv, exposome.data.dv_train,
 p.dv)
evaluation.model.param(y_train$hs_zbmi_who, y.dv.pred_train,
sum(p.dv))
y.dv.pred_test <- predict.iSFS(iSFS.Model.dv, exposome.data.dv_test,
p.dv)
evaluation.model.param(y_test$hs_zbmi_who, y.dv.pred_test)
plot(y_train$hs_zbmi_who, y.dv.pred_train)
abline(a = 0, b = 1)
plot(y_test\$hs_zbmi_who, y.dv.pred_test)
abline(a = 0, b = 1)

```
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 0.4290164 & 0.6549934 & 0.5020886 & 0.7085821 & 0.7052706 & 0.5553564
\end{tabular}

Table C.21: Evaluation values for the model when used complete exposome (dummy variables) training data for the outcome hs_zbmi_who.
\begin{tabular}{c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared \\
\hline 0.479162 & 0.6922153 & 0.5320198 & 0.7293969 & 0.6401061
\end{tabular}

Table C.22: Evaluation values for the model when used complete exposome (dummy variables) testing data for the outcome hs_zbmi_who.


Figure C.21: Predicted training outcome vs real training outcome for complete exposome (dummy variables) data and for the outcome hs_zbmi_who.


Figure C.22: Predicted testing outcome vs real testing outcome for complete exposome (dummy variables) data and for the outcome hs_zbmi_who.
```


Dummy variables names

dv.colnames <- colnames(exposome.data.dv_train)

Non-relevant features

dv.colnames[which(abs(iSFS.Model.dv\$beta) < 0.05)]

```
```

[1] "variable.female"
"h_landuseshan300_preg_None"
[3] "hs_connind300_h_Log"
[5] "variable..0.6....6.9."

```
- Outcome e3_bw
```

iSFS.Model.dv <- iSFS(p = p.dv, X = exposome.data.dv_train, y =
y_train$e3_bw, lambda = 0.00000005,
 L.step = 10, maxIter.iSFS = 100,
 maxIter.alpha = 20, maxIter.beta = 50,
 beta0.comp = "LR")
y.dv.pred_train <- predict.iSFS(iSFS.Model.dv, exposome.data.dv_train,
 p.dv)
evaluation.model.param(y_train$e3_bw, y.dv.pred_train, sum(p.dv))
y.dv.pred_test <- predict.iSFS(iSFS.Model.dv, exposome.data.dv_test,
p.dv)
evaluation.model.param(y_test$e3_bw, y.dv.pred_test)
plot(y_train$e3_bw, y.dv.pred_train)
abline(a = 0, b = 1)
plot(y_test\$e3_bw, y.dv.pred_test)
abline(a = 0, b = 1)

```
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 0.1614898 & 0.401858 & 0.3120213 & 0.5585887 & 0.3807247 & 0.06572992
\end{tabular}

Table C.23: Evaluation values for the model when used complete exposome (dummy variables) training data for the outcome e3_bw.
\begin{tabular}{c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared \\
\hline 0.1815342 & 0.4260683 & 0.3301896 & 0.5746213 & 0.2929926
\end{tabular}

Table C.24: Evaluation values for the model when used complete exposome (dummy variables) testing data for the outcome e3_bw.


Figure C.23: Predicted training outcome vs real training outcome for complete exposome (dummy variables) data and for the outcome e3_bw.


Figure C.24: Predicted testing outcome vs real testing outcome for complete exposome (dummy variables) data and for the outcome e3_bw.
```


Non-relevant features

dv.colnames[which(abs(iSFS.Model.dv\$beta) < 0.05)]

```
[1] "hs_builtdens300_h_Sqrt" "hs_builtdens300_s_Sqrt" "variable.0.1"
[4] "hs_trcs_madj_Log2"
- Outcome hs_correct_raven
```

iSFS.Model.dv <- iSFS(p = p.dv, X = exposome.data.dv_train, y =
y_train\$hs_correct_raven, lambda = 0.00000005,
L.step = 10, maxIter.iSFS = 100,
maxIter.alpha = 20, maxIter.beta = 50,
beta0.comp = "LR")

```
```

y.dv.pred_train <- predict.iSFS(iSFS.Model.dv, exposome.data.dv_train,
p.dv)
evaluation.model.param(y_train$hs_correct_raven, y.dv.pred_train,
 sum(p.dv))
y.dv.pred_test <- predict.iSFS(iSFS.Model.dv, exposome.data.dv_test,
 p.dv)
evaluation.model.param(y_test$hs_correct_raven, y.dv.pred_test)
plot(y_train$hs_correct_raven, y.dv.pred_train)
abline(a = 0, b = 1)
plot(y_test$hs_correct_raven, y.dv.pred_test)
abline(a = 0, b = 1)

```
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 15.76673 & 3.970734 & 3.10729 & 1.762751 & 0.6411315 & 0.4585928
\end{tabular}

Table C.25: Evaluation values for the model when used complete exposome (dummy variables) training data for the outcome hs_correct_raven.
\begin{tabular}{c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared \\
\hline 18.76777 & 4.332178 & 3.382309 & 1.839105 & 0.4850191
\end{tabular}

Table C.26: Evaluation values for the model when used complete exposome (dummy variables) testing data for the outcome hs_correct_raven.


Figure C.25: Predicted training outcome vs real training outcome for complete exposome (dummy variables) data and for the outcome hs_correct_raven.


Figure C.26: Predicted testing outcome vs real testing outcome for complete exposome (dummy variables) data and for the outcome hs_correct_raven.
```


Non-relevant features

dv.colnames[which(abs(iSFS.Model.dv\$beta) < 0.05)]

```
character(0)
- Outcome hs_Gen_Tot
```

iSFS.Model.dv <- iSFS(p = p.dv, X = exposome.data.dv_train, y =
y_train$hs_Gen_Tot, lambda = 0.00000005,
 L.step = 10, maxIter.iSFS = 100,
 maxIter.alpha = 20, maxIter.beta = 50,
 beta0.comp = "LR")
y.dv.pred_train <- predict.iSFS(iSFS.Model.dv, exposome.data.dv_train,
 p.dv)
evaluation.model.param(y_train$hs_Gen_Tot, y.dv.pred_train, sum(p.dv))
y.dv.pred_test <- predict.iSFS(iSFS.Model.dv, exposome.data.dv_test,
p.dv)
evaluation.model.param(y_test$hs_Gen_Tot, y.dv.pred_test)
plot(y_train$hs_Gen_Tot, y.dv.pred_train)
abline(a = 0, b = 1)
plot(y_test\$hs_Gen_Tot, y.dv.pred_test)
abline(a = 0, b = 1)

```
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 239.9175 & 15.48927 & 11.75104 & 3.42798 & 0.3726469 & 0.05354336
\end{tabular}

Table C.27: Evaluation values for the model when used complete exposome (dummy variables) training data for the outcome \(h s_{-} G e n_{-}\)Tot.
\begin{tabular}{c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared \\
\hline 318.5169 & 17.84704 & 13.43383 & 3.665219 & -0.00471336
\end{tabular}

Table C.28: Evaluation values for the model when used complete exposome (dummy variables) testing data for the outcome \(h s_{-} G e n_{-}\)Tot.


Figure C.27: Predicted training outcome vs real training outcome for complete exposome (dummy variables) data and for the outcome \(h s_{-} G e n_{-}\)Tot.


Figure C.28: Predicted testing outcome vs real testing outcome for complete exposome (dummy variables) data and for the outcome \(h s_{-} G e n_{-}\)Tot.
```


Non-relevant features

dv.colnames[which(abs(iSFS.Model.dv\$beta) < 0.05)]

```
character (0)

\section*{C.2.2 Comparison on incomplete data}

\section*{C.2.2.1 Numeric variables}
- Outcome hs_zbmi_who
```

iSFS.ModelNA.nv <- iSFS(p = p.nv, X = exposomeNA.data.nv_train,
y = y_train$hs_zbmi_who, lambda = 0.00000005,
 L.step = 10, maxIter.iSFS = 100,
 maxIter.alpha = 20, maxIter.beta = 50)
yNA.nv.pred_train <- predict.iSFS(iSFS.ModelNA.nv,
 exposomeNA.data.nv_train, p.nv)
evaluation.model.param(y_train$hs_zbmi_who, yNA.nv.pred_train,
sum(p.nv))
yNA.nv.pred_test <- predict.iSFS(iSFS.ModelNA.nv,
exposomeNA.data.nv_test, p.nv)
evaluation.model.param(y_test$hs_zbmi_who, yNA.nv.pred_test,
 sum(p.nv))
plot(y_train$hs_zbmi_who, yNA.nv.pred_train)
abline(a = 0, b = 1)
plot(y_test\$hs_zbmi_who, yNA.nv.pred_test)
abline(a = 0, b = 1)

```
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 0.6807339 & 0.825066 & 0.6389482 & 0.7993424 & 0.5323436 & 0.4140857
\end{tabular}

Table C.29: Evaluation values for the model when used block-wise missing exposome (numeric variables) training data for the outcome hs_zbmi_who.
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 0.6904253 & 0.8309184 & 0.6388579 & 0.7992858 & 0.4814284 & 0.1178084
\end{tabular}

Table C.30: Evaluation values for the model when used block-wise missing exposome (numeric variables) testing data for the outcome hs_zbmi_who.


Figure C.29: Predicted training outcome vs real training outcome for block-wise missing exposome (numeric variables) data and for the outcome hs_zbmi_who.


Figure C.30: Predicted testing outcome vs real testing outcome for block-wise missing exposome (numeric variables) data and for the outcome \(h s_{-} z b m i \_w h o\).
- Outcome e3_bw
```

iSFS.ModelNA.nv <- iSFS(p = p.nv, X = exposomeNA.data.nv_train,
y = y_train$e3_bw, lambda = 0.00000005,
 L.step = 10, maxIter.iSFS = 100,
 maxIter.alpha = 20, maxIter.beta = 50)
yNA.nv.pred_train <- predict.iSFS(iSFS.ModelNA.nv,
 exposomeNA.data.nv_train, p.nv)
evaluation.model.param(y_train$e3_bw, yNA.nv.pred_train, sum(p.nv))
yNA.nv.pred_test <- predict.iSFS(iSFS.ModelNA.nv,
exposomeNA.data.nv_test, p.nv)
evaluation.model.param(y_test\$e3_bw, yNA.nv.pred_test, sum(p.nv))

```
```

plot(y_train$e3_bw, yNA.nv.pred_train)
abline(a = 0, b = 1)
plot(y_test$e3_bw, yNA.nv.pred_test)
abline(a = 0, b = 1)

```
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 0.229331 & 0.4788851 & 0.3683425 & 0.6069123 & 0.1205699 & -0.1018147
\end{tabular}

Table C.31: Evaluation values for the model when used block-wise missing exposome (numeric variables) training data for the outcome \(e 3 \_b w\).
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 0.2532475 & 0.503237 & 0.3896707 & 0.6242361 & 0.01369617 & -0.6778954
\end{tabular}

Table C.32: Evaluation values for the model when used block-wise missing exposome (numeric variables) testing data for the outcome e3_bw.


Figure C.31: Predicted training outcome vs real training outcome for block-wise missing exposome (numeric variables) data and for the outcome e3_bw.


Figure C.32: Predicted testing outcome vs real testing outcome for block-wise missing exposome (numeric variables) data and for the outcome e3_bw.
- Outcome hs_correct_raven
```

iSFS.ModelNA.nv <- iSFS(p = p.nv, X = exposomeNA.data.nv_train,
y = y_train$hs_correct_raven,
 lambda = 0.00000005, L.step = 10,
 maxIter.iSFS = 100, maxIter.alpha = 20,
 maxIter.beta = 50)
yNA.nv.pred_train <- predict.iSFS(iSFS.ModelNA.nv,
 exposomeNA.data.nv_train, p.nv)
evaluation.model.param(y_train$hs_correct_raven, yNA.nv.pred_train,
sum(p.nv))
yNA.nv.pred_test <- predict.iSFS(iSFS.ModelNA.nv,
exposomeNA.data.nv_test, p.nv)
evaluation.model.param(y_test$hs_correct_raven, yNA.nv.pred_test,
 sum(p.nv))
plot(y_train$hs_correct_raven, yNA.nv.pred_train)
abline(a = 0, b = 1)
plot(y_test\$hs_correct_raven, yNA.nv.pred_test)
abline(a = 0, b = 1)

```
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 27.79042 & 5.271662 & 4.202957 & 2.050111 & 0.3674587 & 0.2075057
\end{tabular}

Table C.33: Evaluation values for the model when used block-wise missing exposome (numeric variables) training data for the outcome hs_correct_raven.
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 28.23094 & 5.31328 & 4.186105 & 2.045997 & 0.2253529 & -0.3178259
\end{tabular}

Table C.34: Evaluation values for the model when used block-wise missing exposome (numeric variables) testing data for the outcome \(h s_{-}\)correct_raven.


Figure C.33: Predicted training outcome vs real training outcome for block-wise missing exposome (numeric variables) data and for the outcome \(h s\) _correct_raven.


Figure C.34: Predicted testing outcome vs real testing outcome for block-wise missing exposome (numeric variables) data and for the outcome \(h s_{-}\)correct_raven.
- Outcome hs_Gen_Tot
```

iSFS.ModelNA.nv <- iSFS(p = p.nv, X = exposomeNA.data.nv_train,
y = y_train\$hs_Gen_Tot, lambda = 0.00000005,
L.step = 10, maxIter.iSFS = 100,
maxIter.alpha = 20, maxIter.beta = 50)
yNA.nv.pred_train <- predict.iSFS(iSFS.ModelNA.nv,

```
```

 exposomeNA.data.nv_train, p.nv)
 evaluation.model.param(y_train$hs_Gen_Tot, yNA.nv.pred_train,
 sum(p.nv))
yNA.nv.pred_test <- predict.iSFS(iSFS.ModelNA.nv,
 exposomeNA.data.nv_test, p.nv)
evaluation.model.param(y_test$hs_Gen_Tot, yNA.nv.pred_test,
sum(p.nv))
plot(y_train$hs_Gen_Tot, yNA.nv.pred_train)
abline(a = 0, b = 1)
plot(y_test$hs_Gen_Tot, yNA.nv.pred_test)
abline(a = 0, b = 1)

```
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 346.1951 & 18.60632 & 14.40539 & 3.795444 & 0.09474464 & -0.1341705
\end{tabular}

Table C.35: Evaluation values for the model when used block-wise missing exposome (numeric variables) training data for the outcome \(h s_{-} G e n_{-}\)Tot.
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 339.9409 & 18.43749 & 14.36977 & 3.790748 & -0.07229228 & -0.8241785
\end{tabular}

Table C.36: Evaluation values for the model when used block-wise missing exposome (numeric variables) testing data for the outcome \(h s \_\)Gen_Tot.


Figure C.35: Predicted training outcome vs real training outcome for block-wise missing exposome (numeric variables) data and for the outcome \(h s_{-} G e n_{-} T o t\).


Figure C.36: Predicted testing outcome vs real testing outcome for block-wise missing exposome (numeric variables) data and for the outcome \(h s_{-}\)Gen_Tot.

\section*{C.2.2.2 Dummy variables}
- Outcome hs_zbmi_who
```

iSFS.ModelNA.dv <- iSFS(p = p.dv, X = exposomeNA.data.dv_train, y =
y_train$hs_zbmi_who, lambda = 0.00000005,
 L.step = 10, maxIter.iSFS = 100,
 maxIter.alpha = 20, maxIter.beta = 50,
 beta0.comp = "LR")
yNA.dv.pred_train <- predict.iSFS(iSFS.ModelNA.dv,
 exposomeNA.data.dv_train,
 p.dv)
evaluation.model.param(y_train$hs_zbmi_who, yNA.dv.pred_train,
sum(p.dv))
yNA.dv.pred_test <- predict.iSFS(iSFS.ModelNA.dv,
exposomeNA.data.dv_test,
p.dv)
evaluation.model.param(y_test$hs_zbmi_who, yNA.dv.pred_test)
plot(y_train$hs_zbmi_who, yNA.dv.pred_train)
abline(a = 0, b = 1)
plot(y_test\$hs_zbmi_who, yNA.dv.pred_test)
abline(a = 0, b = 1)

```
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 0.5511214 & 0.7423755 & 0.577232 & 0.7597579 & 0.6213859 & 0.4288036
\end{tabular}

Table C.37: Evaluation values for the model when used block-wise missing exposome (dummy variables) training data for the outcome hs_zbmi_who.
\begin{tabular}{c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared \\
\hline 0.5596416 & 0.748092 & 0.5717857 & 0.7561651 & 0.5796587
\end{tabular}

Table C.38: Evaluation values for the model when used block-wise missing exposome (dummy variables) testing data for the outcome hs_zbmi_who.


Figure C.37: Predicted training outcome vs real training outcome for block-wise missing exposome (dummy variables) data and for the outcome hs_zbmi_who.


Figure C.38: Predicted testing outcome vs real testing outcome for block-wise missing exposome (dummy variables) data and for the outcome hs_zbmi_who.
- Outcome e3_bw
```

iSFS.ModelNA.dv <- iSFS(p = p.dv, X = exposomeNA.data.dv_train, y =
y_train$e3_bw, lambda = 0.00000005,
 L.step = 10, maxIter.iSFS = 100,
 maxIter.alpha = 20, maxIter.beta = 50,
 beta0.comp = "LR")
yNA.dv.pred_train <- predict.iSFS(iSFS.ModelNA.dv,
 exposomeNA.data.dv_train,
 p.dv)
evaluation.model.param(y_train$e3_bw, yNA.dv.pred_train,
sum(p.dv))
yNA.dv.pred_test <- predict.iSFS(iSFS.ModelNA.dv,
exposomeNA.data.dv_test,
p.dv)
evaluation.model.param(y_test$e3_bw, yNA.dv.pred_test)
plot(y_train$e3_bw, yNA.dv.pred_train)
abline(a = 0, b = 1)
plot(y_test\$e3_bw, yNA.dv.pred_test)
abline(a = 0, b = 1)

```
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 0.2206533 & 0.4697374 & 0.3617135 & 0.6014262 & 0.1538469 & -0.2765493
\end{tabular}

Table C.39: Evaluation values for the model when used block-wise missing exposome (dummy variables) training data for the outcome e3_bw.
\begin{tabular}{c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared \\
\hline 0.2475389 & 0.4975328 & 0.3818376 & 0.6179301 & 0.03592912
\end{tabular}

Table C.40: Evaluation values for the model when used block-wise missing exposome (dummy variables) testing data for the outcome e3_bw.


Figure C.39: Predicted training outcome vs real training outcome for block-wise missing exposome (dummy variables) data and for the outcome e3_bw.


Figure C.40: Predicted testing outcome vs real testing outcome for block-wise missing exposome (dummy variables) data and for the outcome e3_bw.
- Outcome hs_correct_raven
```

iSFS.ModelNA.dv <- iSFS(p = p.dv, X = exposomeNA.data.dv_train, y =
y_train$hs_correct_raven, lambda = 0.00000005,
 L.step = 10, maxIter.iSFS = 100,
 maxIter.alpha = 20, maxIter.beta = 50,
 beta0.comp = "LR")
yNA.dv.pred_train <- predict.iSFS(iSFS.ModelNA.dv,
 exposomeNA.data.dv_train,
 p.dv)
evaluation.model.param(y_train$hs_correct_raven, yNA.dv.pred_train,
sum(p.dv))
yNA.dv.pred_test <- predict.iSFS(iSFS.ModelNA.dv,

```
```

 exposomeNA.data.dv_test, p.dv)
 evaluation.model.param(y_test$hs_correct_raven, yNA.dv.pred_test)
plot(y_train$hs_correct_raven, yNA.dv.pred_train)
abline(a = 0, b = 1)
plot(y_test\$hs_correct_raven, yNA.dv.pred_test)
abline(a = 0, b = 1)

```
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 41.77967 & 6.463719 & 5.406547 & 2.325198 & 0.04904769 & -0.4346547
\end{tabular}

Table C.41: Evaluation values for the model when used block-wise missing exposome (dummy variables) training data for the outcome hs_correct_raven.
\begin{tabular}{c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared \\
\hline 40.75194 & 6.383725 & 5.313987 & 2.305209 & -0.1182188
\end{tabular}

Table C.42: Evaluation values for the model when used block-wise missing exposome (dummy variables) testing data for the outcome \(h s_{-}\)correct_raven.


Figure C.41: Predicted training outcome vs real training outcome for block-wise missing exposome (dummy variables) data and for the outcome hs_correct_raven.


Figure C.42: Predicted testing outcome vs real testing outcome for block-wise missing exposome (dummy variables) data and for the outcome hs_correct_raven.
- Outcome hs_Gen_Tot
```

iSFS.ModelNA.dv <- iSFS(p = p.dv, X = exposomeNA.data.dv_train, y =
y_train$hs_Gen_Tot, lambda = 0.00000005,
 L.step = 10, maxIter.iSFS = 100,
 maxIter.alpha = 20, maxIter.beta = 50,
 betaO.comp = "LR")
yNA.dv.pred_train <- predict.iSFS(iSFS.ModelNA.dv,
 exposomeNA.data.dv_train,
 p.dv)
evaluation.model.param(y_train$hs_Gen_Tot, yNA.dv.pred_train,
sum(p.dv))
yNA.dv.pred_test <- predict.iSFS(iSFS.ModelNA.dv,
exposomeNA.data.dv_test, p.dv)
evaluation.model.param(y_test$hs_Gen_Tot, yNA.dv.pred_test)
plot(y_train$hs_Gen_Tot, yNA.dv.pred_train)
abline(a = 0, b = 1)
plot(y_test\$hs_Gen_Tot, yNA.dv.pred_test)
abline(a = 0, b = 1)

```
\begin{tabular}{c|c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared & Adjusted R squared \\
\hline 356.5169 & 18.88165 & 14.64036 & 3.826272 & 0.06775462 & -0.4064325
\end{tabular}

Table C.43: Evaluation values for the model when used block-wise missing exposome (dummy variables) training data for the outcome \(h s_{-} G e n_{-}\)Tot.
\begin{tabular}{c|c|c|c|c} 
MSE & RMSE & MAE & RMAE & R squared \\
\hline 349.911 & 18.70591 & 14.53511 & 3.812494 & -0.1037414
\end{tabular}

Table C.44: Evaluation values for the model when used block-wise missing exposome (dummy variables) testing data for the outcome \(h s_{-} G e n_{-} T o t\).


Figure C.43: Predicted training outcome vs real training outcome for block-wise missing exposome (dummy variables) data and for the outcome \(h s_{-} G e n_{-} T o t\).


Figure C.44: Predicted testing outcome vs real testing outcome for block-wise missing exposome (dummy variables) data and for the outcome \(h s_{-} G e n_{-}\)Tot.```


[^0]:    ${ }^{1}$ That is, there exists a constant $K_{\mathcal{L}}$ such that

    $$
    \left\|\nabla \mathcal{L}\left(\beta_{1}\right)-\nabla \mathcal{L}\left(\beta_{2}\right)\right\|_{2} \leq K_{\mathcal{L}}\left\|\beta_{1}-\beta_{2}\right\|_{2}, \quad \forall \beta_{1}, \beta_{2} \in \mathbb{R}^{p}
    $$

    with $\|\cdot\|_{2}$ being the euclidean norm, i.e., $\|x\|_{2}=\left(x_{1}^{2}+\cdots+x_{p}^{2}\right)^{\frac{1}{2}}$ for every $x=\left(x_{1}, \ldots, x_{p}\right) \in \mathbb{R}^{p}$.
    ${ }^{2}$ That is, inducing $\beta$ to have only a small number of coefficients that are non-zero.

