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“A little bit of math can accomplish what all the guns and barbed wire can’t: a little bit of
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Abstract

Since the early stage of internet, the necessity of establishing secure connections between two

parties has been a fundamental part of it and a continuous topic of study. Public Key Infras-

tructures or PKI’s have been a key part of its development by means of the use of public key

cryptography. Shor presented an algorithm in 1994 that was a turn around in the field because

it makes possible to break the most currently used algorithms in PKI’s, as it has the capability

to factor integer numbers in polynomial time using quantum computers.

In the past years, and due to the fast improvements in the quantum computers, the topic

has become more relevant, as the possibility that in the next decade traditional algorithms

become obsolete has become more realistic. Therefore, NIST is in process of standardization

of several algorithms that could replace current ones, that are considered to be vulnerable.

But for the transition to post quantum, the necessity to study these new algorithms in real

protocols is needed. In this work, one of the NIST final round digital signature schemes will

be implemented and tested in a PKI protocol. The case of study will be the OCSP protocol,

which is a widely used protocol in PKI’s to check whether a certificate is revoked or not. The

Post-Quantum algorithm to be studied will be Crystals-Dilithium. Various benchmarks are

done comparing the performance of this PQ algorithm with two currently widely used, RSA

and ECDSA. Results show 50% better CPU performance than RSA and 40% less than ECDSA,

in the other hand, it requires around 10x more bandwidth.
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Chapter 1

Introduction

1.1 Motivation

Since the beginning of the Internet, cryptography has been used to establish secure connections

between parties across the globe. The TLS protocol is a good example because enables browsing

the internet using HTTPS securely, among many other applications. Public Key Infrastructures

(PKI), by means of public key cryptography, are also a key part of the development of Internet,

and they provide many secure-related services. For example, PKI’s make use certificates and

Digital Signatures (DS), a public-key schema, to provide authenticity, in turn, DS are based

mainly in the hardness assumption of the RSA and Discrete Logarithm (DL) problems.

In recent years, research in quantum computers has increased. The possibility of the ap-

parition of quantum computers for commercial use in the next decades has become realistic.

Quantum computers, by means of the Shor’s algorithm are able to factor integer numbers and

compute discrete logarithms in polynomial time. Currently, many public cryptosystems are

built on these assumptions, so the existence of a powerful enough quantum computer would

put in risk the security of all digital communications, including transactions, card payments

and blockchain based systems.

The National Institute of Standards and Technology NIST, which is responsible for the

standardization of some of the most used algorithms nowadays such as RSA ECDSA, or AES,

recently started a competition to find new quantum resistant public-key cryptographic algo-

rithms. Currently, in the third round of the competition, there are proposals for several digital

signature algorithms as well as Key Encapsulation Mechanisms. It could take some time until

the threat of Quantum Computers is real, but the standardization of these new algorithms is

still a long time process. Additionally, the implementation of these new algorithms and their

effectiveness in current protocols and in real case scenarios like in PKI’s has to be still proven.

2



1.2. Objectives of the project 3

1.2 Objectives of the project

The main objective of this project is to test one of the post-quantum algorithms that are in

process of standardization in a real case scenario. First, ensure that the implementation can

be possible. Then, perform some benchmarks to compare the performance with currently used

algorithms. Finally, study the result differences in terms of CPU usage, memory, bandwidth

and latency and discuss the differences encountered.

The case of study will be the OSCP protocol, an important protocol in the PKI system.

The main function of this protocol is to provide real time information of the revoked status of a

certificate. Whenever a request is made about the revocation status of a certificate, the OCSP

server checks that it has this information, then signs the response with his private key and sends

it back to the user. The Post-Quantun algorithm picked to be implemented is one of the three

digital signature finalists, CRYSTALS-Dilithium, an algorithm based in lattice cryptography.

The current algorithms to be compared with are RSA and ECDSA.

1.3 Confidentiality

The project will make use of a commercial product, called Entrust Validation Authority owned

by Entrust Datacard, and adapt it for its study. This product implements the OCSP protocol

and is suitable for this study. For this reason confidentiality is needed. This is possible thanks to

the collaboration between the University Rovira i Virgili and the company Entrust Datacard.

For the case of the code for the digital signature CRYSTALS-Dilithium, the post-quantum

algorithm, it has open source libraries in various languages and is free to be used.

There will be two versions of the thesis. The first one will contain the complete work and no

information will be omitted and must be kept confidential. The second one will be a reduced

version of the first one, and may be released for public view.

1.4 Organization

This document is divided in two main parts. The first part it is more conceptual and introduces

several important ideas of cryptography and Public Key Infrastructure. In this part we explain

some of the most important cryptosystems. The second part is more practical, where the case

of study is implemented and studied. In this part, the case of study is explained in detail, as

well as what modifications need to be done and what will be measured. Finally, we explain the

setup of the benchmarks, show all the results obtained and discuss the results.

The first part is divided in three chapters. Chapter 2 explains the main concepts of cryp-
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tosystems, with special focus in digital signatures. Also, it explains the main digital signature

schemes used. Chapter 3 introduces the PKI architecture and explains their main components.

Additionally, the OCSP protocol is described in detail. Chapter 4 describes the Post Quantum

current situation and shows the main PQ crypto schemes. Then it explains the lattice based

cryptography and Crystals Dilithium digital signature scheme.

The second part is divided in two chapters. Chapter 5 describes the Entrust Validation

Authority and its main components and architecture as well as its Post-Quantum adaptation

for the project. Finally, in Chapter 6 we perform different benchmarks comparing the original

implemented algorithms RSA and ECDSA with Dilithium. The results obtained are shown

together with the conclusions.



Chapter 2

Current Cryptography Standards

In this chapter, the basics of cryptography are explained. First, we introduce the concept of

secret key encryption, explaining the differences between symmetric and asymmetric cryptog-

raphy. Then, we explain RSA, one of the most important public key algorithms. After that,

we explain Digital Signatures, which represent a basic part in the PKI’s. Finally, we present

some of the most important Digital Signature schemes: DSA, RSA and Elliptic Curves.

2.1 Symmetric vs Asymmetric Cryptography

Traditionally, confidentiality of data is provided by secret key cryptosystems or cryptographic

algorithms. We can distinguish basically to kind of cryptosystems, ones that use Symmetric

Cryptography and one that use Asymmetric. These systems are also called private-key cryp-

tography and public-key cryptography respectively. For the case of symmetric cryptography, an

example of these algorithms is the Advanced Encryption Standard (AES), which was selected as

an official Federal Information Processing standard (FIPS) in 2002 for the United States. AES

is currently used overall in telecommunications [6]. In a symmetric secret key cryptosystem

the communication partners, which we call Alice and Bob, agree on a secret key before they

secretly communicate. For this key agreement they can use a secure channel, or they can use

the Diffie-Hellman key exchange protocol which does not require a secure channel.

Figure 2.1 shows the process of a secret key encryption in a private-key cryptosystem. If

Alice wants to send a confidential message to Bob she uses the secret key to encrypt the data

to be kept confidential, producing as a result a ciphertext. Alice sends the ciphertext to Bob,

and upon receiving it, Bob uses the secret key that he has exchanged with Alice to decrypt

the ciphertext. This kind of cryptosystems are also referred as symmetric cryptosystems since

Alice and Bob have the same key.

With the development of an open computer network such as the Internet, with its billions

5



6 Current Cryptography Standards

Figure 2.1: Symmetric Cryptography.

Figure 2.2: Asymmetric Cryptography.

of users, exchanging secret keys can be impractical. One option would be to use a centralized

center such as the mobile standard GSM, which uses many interconnected key centers. Each

GSM provider operates in one or more centers, however key distribution by a centralized key

center has the disadvantage that can access to all the secret messages [6].

Another option would be to use a public-key cryptosystem. The main idea behind it is that

two different but related keys are used, one for encryption and one for decryption. Decryption

works with the decryption key only. As the decryption key cannot be determined from the

encryption key, the encryption key can be public. In order to Bob receive confidential messages,

he uses a key pair consisting of an encryption key and his corresponding decryption key. Bob

keeps the decryption key secret while his encryption key is made public. The encryption key is

called Bob’s public key, the corresponding decryption key is called Bobs private key. Once the

keys are generated and Bobs public key is published Bob can receive confidential messages from

anyone and no further distribution is required. In public key cryptosystems is only necessary to

make the keys accessible. Public-key cryptosystems are also called asymmetric cryptosystems,

in Figure 2.2 a public key cryptosystem scheme is shown.

Public key encryption no only provides confidentiality, but it can be used to implement

protocols. The first and most frequently used public key cryptosystem is the RSA algorithm,

which is named after its inventors Rivest, Shamir and Adleman. The main idea upon this

algorithm is based is the assumption that factorization of integer numbers is a hard problem,

given that the prime numbers are sufficiently large. It is also based in the concept that discrete

logarithm problem is hard to solve efficiently, which means in polynomial time Ok(n). The
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basic explanation of the RSA is algorithm is the following [6]:

First, to generate his secret key and the corresponding public key, Bob selects two large

numbers p and q and computes their product.

n = pq

Bob also chooses an integer e with the following conditions:

1 < e < φ(n) = (p− 1)(q − 1)

gcd(e, (p− 1)(q − 1)) = 1

Then Bob computes an integer d with:

1 < d < (p− 1)(q − 1)

d e ≡ 1 mod (p− 1)(q − 1)

This number d can be computed by means of the Extended Euclidean Algorithm. Finally,

Bob’s public key is the pair (n, e) and his corresponding private key is d, as we can see the

private key is derived from the public key. The number n is called the RSA modulus, e is also

called the encryption exponent and d also called the decryption exponent. If we want to encrypt

a message, if m is the plaintext message to be sent, we can obtain the encrypted message c,

doing the following:

c = me mod n

And to decrypt the message the inverse operation is realized:

e = md mod n

The private key can be computed from the public key e if p and q are known. Therefore,

is the adversary is able to find the prime factorization of n, then she can easily find Bobs

private key. The RSA schema as presented is not secure as it is vulnerable to some attacks.

Nevertheless, RSA is the basis for other algorithms like RSA-OAEP or ElGamal as well as for

some digital signature schemas, that will be explained later.

In practice public-key encryption is rarely used to encrypt large amounts of data, as encryp-

tion/decryption times of public key algorithms vary from the symmetric key ones in various

orders of magnitude. Furthermore, algorithms like RSA, encrypts “messages” of limited size, as

defined by PKCS#1. Therefore, usually a Hybrid Encryption is preferred, where the symmetric



8 Current Cryptography Standards

key is encrypted and distributed using a public cryptosystem, and then used to encrypt the

data [6].

2.2 Digital Signatures

Another use of cryptography is the possibility to provide integrity or data authenticity, for

example, of software. A Message Authentication Code (MAC), which is a Symmetric Cryp-

tosystem, can be used to provide integrity. But in many contexts it is not possible to use them,

for example when we need to provide authentication. In these cases an asymmetric authentica-

tion mechanism is required, also called Digital Signatures (DS). In a digital signature scheme,

the signing key is also referred as Bob’s private key which is used to calculate the digital signa-

ture of the document. People that wants to verify the signature uses the verification key, which

is also called public key. This works because of the property that, in the public-key systems,

the private key is infeasible to be calculated from the corresponding public keys. An example

of a signature scheme is shown in the Figure 2.3.

Figure 2.3: Digital Signatures.

The Digital signatures can be used not only to prove integrity and authenticity of data,

also they prove non-repudiaton [6]. Because of those numerous applications, digital signatures

are extremely important cryptographic tool. Suppose that Bob signs data such as an email of

a bank transaction digitally. By verifying this signature, Alice convinces herself that the data

origin is Bob (something that not provide a MAC) and that the data has not been altered.

2.3 RSA Digital Signature

The most widely used signature algorithm is the based in RSA scheme described before. The

key generation for this algorithm works exactly as in the RSA cryptosystem presented before.

To describe the operations of signing and verifying the previous notation is used. The private

key d becomes the signature key, and the public key (n, e) it is the public key or verification
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key. In addition to signature and verification keys, a publicly known collision-resistant hash

functions is used

H : {0, 1}∗ → {0, 1...., n− 1}. (2.1)

Then the signature s of a string of bytes m ∈ {0, 1}n is:

s = H(m)d mod n

To verify the signature, the verifier uses the signers public key (n, e), determines the hash

value H(D) and checks that:

H(m) = se mod n.

If holds, then the signature is valid. Otherwise, is invalid. The schema explained before

is called RSA-FDH, and it uses the approach of signing the hash of the message instead of

signing the whole message, a typical approach called hash-and-sign paradigm. The function H

plays an important role, and practical attacks are found in case that the output of H is too

small, for this reason RSA-FDH is not practically deployable, and some variations are used as

RSA-PKCS# 1 v1.5, which introduces an additional step [11].

2.4 ECDSA signatures

ECDSA stands for Elliptic Curve Digital signature algorithm and is also a widely used signature

schema together with the RSA. It belongs to the family of the Elliptic Curve Cryptography

(ECC), and it provides the same level of security as RSA with considerable shorter keys and

signatures. ECDSA is based on the DSA algorithm, and both algorithms rely on the hardness

assumption of the Discrete Logarithm (DL) problem. In DSA we have a private key d as a

random integer between 0 < d < q. The public key is calculated as follows [11]:

e = gd mod p.

Where g, p and q are fixed. The constant p is a prime number 2L−1 < p < 2L where

521 < L < 1024, and q is a prime divisor of p − 1 with length of 160 bits. Then, a single use

private key k and public key s is needed. First k calculated choosing a random integer with

0 < k < q, this ephemeral public key is then:

r = (gk mod p) mod q.

Then, if we have a message m, by means of the ephemeral private key generated in the

previous step, as well as the main private key, it is possible to calculate the signature as
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follows:

s = (k−1(H(M) + xr)) mod q,

where H is a Hash function, and finally the signature is (r, s). To verify the signature the

user calculates the following values and verifies that v = r.

w = s−1 mod q

u1 = w ·H(M) mod q

u2 = r · w mod q

v = (gu1eu2 mod p) mod q

Contrary to the DSA, in ECDSA the calculations are made over elliptic curves, which is

a special form of polynomial equation of the form y3 = x3 + a · x + b mod p. An elliptic

curve over the cyclic group Zp is defined as the set of all pairs (x, y) ∈ Zp which fulfill the

previous equation, together with an imaginary point of infinity O [18]. Also, another condition

is that the curve must be non-singular, which geometrically speaking means that is has no

intersections.

As we are operating in a finite field, for cryptography purposes, we are interested in plotting

the curve over a prime field Zp. For this reason, a set of group rules for the cyclic group must in

which the previous equations operations are performed is defined. Given two points and their

coordinates P = (x1, x2) and Q = (x2, y2) the following operations are explained as geometric

constructions, however simple coordinate geometry can be applied to express them through

analytical expressions o formulas [18]. The operations defined are:

• Point Addition. To compute R = P+Q, draw a line between P and Q and to obtain the

point of intersection between the elliptic curve and the line, then mirror the intersection

to obtain R.

• Point Doubling. In this case to obtain R = 2P , draw a tangent line through P and

obtain the second point of intersection and mirror it to obtain P.

• Identity is defined as P +O = P , where O is located at plus infinity along the y-axis.

• Inverse. To find −P it can be found mirroring the point into the x-axis and find it in

the curve.

In the Figure 2.4 there is an example of the addition, doubling, and opposite operations in

the elliptic curve y2 = x3 − 7x+ 6.
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(a) Addition. (b) Opposite.

(c) Doubling.

Figure 2.4: Operations over Elliptic Curves extracted from [11].
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Algorithm Family Cryptosystems Security Level (bit)
80 128 192 256

Integer Factorization RSA 1024 3072 7680 15360
Discrete logarithm DH, SA, Elgamal 1024 3072 7680 15360
Elliptic curves ECDSH, ECDSA 160 256 384 521
Symmetric-key AES, 3DES 80 128 192 256

Table 2.1: Bit length for different security levels extracted from [18].

A distinguished feature in public-key algorithms is that they require long operands and

keys. The longer the operands and keys the more secure the algorithms become. In order to

compare the security of different algorithms usually the term security level is used. What this

means is that, an algorithm is said to have a “security level of n bit” if the best know attack

requires 2n steps. In the case of asymmetric algorithms, for a level of security of n the key

has a length n, but for the case asymmetric algorithms the relationship is not straightforward

[18]. The Table 2.1 shows a comparative between the key size and security level of different

symmetric and asymmetric cryptosystems [18].



Chapter 3

Public Key Infrastructure

In the previous chapter, we introduced the basic concepts of cryptography, as well as some of

its most important cryptosystems. In this chapter we explain the Public Key Infrastructure or

PKI, that are part of these public-key cryptosystems. First, we introduce the concept of the

PKI, why it is needed and what it provides in terms of security in communication. After that

we explain what are the certificates, which is an important cryptographic tool in PKI system.

These certificates are generated by means of digital signatures described before. Then, we

describe some of the main components of a PKI. Those are the Certificate Authority (CA) and

Registration Authorities (RA), which are responsible for the issuing of certificates, and finally

we describe the Certificate Revocation Lists (CRL) and the Validation Authority (VA), which

are part of the revocation lifecycle of a certificate.

3.1 Introduction to PKI

The main idea behind public-key cryptography is that two strangers should be able to commu-

nicate securely, for example if Alice wants to send a message to Bob, he can do it by means of

the Bob’s public key, thanks to that, Alice is able to encrypt the message and send it to Bob

securely. But how are the keys generated, distributed and trusted? Here is where PKI’s come

into play. Public Key Infrastructures (PKI’s) enable the use of public key cryptography in open

networks and on the Internet, ensuring the distribution of keys during all its lifecycle. In order

to ensure a secure communication between two or more parties a PKI is generally considered

to be associated with this primary services [6]:

• Authentication is the assurance to one entity that another entity is who it claims to

be.

• Integrity is the assurance to an entity that data has not been modified (intentionally or

13
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unintentionally) from the original, for example, to prevent malicious modifications in a

software.

• Confidentiality is the assurance to an entity that no one can read a particular piece of

data without authorization.

• Non-Repudiation is the assurance that prevents an entity from denying a particular

action, for example a money transfer or sending an email.

In order to provide this services, the PKI ensures that the key management is set up correctly

during all its whole lifecycle. In a key lifecycle, the following main phases can be defined [14]:

the phase of key generation, where key pair is created. The key establishment phase, that makes

sure that the keys are reachable. The key usage phase where the private key is used to decrypt

or sign data, also the users can encrypt data or verify signatures, this can be done by using

the public key of the others. The key storage phase, which ensures the correct safekeeping of

the keys, as well as providing backups and preventing loss. Finally, there is the key destruction

phase.

In the first phase, the keys must be generated securely. This can be done letting the users

generate their own key pair. However, due to technical or security reasons sometimes it is not

suitable. For example because the computer can be exposed to internet and can be infected

by malware. A better option could be the use of dedicated hardware or smart cards. But

usually the use of specific hardware as Hardware Security Modules (HSM) is recommended as

smart cards are limited in computational resources. Another important question is how the

keys are generated. RSA keys are generated using two random prime numbers, and each of

those prime numbers is generated by means of a Pseudo Random Number Generator (PRNG)

[6]. Thus ensuring that this PRNG are generated correctly is extremely important. Otherwise,

it could lead to vulnerabilities such as the Return of Coppersmith Attack (ROCA). Exploiting

this attack affected in the past thousands of electronic identity cards in Estonia and in other

counties as well [2].

In the key establishment phase, the most important task, is to make the public keys available

to the users. Those who use public keys must be able to verify authenticity and validity. If

the authenticity of Bob’s public key cannot be guaranteed the adversary can replace the Bob’s

public key with his own public key, which then Oscar may be able to decrypt messages that

were encrypted by Bob or sign documents in the Bobs name. This is known as a Man in the

Middle Attack (MITMA).

The last task of a PKI, which belong to the key destruction phase, is to deal with the

problem whenever a private key becomes insecure, for example if the smart card where Alice

stores her private key is stolen the corresponding public key must no longer to be used to
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verify signatures of Alice. PKI users must be informed in this case. Also, if the public key

cryptosystem is broken, for example with a quantum computer, or some vulnerability is found,

such as ROCA, then all public key that have been issued must be invalidated.

3.2 X509 Certificates

One of the most important tasks of a PKI is to provide authenticity proofs of the public keys.

The most important proof are the certificates. To explain the concept of a certificate suppose

that Alice wishes to verify the digital signature issued by Bob. Alice needs to convince herself

of the authenticity of that public key. Certificates can be described as data structures that bind

public keys to entities and that are signed by a third party [6]. If Alice trusts the third party

that signed the certificate and also trusts the signature verification key of the third party, then

verifying the signature of the certificate convinces Alice of the authenticity of the public key

of Bob. So the certificates reduce the trust in a public key of an entity to the trust in some

authority.

The most important certificate standard is the X.509 standard, which are specified on a Re-

quest for Comments (RFC), concretely in Internet X.509 Public Key Infrastructure Certificate

and Certificate Revocation List (CRL) Profile [5]. RFC’s are memorandums, published by the

Internet Engineering Task Force (IETF) and they are used to describe methods, research and

innovations that are applicable in the working of Internet and other connected systems. The

structure of the certificates is specified using the Abstract Syntax Notation Version 1 (ASN.1)

as a specification language, which allows describing complex data structures. ASN.1 permits

encoding rules, in the case of the X509 certificates, they are encoded according to the Distin-

guished Encoding Rules (DER). Below there is an overview of what constitutes a Certificate in

ASN.1 encoding:

Listing 3.1: ASN.1

Certificate ::= SEQUENCE {

tbsCertificate TBSCertificate ,

signatureAlgorithm AlgorithmIdentifier ,

signatureValue BIT STRING }

As can be seen from the RFC5280 [5] the first element is the tbsCertificate which is of type

TBSCertifictate (another data structure defined in ASN.1), this part contains all the necessary

information to describe an entity, and it also contains its public key. All this information is

then signed using a digital signature schema.

The second element is the signatureAlgorithm, which describes the algorithm used, and is



16 Public Key Infrastructure

of type AlgorithmIdentifier or OID. An OID is basically a number to identify cryptographic

algorithms which are standardized as well as other objects, this algorithm must appear in the

tbsCertificate and outside. Finally, the third element which is the result of the signature of the

tbsCertificate. This digital signature is appended at the end as a bit string. The contents of

the signed document part or the TBSCertificate are described below. All elements except the

issuerUniqueID, subjectUniqueID and extensions fields are mandatory:

• Version indicates the version of the certificate, currently there are three versions, and is

identified with an integer.

• Serial Number is the unique identifier for this certificate relative to the certificate

issuer which corresponds to a 20 bytes integer. The combination of issuer name and serial

number makes the certificate unique.

• Signature indicates the algorithm identifier (that is, the Object Identifier, or OID, plus

any associated parameters) of the algorithm used to calculate the digital signature on the

certificate. For example, the OID for SHA-1 with RSA might be present, indicating that

the digital signature is an SHA-1 hash encrypted using RSA.

• Issuer is the Distinguished Name (DN) of the CA that issued the certificate and must

always be present.

• Validity indicates the window of time or validity period that this certificate should be

considered valid. This field is composed of two dates, the Not Valid Before and the Not

Valid After. This dates/times that may be represented in UTC Time or in Generalized

Time.

• Subject indicates the DN or distinguished name of the certificate owner and must be

non-null unless it is Subject Alternative Name (SAN) form is used int the extensions

section.

• Subject Public Key Info is the public key identified with a sequence containing an

OID, associated with the subject. This field is mandatory in this section as well as outside

the tbsCertificate part.

• Subject Unique ID. Used when the same DN is used by different entities, the use of

this field is not recommended because it makes the certificate more complicated.

In practice the contents of the X.509v1 Certificate and v2 were insufficient, for this reason

later on the version 3 of x509 standard appeared. This newer version allows content extensions

and are widely supported by current PKI’s. Some of the most used extensions are listed below:
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• Authority Key Indentifier or AKI is the Hash of the issuer’s public key, calculated with

SHA-1 algorithm. The information of the issuer field may not be sufficient to identify

the public key because the issuer may have multiple keys, then this extension allows

applications to identify the public key of the issuer, which must be used to verify the

signature.

• Subject key identifier is the hash value of the key which corresponds to the certificate.

It is used by applications to compare the public key in the certificate with other public

keys, and it is useful if the owner of the certificate has several public keys. As well as the

AKI, this is calculated by means of SHA1.

• Key Usage indicates what the public key of the certificate can be used for, for example,

for Digital Dignatures or Non-Repudiation, among others.

• Subject Alternative name (SAN) it is used to bind the public key to additional names

such as IP addresses, Domain Names (DNS), or Uniform Resource Identifiers (URI’s).

• Issuer Alternative Name analogous to the SAN, used to bind the Issuer to some

alternative name.

• Extended Key Usage which indicate some additional usages to the key usage field, for

example for Time Stamping or Revocation Status Signing.

• Further extensions additional extensions, for example certificatePolicies and Poly Map-

pings, BasicConstraints etc. Additionally, some other extensions called private extensions

may be defined for certain context.

3.3 Certification Authority

A Certification Authority (CA) is one of the core components of a PKI. A CA is responsible for

binding the corresponding subject name to a public key. In the concept of a PKI, this act of

binding is called certification, and as discussed before this action occurs in the form of a data

structure that is referred as a certificate [1]. This act of certification, often also called issuing,

is basically the signing using digital signatures the certificate with the private key of the CA,

often called issuer of the certificate. Because the certificate is digitally signed, the information

contained in it is protected from an integrity perspective. If the public key of the issuer’s

certificate is trusted, so it is the data contained in it. A CA can take different representations,

depending on the trust model [1], for example in an enterprise domain, the company would be
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responsible for issuing the certificate to its employees and thy would place their trust in the

company’s CA certificate.

In order to obtain a certificate, a Certificate Signing Request (CSR) must be firstly gener-

ated, which usually contains the public key with some additional information which identifies

the applicant as described in the PKCS#10 specification. Then this CSR is sent to the cor-

responding CA which issues the certificate. If the CSR does not contain the public key, the

CA takes care of the key generation on behalf of the owner, storing the private key in a secure

environment and providing the user with a PIN, similar to what it is used in smart card. A

CA is also responsible for issuing other PKI’s certificate entities as CRL’s or Validation Au-

thorities, or even other CA. Also, is the responsibility of a CA to revoke the certificate in case

of requested. Finally, there is also the possibility that a certificate is self-signed, and that the

issuer of the certificate is the same as the subject, meaning that the signature corresponds to

the public key contained in the certificate.

3.4 Registration Authority

During the certification phase, there is an important process that involves registration of the

user or entity, called registration phase. This is done by a component in a PKI called Registration

Authority or RA. This process it is mainly based in establishing and confirming the identity of

the certificate owner [6]. Registration usually requires a lot of interaction between certificate

owner and the responsible for this registration function, sometimes requires a physical presence.

For example, during the process of certification of an electronic identity document or a passport.

This also initiates the certification process with the CA. This process generates all the necessary

information, keys, CSR, revocation information and distributing all the information among the

PKI components.

Although a CA could be responsible for this registration process, usually it is better to

off-load all this functionality from directly implementing it this component, and giving this

responsibility to a RA. But it should be noted that regardless of the functions, a RA is never

allowed to issue certificates, CRL, or give revocation status of certificates [1].

3.5 Hierarchical Trust

In public-key cryptography, the trust of is based in the idea of trusting the public key of a given

authority. To establish this trust there are different methodologies and models, in this section

we introduce the Direct Trust Model and its extension the Hierarchical Trust Model, which are

widely used in PKI’s.
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Figure 3.1: Simple hierarchical PKI.

The most fundamental trust model is the Direct Trust Model. In this model, one can trust

in a public key authenticity if the key is directly obtained by its owner or if him confirms in a

convincing way the authenticity the key to the user. For this reason, how this key is obtained

and trusted is a fundamental security issue because if a third party obtains and modifies the

key during the process all the process falls apart. In order to obtain the key, many of the

applications use preinstalled public keys. They can be preinstalled in the browser, in the email

or even in the operating system, for example [6].

There are a lot of trust models which depend on the Direct Trust Model such as Hierarchical

Trust Model or the Web Trust Model. Among all of them Hierarchical Trust Model is widely

used in PKI’s and is based in the X.509 standard. In a hierarchical model based PKI, public

keys are certified by Certification Authorities. The CA assumes liability for the authenticity of

public keys that they certify [6]. A hierarchical model it is typically represented as an inverted

tree with a CA on top which is called the root CA. This CA acts as the root of trust, also

called the trust anchor as all the user certificates rely on it. The intermediate nodes are called

subordinate CA and the leaves are the end users [1].

The Figure 3.1 shows a very simple hierarchical PKI. In this PKI, a single CA, which is also

the root, has issued certificates to the end entities Alice, Bob and Carl. Previously, This CA

must have issued a self-signed certificate to itself and this certificate contains the public key

that is to be used to verify the signatures of Alice, Bob and Carl’s certificates. In the case of

this self-signed certificate, both subject and issuer are the CA itself. In this case all the entities

in the PKI establish direct trust in the trust anchor, Since the PKI users trust the trust anchor

they also thrust the authenticity of the public key of Alice, Bob, and Carl [6].

Usually, and due to scalability issues, is more common that a CA issues certificates to

other subordinate CA’s to delegate the job to issue certificate to end users or even to other

subordinate CA’s.

In this case of a more complex structure with subordinate CA’s, authenticity of a public is

established via a certification path or chain. An example of a more complex PKI can be seen
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Figure 3.2: Complex hierarchical PKI.

in the Figure 3.2. In this PKI, the root CA RCA, has issued two subordinate CA certificates to

CA1 and CA2. In turn, this CA’s have issued certificates to end users. If someone for example

wants to trust the public key of Diana, it must use the certificate chain which consists of three

certificates CRCA
RCA ,CRCA

CA2 , CCA2
Diana, being the upper index the public key and the subindex the

signature. The chain starts with the self-signed certificate of the root CA, in the next certificate

the root CA certifies the public key of CA2. In the third certificate, CA2 certifies the public

key of Diana [6].

3.6 Certificate Revocation

The validity of a certificate is usually of various years, and although the current cryptosystems

are secure, it can happen that the certificate must be invalidated before this period expires.

This could be due to multiple reasons, for example, to a private key that has been compromised

or a job status.

In terms of the key lifecycle in a PKI, this would belong to the key deletion phase. During

this phase the PKI’s CA is informed that the certificate is revocated, together with the related

reason. Then, there must be some way of informing to the involved entities about this certificate

revocation.

Certificate revocations can be implemented in different ways, One method is to use periodic

publication mechanisms which can be implemented in numerous ways. The most used of these

publications methods is the so called as Certificate Revocation Lists (CRL’s). In the other

hand, there are also online query mechanisms such as the Online Cerificate Status Protocol

(OCSP) [1].
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3.6.1 Certificate Revocation Lists

One of the PKI components responsible for this functionality are the Certificate Revocation Lists

or CRL. A CRL is basically a signed data structures that contain a list of revoked certificates.

The digital signature appended to the CRL provides the integrity and authenticity of this CRL

[1]. A CRL structure is defined in the RFC5280 [5] together with X509 Certificates. It uses

similarly ASN.1 for its encoding.

As a CRL is basically long list with revocation information, they can be requested once

to the corresponding responsible. It also can be kept locally and cached in order to be read

without having access to Internet, which could be really useful in some cases. On the other

hand, and as a disadvantage, the publication of a CRL is done periodically. Thus, it could be

some delay between the actual revocation status, and what the CRL contains.

The signature of CRL can be done by the same issuer CA that issues the certificates. But

usually this process is designated to another entity in order to simplify the functionality of the

components in a PKI. Following the hierarchical trust model described, the CA would issue a

CRL entity which would take care of this functionality.

Through the years, different versions of CRL standards where released, basically due to

vulnerability concerns of the initial versions. Currently, version 2 standard is mostly used.

This version solved all the previous problems by introducing the notion of extensions much the

same as X.509 certificates. A list of the fields contained in the TBSCertList (To be Signed)

CRL is seen below [5]:

• Version is optional and contains the version of the encoded CRL. It can be either 1 or

2, and if not present version 2 will be used. In case of extensions filed is used, this field

must specify v2.

• Signature contains the OID of the digital signature algorithm used to calculate the

signature of the CRL as well as specifying the hash algorithm, for example RSA2048 with

SHA256.

• Issuer similar to the certificates, it contains the Distinguished Name (DN) of the CRL

issuer, responsible for singing it, and must always be present. Additional alternative

names may appear in the issuerAltName extension.

• This Update contains the issuing time of the CRL, which must be encoded as either

UTCTime or Generalized Time.

• Next Update indicates the time when the next CRL will be issued, and current CRL

will no longer be valid. This field it is designated as optional in X.509, and must be

encoded as UTC time or generalized Time.
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• Revoked Certificates contains the list of revoked certificates referenced by their serial

number. Additionally, the date on which the revocation occurred must be specified.

Additional extension may be necessary sometimes with additional information of each

certificate.

• Extensions field allows more information to be added with each individual revocation.

Similar to the certificates extensions, Authority Key Identifiers, or Issuer Alternative

Names among other information is allowed.

3.6.2 Online Certificate Status Protocol OCSP

With periodic public mechanisms it is possible to obtain the full revocation information at

predictable points of time. Also, this can be stored in cache in order to be consulted later.

Thus, it is possible to obtain revocation information even when the interested offline and is not

connected to the CRL. Periodic public mechanism, on the other hand, have some disadvantages:

files are extremely large and consulting them is really time-consuming. Additionally, storing

them may need a lot of space which is not available for example in mobile devices. Furthermore,

the validity period and publications of CRL is in the order of days and the information contained

may be not up-to-date [6].

In order to solve these problems, an online Query mechanisms can be used alternatively.

These mechanisms return revocation status at running time using some predefined protocol.

Among these types of protocols the most used is the Online Certificate Status Protocol (OCSP)

which is defined by IETF as RFC2560 [20]. This protocol uses basically HTTP GET and

POST methods with some additional headers as defined in the RFC [20]. OCSP protocol

allows clients to query an OCSP server about the revocation status of individual certificates.

The main advantage is that it returns more up-to-date information than a CRL. OCSP server

responsibility are sometimes delegated from a CA to a so-called Validation Authority (VA).

In these cases, although information is fresher than CRL, the information is cached by the

VA. Furthermore, some VA servers just query CRLs which eliminates this advantage. OCSP

main advantage is that does not require much storage, only the revocation information must

be stored. On the other hand OCSP requires applications to be online.

The OCSP protocol workflow is the following: OCSP clients send a request to an OCSP

server about the revocation status of one or more certificates, optionally the request can be

digitally signed. For each certificate the request submits the serial number of the certificate.

The hash value of the issuers DN and the hash value of the issuers public key. This information

determines the certificate uniquely. Listing below shows the ASN.1 specification of an OCSP

request.
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Listing 3.2: ASN.1

OCSPRequest ::= SEQUENCE {

tbsRequest TBSRequest ,

optionalSignature [0] EXPLICIT Signature OPTIONAL }

TBSRequest ::= SEQUENCE {

version [0] EXPLICIT Version DEFAULT v1,

requestorName [1] EXPLICIT GeneralName OPTIONAL ,

requestList SEQUENCE OF Request ,

requestExtensions [2] EXPLICIT Extensions OPTIONAL }

Next, The OCSP server responds to the request with a message digitally signed. If the

status of more than one certificate is requested, then the answers contains information about

the status of each requested certificate. The revocation answers can be the following: Good

which indicates that the certificate is valid. Revoked indicating that the certificate has been

revoked for some reason. And Unknown which indicates that the certificate is not known by

the OCSP server and that is unable to give any answers about its status. Note that receiving a

positive answer does not mean that the certificate is still valid as it could be expired. Finally,

if a protocol error has occurred the OCSP sever answers with a message error, and in this case

the response is not signed. Below a list of the fields as defined in [20] containing an OCSP

response is shown:

• OCSP Response Status indicates the status of the OCSP response, It can be: Suc-

cessfull, malformedRequest, internalError, tryLater, signRequired or unauthorized.

• Response Type contents the type of the OCSP response as a OID.

• Version indicates the version of the OCSP protocol used.

• Responder ID is the key hash of the OCSP responder that is used to identify the

Validation Authority that signed the response.

• Produced At is the time when the OCSP responder signed the response as UTC Time.

• Certificate ID containing various fields: the issuer name hash, Issuer key hash and Serial

number of the certificate as well as the hash algorithm used to calculate these hashes.

• Certificate Status contains the status of the certificate that can be revoked, good or

unknown.
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• This Update contains the most recent time at which the status being indicated is known

to be correct by the responder.

• Next Update this field contains the time when the response is no longer valid, usually

the valid duration time of a OCSP response are 8h.

• Signature Algorithm contains the algorithm identifier by means of which the response

is signed by the server.

OCSP servers may be operated by various authorities. For example, it could be the same

certificate issuer or could be a delegated authority such a VA. Using the same CA could result

in a security risk because the same key used to sign the responses, which usually is exposed to

the internet. For this reason usually a dedicated OCSP service is established. This server has

a distinct DN which is different form the certificates issuers DN. If this is the case, the OCSP

server must have a certificate issuer with the extended key usage extension set to the value

OCSPSigning.



Chapter 4

Post Quantum Cryptography

In this chapter we introduce the term Post Quantum (PQ) Cryptography, explaining why Shor’s

algorithm and quantum computers could have a big impact in the current cryptosystems, and

in PKI’s as well. Then we explain the measures that ha been taken to counteract the effects of

a PQ world. Also, introducing the new PQ algorithms that are in process of standardization.

Finally, there is an introduction of Lattices, which is one of the main field of study in PQ.

There we introduce Crystals-Dilithium, which is a Digital Signature schema that is based in

lattice cryptography.

4.1 Shor’s algorithm

Cryptographic schemes security rely upon mathematical problems that are assumed hard to

solve. In particular the public key cryptosystems basically one way functions. These basically

rely on the RSA and discrete logarithm problems DL. In RSA, the public key is a product

N = pq of two secret prime numbers p and q and, so the security of RSA relies critically on

the difficulty of finding the factors p, q and N . The best known factorization of a number of n

bits is of the order of e2n
1/3(logn)2/3 and until now, all algorithms that could break RSA or DL

require an exponential number of steps [12].

However, in 1994, Shor introduced a fast quantum algorithm to find the prime factorization

of any positive integer N [21]. This quantum algorithm would require a number of steps of the

order of n2((log n)(log log n)), meaning that the number of steps required is quadratic to the

number of bits n. Shor also introduced a similar algorithm able to solve the discrete logarithm

problem in polynomial time. This enables breaking Elliptic Curve Cryptography (ECC), a

popular alternative to RSA, relying on DL [12].

These algorithms, when applied to public-key sizes for RSA and ECC, require billions of

operations on thousands of logical qubits (bits of quantum computers). Scaling to such number

25
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Name Function Pre-quantum security level Post-quantum security level

Symmetric cryptography
AES-256 encryption 256 128(Grover)
GMAC MAC 128 128(no impact)
SHA-256 hash function 256 128(Grover)

Asymmetric cryptography
RSA-3072 signature 128 broken (Shor)
256-bit ECSDA signature 128 broken (Shor)
256 bit ECDH key exchange 128 broken (Shor)

Table 4.1: Security Level of traditional algorithms against Post Quantum attacks extracted
from [3]

of qubits is difficult, and currently infeasible. Although at some point it could encounter

fundamental obstacles, but no such obstacles have been identified. Thus, quantum computers

with such power are likely to be possible at some point in the future [3].

More cryptographic systems are affected by an algorithm that Grover introduced in 1996.

This algorithm is the foundation for most, but not all possible applications that have been

identified for quantum computing. Grover originally described his algorithm as searching an

unordered database of size N using
√
N quantum queries [3]. Applying and developing this

concept into symmetric cryptosystems and hash functions, it decreases the execution time of the

attacks. But the decrease is not enough to make it vulnerable as these are no polynomial-time

attacks.

Grover’s algorithm speedup is not as dramatic as Shor’s algorithm. If qubits operations

are small enough and fast enough, then Grove’s algorithm will threaten many cryptographic

systems that aim 2128 security, but it can be solved easily doubling the size. In the table

4.1 there is a summary of the impact that the Shor and Grove algorithms have in current

cryptosystems [3].

4.2 NIST Roadmap

Due to the concern that quantum computers could completely break cryptosystems, many re-

searchers have begun to investigate in the Post-Quantum Cryptography (PQC) field, also called

quantum resistant or quantum-safe cryptography. The goal of this field is to develop crypto-

graphic algorithms that would be secure against both quantum and classical computers. There

have been through the years a lot of proposals, including lattice-based cryptosystems, code-

based cryptosystems, multivariate cryptosystems, hash-based signatures, and others. However,

for most of these proposals, further research is needed in order to gain more confidence in their
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security.

In 2016, the National Institute of Standards and Technology (NIST) decided that should be

prudent to begin to develop standards for PQ. Previous cases have shown that the transition

will not be as simple as replace an algorithm by another. As a significant effort will be required

to develop, standardize and deploy post quantum cryptosystems, a call for proposals started.

In 2017, the first round of the competition started, in this round 49 different Key Encapsu-

lation Mechanisms (KEM), which are encryption algorithms, and 22 Digital Signature schemes

where presented. In 2019, there was the second round of the NIST, in this round only 17

KEM’s and 9 Signature algorithms where left from the previous round. Then, in June 2020 the

3 Round begun. At that point only 4 KEM algorithms for encryption and 3 Signature schemes

are left, with also 8 alternate candidates. Currently the competition is still in the 3rd round.

It is expected that in 2023 there will be the release draft standards for the three finalists [16].

The cryptosystems that progressed to the third round of the NIST can be classified in the

following families [8]:

• Code-based schemes. The security is based in the difficulty of decoding vectors to find

the shortest error vector. This kind of scheme is more typical in KEM than in digital

signatures.

• Isogeny-based schemes. This security depends on the difficulty of recovering a secret

isogeny between a pair of elliptic curves, more used also in KEM’s.

• Lattice-based scheme. The security is based in the difficulty of finding vectors in a

lattice that are relatively short or relatively close to some target vector.

• Multivariate schemes. The scheme depends on the difficulty of solving systems of

quadratic or higher degree multivariate polynomials.

• Symmetric schemes. They depend on the security of symmetric cryptographic primi-

tives such as hash functions or block ciphers.

Another way to categorize the digital signature schemes is based in the framework to construct

these primitives [8]:

• Hash and sign. These schemes are constructed from trapdoor one-way functions.

• Hash-based. These schemes follow the Work of Lamport and Merkle to construct a

signature from a hash functions.

• Fiat-Shamir These schemes are constructed by using Fiat-Shamir transform, together

with a post-quantum Identification scheme(IDs)
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Lattice-based Multivariate-based Symmetric-based

Hash-and-sign FALCON GeMSS Rainbow
Hash-based SPHINCS+
Fiat-Shamir Dilithium Picnic

Table 4.2: PQ Digital Signatures categorization extracted from [8].

Alg Type PubKey(Kb) PrivKey(Kb) SigSize(Kb) KeyGen Sign Verify
Speed 106 cycles

SPHINCS+
192s-L3

0.04 0.1 16 206 1919 1.6

Dilithium3 1.9 4 3.2 0.25 0.43 0.18
Falcon
1.7

0.03 1.3 1.2 63 0.79 0.17

Table 4.3: PQ digital signatures comparison extracted from [8].

In the Table 4.2 a summary of the different categorization digital signature schemes can be

seen [8].

NIST provided a guidance on the evaluation criteria to apply to the candidates. In this

guidance there are various defined security categories in terms of the resources required to

attack different algorithms. In total there are 5 categories going from 1 to 5, from less to

more restrictive: Category 1 is equivalent to the resources needed for key recovery of AES-128.

Category 2 is equivalent or greater than collision search or SHA3-256. Category 3 to break

AES-192, category 4 is equivalent to break SHA3-384, and finally, category 5 to break AES-

256. From all of them at least a category 3 variant should be presented for each algorithm.

Also, NIST recommends that submissions should include parameters set that meets greater

categories to demonstrate flexibility and to protect against future cryptoanalytic attacks. For

example Dilithium provides parameter set to support Category 2, 3 and 5 [8]. Every one of the

presented algorithms has different parameters, key sizes, and performance. In Table 4.3 the

different properties for some category 3 PQ signature schemes can be seen.

The information regarding security level and speed in Table 4.3 is taken from an ETSI report

with date of 2021 [8]. It has to be taken into account that the NIST round 3 is an ongoing

process and this means the security of schemes may vary at some point. For example, a

recent study presents several algorithmic improvements to the dual lattice attack. Dual Lattice

attacks is cryptoanalysis technique used against the hard problems relying on the Learning

With Errors (LWE) and Learning With Rounding (LWR) problems. These improvements

considerably reduce the security level of Kyber, Saber and Dilithium [15]. Furthermore, it is

possible that some new attacks appear that could break the current NIST proposed algorithms.
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Recently a vulnerability has been found on Rainbow, which is one of the finalists. This attack

returns the secret key after in average 53 hours of computing time on a standard laptop [4].

4.3 PKI PQ Transition

As explained, due to the concerns related Quantum Computing, NIST started a competition

whose objective is finding a replacement algorithm. But whether the industry is ready to move

to one of this cryptographic algorithms, specially in a Public Key infrastructure (PKI), must

still be proven. Research work in this area is necessary to prepare the market for the challenges

that could be encountered and help to move towards a PQ-PKI.

Specially a lot of study is needed whether or not the actual protocols are suitable to this

coming new algorithms. Transport Layer Security (TLS) which is the main protocol for ensuring

end-to-end encryption has had some recent advances. For example in [7], various benchmarks

have been done comparing TLS with new protocols like KEMTLS, which involves the using of

KEM for both confidentiality and authentication. Not only TLS but also other important pro-

tocols: such as Online Certificate Status protocol (OCSP), Enrollment Over Secure Transport

(EST) protocol, or Timestamp Protocol (TPS), among other important PKI protocols, should

be tested. This is because the PQ algorithm key sizes, parameters, encryption and signing

times vary.

For the case of the certificates and the X.509 standard, the simplest transition to use PQ

algorithms would be to put the PQ public keys and signatures directly into the existing field.

This way only the standardization of new OID is needed without changes in the actual X509

standard. In the other hand, this has the disadvantage that pure PQ certificates could only be

used together with PQ applications.

A better option would be if a smooth transition to PQ should be considered, where both

traditional and PQ algorithms live, such certificates are called “Hybrid Certificates”. This kind

of certificates can contain two or more signatures and keys in the same certificate. This way

could be a good option until the PQ is completely adopted.

As the format of a dual signature is out of scope of the NIST drafts, it is up to the application

to specify how to parse signatures and verify them separately.

Some IETF proposals are currently in phase of standardization in order to apply this Hybrid

Certificates. One option of Hybrid Certificates, suggests placing the PQ data, such as public

keys, algorithm identifiers, and signatures into non-critical x.509 v3 extensions, this method

has the advantage that no big changes into the current standards are needed [22].

Another way would be to combine a collection of PQ and classical algorithms into a sin-

gle composite algorithm, with individual key and signature objects, encapsulating multiple
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Figure 4.1: Hybrid Composite Certificate

keys and signatures. This so-called “Composite Certificates” are in an early stage of IETF

Standardization. This method would require new OID’s for composite structures, and has the

disadvantage that backwards compatibility is tricky [17]. In Figure 4.1, an example how a com-

posite certificate would look is shown. There the public key of Alice is a composite signature

that uses RSA and Dilithium. The certificate is issued by BobCA with ECDSA and Falcon.

Another thing to take into account in a PKI is the performance of each algorithm in terms

of encryption, decryption, signing, key generation etc. This is important as a PKI usually needs

to scale properly with sometimes thousands or users using its components and protocols at the

same time. For this reason investigations in terms of performance are being made, these studies

are usually focused on the acceleration of specific hardware which could be useful in PKI’s by

means of the Hardware Security Modules (HSM). An HSM are a widely used method to store

private information as keys securely. Various studies show proposals using a Software/Hardware

co-design method, a technique with the goal of reaching performance target using shorter

development cycle. For the case of the new PQ algorithm candidates it also allows a better

approach as the pure-hardware implementation approach due its complexity [10]. Examples

of this methodology are shown in the implementation and benchmarking of co-design in three

Lattice-based KEM’s from the NIST process [10]. Another example is in the HW/SW co-design

acceleration of the Classic McEliece cryptosystem, a code-based cryptosystem from the NIST

3rd round [13].
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4.4 Lattice Based Cryptography

One of the most active and promising fields in PQ cryptography is lattice based cryptography.

The security of these schemes rely on the hardness of the Shortest Vector Problem (SVP) and

its variants. These problems are related to some foundational average-case problems, called

the Short Integer Solution (SIS) and Learning With Errors (LWE). NTRU, which is one of the

NIST KEM candidates, is lattice based and is well studied cryptosystem. Furthermore, three

of the 4 KEM’s are lattice based as well as two of the three digital signature algorithms. This

is because polynomial attacks are not know until now, even in quantum computers [12].

Another important point is that lattice-based cryptosystems are often algorithmically simple

and parallelizable, consisting in linear operations and matrices modulo relatively small integers.

For the case of lattices over certain rings, for example, the case of NTRU cryptosystem it can

be specially efficient [19].

Lattices L are in, the simplest terms a grid of points in the space Rn. Although lattices L are

infinite, they always generated as an integer linear combination of some linearly independent

vectors, which we call the basis B = {b1, ..., bk}:

L(B) = B · Zk =

{
n∑

i=1

zibi, zi ∈ Z

}
The integer k is called the rank of the basis and is invariant of the lattice. From now on only

full-rank lattices are used, where k = n [19]. As an example, in the Figure 4.2 a 3-Dimenssional

lattice is plotted, where the basis vectors of the lattice are b1, b2 and b3, the linear combination

of these with integers, generates a set of points in the space.

As explained, lattices, have some interesting properties, whose characteristics are that there

are a set of problems involved that are hard to solve. Some PQ algorithms rely on in this

conjecture and this class of optimization problems on lattices, which are intractable. One

particular is the Shortest vector problem (SVP).

In SVP, we have a lattice L = L(B) of some arbitrary basis B. The problem consists on

finding the shortest non-zero lattice vector v ∈ L for which ||v|| = λ1(L), where λ1(L) =

min||v|| [19]. In the Figure 4.3 a 2-Dimensional Lattice is shown as example. There the vectors

b1 and b2 correspond to the basis vectors of the lattice, and the vector v would correspond

to the shortest vector of the lattice. In this case the problems seems easy but increasing the

dimensions the problem becomes really hard to solve.

The SVP is a problem hard to solve in the worst case, and it has several variants, like the

Decisional Approximate SVP or the Approximate Shortest Independent Vectors Problem.

Another important hard problem in Lattices is the Bounded Distance Decoding Problem

(BDD).
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Figure 4.2: 3D Lattice

Figure 4.3: Shortest Vector Problem.
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Figure 4.4: Bounded Distance Decoding Problem.

In this problem, given a lattice basis B of an n-dimensional lattice L and a target point x ∈
Rn with the guarantee that the dist(x,L < d = λ1(L/(2γ(n)), where γ > 1 is an approximation

factor, then, find the unique lattice vector v ∈ L such that ||x− v|| = e < d [19].

The BDD problem, basically asks to find a vector that is closer to a given point x where the

target is promised to be “rather close” to the lattice. Another related problem is the Closest

Vector Problem (CVP) which it distinguishes from BDD because BDD asks for the uniqueness

of the solution and CVP not [19]. An Example of a BDD Problem is shown in the Figure 4.4.

SVP and BDD problems are proven to be intractable in the worst-case assumption. This

is not recommended in cryptography as it usually works in average-case scenarios as some

problems that appear hard in the worst case turn out to be easier on the average. Nevertheless,

using a first worst-case to average-case reduction for lattice problems it can proven that certain

problems are hard on average as long as some related lattice problems are hard on the worst

case. Also, it is possible to connect the Short Integer Solution (SIS) and Learnig With Errors

(LWE) with the SVP and BDD problems respectively, where SIS and LWE are two proven hard

average-case problems[19].

In a LWE problem, given as independent samples a matrix A ∈ Znxm
q and a vector b ∈ Zm

q ,

where n and q are positive integers. Then if we have a uniformly random vector s ∈ Zn
q which

we call secret and a small error distribution e, and the following holds:

b = sA + e mod q
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and the objective is to find the secrets s. Note that without the error term the secret would

be easy to find by Gaussian elimination [9]. LWE can also be seen as an average-case Bounded

Distance Decoding problem for some certain parameters in the lattices, where the vector b is

relatively close to a one vector in the lattice, and the goals is to find this lattice vector or point

[19].

L(B) =

{
n∑

i=1

zibi, zi ∈ Z

}
+ qZm (4.1)

4.5 CRYSTALS-Dilithium

CRYSTALS-Dilithium is a digital signature that is strongly secure under chosen message attacks

based on the hardness of lattice problems. It is proposed by the Cryptographic Suite for

Algebraic Lattices (CRYSTALS) and currently in the 3rd Round NIST competition.

The scheme is based int the Fiat-Shamir abort which is a framework to drive a signature

scheme from a compact lattice based in an Identification Scheme (IDS) [9]. The security of

Dilithium is based on the hardness of finding short vectors in lattices and the Learning with

errors (LWE) problem. Considering the LWE Equation 4.1 we have that the matrix A together

with the vector b, which consist of polynomials sampled randomly from Zq, would be the public

key. In the other hand s and e, which consist of polynomial vectors sampled from a small

distribution of Zq, would be the secret key [8].

Two operations constitute nearly the entirety of the signing and verification procedures. The

first is an Xtendable-Output Function (XOF) which are similar to hashes but with the ability to

produce an output of variable size. The XOF used in Dilithium are SHAKE-128 and SHAKE-

256. The second operation consists in multiplication operations between polynomials in the

ring Zq[x]/(xn + 1). For all security levels, the scheme uses the same ring with q = 223− 213 + 1

and n = 256. Varying this security simply involves doing more/fewer operations in the ring

and doing more/less expansion operations in the XOF [9], this makes Dilithium flexible and

easy to implement for different levels of security. Dilithium presents security levels, Dilithium-2

with a claimed security of category 2, Dilithium-3 with a security level of 3, and Dilithium-5,

with a security of 5. Also, instead of SHAKE XOF mechanism Dilithium also allows the use

of AES-256 in counter mode, called Dilithium-AES. This allows to make use of AES enabled

acceleration hardware.

Now, the signing-verification procedure of Dilithium is explained in detail. First, the bound

sizes of the coefficients are defines as follows [8]:

• n is the dimension of the polynomial ring Rq.
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• q which is the modulus of the polynomial ring Rq.

• k and l are the ranks of the vector over Rq.

• µ which is the bound on the size of the coefficients for key generation.

• γ1 and γ2 are the bound of the sizes of the coefficients for signing and β is the reduction

in the bounds.

The parameter γ1 is set strategically so that it is large enough that the signature does not

reveal the secret, yet small enough that the signature is not easily forged [9]. Similarly to the

BDD in lattices, the objective of the bounding parameters is to define the boundary distance

so that the point results to be sufficiently close to a point in the lattice.

Additionally, some auxiliary primitives must be defined. Those are: SHAKE-256 as a hash

function H, SHAKE-256 as a PRF, and SHAKE-128 or AES-256 in CTR mode as a XOF

function. Each component of w ∈ Rq
q can be decomposed as [8]:

w = w1 · 2γ2 + w0

Where the coefficients of w0 ≤ |γ2|. Then, Dilithium also defines the functions w1 = Highbits(w, 2γ2)

and w0 = Lowbits(w, 2γ2).

Dilithium keyGen

For the key generation, first two vectors s1 ∈ Rl
q and s2 ∈ Rk

q with size at most µ is generated

using a PRF. Additionally, a matrix A is generated using a seed ρ ∈ 0, 1256 and expanding it

using an extendable output XOF function [8].

Then the public key is calculated as:

t = As1 + s2.

Then the public key is (ρ, t) ∈ {0, 1}256 and the private key is (ρ, t, s1, s2) ∈ {0, 1}256.

Dilithium sign

For signing, first a sample y ∈ Rl
q is generated with coefficients between −γ1 and γ1. Then w1

is calculated:

w1 = Highbits(Ay, 2γ2) ∈ Rk
q .
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To sign, given a message M first the hash of the message with the w1 appended is calculated

using SHAKE-256:

c = H(M ||w1)

And then the signature is calculated as follows:

z = y + cs1

A final step is needed to ensure the success of the signature:

||z||inf ≤ γ1 − βor||LowBits(Az − ct)||inf ≤ γ2 − β

In case contrary the signing process must be restarted. The first check is necessary for

security, while the second for both security and correctness [9].

Finally, the final signature will be the tuple (z, c).

Dilithium verify

Having the public key pk = (ρ, t) in order to verify the signature sig = (z, c), first the seed ρ

must be expanded using XOF to obtain A ∈ Rk·l
q . Then compute:

w′1 = Highbits(Az − ct, 2γ2)

And finally check that:

c = H(M ||w′1)

and

||z||inf < γ1 − β

If the previous two conditions are true, ACCEPT , otherwise REJECT .



Chapter 5

Case of Study

The case of study will be a Validation Authority (VA) called Entrust Validation Authority

or EVA. The function of the Validation Authority is to provide information of the certificate

revocation status using the OCSP protocol as described in the PKI Chapter 3. Another function

of the VA apart from providing OCSP responses to whoever requests it, is to request the

information periodically to a server with this status. This revocation information would be

retrieved from a Certificate Authority and stored in a database. Finally, to sign the OCSP

responses, the Validation Authority it connects to a Hardware Security Module (HSM) where

the keys are stored for security, and sign the response before sending it. There is also the

possibility to store the keys in the host and sign from there. Although this is not recommended

in a production environment, we will use this method to perform the studies and benchmarks,

as there is no Dilithium implementation for HSM’s yet. In this chapter the architecture of this

Validation Authority and its functionality are described in detail.
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The details of the Entrust Validation Authority are hidden for public view due

to a confidentiality agreement.



Chapter 6

Benchmarks

In this section we test the performance of the Validation Authority with different algorithms for

signing the OCSP requests. The traditional algorithms that will be used for the benchmarks

are RSA with keys of 2048 bits and ECDSA with keys of 256 bits, which are two commonly

used security levels for these algorithms. For the case of Dilithium, Dilithium3 will be used,

which achieves at least a security of 128 bits, [8] being very conservative. This security level

is similar in terms of security level to the other two algorithms. For all the three cases the

same benchmark-setup with the same hardware specifications is used. The benchmarks will be

performed without the use of Hardware Security Module. This, is done because Dilithium is not

available in an HSM yet and makes the benchmarks of the three algorithms more comparable.

Using an HSM could lead to different results, either because there hardware acceleration or

because the latencies between the VA and the HSM.

The performance of the Validation Authority is mainly measured in terms of the following

parameters:

• How many OCSP Requests is the server capable to receive, sign and respond in a specified

time, also called from now on as Transactions per Second or TPS. This is an important

feature of a VA as it could have peaks with a huge amount of requests that should be

able to respond.

• The period of time from the time that the OCSP request is sent, until that the OCSP

response is received and verified. This parameter is also called Latency from now on. In

this case the lower, the better, as the clients expect to receive the response as fast as

possible.

Also, the Validation Authority should support handling multiple OCSP requests from different

clients simultaneously, this parameter will be called concurrency. To stress the server and

calculate the maximum performance of the system, different benchmarks will be made with a
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different level of concurrency (multiple requests at the same time), until the maximum of the

resources of the CPU is reached. Other hardware resources such as memory and bandwidth

needed will also be measured, but these resources should not suppose a bottleneck.

6.1 Benchmark Setup

For the benchmarks three separate Virtual Machines (VM) are used, one will host the bench-

mark client, another the database and another one the Entrust Validation Authority. The

software and hardware specifications are seen below:

• Processor: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz

• Virtualization: VMWARE

• Cores: 8 CPUs

• Thread per core: 1

• Operating System: CentOS Linux 7 (Core)

• Linux kernel: 3.10.0-1160.53.1.el7.x86 64

A schema of the benchmark setup is seen in the Figure 6.1.

Figure 6.1: Benchmark Setup

To perform the benchmarks, first the database will be filled with all the certificates and all

the revocation information. This is done in order to avoid other processes in the EVA host

to consume any kind of resources, like CPU or RAM. This allows OCSP Server process to

use all the resources that has available in the VM all the time. The client consists of a small

command line interface program generated for the purpose of these benchmarks, and it has

also the functionality to verify Dilithium Digital Signatures. To generate a OCSP request the

following flags are given as arguments:
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• url is the URL of the OCSP Responder Server.

• n is the number of total OCSP Requests to be sent.

• c is the number of concurrent requests.

• certFile is the certificate (PEM format) from which we want to obtain the revocation

status.

• caFile is the CA certificate (PEM format) which issued the certificate, necessary to

identify a certificate.

• vaFile is the VA certificate (PEM format) which will be used to verify the signature of

the OCSP Response.

An example of the client usage is seen below. The command is executed in a UNIX terminal,

where 100 requests are realized with a concurrency of 8 requests simultaneously to the certificate

ca.pem.

$ . / c l i e n t −c 8 −n 100 −c a F i l e ca . pem −vaF i l e va . pem \\
−c e r t F i l e c e r t . pem −u r l http : / / 1 2 7 . 0 . 0 . 1 / eva

The three VM are hosted in the same data-center so very low network latencies are expected.

The execution of the benchmark client and the gathering of performance results are done

automatically. The relevant parameters that are measured are the following ones:

• TPS: Transactions (requests) per Second. Number of transactions made per second. For

the benchmarks, the transaction includes also the signature verification process.

• Latency: Latency in ms, which includes: the signing, verification as well as the network

latencies.

• Server CPU. Is CPU usage in the server VM (CPU 100% meaning all cores at 100%).

• OCSP Memory. Is the memory usage of the OCSP server in MBytes. Memory used

in other processes is not included.

• Bandwidth. Bytes transmitted from the server to the client in Mbps.

All the results are calculated as an average of total number of requests made. The number of

total OCSP requests performed are 100000 in all the cases, this number represents a good value

to have a good average of the results. These parameters will be measured with concurrences of

1 to 1024, increasing as a power of two.
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Figure 6.2: TPS for RSA, ECDSA and Dilithium

6.2 Results

In this section all measurements of the parameters described before are shown, the results are

plotted in the y axis as a function of the number of concurrent requests in x where both axis

are in logarithm scale. In each graph it is possible to see the results for the three algorithms

RSA, ECDSA and Dilithium for comparison purposes. Figure shows 6.2 the Transactions per

Second as a function of number of the concurrent requests received (in logarithmic scale) and it

shows the results for the three algorithms. As it can be seen, they present different results, but

the overall behavior is similar. The TPS increases linearly at the beginning and is proportional

to the number of requests received, until it reaches about the 4 concurrent requests. After that,

the rate starts to slow down until it stabilizes and reaches its limit at about 512 concurrent

requests approximately.

Figure 6.3 shows the CPU usage of the host machine as a function of concurrency, for each

case. The graph shows that as the CPU usage increases linearly at the beginning, proportional

to the concurrency, until it reaches certain concurrency. After that, the CPU rate starts to

slow down until it reaches about 90% of the PC usage.

Figure 6.4 shows the Latency versus concurrency, for RSA, ECDSA and Dilithium. It can

be observed a flat latency below 10ms for the three algorithms, and after reaching 4 concurrent

requests the latency increases proportionally at different rate for the three algorithms. In the

flat region we observe a slow descent in latency from 1 to 2 and 4 concurrent requests. The
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Figure 6.3: CPU Usage (%) for RSA, ECDSA and Dilithium

RSA ECDSA Dilithium

Size (KB) 1.4 0.8 9

Table 6.1: Size of a OCSP Response in KBytes

explanation of this estrange behaviors is that the client reuses the same TCP connection, thus

avoiding doing another TCP handshake and reducing a latency.

Figure 6.5 shows the bandwidth in Mbps needed by the OCSP Responder vs concurrency.

Also in this case we can observe a proportional increase of the bandwidth for the three algo-

rithms until 4 concurrent requests. After that, the stiffness starts decreasing with a logarithmic

behavior until it stabilizes at some constant bandwidth. Table 6.1 shows the size in Kbytes of

a generated OCSP Response for each algorithm.

Finally, Figure 6.6 shows the memory usage vs concurrency used by the OCSP Sever process.

In this case, the memory needed in other processes of EVA is not shown as it is not relevant

for this case. An increasing exponential behavior can be observed for each algorithm.

As seen, we can distinguish three different main regions in the graphs. In the first region,

TPS, CPU and Bandwidth increase linearly and proportional to the concurrency until it reaches

a concurrency of 4. In this region Latency and Memory Usage are flat. After that there is a

transition until TPS, CPU and Bandwidth peaks at approximately 512 of concurrency. Latency

in this case increases linearly and Bandwidth exponentially.

In the Table 6.2 the maximum performance results are shown (for each algorithm). This
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Figure 6.4: Latency (ms) for RSA, ECDSA and Dilithium

Figure 6.5: Bandwidth Usage (Mbps) for RSA, ECDSA and Dilithium
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Figure 6.6: OCSP Sever Memory Usage (MB) for RSA, ECDSA and Dilithium

Algorithm TPS CPU(%) Bandwidth(Mbps) Memory(MB) Latency(ms)

RSA 2124 92 23 255 240
ECDSA 5743 90 36 242 88
Dilithium 3934 91 284 333 129

Table 6.2: Maximum performance results (at 512 concurrent requests), for RSA, ECDSA and
Dilithium

maximum corresponds approximately at 512 concurrency.

The Table 6.3 shows the rates (Results/concurrency) in the first region (the linear region),

below 4 concurrency. The rates are seen for TPS, CPU and Bandwidth only. Table 6.4 shows

the results for the Memory and Latency below 4 concurrency, as the values are almost constant.

Finally, the Table 6.6 gives the maximum resources needed for the database and the client,

at 512 of concurrency. We can see that neither the database nor the client exceed the 50% of

CPU. This means that the resources of the client and the database VM are not fully used in

TPS/conc. CPU(%)/conc. Bandwidth(Mbps)/conc.

RSA 145 10.5 1.6
ECDSA 237 9.5 1.5
Dilithium 211 9.75 15

Table 6.3: CPU, TPS and Bandwidth rates below 4 concurrent requests
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Memory(MB) Latency(ms)

RSA 105 8
ECDSA 106 4
Dilithium 107 5

Table 6.4: Memory and Latency values below 4 concurrent requests

Latency(ms)/concurrency

RSA 0.45
ECDSA 0.17
Dilithium 0.25

Table 6.5: Latency rate above 4 concurrent requests

any case.

6.3 Conclusions

Comparing the similarity of results of CPU Usage with the TPS, it can be concluded that the

TPS is strongly related to the CPU usage. It can be seen how the more the server is stressed with

OCSP requests, the more resources the computer needs in order to sign the OCSP responses.

With low concurrency the CPU is capable of handling the various requests distributing them

between the cores, but as around 4 concurrent requests, it cannot handle all of them at the

same rate, and the TPS rate starts decreasing, until it stabilizes at some maximum throughput.

Signature verification is done by the client, but looking at the CPU usage of the client, we see

that it consumes less CPU, never reaching its maximum, and same happens for the database

CPU usage. So it can be concluded that signing is the most resource intensive operation, and

it’s what defines the TPS. Comparing the three algorithms, same behaviors but different results

can be seen. Dilithium gives a maximum of 3900 TPS, which supposes 40% less than ECDSA

but 50% more than RSA. The TPS rates also gives results in the same direction, but not so

acute, where Dilithium performs 10% less than ECDSA, but 30% more than RSA, resulting in

very acceptable results for Dilithium referring to its CPU usage.

Latency results are also strongly related to the TPS, but the behavior is inverse, being

RSA ECDSA Dilithium

Client 23 40 48
Database 19 30 24

Table 6.6: Maximum CPU (%) Usage at 512 concurrent requests for the client and the database
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flat at the beginning but as the TPS rate starts decreasing at around 4 concurrency. The

latency, which until that point was constant below 10ms, starts increasing at constant linear

rate. Mainly because the server must handle more and more parallel requests at the same time.

The latency rate of each algorithm gives is different, Dilithium Latency increase rate is 45%

less than RSA, but compared to ECDSA is 30% higher.

Bandwidth behavior is also similar to the TPS and CPU, increasing linearly at the beginning

and, above 4 concurrency, slowly decreasing the rate until reaching a maximum. Looking at

the bandwidth usage, it can be seen that here is where Dilithium differs from other algorithms.

This difference is mainly because the signature sizes and key public key sizes, that must be sent

through the network. Here Dilithium needs around a factor of 10 more bandwidth than other

algorithms. Increasing at the beginning at a rate of 15Mbps/concurrent requests and reaching

the maximum at almost 285 Mbps. Of course, this limit is reached because the limit resources

of the PC where reached, in case of more resources, more bandwidth would be needed. In this

case paying special attention at the Bandwidth is needed as it could suppose a bottleneck.

Finally, we see how the memory usage is at the beginning flat, but as TPS rate decreases,

the memory usage increases exponentially, mainly because the memory resources are not freed

at the same speed that they are requested. The case of the Memory needed is also a bit special

for the case of the Dilithium, as the increase in memory is exponential. Dilithium memory

Usage increases at a faster rate, and in some case it could happen that the memory needed

reaches the maximum. Reaching the maximum memory is really critical and even could cause

the server to stop running.
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Examples parsed with OpenSSL

A.1 OCSP Request

OCSP Request Data :

Vers ion : 1 (0 x0 )

Requestor L i s t :

C e r t i f i c a t e ID :

Hash Algorithm : sha1

I s s u e r Name Hash : 99F14D28B633E261C6D08AFA0FA8EAD63715EE39

I s s u e r Key Hash : C8B89D0F95B44F0ECCE8A54978553C5EE7172704

S e r i a l Number : 12BBD2B91A3BBA326649C48BC235B1FF

A.2 OCSP Response

OCSP Response Data :

OCSP Response Status : s u c c e s s f u l (0 x0 )

Response Type : Bas ic OCSP Response

Vers ion : 1 (0 x0 )

Responder Id : 93D5D335BA0AC607783A01555B7D07A7DF66F1C7

Produced At : Feb 19 15 : 27 : 49 2022 GMT

Responses :

C e r t i f i c a t e ID :

Hash Algorithm : sha1

I s s u e r Name Hash : 99F14D28B633E261C6D08AFA0FA8EAD63715EE39

I s s u e r Key Hash : C8B89D0F95B44F0ECCE8A54978553C5EE7172704

S e r i a l Number : 12BBD2B91A3BBA326649C48BC235B1FF

48
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Cert Status : good

This Update : Feb 19 15 : 27 : 49 2022 GMT

Next Update : Feb 19 23 : 27 : 49 2022 GMT

Response S i n g l e Extens ions :

OCSP Archive Cutof f :

Aug 20 14 : 53 : 11 2021 GMT

Signature Algorithm : sha256WithRSAEncryption

2 7 : 9 8 : cd : f e : 9 4 : 3 7 : 6 b : ad : 7 1 : 4 7 : 7 f : c1 : bf : 6 d : 9 b : f 1 : e1 : 5 1 :

ed : 6 4 : 8 0 : 8 e : d0 : 5 9 : 6 2 : d5 : 1 8 : d5 : de : 9 1 : f 1 : 0 a : c6 : f 1 : 2 b : e f :

80 : eb : 9 0 : a4 : 0 f : e7 : 3 2 : 3 8 : 9 2 : 9 f : d6 : 0 9 : 9 2 : f f : a5 : a1 : a f : c3 :

ec : a0 : 9 b : 8 e : db : ba : 1 5 : 5 7 : c f : c5 : 5 9 : db : c2 : 6 c : c4 : 2 9 : 1 e : 6 c :

50 :1 d : 4 d : 0 7 : f 8 : 3 5 : 0 7 : 8 6 : 1 a : 4 d : 5 b : b0 : 5 c : de : c7 : b1 : d3 : 2 2 :

cd : 3 9 : 8 b : 2 d : 9 7 : 7 0 : e2 : 4 e : d5 : 5 4 : a2 : 0 4 : 4 2 : 5 2 : 1 7 : ee : 0 3 : dc :

5c : c3 : 1 f : 9 c : 4 8 : 1 5 : 5 8 : 9 6 : f 7 : 3 d : 7 9 : 7 1 : 8 9 : 0 a : 5 f : 2 2 : 9 b : 0 1 :

d7 : 0 a : 8 2 : a8 : c4 : e9 : 0 b : b6 : da : 1 0 : cd : e4 : 2 a : f 5 : db : ba : 9 8 : 5 7 :

64 : fc : 2 b : 9 d : 9 8 : 1 e : 0 d : ae : f 5 : aa : 3 8 : 0 8 : de : 6 b : 6 c : 1 4 : e7 : 3 a :

5 8 : 7 6 : 3 a : 2 2 : 2 0 : a5 : 7 d : 0 3 : b0 : e3 : 2 a : 4 2 : 4 9 : 7 8 : 3 1 : cc : 5 f : 9 3 :

0 f : de : 9 f : 3 1 : f 7 : 9 6 : 4 e : b5 : 7 5 : 5 e : 5 8 : 6 d : a2 : 6 2 : 6 d : 6 d : da : 6 0 :

46 :7 a : b8 : a9 : d8 : 1 a : 9 9 : 9 4 : f 1 : 0 1 : cc : 5 4 : 5 2 : 1 2 : a4 : 5 7 : c2 : a4 :

f 2 : c3 : a9 : e6 : d0 : 0 9 : ca : 7 8 : 6 3 : ae : b8 : e5 : 2 d : 8 7 : 9 f : 4 5 : ad : cb :

d1 : b9 : 4 6 : a3 : 1 9 : 1 f : 9 3 : 6 8 : b2 : 4 3 : 8 4 : bc : f 2 : 1 e : f 3 : 8 f : c4 : d8 :

7a : f 5 : 4 c : 45

A.3 VA Certificate

C e r t i f i c a t e :

Data :

Vers ion : 3 (0 x2 )

S e r i a l Number :

29 :0 d : 8 4 : 7 0 : 3 b : dc : 6 1 : 8 9 : a5 : e7 : f 9 : e6 : 8 0 : 8 9 : 2 d : 7 f

S ignature Algorithm : sha256WithRSAEncryption

I s s u e r : CN=Root User CA 1

Va l i d i t y

Not Before : Oct 6 16 : 53 : 26 2021 GMT

Not After : Oct 6 16 : 53 : 23 2022 GMT

Subject : CN=VA 1
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Subject Publ ic Key In fo :

Publ ic Key Algorithm : rsaEncrypt ion

RSA Public−Key : (2048 b i t )

Modulus :

00 : e0 : 7 4 : 4 1 : 5 a : de : b1 : 6 9 : 1 d : f f : 0 e : 7 f : 4 7 : f 6 : cd :

bc : 2 6 : 8 2 : e9 : 9 8 : de : e2 : ce : 8 0 : a7 : b0 : a5 : 0 c : 4 5 : 6 9 :

a6 : ce : fd : eb : b1 : 1 0 : a1 : f 0 : cc : 3 c : 9 8 : 4 9 : 4 b : 9 4 : 1 5 :

32 : dc : 8 a : 8 c : 2 e : fc : 3 6 : 9 2 : 0 4 : f 6 : 1 6 : 8 f : e5 : 6 e : ac :

d6 : 4 4 : 8 7 : b6 : 3 9 : 6 3 : 8 0 : 1 a : 4 7 : 7 d : bb : 6 d : 4 5 : ec : 1 4 :

d4 : c0 : 6 2 : 7 1 : 5 5 : 6 1 : f 6 : 2 8 : 8 2 : 4 4 : ba : 4 b : b5 : 4 e : 6 5 :

9a : 2 3 : 6 9 : 2 4 : 0 4 : d2 : d6 : 7 8 : 6 8 : 9 a : 2 c : bc : 2 3 : 9 7 : df :

f 1 : b2 : 5 3 : e0 : 2 6 : 0 8 : c2 : 2 f : f 7 : 8 a : 9 b : 2 8 : 3 a : 7 0 : 6 1 :

3 5 : 6 9 : a6 : 7 b : 7 6 : e3 : aa : 9 4 : 4 3 : a3 : 1 c : 8 a : c0 : e3 : 4 0 :

5 2 : 1 3 : e0 : ed : d3 : 2 9 : ad : 5 e : e f : 2 f : 8 1 : 7 1 : bd : 7 a : e5 :

68 : b9 : d6 : 1 6 : c f : 1 c : c8 : 9 8 : e5 : f 0 : 7 4 : 9 d : 4 9 : 9 8 : ca :

06 : e6 : 9 e : 6 2 : 8 b : d1 : 2 4 : 4 1 : 7 8 : da : e7 : aa : 1 f : d0 : ca :

f 2 : db : 9 0 : e f : 4 a : 4 7 : e6 : 6 3 : 9 9 : da : 4 f : 0 6 : 3 7 : 7 5 : 9 c :

70 : a8 : 6 9 : 3 b : 4 6 : 4 4 : aa : a5 : cb : bf : bd : 4 2 : 2 4 : e0 : 9 d :

c3 : 0 4 : 2 f : e1 : 2 a : 4 1 : 9 d : 5 a : 3 5 : b2 : d5 : c0 : 8 8 : e6 : 6 8 :

7c : 6 4 : 6 8 : a1 : 9 b : a8 : a7 : b3 : b7 : 9 8 : ab : 4 e : 4 b : c0 : 5 5 :

32 :4 a : 6 b : f 2 : 8 3 : ac : db : fb : 4 4 : 3 2 : 1 a : 4 8 : 0 e : 3 d : 2 2 :

6d : 2 f

Exponent : 65537 (0 x10001 )

X509v3 ex t en s i on s :

X509v3 Basic Const ra in t s : c r i t i c a l

CA:FALSE

X509v3 Subject Key I d e n t i f i e r :

93 :D5 : D3 : 3 5 :BA: 0A: C6 : 0 7 : 7 8 : 3A: 0 1 : 5 5 : 5B: 7D: 0 7 : \\
A7 :DF: 6 6 : F1 : C7

X509v3 Authority Key I d e n t i f i e r :

keyid :DB: 8 1 : 5 7 : 0 7 : 3A: 0E : 6 4 : 7 7 : 0 7 : 2 9 : 7 7 : E7 : D4 : \\
CF: 8 5 : B4 : F2 : 9 2 : 2 7 : 8 1

X509v3 Key Usage : c r i t i c a l

D i g i t a l S ignature

X509v3 Extended Key Usage :
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OCSP Sign ing

OCSP No Check :

S ignature Algorithm : sha256WithRSAEncryption

35 :5 a : ac : e6 : c8 : 3 4 : 7 0 : 7 2 : 2 8 : 7 a : 3 9 : 2 8 : 8 e : c6 : 8 6 : 3 3 : 0 c : 6 c :

3b : 3 4 : 5 4 : 6 6 : e4 : 7 d : 1 e : e9 : 6 f : 9 1 : b3 : e8 : e7 : 8 1 : 9 d : 3 8 : d2 : 5 f :

0 8 : 8 8 : ad : 4 a : 0 0 : ee : 7 b : 6 b : f 5 : 2 a : 2 9 : 5 9 : 7 c : 1 4 : 3 2 : 1 7 : 3 8 : b6 :

e0 : a7 : 1 5 : 7 0 : 5 c : 3 0 : 1 8 : 9 4 : db : 2 a : c1 : e f : 5 1 : e4 : bc : 6 d : e6 : 3 2 :

6 7 : 6 5 : d5 : b4 : 7 7 : d6 : 1 c : 6 4 : e f : ee : 8 8 : 4 4 : cb : 6 7 : 2 d : 9 c : b5 : f 2 :

7d : c1 : 6 1 : 7 7 : 2 0 : 3 6 : fb : d7 : 9 a : 4 6 : 4 6 : fc : 6 2 : 3 b : e8 : 3 c : 0 3 : b8 :

60 : a2 : a3 : 8 2 : 3 0 : a1 : d8 : 4 0 : 5 c : 5 0 : 8 a : 5 6 : 6 3 : 2 3 : fb : 7 d : 7 d : f 6 :

3 5 : 3 1 : 7 c : f f : 6 d : bb : 6 d : 9 a : 0 3 : 4 d : 2 1 : 6 4 : 5 d : c f : 0 6 : e3 : 0 b : 5 8 :

08 : e7 : da : 1 b : f 3 : 1 b : 9 d : 4 b : cd : 4 4 : 4 f : a9 : d2 : 8 c : 6 4 : cb : 8 0 : 7 2 :

8 9 : 2 7 : c f : d5 : 5 5 : f 4 : a7 : 6 d : 6 7 : 0 a : 4 2 : b7 : 3 3 : 3 b : 4 4 : c6 : a7 : 2 7 :

9d : de : d3 : 6 8 : b8 : 8 b : 3 9 : a9 : 6 2 : 3 c : a1 : b0 : 0 3 : 3 3 : 0 f : 3 b : 1 4 : de :

f 4 : d9 : f 9 : 7 3 : 5 8 : 1 f : 6 3 : 3 8 : f 5 : 2 0 : 8 6 : 7 1 : c5 : df : 6 8 : ac : 9 2 : e0 :

a4 : 6 5 : 2 a : 6 3 : e2 : 8 c : 6 e : 1 d : 2 1 : 3 e : ae : e9 : ce : f 4 : 6 7 : ee : b5 : 3 2 :

a7 : 4 6 : 1 a : 8 3 : 4 3 : f 3 : 5 e : 3 a : 7 3 : c1 : e3 : b9 : ee : fc : e5 : e7 : c3 : c1 :

f 5 : 0 c : 7 b :29
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[9] Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim Lyubashevsky, Peter Schwabe, Gregor
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